
The Discrete Logarithm Problem

in Finite Fields of Small Characteristic

Habilitationsschrift

vorgelegt

der Fakultät Mathematik und Naturwissenschaften

der Technischen Universität Dresden

von

Dr. Jens Zumbrägel

geboren am 28. April 1980 in Vechta

Eingereicht am 2. Juni 2015

Wissenschaftlicher Vortrag und Aussprache,

sowie Probevorlesung am 28. Juni 2016

Die Habilitationsschrift wurde in der Zeit

von Okt. 2013 bis Mai 2015 im

Institut für Algebra angefertigt.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236375088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

The Discrete Logarithm Problem in Finite Fields of Small Charac-
teristic: Background and Summary

Jens Zumbrägel 3

Abstract. The Discrete Logarithm Problem (DLP) in finite fields of small
characteristic is currently a very active area of research, where some striking
developments have taken place recently. In this introductory chapter we pro-
vide background on the DLP and its applications to cryptography, while our
main concern is the DLP in finite fields. We give an overview of the state-of-art
regarding algorithms for computing discrete logarithms in finite fields of any
characteristic. In particular, we focus on the case of small characteristic and
summarise the recent advancements as well as the contributions presented in
this thesis.

22 pages

[A] On the Function Field Sieve and the Impact of Higher Splitting
Probabilities: Application to Discrete Logarithms in F21971 and F23164

Faruk Göloğlu, Robert Granger, Gary McGuire, Jens Zumbrägel 25

Abstract. In this paper we propose a binary field variant of the Joux-Lercier
medium-sized Function Field Sieve, which results not only in complexities
as low as Lqn(1/3, (4/9)

1/3) for computing arbitrary logarithms, but also in
an heuristic polynomial time algorithm for finding the discrete logarithms of
degree one and two elements when the field has a subfield of an appropriate
size. To illustrate the efficiency of the method, we have successfully solved the
DLP in the finite fields with 21971 and 23164 elements, setting a record for
binary fields.

20 pages

[B] Solving a 6120-bit DLP on a Desktop Computer

Faruk Göloğlu, Robert Granger, Gary McGuire, Jens Zumbrägel 45

Abstract. In this paper we show how some recent ideas regarding the discrete
logarithm problem (DLP) in finite fields of small characteristic may be applied
to compute logarithms in some very large fields extremely efficiently. By com-
bining the polynomial time relation generation from the authors’ CRYPTO
2013 paper, an improved degree two elimination technique, and an analogue of
Joux’s recent small-degree elimination method, we solved a DLP in the record-
sized finite field of 26120 elements, using just a single core-month. Relative to
the previous record set by Joux in the field of 24080 elements, this represents a
50% increase in the bitlength, using just 5% of the core-hours. We also show
that for the fields considered, the parameters for Joux’s LQ(1/4 + o(1)) algo-
rithm may be optimised to produce an LQ(1/4) algorithm.

18 pages

1

[C] Breaking ‘128-bit Secure’ SupersingularBinary Curves (or how
to solve discrete logarithms in F24·1223 and F212·367)

Robert Granger, Thorsten Kleinjung, Jens Zumbrägel 63

Abstract. In late 2012 and early 2013 the discrete logarithm problem (DLP)
in finite fields of small characteristic underwent a dramatic series of break-
throughs, culminating in a heuristic quasi-polynomial time algorithm, due
to Barbulescu, Gaudry, Joux and Thomé. Using these developments, Adj,
Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed the concrete security of
the DLP, as it arises from pairings on (the Jacobians of) various genus one
and two supersingular curves in the literature, which were originally thought
to be 128-bit secure. In particular, they suggested that the new algorithms
have no impact on the security of a genus one curve over F21223 , and reduce
the security of a genus two curve over F2367 to 94.6 bits. In this paper we pro-
pose a new field representation and efficient general descent principles which
together make the new techniques far more practical. Indeed, at the ‘128-bit
security level’ our analysis shows that the aforementioned genus one curve has
approximately 59 bits of security, and we report a total break of the genus two
curve.

20 pages

[D] On the discrete logarithm problem in finite fields of fixed char-
acteristic

Robert Granger, Thorsten Kleinjung, Jens Zumbrägel 83

Abstract. For q a prime power, the discrete logarithm problem (DLP) in F
×

q

consists in finding, for any g ∈ F
×

q and h ∈ 〈g〉, an integer x such that gx = h.
For each prime p we exhibit infinitely many extension fields Fpn for which the
DLP in F

×

pn can be solved in expected quasi-polynomial time.

26 pages

2

The Discrete Logarithm Problem

in Finite Fields of Small Characteristic

Background and Summary

Jens Zumbrägel

Institute of Algebra, TU Dresden, Germany

Abstract. The Discrete Logarithm Problem (DLP) in finite fields of small
characteristic is currently a very active area of research, where some striking
developments have taken place recently. In this introductory chapter we pro-
vide background on the DLP and its applications to cryptography, while our
main concern is the DLP in finite fields. We give an overview of the state-of-art
regarding algorithms for computing discrete logarithms in finite fields of any
characteristic. In particular, we focus on the case of small characteristic and
summarise the recent advancements as well as the contributions presented in
this thesis.

1 Introduction

Given a finite cyclic group (G, ·), a generator g ∈ G and another group el-
ement h ∈ G, the Discrete Logarithm Problem (DLP) is the computational
problem to find an integer x satisfying gx = h. The integer x is uniquely de-
termined modulo the group order and is called the discrete logarithm logg h of
the element h to the base g. Most prominently, the group G considered is the
multiplicative group F∗

p of the field Fp of integers modulo a prime p, which is a
cyclic group with difficult DLP. Besides this classical case, several other groups
have been extensively studied, including the multiplicative group F∗

q of any fi-
nite field Fq of prime power order q = pn, the group E(Fq) of Fq-rational points
on an elliptic curve E, or the Jacobian JC(Fq) of a (hyperelliptic) curve C.

The study of discrete logarithms can be traced back to at least two cen-
turies ago, when they appeared in Gauß’ Disquisitiones Arithmeticae under the
name of indices. The importance of the DLP became even more pronounced
with the advent of public-key cryptography in 1976, as the hardness of the DLP
(originally in F∗

p) forms the basis of the famous Diffie-Hellman protocol [11]
and other cryptographic primitives.

To describe the hardness of the DLP in a group of order N one usually
considers the asymptotic complexity in the input size of the problem, which
is proportional to logN . To indicate the complexity, it has become customary
to use the notation

LN (α, c) := exp
(

(c+ o(1))(logN)α(log logN)1−α
)

,

3

where α ∈ [0, 1], c > 0 and log denotes the natural logarithm; we may omit the
subscript N when there is no ambiguity and denote L(α) to mean L(α, c) for
some c > 0. Note that L(0) = (logN)c+o(1), which corresponds to polynomial
time, while L(1) = N c+o(1) = exp(c+ o(1))logN denotes exponential time. An
algorithm with a running time of L(α) for some 0 < α < 1 is said to be of
subexponential complexity.

Algorithms for solving the DLP can be broadly classified into two families.
One class are the generic algorithms, which do not exploit a particular group
representation and thus apply to any group. Generic algorithms, like Pollard’s
rho method [32], have a running time of O(

√
N) (unless N has only small

prime factors, in which case the Pohlig-Hellman algorithm [31] applies). The
other family are the so-called index calculus methods, in which for all ele-
ments in a certain specified subset (called factor base) the discrete logarithms
are obtained by means of linear algebra. A basic version of the index calculus
has been analysed by Adleman [1], resulting in a subexponential complex-
ity of L(12). Subsequently, more advanced index calculus methods with lower
complexity have been developed.

In particular, the first L(13)-algorithm for computing discrete logarithms,
published in 1984 by Coppersmith [8], targeted at binary finite fields. Later,
the number field sieve, originally devised for the integer factoring problem [28],
was adapted for the DLP in prime fields [34, 19] and resulted again in an
L(13)-algorithm. Inspired by the number field sieve, the function field sieve
was developed for computing discrete logarithms in small (fixed) characteris-
tic [2, 3, 18]. Finally, in 2006 two papers [20, 21] appeared that generalise the
function field sieve and the number field sieve, respectively, to work also in
the medium prime case, thereby obtaining L(13)-algorithms for all families of
finite field DLPs. Some improvements of the medium number field sieve have
been reported recently, e.g., see [4].

Regarding the case of small characteristic some dramatic progress has
taken place only recently and these developments will be the major sub-
ject of the present thesis. Indeed, almost 30 years after Coppersmith’s al-
gorithm the L(13)-barrier was broken in a series of remarkable results [A,16, 5]
that culminated in a “quasi-polynomial” running time exp(O((log logN)2)) =
(logN)O(log logN), which is in L(o(1)).

In this introductory chapter we illustrate the key ideas concerning the
DLP in finite fields and we provide an overview of the state-of-art regarding
the fastest algorithms for computing discrete logarithms in the various kinds
of fields. All necessary mathematical prerequisites will be briefly introduced
along the way. As we focus on finite fields we will be very short on other
aspects of the DLP, like generic algorithms or the DLP on algebraic curves.
We refer to Odlyzko’s paper [30] or the recent survey [22] for an overview on
these and other general aspects of the DLP, which are not covered here.

4

A remark on terminology. The cardinality of any finite field F is a prime
power |F | = pn, where the prime p is called the characteristic of F , which
is the smallest positive integer m such that m1F = 0. Conversely, given any
prime power q = pn there exists a finite field of size q, which is unique up to
isomorphism and is denoted by Fq.

When considering a family of finite fields of order q = pn, where p = Lq(α),
then different DLP algorithms apply dependant on the range of α. Accordingly,
in the case α > 2

3 we speak of large characteristic, in the case α ∈ (13 ,
2
3)

of medium characteristic, and if α ∈ (0, 13) we say that the characteristic is
medium-small, while the boundary cases α = 2

3 and α = 1
3 are special cases to

be treated extra. Finally, in the case α = 0, i.e., if p is of polynomial size in
log q, we speak of finite fields of small characteristic, which are the main topic
of this thesis. In particular, if q = p is a prime or q = pn with n fixed, then we
are in (very) large characteristic p = Lq(1), whereas if the characteristic p is
fixed, then we have small characteristic p = Lq(0); note however that p = Lq(1)
(or p = Lq(0)) does not imply that n (or p) has to be fixed.

Furthermore, for complexity considerations we make use of the notation
f ≈ g to indicate that f/g → 1.

Outline. We discuss the general DLP in a group in Section 2 and present
briefly the most common cryptographic applications and generic algorithms.
The index calculus method serves as a framework for all advanced DLP al-
gorithms for finite fields and will be described in Section 3, where we first
present it abstractly in a general group and then give some basic concrete
instances. Section 4 is devoted to the number field sieve, which is currently
the fastest method for DLP in both large and medium characteristic. Then
Section 5 deals with the DLP in finite fields of small or medium-small char-
acteristic and presents the recent dramatic developments in this area. Finally,
Section 6 summarises own contributions to the analysis of the DLP in fields
of small characteristic and provides an overview of the present thesis.

2 The DLP in a general group

The Discrete Logarithm Problem can be formulated for any group and we may
assume without loss of generality that the group is cyclic. Most cryptographic
protocols using the DLP can be formulated in this abstract setting. We state
in this section the most important cryptographic applications and the common
generic attacks. Since our main focus is the DLP in finite fields, we will here
be rather short in our presentation.

Let (G, ·) be a finite cyclic group of order N and let g ∈ G be a gener-
ator. We assume that the group operation can be computed efficiently, i.e.,
in polynomial time, and that the group order is known. The surjective group

5

homomorphism Z → G, x 7→ gx induces a group isomorphism

ϕ : ZN → G , [x] 7→ gx ,

with inverse map ϕ−1 = logg h : G → ZN , h 7→ logg h. The map ϕ can
be computed efficiently by using a square-and-multiply method, whereas the
computation of ϕ−1 is in general a difficult problem, in fact this is the DLP. We
note that this difficulty depends on the concrete representation of the group
and is not formally proven.

Cryptographic applications. The difficulty of the DLP is nowadays widely used,
e.g., for secure communication over the Internet. Virtually all public-key cryp-
tosystems in use today are based on either the integer factorisation problem
or the discrete logarithm problem. Some common cryptographic protocols us-
ing the DLP are briefly presented below. In each case the group (G, ·) and a
generator g ∈ G are assumed to be publicly known.

In the Diffie-Hellman key-agreement protocol [11] two parties, usually re-
ferred to as Alice and Bob, choose random integers a and b, respectively, and
exchange the group elements ga and gb over the public channel, hence they
both can compute a common session key (gb)a = gab = (ga)b. Clearly, if the
DLP in G is feasible, then the key can be computed from the public informa-
tion, so we require the DLP to be hard.

The Diffie-Hellman protocol can be transformed into a public-key encryp-
tion scheme as showed by ElGamal [12]. Indeed, if Bob has announced his
public key gb and Alice has a secret message m ∈ G for Bob, she chooses a
random integer a and sends the pair (ga,m(gb)a) to Bob, who can decrypt by
computing (ga)b = (gb)a. Moreover, there are digital signature schemes based
on the DLP, e.g., the ElGamal [12] and Schnorr [35] signature schemes.

Generic algorithms. A generic algorithm uses only the group operation and
thus applies to any group. Suppose that we want to find the discrete logarithm
logg h for a target element h ∈ G. Recall that N = |G| is the group order.

In the Baby-Step-Giant-Step method, attributed to D. Shanks, one lets
M := ⌈

√
N⌉. We compute a table {(j, gj) | j ∈ {0 . . .M−1}} (baby steps),

which we sort by the second component. Then we compute k := g−M , as well
as h, hk, hk2, . . . (giant steps) until a collision hki = gj is detected, in which
case we output logg h = iM+j. The method requires O(

√
N) database entries

and O(
√
N logN) group operations (or O(

√
N) if hash tables are used).

The Pollard’s rho method [32] reduces the memory requirement to some
negligible amount while preserving the square-root running time. Therefore,
it is the preferred method in practice, however due to the randomised nature
the analysis is more difficult. The idea is to recursively define pseudorandom
sequences (ki) in G and (ai), (bi) in ZN such that gaihbi = ki holds for any i.
If kj = kj+ℓ holds for some j, ℓ > 0, then there exists also i with ki = k2i, and

6

such collisions can be easily detected. In this case, logg h = a2i−ai
bi−b2i is found,

provided that the denominator is invertible modulo N .

Finally, there is the Pohlig-Hellman method [31], the efficiency of which
depends on the particular group order. Let N = pe11 · . . . · perr be its prime
factorisation. Then we have ZN ∼= Zpe1

1
×· · ·×Zperr by the Chinese Remainder

Theorem, hence x = logg h corresponds to a tuple (x1, . . . , xr) and we can
consider the DLP for each factor xi ∈ Zpeii

separately. Furthermore, if ei > 1,

then xi ∈ Zpeii
can be found by obtaining the “p-ary” digits of xi, one at a time

starting with the least significant digit, by solving a DLP of order pi. Therefore,
the Pohlig-Hellman algorithm essentially reduces the DLP complexity in a
group of order N to a group of order the largest prime factor of N , for which
either the Baby-Step-Giant-Step or Pollard’s rho method may be applied.

We remark that, although we are mainly interested in the DLP in finite
fields for which more efficient index calculus methods apply, it is often re-
quired to use a combination of Pollard’s rho method and the Pohlig-Hellman
algorithm for dealing with the small prime power factors of the group order.

3 Index calculus methods

The index calculus methods are often more efficient than the generic algo-
rithms, but they apply only to certain groups. We may describe the framework
for any group, while details will depend on the concrete representation of the
group elements.

Again, let logg h to be found in a cyclic group G of order N . We choose
a subset F ⊆ G such that 〈F 〉 = G (often we have g ∈ F), called the factor
base. The idea is to first obtain logg f for all f ∈ F . Consider the surjective
group homomorphism

ϕ : ZFN → G , (ef)f∈F 7→ ∏

f∈F
fef .

The index calculus method consists of three phases.

1. Relation generation. Find vectors (ef)f∈F in kerϕ, called relations, thus
generating a subset R ⊆ kerϕ.

2. Linear algebra. Compute an element 0 6= (xf)f∈F ∈ R⊥, i.e., satisfying
∑

f∈F xfef = 0 for all (ef)f∈F ∈ R.

3. Individual logarithm. Find a preimage (ef)f∈F ∈ ϕ−1(h), for then we
have found logg h =

∑

f∈F ef logg f .

As the next result shows, provided that enough relations have been found,
the discrete logarithms of the factor base elements are determined up to a
scalar multiple. In practice, the condition given in the lemma is satisfied, if a
few more relations than factor base elements have been obtained.

7

Lemma 1. Suppose that spanR = kerϕ and (xf)f∈F ∈ R⊥, then there exists
λ ∈ ZN such that xf = λ logg f for all f ∈ F .

Proof. It holds R⊥ = (spanR)⊥ = (kerϕ)⊥ ∼= ZFN/ kerϕ
∼= imϕ ∼= ZN . On

the other hand, we have (logg f)f∈F ∈ R⊥; indeed, since logg : G → ZN is a
group homomorphism, it holds

∑

f∈F ef logg f = logg(
∏

f∈F fef) = 0 for all
(ef)f∈F ∈ R ⊆ kerϕ.

Sparse linear algebra. After the relation generation step an r × m-matrix A
over ZN has been found, where m is the size of the factor base F and r ≈ m
is the number of relations. In order to obtain the factor base logarithms we
need a solution 0 6= x ∈ ZmN of Ax = 0. Due to the relation generation method
the matrix is usually of low average row weight w. For such sparse matrices
iterative algorithms are available, most commonly used are the Lanczos [24]
method or the Wiedmann [9] algorithm. Their cost is dominated by repeated
computations of matrix-vector products Av, and the running is in O(m2w)
operations in ZN . Provided that logw = o(logm) (and log logN = o(logm)),
which is usually the case, this is of complexity m2+o(1).

We note that, as there are O(m) divisions in ZN necessary, the group
order N should avoid small prime factors, therefore the Pohlig-Hellman al-
gorithm should be used for the small prime power factors. In practice, for
high-scale computations the linear algebra step poses some challanges, as the
iterative algorithms are not easily parallelisable. We also remark that a so-
called structured Gaussian elimination (cf. [25, 19]) can be used to decrease
the matrix dimension m, while increasing the weight w only moderately.

3.1 A variant for rigorous analysis

The following variant of the index calculus method, proposed by Enge and
Gaudry [13], and subsequently refined by Diem [10], is valuable for theoretical
analysis. By this variant, one can compute discrete logarithms, provided only
that it is feasible to express group elements as products over the factor base,
as in the individual logarithm step of the classical index calculus method.

As before, let (G, ·) be a cyclic group of order N , let g ∈ G be a generator
and let h ∈ G be the target element for the DLP. Suppose that F ⊆ G is a
factor base of cardinality |F | = m. We choose a, b ∈ ZN uniformly and inde-
pendently at random and try to express gahb as a product gahb =

∏

f∈F fef .
Once more than m such expressions have been found, we consider the matrix
consisting of the collected rows (ef)f∈F over ZN , and compute using invert-
ible row transformations a row echelon form, which contains a vanishing row.
Contrary to the classical index calculus method we do not require a rank con-
dition for this matrix. Applying the invertible row transformations also to the
numbers a and b, then considering the vanishing row we obtain an identity
ga

′

hb
′

= 1G. One can show that b′ ∈ ZN is uniformly distributed, so that b′ is

8

coprime to N with high enough probability, in which case logg h = a′

b′ ∈ ZN
has been found.

Instead of computing a row echelon form by a variant of the Gauß algorithm
one may use sparse linear algebra techniques, which have an improved running
time, however their analysis is more difficult and the above algorithm has to
be modified [13]. In particular, it is then necessary to fulfill rank conditions
for the generated matrix following a technique from Pomerance [33].

3.2 Basic concrete versions

The class of groups for which the index calculus method is applicable includes
the multiplicative groups of prime fields and of fields of small fixed character-
istic. We describe for these cases a simple index calculus method and provide
a running time analysis, which also serves as a basis for the more advanced
index calculus methods.

Suppose that G is Z∗
p, the multiplicative group of a prime field Fp = Zp,

of order N = p− 1, with a given generator g ∈ G. As factor base we choose

F := {f | f ≤ B, f prime} ⊆ G

for some bound B (by slight abuse of notation, for f ∈ Z we denote the class
[f] ∈ Zp also by f). For simplicity, we assume that g ∈ F (otherwise, we
include it into the factor base). To generate relations, for random e ∈ ZN
we compute ge ∈ Zp, lift it to an element in N, and check by trial division
whether it has only prime divisors ≤ B. If successful, we obtain a relation
ge ≡ ∏

f∈F fef mod p in G. Once enough relations (more than |F |) have been
found, we compute logg f for all f ∈ F by solving a linear system over ZN .
Finally, given a target element h ∈ G we similarly obtain one more relation of
the form hge =

∏

f∈F fef to obtain logg h.

Considering a finite field Fq = Fpn of fixed characteristic p, note that Fpn

is usually represented as a quotient ring Fp[X]/〈I〉, where I ∈ Fp[X] is an
irreducible polynomial of degree n. For G = F∗

q , it is then straightforward to
adapt the basic index calculus method for Z∗

p described above to the present
situation. In particular, as factor base we choose all irreducible polynomials
in Fp[X] of some bounded degree b, i.e.,

F := {f | f ∈ Fp[X], deg f ≤ b, f irreducible} ⊆ G

(where we employ a similar abuse of notation). It suffices in practice to include
only the monic polynomials into the factor base. In fact, one may perform the
discrete logarithm computation in F∗

q/F
∗
p, i.e., ignoring constants in F∗

p, to

obtain logg h modulo N
p−1 . Using the Pohlig-Hellman algorithm with the fact

that p− 1 divides the product of the small prime power divisors of the group
order N = pn − 1, the remaining information of logg h is deduced easily.

9

3.3 Complexity analysis

A positive integer is called B-smooth if all its prime divisors are ≤ B. The
(heuristic) running time analysis for the basic index calculus method in Z∗

p, as
well as for the more advanced algorithms presented in Section 4, is based on
the following result on the asymptotic density of smooth numbers among the
integers.

Theorem 2 (Canfield, Erdős, Pomerance [7]). A random integer in
{1, . . . ,M} is B-smooth with probability

P = u−u(1+o(1)) , where u = logM
logB .

Corollary 3. Let M = LN (2α, µ) and B = LN (α, β), then the expected num-
ber of trials until a random number in {1, . . . ,M} is B-smooth is LN (α,

αµ
β).

For analysing the basic version of the index calculus method in Z∗
p, we set

the smoothness bound B = L(12 , β) and we have M = N = L(1, 1). As we
need about |F | ≈ B/ logB ≤ B relations, our estimated running time equals

L(12 , β) · L(12 , 1
2β) = L(12 , β + 1

2β),

and the optimal choice β := 1√
2
results in a running time of L(12 ,

√
2) for the

relation generation. The linear algebra running time (using iterative techniques
for sparse matrices) is about B2 = L(12 , 2β) = L(12 ,

√
2) as well, while the

individual logarithm phase is of lower complexity.
Similarly, a polynomial is called b-smooth if all its irreducible factors are

of degree ≤ b; hence, the 1-smooth polynomials are precisely those that split
into linear factors.

Theorem 4 (Odlyzko, Lovorn, cf. [29]). A random polynomial f ∈ Fq[X]
of degree m is b-smooth with probability P = u−u(1+o(1)), where u = m

b .

For the DLP in G = F∗
pn , where p is fixed, we obtain quite analogously a

running time of L(12 ,
√
2).

4 The number field sieve

The number field sieve is an advanced index calculus method with L(13)-
complexity. It was originally devised for the integer factorisation problem,
but the method can be adapted to apply for the DLP in prime fields and
more generally fields of large or medium characteristic. The principle of these
L(13)-algorithms is to generate relations in a way that, although the elements
on both sides have to be simultaneously smooth, they are of a considerable
smaller “size”, when compared to the basic version, so that the smoothness
probability is increased.

10

The setup for computing discrete logarithms in Z∗
p is as follows. Let m ∈ Z

and f ∈ Z[X] be an irreducible polynomial such that f(m) = p, and let α ∈ C

be a root of f . An application of Gauß’ Lemma shows that the map evα :
Z[X] → C, h 7→ h(α) has kernel ker evα = 〈f〉, and hence Z[α] ∼= Z[X]/〈f〉.
Since f(m) mod p = 0 we deduce that there is a homomorphism ϕ : Z[α] → Zp
such that ϕ(h(α)) = h(m) mod p for any h ∈ Z[X], i.e., we have the following
commutative diagram:

Z[X]
evα

}}④④
④④
④④
④ evm

��
❃❃

❃❃
❃❃

Z[α]

ϕ
!!
❈❈

❈❈
❈❈

❈

�

Z

π
����
��
��
�

Zp

For applying the index calculus method we need a way to factor h(m) ∈ Z and
h(α) ∈ Z[α] over a smoothness base, however for Z[α] this is a more intricate
issue, requiring some concepts from algebraic number theory.

Suppose that f is monic of degree d. Then α is an algebraic integer, K :=
Q(α) is a number field of degree d and Z[α] is an order in OK , the ring
of integers in K, which is a Dedekind domain. We make use of the norm
N : Q(α) → Q satisfying N(Z[α]) ⊆ Z in order to generate smooth elements.
In OK we have a unique prime ideal decomposition, so we may consider the
factorisation 〈h(α)〉 =

∏

i p
ei
i , where pi ⊆ OK are prime ideals. In this case,

for the norms we obtain N(h(α)) =
∏

iN(peii). We choose {p ⊆ OK prime |
N(p) ≤ B} as the factor base for the left hand side, for which we obtain
“virtual” logarithms using so-called Schirokauer maps, cf. [34, 21].

Parameter choices and complexity analysis. We let h := h1X + h0 ∈ Z[X],
where |hi| ≤ E, to be the sieving polynomial and we want both N(h(α))
and h(m) to be B-smooth. As we are aiming at a L(13)-algorithm we set

B = L(13 , β) and E = L(13 , ε), as well as d = (δ + o(1))(logN
log logN)1/3 with

parameters β, δ, ε > 0 to be determined.

From the Kalkbrener bound [23] we get log |N(h(α))| ≈ log ‖f‖∞+d logE,
where ‖f‖∞ denotes the maximum absolute value of the coefficients of f ,
while log |h(m)| ≈ logm. We can choose ‖f‖∞ ≤ m and m ≈ N1/d, so that
logm ≈ 1

d logN , which implies m = L(23 ,
1
δ). Furthermore, d logE = L(23 , δε),

so we get

|N(h(α))h(m)| = L(23 , δε+
2
δ).

Under the heuristic assumption that the quantity |N(h(α)h(m)| is uniformly
distributed for a random polynomial h, we get from Corollary 3 for the prob-
ability P of this quantity being B-smooth that 1

P = L(13 ,
δ2ε+2
3βδ).

11

The sieving space size ≈ E2 should be equal to the linear algebra complex-
ity ≈ B2, therefore β = ε, and as we want about B relations we set 1

P ≈ B.
Therefore, we obtain the condition δ2β+2

3βδ = β, or δ2β + 2 = 3β2δ. The opti-
mal choice δ2 = 2/β then yields β = (89)

1/3, resulting in a total complexity of
L(13 , (

64
9)

1/3 ≈ 1.923).
In the so-called special number field sieve we have small coefficients of f ,

namely log ‖f‖∞ = o(logm), which leads to a faster algorithm. Indeed, we get
δ2β+1 = 3β2δ, and for δ2 = 1/β we get β = (49)

1/3, resulting in a complexity

of L(13 , (
32
9)

1/3 ≈ 1.526).

The medium number field sieve. This variation of the number field sieve applies
to the DLP in finite fields of large or medium characteristic [21].

The setup is as follows (cf. [4]). Choose irreducible polynomials f, g ∈ Z[X]
such that f mod p and g mod p have a common irreducible factor I ∈ Fp[X]
of degree n. (A simple choice is to let g = f + p, if f mod p contains an
irreducible degree n factor; more advanced selection methods are sketched
below.) Let α, β ∈ C be roots of f and g, respectively, so that we have the
following diagram:

Z[X]
evα

zz✈✈
✈✈
✈✈
✈ evβ

##
❍❍

❍❍
❍❍

❍

Z[X]/〈f〉 ∼= Z[α]

ϕ
$$
❍❍

❍❍
❍❍

❍❍
�

Z[β] ∼= Z[X]/〈g〉

ψ{{✈✈
✈✈
✈✈
✈

Fpn

As in the number field sieve for prime fields we obtain relations by find-
ing polynomials h ∈ Z[X] (of some degree ≤ t and ‖h‖∞ ≤ E) such that
both N(h(α)) = Res(h, f) and N(h(β)) = Res(h, g) are B-smooth, where Res
denotes the resultant. The Kalkbrener bound [23] implies here that

log |N(h(α))N(h(β))| ≈ t(log ‖f‖∞ + log ‖g‖∞) + (df + dg) logE,

where df and dg are the degrees of f and g, respectively. Therefore, the running
time will crucially depend on the degree and the coefficient size of the selected
polynomials f and g in the setup phase of the algorithm. The state-of-art
work [4] achieves improvements by a clever polynomial selection.

Indeed, for large characteristic we first choose a polynomial f ∈ Z[X] of
degree d + 1 with ‖f‖∞ small such that f mod p has an irreducible factor I
of degree n. Then we choose a polynomial g ∈ Z[X] of degree d such that
I | g mod p and ‖g‖∞ as small as possible; this can be achieved by LLL
reduction [26], resulting in the estimation log ‖g‖∞ ≈ n

d+1 log p, while we have
df = d+1 and dg = d ≥ n. With suitably chosen parameters we get a resulting
running time of L(13 , (

64
9)

1/3), the same as in the prime field case.

12

For medium characteristic the so-called Conjugation Method improves
upon the original selection method. Here, we let µ := Y 2 + aY + b ∈ Z[Y]
be an irreducible polynomial with small coefficients such that µ mod p has a
root λ ∈ Fp. We then choose g0, g1 ∈ Z[X] with ‖gi‖∞ small and deg g0 < n =
deg g1. With this we let I := λg0 + g1, g := ug0 + g1, where λ = u

v mod p with
log ‖g‖∞ ≈ 1

2 log p, as well as f := ResY (µ, Y g0 − g1) = g21 + ag1g0 + bg20, so
that ‖f‖∞ is small, while df = 2n and dg = n. The complexity analysis results
in a running time of L(13 , (

96
9)

1/3 ≈ 2.201).

5 Fields of small characteristic

First we remark that if given two finite fields of same size, but represented
by different polynomials, it is possible to map efficiently between the two
representations [27]; therefore for attacking the DLP we can choose the field
defining polynomial to our advantage.

Coppersmith’s method. The Coppersmith algorithm [8] published in 1984 was
the first L(13)-algorithm for a finite field DLP. It is based on the identity
(u + v)2 = u2 + v2, which holds for any polynomials u, v ∈ F2[X], and the
method does not generalise to prime fields. This was a first hint that the DLP
in small characteristic appears to be easier than in prime fields. In fact, it
has been the fastest general DLP algorithm for binary (or fixed characteristic)
finite fields until 2013.

This index calculus algorithm targets at a binary finite field F2n , repre-
sented as F2[X]/〈I〉, where I ∈ F2[X] is an irreducible degree n polynomial of
the form I := Xn − J , where J ∈ F2[X] is of low degree (less than n2/3). Let
the factor base consist of the irreducible polynomials up to a degree bound ≤ b,
and choose positive integers h and ℓ such that h2ℓ ≥ n. For relation gener-
ation, we consider f := uXh + v ∈ F2[X], where u, v ∈ F2[X] are coprime
polynomials of degree ≤ d, where d is a sieving parameter, and compute

f2ℓ = (uXh + v)2
ℓ

= u2
ℓ

Xh2ℓ + v2
ℓ ≡ u2

ℓ

Xh2ℓ−nJ + v2
ℓ

=: g (mod I).

A relation is found if the polynomials f, g ∈ F2[X] on both sides are b-
smooth. Note that the corresponding degrees, namely deg f ≤ h + d and
deg g ≤ r + 2ℓd with r := degXh2ℓ−nJ , can be made rather small by suit-
ably chosen parameters. Indeed, we let d = (c + o(1))n1/3(log n)1/3 and sup-
pose that 2ℓ ≈

√

n
d , as well as h = ⌈ n

2ℓ
⌉. Then deg f and deg g are about√

nd = (
√
c + o(1))n2/3(log n)1/3. Choosing b = (c + o(1))n1/3(log n)1/3, by

applying an analogue of Corollary 3, we get for the probability P of both
polynomials being b-smooth that 1

P = L(13 ,
2

3
√
c
). In order to generate enough

relations we set 2
3
√
c
= c, so that c = (49)

1/3, resulting in an overall complexity

13

of L(13 , (
32
9)

1/3) for relation generation. This matches the linear algebra com-
plexity using sparse matrix techniques, while the individual logarithm phase
can be shown to have lower complexity.

This analysis supposes that
√

n
d is close to some power 2ℓ, which cannot be

fulfilled for all n. For the general case we thus get a slightly worse complexity,
namely L(13 , 4

1/3), where (329)
1/3 ≈ 1.526 and 41/3 ≈ 1.587. We also remark

that Coppersmith’s algorithm can be easily adapted to the case of fields of
fixed characteristic p, by using the identity (u+v)p = up+vp for u, v ∈ Fp[X].

Function field sieve. An adaption of the number field sieve for discrete loga-
rithms in prime fields led to the function field sieve devised by Adleman and
Huang [2, 3] and further developed by Joux and Lercier [18]. This algorithm
targets at finite fields Fpn of small characteristic p and has (in the Joux-Lercier
version) a complexity of L(13 , (

32
9)

1/3), like the special number field sieve.

The basic idea is to define Fpn = Fp[X]/〈I〉 , where I = md + fd−1m
d−1 +

· · · + f1m + f0 = f(m) with polynomials f(Y) =
∑

fiY
i ∈ (Fp[X])[Y] and

m ∈ Fq[X] suitably chosen. Then f ∈ Fp[X,Y] is a bivariate polynomial,
which defines an algebraic curve C and its associated function field Fp(C) =
Quot

(

Fq[X,Y]/f
)

(if f is irreducible). The technical details are quite intricate
and go beyond the scope of this survey chapter.

Medium function field sieve. Joux and Lercier in 2006 proposed [20] the fol-
lowing simplified variant of the function field sieve, which employs just the
rational function field of a univariate polynomial ring. The algorithm applies
to the whole range of finite fields Fpn of medium-small characteristic, i.e.,
p = Lpn(α), where α ≤ 1

3 . We can as well apply the algorithm to extension
fields Fqm , where q is any prime power.

The representation of the field Fqm is as follows. Let f, g ∈ Fq[X] be poly-
nomials such that g(f(X))−X has an irreducible factor I ∈ Fq[X] of degreem.
Let x be a root of I in Fqm and let y := f(x), hence x = g(y). Then we have
the following diagram:

Fq[X,Y]
Y 7→f(X)

}}③③
③③
③③
③③ X 7→g(Y)

!!
❉❉

❉❉
❉❉

❉

Fq[X]

evx
""
❉❉

❉❉
❉❉

❉❉

�

Fq[Y]

evy
}}③③
③③
③③
③③

Fqm

Now if q = Lqm(
1
3) then for a, b, c ∈ Fq we consider h := XY +aY +bX+c ∈

Fq[X,Y], which leads in Fqm to the following identity

xf(x) + af(x) + bx+ c = g(y)y + ay + bg(y) + c.

14

If the corresponding polynomials on both sides, namely h(X, f(X)) = Xf(X)+
af(X) + bX + c and h(g(Y), Y) = g(Y)Y + aY + bg(Y) + c are 1-smooth,
then a relation has been found. We may choose the polynomials f and g
such that deg f, deg g ≈ √

m, which leads to an algorithm with complexity
L(13 , 3

1/3 ≈ 1.442).
In the general case, where q = Lqm(α) with α ≤ 1

3 , in order to obtain
an L(13)-algorithm we set as the degree bound for the factor base b = (c +

o(1))(log q
log log q)

1/3−α and consider polynomials of the form h := h1(X)Y +h0(X)
in order to generate relations. Note that for α = 0 the case log q = o(log log qm)
has to be treated extra with a slightly modified analysis. If q = Lqm(0), i.e.,
the case of small characteristic, this results in an algorithm of complexity
L(13 , (

32
9)

1/3).

5.1 Towards a quasi-polynomial DLP algorithm

The dramatic recent progress concerning the discrete logarithm problem in
finite fields of small characteristic is based on the following simple result,
which can be easily deduced from the identity

∏

γ∈Fq
(X − γ) = Xq −X.

Lemma 5. Let u, v ∈ Fq[X]. Then there holds

v
∏

γ∈Fq

(u− γv) = uqv − uvq.

The new algorithms target at finite fields FQ of the form Q = qkm, where
m ≈ q. Thus with q = pℓ we have Q = pkℓm, so that the extension degree
kℓm is composite. In general, a given finite field Fpn can be embedded into
FQ, where Q = pkℓn, since then FQ = F(pn)kℓ is an extension of Fpn of degree
kℓ, where ℓ ≈ logn/ log p.

We consider the DLP in FQ, where Q = (qk)m = qkm, with k ≥ 2 and q
fixed. For any a ∈ Fqk [X] we may write a(X)q = ã(Xq) with deg ã = deg a,
where the coefficients of ã are the q-th power of the coefficients of a.

The setup can be seen in the context of the Joux-Lercier function field
sieve [20], where however the degrees of the polynomials f and g in the setup

are not balanced. In fact, we consider f := Xq and g := h0(X)
h1(X) for some h0, h1 ∈

Fqk [X] of small degree, which leads to the following field representation [A].
We define Fqkm as Fqk [X]/〈I〉, where I ∈ Fqk [X] is an irreducible degree m
polynomial dividing h1(X

q)X−h0(X
q) for h0, h1 ∈ Fqk [X] of low degree ≤ dh.

Let x be a root of I in FQ, then we get y = f(x) = xq and x = g(y) = h0(y)
h1(y)

,

thus for any u, v ∈ Fqk [X] we have

v(x)
∏

γ∈Fq

(

u(x)− γv(x)
)

= ũ(y)v(x)− u(x)ṽ(y) = ũ(y)v(g(y))− u(g(y))ṽ(y).

Note that the field representation requires that m ≤ qdh+1. Alternatively,
in [17, 5] the field representation used is Fq2 [X]/〈I〉, where I | Xqh1(X) −

15

h0(X), thus here we have m ≤ q+dh. We remark that our field representation
may have practical advantages by allowing a larger field extension degree m.

With these field representations the relation generation can be achieved
in polynomial time, which was a major breakthrough in the DLP analysis in
small characteristic. Letting u := αX+β and v := γX+δ in Fqk [X] we obtain

uqv − uvq = (αX + β)q(γX + δ)− (αX + β)(γX + δ)q.

This is (up to a scalar) of the form Xq+1 + aXq + bX + c, and

xq+1 + axq + bx+ c = 1
h1(y)

(

yh0(y) + ayh1(y) + bh0(y) + ch1(y)
)

,

where on the right hand side we have a “random” polynomial of low degree
dh + 1, while the left hand side splits by Lemma 5. In fact, we have the
following result stating exactly for which triples (a, b, c) ∈ F3

qk
the polynomial

splits, which turns out to be very useful for developing a new DLP algorithm
with proven complexity.

Theorem 6. [6] For a, b, c ∈ Fqk consider the polynomial Xq+1+aXq+bX+c.
If c 6= ab and b 6= aq, then the polynomial splits if and only if

(b− aq)q+1

(c− ab)q
∈
{(uq

2 − u)q+1

(uq − u)q2+1

∣

∣u ∈ Fqk \ Fq2
}

.

In particular, Xq+1 + aXq + bX + c splits with probability ≈ q−3.

In contrast to the L(13)-algorithms presented previously, the complexity
analysis of this relation generation does not depend on assuming that the
elements occurring on both sides are uniformly distributed and then applying
theorems on the smoothness density, i.e., Theorem 2 or Theorem 4. Instead we
use (one one side) polynomials that are smooth by construction and therefore
obtain much higher splitting probabilities. Hence, we may choose a very small
factor base, which leads to a greatly improved complexity. Indeed, if k is
constant and m is chosen such that q = O(m), then the relation generation
step and linear algebra complexity is polynomial in logQ = q1+o(1).

Individual logarithm. Given that the relation generation and linear algebra
steps are very efficient, the attention is now on the individual logarithm phase,
which previously used to be a step with lower complexity. However, since the
factor base is very small, this step has become more of an issue.

In order to obtain an individual logarithm logg h for a target element
h ∈ FQ, one usually applies a descent strategy. This means building a tree
in which h is the root and the leaves consist of factor base elements. Further-
more, if y1, . . . , yr ∈ FQ are the children of some element x ∈ FQ, they are
supposed to be of smaller “size”, i.e., degree in the polynomial representation,

16

while a relation x =
∏

i y
ei
i has been obtained. Once a tree of this form is built,

it is easy to compute an expression of h as a product h =
∏

fef of factor base
elements and thus to deduce the logarithm logg h.

For performing the descent step, i.e., rewriting some element x ∈ FQ as
a product x =

∏

i y
ei
i of smaller degree elements yi ∈ FQ, there are different

methods available, including some new strategies that use techniques for the
fast relation generation. The methods are of different complexity, dependant
on the degree of x, and in practice one uses a combination of several of these.
We may build up the descent tree using

– degree two elimination [A,17],
– small degree Gröbner Basis descent [17],
– quasi-polynomial time descent [5],
– large degree classical descent,
– initial split.

At the beginning of the descent process, when elements are represented by
polynomials of high degree, it is relatively easy to find an expression involving
lower degree polynomials. This is achieved by an initial split using a continuous
fraction method and then by a so-called special-q lattice descent. As these
methods are somewhat classical (see, e.g., [20]) we will focus here rather on
the new descent strategies for lower degree polynomials.

The idea of Joux’s Gröbner basis descent [17] is the following. Suppose
that P (y) is to be eliminated. For u, v ∈ Fqk [X] of degree ≤ D by Lemma 5
there holds

v(x)
∏

γ∈Fq

(

u(x)− γv(x)
)

= u(x)qv(x)−u(x)v(x)q = ũ(y)v(h0(y)h1(y)
)−u(h0(y)h1(y)

)v(y)

with the right hand side R(y) of low degree D+dhD = (dh+1)D. Considering
now the equation R(y) ≡ 0 mod P (y) in the Fq-components of the coefficients
of u and v, we get a bilinear quadratic system, where we have 2(D+1)k vari-
ables and dPk equations. Now if the cofactor is D-smooth, we have eliminated
P (y). The running time analysis of this method is based on the complexity of
solving bilinear quadratic systems by Gröbner basis methods, which has been
investigated by Spaenlehauer [36]; it depends on the degrees du and dv of the
polynomials u and v (roughly, the cost C satisfies logC ≈ c log ddvu for some
constant c, if du ≥ dv and k is constant). This results in an overall descent
complexity of L(14 +o(1)) as analysed by Joux [17], while a slightly better bal-
anced choice of degrees for u and v leads to an improved complexity of L(14),
see [B].

The on-the-fly degree two elimination of [A] can be seen as a special case
of the Gröbner basis elimination. For dP = 2 we let du = dv = 1, which
heuristically works for dh ≤ 2 and k > 3. This method is a basic ingredient of
our new descent strategy [D].

17

Alternatively, one can use the following method of solving degree two logs
in batches [17]. Consider the identity used for relation generation

xq+1 + axq + bx+ c = 1
h1(y)

(

yh0(y) + ayh1(y) + bh0(y) + ch1(y)
)

,

and, for each u ∈ Fqk , substitute x by P := x2 + ux and then solve a linear
system over the factor base Fu := {x2 + ux+ v irreducible | v ∈ Fqk}.

Generalising this idea to polynomials P of any degree leads to the quasi-
polynomial time descent algorithm of [5]; it can be viewed as a descent method
by linear algebra. In a step of this descent one can rewrite any element of FQ
represented by a polynomial P ∈ Fqk [X] of degree < m as a product P =
∏

iR
ei
i of polynomials of degree ≤ degP

2 , in time polynomial in qk and m,
where the number of elements Ri is in O(mqk).

While this quasi-polynomial time algorithm is asymptotically the fastest,
it appears however not (yet) to be used in record computations, while the
Gröbner basis method has been widely employed in practice recently.

Complexity results. Consider a finite field FQ with Q = qkm represented as
FQ = Fqk [X]/〈I〉, where I ∈ Fqk [X] is a degree m irreducible polynomial
dividing Xqh1 − h0 for some small degree polynomials h0, h1 ∈ Fqk [X], thus
we have m ≤ q + dh. For k fixed we get from the polynomial time relation
generation and the quasi-polynomial time descent that the DLP in FQ can be
solved in a heuristic running time (see [5, Th. 3]) of

qO(logm) = exp(O(log q logm)). (∗)

This algorithm has an impact on general finite fields of small and medium-
small characteristic. Indeed, suppose that a DLP in a finite field Fpn has to be
found. We embed this field in FQ, where Q = qkn = (pn)kℓ and q = pℓ.

In the case of small characteristic, i.e., p = Lpn(0), we have log p = O(logn)
and log log pn = log n + log log p ≈ logn. We let q = pℓ such that q ≥ n − dh
and log q = O(logn), hence (∗) implies a running time of exp(O(log log pn)2)),
which is quasi-polynomial in the logarithm log pn of the group order.

If the characteristic is medium-small, i.e., p = Lpn(α), where 0 < α < 1
3 ,

we let q = p, so that log q = log p = O((log pn)α(log log pn)1−α). By (∗) and
observing that log n = O(log log pn) we get a complexity of Lpn(α)

O(log log pn) =
exp(O((log pn)α(log log pn)2−α) = Lpn(α+ o(1)), which improves on the func-
tion field sieve having L(13)-complexity.

Kummer extensions and automorphisms. Kummer theory provides us with
particularly useful polynomials for the field representation, as observed in [16].
Let 1 < n | q − 1, so that Fq contains the n-th roots of unity, denoted by µn.
Let c ∈ Fq, let x := n

√
c be a root of Xn− c ∈ Fq[X] and let m be the degree of

the minimal polynomial of x over Fq, so that Fq(x) = Fqm . Letting t := q−1
n ,

18

then for the q-th power Frobenius σ we have σ(x) = xq = (xn)tx = ctx, and
hence m = ord(σ) = ord(at). Therefore, we see that Xn − c is irreducible,
i.e., m = n, if and only if ord(at) = n. In particular, for a generator c ∈ F∗

q

we have that I := Xq−1 − c ∈ Fq[X] is an irreducible polynomial dividing
Xq − cX = h1X

q − h0, with h1 = 1, h0 = cX of degree ≤ dh = 1.
Similarly, one can show that Xq+1 − X − c ∈ Fq[X] is irreducible if c =

−λq+1 for a generator λ ∈ F∗
q2 . Here, we have Xq+1−X− c = h1X

q−h0, with
h1 = X, h0 = aX.

Having degree at most one for the polynomials h0 and h1 in the field
representation has also some practical advantages for the relation generation
and especially for the individual logarithm phase. Furthermore, when defining
Fqn by Fq[X]/〈I〉 we can use factor base preserving automorphisms to reduce
the complexity of the linear algebra step. In fact, for the q-th power Frobenius
we have (x + a)q = xq + aq = ctx + aq = ct(x + aq

ct). The group generated
by the Frobenius automorphism of order n acts on the factor base, effectively
reducing the variables of the linear algebra problem by a factor of about n.

6 Overview of this thesis

This habilitation thesis deals with the DLP in finite fields of small characteris-
tic. We are concerned with the following two principal aspects of the problem.

1. Large-scale computations of discrete logarithms
This aspect is particularly important for the security assessment of contem-
porary cryptosystems, which are often based on the hardness of the DLP.
It includes all algorithmic improvements, whether being practical speed-
ups or even affecting the asymptotic running time, as well as a running
time analysis, which however is based on heuristic assumptions.

2. Rigorous proofs of the running time of DLP algorithms
While providing algorithms with heuristic running time analysis is com-
mon practice and a useful tool for concrete security estimations, from a
mathematical point of view this is unsatisfactory. This part focuses on de-
veloping new algorithms which avoid any heuristic assumptions and whose
running time can be proven rigorously.

We remark that, while these goals seem to be largely independent, progress
from either aspect often feeds into the other, as illustrated below.

Results. During the last two years some striking advancement in solving the
DLP in finite fields of small characteristic have been made, which have had
a considerable impact on cryptology research, especially in the vivid area of
identity-based cryptography. I am fortunate to have been part of these recent
developments and to have co-authored a number of relevant papers on this
topic. This habilitation collects my major articles on the subject, and a short
summary of these is given below.

19

Table 1. Discrete logarithm record computations in finite fields. We list the cases where
either the asymptotic complexity or the field size has been improved.

bitlength charact. who/when running time

127 2 Coppersmith 1984 [8] L(1/3 , 1.526..1.587)

401 2 Gordon, McCurley 1992 L(1/3 , 1.526..1.587)

n/a small Adleman 1994 [2] L(1/3 , 1.923)

427 large Weber, Denny 1998 L(1/3 , 1.526)

521 2 Joux, Lercier 2001 L(1/3 , 1.526)

607 2 Thomé 2001 L(1/3 , 1.526..1.587)

613 2 Joux, Lercier 2005 L(1/3 , 1.526)

556 medium Joux, Lercier 2006 L(1/3 , 1.442)

676 3 Hayashi et al. 2010 L(1/3 , 1.442)

923 3 Hayashi et al. 2012 L(1/3 , 1.442)

1175 medium Joux 24 Dec 2012 [16] L(1/3 , 1.260)

1425 medium Joux 6 Jan 2013 [16] L(1/3 , 1.260)

1778 2 Joux 11 Feb 2013 [17] L(1/4 + o(1))

1971 2 GGMZ 19 Feb 2013 [A] L(1/3 , 0.763)

4080 2 Joux 22 Mar 2013 [17] L(1/4 + o(1))

6120 2 GGMZ 11 Apr 2013 [B] L(1/4)

6168 2 Joux 21 May 2013 L(1/4 + o(1))

n/a small BGJT 18 Jun 2013 [5] L(0 + o(1))

9234 2 GKZ 31 Jan 2014 [15] L(1/4 + o(1))

[A] Our first paper on the DLP in finite fields of small characteristic is an
adaption of the medium function field sieve for the use in binary fields.
It features a heuristic polynomial time algorithm for finding the discrete
logarithm of degree one and two elements, and presents discrete logarithm
computations in finite fields with 21971 and 23164 elements, setting a record
for binary fields. This article has won the Best Paper Award at the highly
prestigious cryptology conference CRYPTO in August 2013.

[B] We have shown how to combine the polynomial time relation generation
of [A] and an analogue of Joux’s small-degree elimination method using
Gröbner bases [17] for solving a DLP in the record-sized finite field with
26120 elements, using the equivalent of just one week on a four-core desktop
computer. We also show how to optimise the parameters of the Gröbner
basis descent to produce an L(14)-algorithm.

[C] We investigate the relevance of the new DLP algorithms on practically
proposed cryptosystems in the context of pairing-based cryptography on
supersingular curves. Along the way, we improved and extended the new
methods to make the attacks far more effective and more widely applica-
ble. In particular, at the ‘128-bit security’ level our analysis shows that a
common genus one curve offers only 59 bits of security, while we report a
total break of a genus two curve.

20

[D] One of these aforementioned practical improvements has led to a mainly
theoretical work, which outlines a novel descent strategy (see also [14]).
The resulting algorithm is a new quasi-polynomial algorithm for the DLP
in small characteristic, which is based on less heuristic assumptions and
features a rigorous complexity analysis, which is based on the irreducibil-
ity of a certain algebraic curve. The demonstration that our descent has
always the stated complexity distinguishes it from all the previous recent
work. Besides, the new descent method appears to also have practical
advantages and has been used lately in record computations.

We have also set a new discrete logarithm record in a finite field with
29234 elements, announced on 31 Jan 2014 [15]. Indeed, the Irish Centre for
High-End Computing (ICHEC) has offered our group early access to its new
HPC cluster Fionn in November 2013. Our work used an involved and highly
optimised large-scale computation of about 400 k core hours. At present this
record is still valid, cf. Table 1.

Statement of own contributions. The papers [A] and [B] have been a collabora-
tion with F. Göloğlu, R. Granger and G. McGuire, then at University College
Dublin, while the papers [C] and [D] are joint work work with R. Granger and
T. Kleinjung at EPFL in Lausanne, Switzerland. My own contributions in this
collaborative efforts can be outlined as follows.

As is common in the area of computational algebraic number theory, our
progress and achievements are largely due to a close interplay between theo-
retical aspects, algorithmic considerations and feedback from implementations
of the algorithms. In the aforementioned research teams I have been the major
responsible for all algorithmic aspects and for implementing mathematical al-
gorithms on different platforms, including computer algebra systems (Magma),
the number theory library NTL for C++, parallel computing tools (MPI and
openMPI) and large-scale computation maintenance techniques, as well as
documentation of the results.

The ability of “testing” rapidly many various ideas by implementing them
for small cases often provides interesting observations from these experiments.
A very good example for this is the higher splitting probability of polynomials
of the form Xq+1 + aXq + bX + c ∈ Fqk [X]. This family of polynomials,
which forms the fundamental ingredient of our renowned work [A] that led to
polynomial time relation generation and the further improvements [17, 5], has
actually been found by some of my computer experiments.

The article [B] deals mainly with algorithmic improvements and clever
optimisations for a huge discrete logarithm problem. I have written large parts
of this article and act as its corresponding author. Furthermore I made a
considerable contribution in carrying out details of the improved complexity
analysis of the approach in [17], leading to an L(14)-algorithm.

21

The work [C] is again of mainly algorithmic character and contains many
remarkable improvements. It deals with concrete security estimations, which
involves an extensive running time analysis, as well as implementing key parts
of the algorithm and performing simulations. I have observed that earlier pub-
lished work on the security of supersingular curves can be improved by large
margins. My contribution also includes being the main responsible for the
analysis of a common ‘128-bit secure’ supersingular binary elliptic curve.

Finally, in our recent theoretical work [D] on a new quasi-polynomial time
algorithm with provable running time, I did a major contribution on the proof
of its main result, i.e., the correctness of the algorithm, which employs the on-
the-fly degree two elimination of [A]. The argument of the proof is based on
showing absolute irreducibility of an algebraic curve, which may in general be
a very hard problem; our approach is based on tools from invariant theory to
tackle the issue. Besides, I am interested in beneficial mathematical modelling
of problems, and in this regard I have been carrying out details of Enge-
Gaudry-Diem’s work on rigorous versions of the index calculus method, which
enabled in our setting the elimination of one of our earlier heuristic assumption.

References

[A] F. Göloğlu, R. Granger, G. McGuire, J. Zumbrägel, “On the function field sieve and the
impact of higher splitting probabilities,” in: Advances in Cryptology–CRYPTO 2013,
LNCS 8043, pp. 109–128, Springer (2013)

[B] F. Göloğlu, R. Granger, G. McGuire, J. Zumbrägel, “Solving a 6120-bit DLP on a desk-
top computer,” in: Selected Areas in Cryptography—SAC 2013, LNCS 8282, pp. 136–152,
Springer (2014)

[C] R. Granger, T. Kleinjung, J. Zumbrägel, “Breaking 128-bit securesupersingular binary
curves,” in: Advances in Cryptology—CRYPTO 2014, LNCS 8617, pp. 126–145, Springer
(2014)

[D] R. Granger, T. Kleinjung, J. Zumbrägel, “On the discrete logarithm problem in finite
fields of fixed characteristic,” Preprint (2015), submitted to a mathematics journal

1. L.M. Adleman, “A subexponential algorithm for the discrete logarithm problem with
applications to cryptography,” in: 20th Annual Symposium on Foundations of Computer
Science, pp. 55–60, IEEE (1979)

2. L.M. Adleman, “The function field sieve,” in: Algorithmic number theory, pp. 108–121,
Springer (1994)

3. L.M. Adleman, M.-D.A. Huang, “Function field sieve method for discrete logarithms
over finite fields,” Inform. and Comput., vol. 151, no. 1 (1999), pp. 5–16

4. R. Barbulescu, P. Gaudry, A. Guillevic, F. Morain, “Improving NFS for the discrete log-
arithm problem in non-prime finite fields,” in: Advances in Cryptology—EUROCRYPT
2015, pp. 129–155, Springer (2015)

5. R. Barbulescu, P. Gaudry, A. Joux, E. Thomé, “A heuristic quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic,” in: Advances in Cryptology–
Eurocrypt, LNCS 8441, pp. 1–16, Springer (2014)

6. A.W. Bluher, “On xq+1+ax+ b,” Finite Fields Appl., vol. 10, no. 3 (2004), pp. 285–305
7. E.R. Canfield, P. Erdős, C. Pomerance, “On a problem of Oppenheim concerning ‘fac-

torisatio numerorum’,” J. Number Theory, vol. 17, no. 1 (1983), pp. 1–28
8. D. Coppersmith, “Fast evaluation of logarithms in fields of characteristic two,” IEEE

Trans. Inform. Theory, vol. 30, no. 4 (1984), pp. 587–594

22

9. D. Coppersmith, “Solving homogeneous linear equations over GF(2) via block Wiede-
mann Algorithm,” Math. Comp., vol. 62, no. 205 (1994), pp. 333–350

10. C. Diem, “On the discrete logarithm problem in elliptic curves,” Compositio Math.,
vol. 147, pp. 75–104.

11. W. Diffie, M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Inform.

Theory, vol. 22, no. 6 (1976), pp. 644–654
12. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” in: Advances in Cryptology—CRYPTO ’84, LNCS 196, pp. 10–18, Springer
(1985)

13. A. Enge, P. Gaudry, “A general framework for subexponential discrete logarithm algo-
rithms,” Acta Arithmetica, vol. 102 (2002), pp. 83–103

14. R. Granger, T. Kleinjung, J. Zumbrägel, “On the Powers of 2,” IACR Cryptology ePrint
Archive (2014), eprint.iacr.org/2014/300

15. R. Granger, T. Kleinjung, J. Zumbrägel, “Discrete logarithms in GF(2ˆ9234),” E-mail
to the NMBRTHRY mailing list (2014)

16. A. Joux, “Faster index calculus for the medium prime case; application to 1175-bit and
1425-bit finite fields,” in: Advances in Cryptology—EUROCRYPT 2013, LNCS 7881,
pp. 177–193, Springer (2013)

17. A. Joux, “A new index calculus algorithm with complexity L (1/4+ o (1)) in small
characteristic,” in: Selected Areas in Cryptography—SAC 2013, LNCS 8282, pp. 355–
379, Springer (2014)

18. A. Joux, R. Lercier, “The function field sieve is quite special,” in: Algorithmic Number
Theory, pp. 431–445, Springer (2002)

19. A. Joux, R. Lercier, “Improvements to the general number field sieve for discrete loga-
rithms in prime fields,” Math. Comp., vol. 72, no. 242 (2003), pp. 953–967

20. A. Joux, R. Lercier, “The function field sieve in the medium prime case,” in: Advances
in Cryptology—EUROCRYPT 2006, LNCS 4117, pp. 254–270, Springer (2006)

21. A. Joux, R. Lercier, N. Smart, F. Vercauteren, “The number field sieve in the medium
prime case,” in: Advances in Cryptology—CRYPTO 2006, pp. 326–344, Springer (2006)

22. A. Joux, A. Odlyzko, C. Pierrot, “The Past, evolving Present and Future of Discrete
Logarithm,” in: Open Problems in Mathematical and Computational Science, Springer
(2014), 23 pages

23. M. Kalkbrener, “An upper bound on the number of monomials in determinants of sparse
matrices with symbolic entries,” Mathematica Pannonica, vol. 73 (1997), pp. 73–82

24. C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators,” J. Research Nat. Bur. Standards, vol. 45 (1950),
pp. 255–282

25. B.A. LaMacchia, A.M. Odlyzko, “Solving Large Sparse Linear Systems over Finite
Fields,” in: Advances in Cryptology—CRYPTO ’90, LNCS 537, pp. 109–133, Springer
(1991)

26. A.K. Lenstra, H.W. Lenstra, L. Lovász, “Factoring polynomials with rational coeffi-
cients,” Math. Ann., vol. 261, no. 4 (1982), 515–534

27. H.W. Lenstra, Jr., “Finding isomorphisms between finite fields,” Math. Comp., vol. 56,
no. 193 (1991), pp. 329–347

28. A.K. Lenstra, H.W. Lenstra (eds), The number field sieve, Springer, 1993
29. A.M. Odlyzko, “Discrete logarithms in finite fields and their cryptographic significance,”

in: Advances in Cryptology—CRYPTO ’85, LNCS 209, pp. 224–314, Springer (1985)
30. A. Odlyzko, “Discrete logarithms: The past and the future,” in: Towards a Quarter-

Century of Public Key Cryptography, pp. 59–75, Springer (2000)
31. S. C. Pohlig, M.E. Hellman, “An improved algorithm for computing logarithms over

GF(p) and its cryptographic significance (Corresp.),” IEEE Trans. Inform. Theory,
vol. 24, no. 1 (1978), pp. 106–110

32. J.M. Pollard, “Monte Carlo methods for index computation (mod p),” Math. Comp.,
vol. 32, no. 143 (1978), pp. 918–924

23

33. C. Pomerance, “Fast, rigorous factorization and discrete logarithm algorithms,” in: Dis-
crete algorithms and complexity, Academic Press, NY (1987), pp. 119-143.

34. O. Schirokauer, “Using number fields to compute logarithms in finite fields,” Math.

Comp., vol. 69, no. 231 (2000), pp. 1267–1283
35. C.-P. Schnorr, “Efficient signature generation by smart cards,” J. Cryptology, vol. 4,

no. 3 (1991), pp. 161–174
36. P. J. Spaenlehauer, Solving multi-homogeneous and determinantal systems: algorithms,

complexity, applications, Ph.D. dissertation, Université Pierre et Marie Curie (Univ.
Paris 6), 2012

24

On the Function Field Sieve and the Impact of

Higher Splitting Probabilities⋆

Application to Discrete Logarithms in F21971 and F23164

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Complex & Adaptive Systems Laboratory and
School of Mathematical Sciences
University College Dublin, Ireland

{farukgologlu,robbiegranger}@gmail.com, {gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we propose a binary field variant of the Joux-Lercier
medium-sized Function Field Sieve, which results not only in complexities
as low as Lqn(1/3, (4/9)

1/3) for computing arbitrary logarithms, but also in
an heuristic polynomial time algorithm for finding the discrete logarithms of
degree one and two elements when the field has a subfield of an appropriate
size. To illustrate the efficiency of the method, we have successfully solved the
DLP in the finite fields with 21971 and 23164 elements, setting a record for
binary fields.

Keywords: Discrete logarithm problem, function field sieve.

1 Introduction

When it comes to selecting appropriate parameters for public-key cryptosys-
tems, one invariably observes a trade-off between security and efficiency. At
a most basic level, for example, larger keys usually mean higher security, but
worse performance.

A related rule of thumb which one does well to keep in mind, is that
a specialised parameter which improves efficiency, typically (or potentially)
weakens security. Examples abound of such specialisations and consequent
attacks: discrete logarithms modulo Mersenne (or Crandall) primes and the
Special Number Field Sieve [19]; Optimal Extension Fields [2] and Weil descent
for elliptic curves [8]; high-compression algebraic tori [23] and specialised index
calculus [10]; quasi-cyclic or dyadic McEliece variants [21] and Gröbner basis
attacks [6], and more recently elliptic curves over binary fields [7], to name just
a few. In practice therefore, one should be wary of any additional structure,
which may potentially weaken a system.

⋆ Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant
06/MI/006. The fourth author was in addition supported by SFI Grant 08/IN.1/I1950.
c© IACR 2013. This article is the final version submitted by the authors to the IACR and
to Springer-Verlag on 8 June 2013. The version published by Springer-Verlag is available
at <DOI>.

25

In this paper we give a fairly extreme example of this principle in the case
of binary (or in general small characteristic) fields which possess a small to
medium-sized intermediate field. In 2006 Joux and Lercier designed a par-
ticularly efficient variation of the Function Field Sieve (FFS) algorithm for
computing discrete logarithms [16], which at the time possessed the fastest
asymptotic complexity of all known discrete logarithm algorithms for appro-
priately balanced q and n, namely Lqn(1/3, 3

1/3) ≈ Lqn(1/3, 1.442), where

Lqn(a, c) = exp
(
(c+ o(1)) (log qn)a(log log qn)1−a

)
,

and qn is the cardinality of the finite field.
In 2012, Joux proposed a more efficient method of obtaining relations,

dubbed ‘pinpointing’, which applies to a specialisation of the function field
setup of [16]. In this approach, each relation found via classical sieving can
be amplified into many more [13], which is advantageous when sieving is the
dominant phase, rather than the linear algebra (or individual logarithm phase).
The overall complexity of this technique for solving the DLP can be as low
as Lqn(1/3, (8/9)

1/3) ≈ Lqn(1/3, 0.961). To demonstrate the practicality of
the approach, Joux solved the DLP in two cases: in a 1175-bit field and in a
1425-bit field, setting records for medium-sized base fields, in this case prime
fields.

In this work we demonstrate that a basic assumption used in the analysis
of virtually all fast index calculus algorithms can be very wrong indeed; in the
case of binary fields possessing a subfield of an appropriate size, this leads to
the dramatic conclusion that the logarithms of degree one elements over this
subfield can be solved in polynomial time. As far as we are aware, no other
algorithm for the collecting of relations and the linear algebra step has beaten
the Lqn(1/3) barrier. Our fundamental observation is that the splitting proba-
bilities in Joux-Lercier’s variation of the FFS can be cubic in the reciprocal of
the degree – rather than exponential. The reason for this is the richer structure
of binary extension fields relative to prime fields, which lends weight to the
argument that such fields should be avoided in practice. We also exploit our
basic observation to efficiently compute the logarithms of degree two elements
— which until now were the bottleneck of the individual logarithm descent
phase — which for a range of binary fields results in the fastest Lqn(1/3) algo-
rithm to date, namely Lqn(1/3, (4/9)

1/3) ≈ Lqn(1/3, 0.763), which is precisely
the square root of the complexity of the ordinary FFS, for which c = (32/9)1/3.

We emphasise that our relation generation method arises purely as a spe-
cialisation of [16], and is thus completely independent of [13]. However, at a
high level, our relation generation method may be viewed as a form of one-
sided pinpointing, but with two central differences to that of [13]. Firstly, we do
not need to search for an initial splitting polynomial, since we have an explicit
description of all such polynomials, i.e., no sieving need take place. Secondly,
as members of this family of polynomials have arbitrarily high degree, the
other ‘random’ side can be made to have very small degree, which thus splits

26

with very high probability. These two differences result in our polynomial time
relation generation.

The paper is organised as follows. In §2 we recall the Joux-Lercier variant
of the FFS. In §3 we present our specialisation and our analysis of splitting
probabilities, while in §4 we present our new descent methods and analyse the
complexity of the resulting algorithms. In §5 we present our implementation
results and conclude in §6.

2 The Medium-sized Base Field Function Field Sieve

In this section we briefly recall the 2006 FFS variant of Joux and Lercier [16].
Let Fqn be the finite field in which discrete logarithms are to be solved, where q
is a prime power. In order to represent Fqn , choose two univariate polynomials
g1, g2 ∈ Fq[X] of degrees d1 and d2 respectively. Then whenever X−g1(g2(X))
possesses a degree n irreducible factor F (X) over Fq, one can represent Fqn

in two related ways. In particular, let x ∈ Fqn be a root of F (X) = 0, and let
y := g2(x), so that by construction x = g1(y) as well. These relations give an
explicit isomorphism between Fq(x) and Fq(y), both of which represent Fqn .

In the most basic version of the algorithm (which also leads to the best
complexity) one chooses d1 ≈ d2 ≈ √

n, and considers elements of Fqn repre-
sented by:

xy + ay + bx+ c , with a, b, c ∈ Fq .

Substituting x by g1(y), and y by g2(x), we obtain the following equality in
Fqn :

xg2(x) + ag2(x) + bx+ c = yg1(y) + ay + bg1(y) + c . (1)

The factor base consists simply of the degree one elements of Fq(x) and Fq(y);
then for every triple (a, b, c) for which both sides of (1) split over Fq — i.e.,
when all of its roots are in Fq — in the respective factor bases, one obtains a
relation. Determining such triples can naturally be made faster using sieving
techniques. Once more than 2q such relations have been collected, one performs
a linear algebra elimination to recover the individual logarithms. To compute
arbitrary discrete logarithms, one uses a ‘descent’ method, as we detail in §4.

In order to assess the complexity of this algorithm, throughout the paper
let Q = qn, let q = LQ(1/3, α), and let LQ(1/3, c1) and LQ(1/3, c2) denote
the complexity of the sieving and linear algebra phases respectively. As shown
in [16], heuristically one has

c1 = α+
2

3
√
α

and c2 = 2α .

In order to generate sufficiently many relations, α must satisfy the condition:

2α ≥ 2

3
√
α
.

For such α’s, the complexity of the entire algorithm, including the descent
phase, is minimised for α = 3−2/3, with resulting complexity LQ(1/3, 3

1/3).

27

3 Specialisation to Binary Fields

We now present a specialisation of the construction of [16] as presented in the
previous section, and detail some interesting consequences. From now on let
Fq denote the finite field with 2l elements.

All of our improvements and observations arise from a rather innocent-
looking choice for g2, namely y = x2

k
. Our primary motivation for this was

to automatically eliminate half of the factor base, since any linear polynomial
(y+a) is equal to (x+a2

−k
)2

k
, and so log (y + a) = 2k log (x+ a2

−k
). However,

this selection has further serendipitous consequences, the central two being:

• Whenever k | l and l ≥ 3k, the probability of the l.h.s. of (1) splitting over
Fq is approximately 2−3k, instead of the expected 1/(2k+1)!. We show that
for some asymptotic families of binary fields, this leads to a polynomial
time algorithm to find the logarithms of all degree one elements of Fqn .

• As surprising as the above result is, for such families, the individual log-
arithm phase then has complexity Lqn(1/2). Hence one must ensure the
complexity of the stages is balanced. Depending on the form of n, we
show that the bottleneck of the descent changes from degree two to de-
gree three special-q, since the x-side has the same form of the l.h.s. of (1),
and thus enjoys the same higher splitting probability. This ensures that
our claimed new Lqn(1/3) complexities are achieved across all the phases
of the algorithm.

In the remainder of the paper we explain these advantages in more detail.
In addition to the above two observations, for certain extensions which possess
Galois-invariant factor bases, the use of non-prime base fields can induce extra
automorphisms, which reduce its size further, see §5. Other practical speed ups
arise from our choice y = x2

k
. The matrix-vector multiplications in Lanczos’

algorithm consists of only cyclic rotations, i.e., shifts mod qn − 1, and so
no multiplications need to be performed. Furthermore, in the descent phase,
one ordinarily needs to perform special-q eliminations in both function fields.
However, due to the simple relation between x and y, one is free to map from
one side to the other in order to increase the probability of smoothness. One
can also balance the degrees of both sides by utilising other auxiliary function
fields arising from passing a power of 2 from the x-side to other side; this not
only provides a practical speed up but is core to our new complexity results,
see §4.

3.1 Higher Splitting Probabilities

Throughout this section, rather than use the field elements x, y as variables,
we use X,Y to emphasise that the stated results are valid in the univariate
polynomial ring over Fq, which is implicitly either Fq[X] or Fq[Y], depending
on which side of (1) is involved.

28

Assume 1 < k < l. When Y = X2k the l.h.s. of (1) becomes

X2k+1 + aX2k + bX + c . (2)

Assuming c 6= ab and b 6= a2
k
, this polynomial may be transformed (up to a

scalar factor) into the polynomial

fB(X) = X
2k+1

+BX +B , with B =
(b+ a2

k
)2

k+1

(ab+ c)2k
, (3)

via

X =
ab+ c

b+ a2k
X + a .

The polynomial fB is related to PA(X) = X
2k+1

+X+A, which is well-studied
in the literature, having arisen in several contexts including finite geometry,
difference sets, as well as determining cross correlation between m-sequences;
see references in [12] for further details.

We have the following theorem due to Bluher [3] (and refined in the binary
case by Helleseth and Kholosha [12]), which counts the number of B ∈ Fq for
which fB splits over Fq.

Theorem 1. [12, Thm. 1] Let d = gcd (l, k). Then the number of B ∈ F
×
2l

such that fB(X) has exactly 2d + 1 roots over F2l is

2l−d − 1

22d − 1
if l/d odd,

2l−d − 2d

22d − 1
if l/d even.

Theorem 1 of [12] also states that fB can have no more than 2d + 1 roots
in Fq, and so if gcd (l, k) < k then fB can not split. Hence we must have k | l
for our application. Indeed we must also have l ≥ 3k in order for there to be
at least one such B. Observe that under these two conditions, for B chosen
uniformly at random from Fq, the probability that fB splits completely over
Fq is approximately 1/23k – far higher than the splitting probability 1/(2k+1)!
for a degree 2k + 1 polynomial chosen uniformly at random.

Furthermore, the set SB of all such B can be computed explicitly, without
needing to perform any factorisations or smoothness tests. Indeed, the proof
of Prop. 5 in [12] gives an explicit parameterisation of all such B: for u ∈ G =
F2l \ F22k , we have

SB = Im

(
u −→ (u+ u2

2k
)2

k+1

(u+ u2k)22k+1

)
.

By analysing the form of this map, one can avoid obtaining repeated images.
However, even a naive enumeration of elements of G requires at most Õ(q)
Fq-operations, which is comparable to the complexity of relation generation,
as we now show.

29

3.2 Relation Generation

By exploiting the above transformation of (2) to (3) and the list SB of precom-
puted B’s for which (3) splits, one can construct polynomials of the form (2)

which always split completely over Fq. Indeed, for any (a, b) for which b 6= a2
k
,

and for each B ∈ SB, we simply compute via (3) the corresponding unique
c ∈ Fq. This ensures that (2) splits and therefore requires no sieving whatso-
ever.

In order to obtain a relation, we also require that

Y g1(Y) + bg1(Y) + aY + c (4)

splits over Fq, which we assume occurs with probability 1/(d1+1)! for randomly
chosen g1. Since |LB| ≈ q/23k, for each (a, b) we expect to obtain

q

23k (d1 + 1)!

relations. Since we need q relations, we expect to require about 23k (d1 +
1)! pairs (a, b) to obtain sufficiently many. For each pair (a, b) this costs
O(q/23k) 1-smoothness tests, or Õ(q/23k) Fq-operations. Hence the total cost
is Õ(q (d1 + 1)!). Finally, in order for there to be sufficiently many relations,
we must have

q3

23k (d1 + 1)!
> q , or q2 > 23k (d1 + 1)! .

Since we insist that l ≥ 3k, having q > (d1+1)! is sufficient. In §4 we consider
the impact of this approach on the full DLP complexity in two cases when
q = Lqn(1/3, α) and n ≈ 2k · d1: firstly for 2k ≈ d1 and secondly for 2k ≫ d1.
However, we now consider the relation generation complexity when the base
field cardinality is polynomially related to the extension degree.

3.3 Polynomial Time Relation Generation

With a view to reducing the complexity of degree one relation generation to
a minimum for some example fields, we choose k as large as possible such
that k | l and l ≥ 3k, and set d1 to be as small as possible, assuming a

g1 can be found with X − g1(X
2k) possessing a degree n irreducible factor.

Experimentally it seems that d1 = 3 (or possibly d1 = 4) is sufficient to
produce an irreducible of any degree n ≤ 2k, for q sufficiently large. Of course,
n may be as large as 2k · d1 in this case.

Writing l = k · k′ with k′ ≥ 3 a constant, and n ≈ 2k · d1 with d1 constant,
as l → ∞, the logarithms of the degree one factor base elements of Fqn can be
computed in heuristic polynomial time. In particular, as n ≈ 2k ·d1 = 2l/k

′ ·d1,
we have

Q = qn ≈ 2l·2
l/k′ ·d1 .

30

As l → ∞, we therefore have

logQ

log logQ
= O(2l/k

′

) .

The cost of relation generation is Õ(q (d1 +1)!) = Õ(q) = Õ(2l) = Õ(logk
′

Q),
whereas the cost of sparse linear algebra, using Lanczos’ algorithm [18] for in-
stance, is the product of the row weight and the square of number of variables,
namely

(2l/k
′

+ d1) Õ(q2) = Õ(log2k
′+1Q) .

For the optimal choice k′ = 3 the complexity is therefore Õ(log7Q). We sum-
marise this in the following:

Heuristic Result 1. Let q = 2l with l = k · k′ and k′ ≥ 3 a constant, let
d1 ≥ 3 be constant, and assume n ≈ 2k · d1. Assuming that Y g1(Y) + aY +
bg1(Y) + c splits over Fq with probability 1/(d1 + 1)! over all triples (a, b, c) ∈
(Fq)

3, the logarithms of all degree one elements of Fqn can be computed in time

Õ(log2k
′+1Q).

Note that the set of degree one elements is always defined relative to a
particular representation of Fqn . As it is easy to switch between any two rep-
resentations of a finite field [20], one can always map to our Fq(x) first. Note
also that the statement of Heuristic Result 1 implicitly assumes that the fac-
tor base contains a generator of F×

qn . A result of Chung proves that for all
prime powers s and all r ≥ 1 such that s > (r − 1)2, if Fsr = Fs(x) then
{x + a | a ∈ Fs} generates F

×
sr [4, Thm. 8]. In our context we therefore need

qk
′

> (n − 1)2 ≈ q2 · d21 in order for our DLP algorithm to work, which is
satisfied for our q and small d1. However, the issue of whether there exists a
generator in the stated factor base remains an open problem in general, see
for instance [26].

3.4 An Extreme Case: n = 2k ± 1

If n = 2k±1 then the degree one relation generation becomes extremely fast. In
particular, if g1(X) = γX∓1 then as g2(X) = X2k , we obtain the polynomials

X2k±1 + γ. Furthermore, if k | l then X2k±1 + γ is irreducible whenever γ has
no root of prime order p | (2k±1). In both cases, (4) has degree two and splits
with probability 1/2.

Table 1 contains timing data for relation generation for a family of fields
with q = 23k and n = 2k − 1, which incorporates the factor base reduction
technique arising from quotienting out by the action of the k-th power of
Frobenius, which has order 3n, see §5. We used an AMD Opteron 6128 pro-
cessor clocked at 2.0GHz. Note that the time is quasi-cubic in the bitlengh,
in accordance with the discussion preceeding Heuristic Result 1.

31

Table 1. Relation generation times for q = 23k and n = 2k − 1

k log2(q
n) #vars time

7 2667 5506 2.3s
8 6120 21932 15.0s
9 13797 87554 122s

10 30690 349858 900s

4 Individual Logarithms and Complexity Analysis

As unexpected as Heuristic Result 1 is, it does not by itself solve the DLP.
Using a descent method à la [16, 5], computing individual logarithms unfortu-
nately then has complexity Lqn(1/2). Hence one can not allow the extension
degree n to grow as fast as Theorem 1 permits; it must be tempered relative
to the base field size. With this in mind, we now consider the complexity of
the descent, for q and n appropriately balanced so that the total complexity
is Lqn(1/3).

For a generator g ∈ F
×
qn and a target element h ∈ 〈g〉, the descent proceeds

by first finding an i ∈ N such that z = h gi is m-smooth for a suitable m,
i.e., so that all of the irreducible factors of z have degrees ≤ m. The goal of
the descent is to eliminate every irreducible factor of z, by expressing each
as a product of smaller degree irreducibles recursively, until only degree one
elements remain, whose logarithms are known. We do so using the special-q
lattice approach from [16], as follows.

Let p(x) be a degree d irreducible (considered as an element of Fq[X])

which we wish to eliminate. Since y = x2
k
, we have

p(x)2
k
= p(x2

k
) = p(y) ,

where the coefficients of p are those of p, powered by 2k. Note that we also
have

p(y)2
−k

= p(x) ,

and hence we can freely choose to eliminate p using either the x-side or the
y-side of (1). For convenience we focus on the y-side. The corresponding lattice
Lp is defined by:

Lp(Y) = {(w0(Y), w1(Y)) ∈ Fq[Y]2 : w0(Y) g1(Y)+w1(Y) ≡ 0 (mod p(Y))} .

A basis for this lattice is (0, p(Y)), (1, g1(Y) (mod p(Y))), which is clearly
unbalanced. Using the extended Euclidean algorithm, we may construct a
balanced basis (u0(Y), u1(Y)), (v0(Y), v1(Y)) for which the degrees are ≈ d/2.
Then for any r(Y), s(Y) ∈ Fq[Y] with r(Y) monic we have

(w0(Y), w1(Y)) =
(
r(Y)u0(Y)+s(Y)v0(Y) , r(Y)u1(Y)+s(Y)v1(Y)

)
∈ Lp(Y)

32

and thus RHS(Y) ≡ 0 (mod p(Y)), where

RHS(Y) = w0(Y) g1(Y) + w1(Y) .

When RHS(Y)/p(Y) is (d− 1)-smooth, we also check whether LHS(X) is also
(d− 1)-smooth, where

LHS(X) = w0(X
2k)X + w1(X

2k) .

When both sides are (d− 1)-smooth, we may replace p(Y) with a product of
irreducibles of degree at most d− 1, and then recurse.

Let Q = qn. As in [16], we assume there is a parameter α such that:

n =
1

α

(
logQ

log logQ

)2/3

, q = exp
(
α

3

√
logQ · log2 logQ

)
. (5)

The three stages to consider are relation generation, linear algebra, and
the descent, whose complexities we denote by LQ(1/3, c1), LQ(1/3, c2) and
LQ(1/3, c3), respectively. The total complexity is therefore LQ(1/3, c), where
c = max{c1, c2, c3}. We next consider degree 2 elimination and then two special
cases of field representation.

4.1 Degree 2 Elimination

We begin with degree 2 elimination as firstly it is the bottleneck in the descent,
and secondly because one can exploit the higher splitting probability of the
polynomials (2) as well. Let p(Y) be a degree 2 irreducible to be eliminated. A
reduced basis (u0(Y), u1(Y)), (v0(Y), v1(Y)) for the lattice Lp(Y) can be found
with degrees (1, 0), (0, 1). Hence with r normalised to be 1 and s ∈ Fq, we have

(w0(Y), w1(Y)) =
(
u0(Y) + s v0(Y), u1(Y) + s v1(Y)

)
∈ Lp(Y)

with degrees (1, 1). We have thus

w0(Y) g1(Y) + w1(Y) ≡ 0 (mod p(Y)) ,

and so the remaining factor has degree d1 − 1. The corresponding polynomial
LHS(X) is

w0(X
2k)X + w1(X

2k) , (6)

which is of the formX2k+1+aX2k+bX+c, and as a consequence of Theorem 1,
it splits over Fq with probability approximately 2−3k. However, as with relation
generation, we can also ensure that LHS(X) always splits, with the following
technique. Writing the basis elements explicitly as (Y +u00, u10), (v00, Y +v10),
and with r = 1 and s ∈ Fq the lattice elements are (w0(Y), w1(Y)) = (Y +
u00 + sv00, sY + u10 + sv10). Thus combining (6) and (3), for each B ∈ SB we
find the set of roots s ∈ Fq that satisfy the Fq[S] polynomial

B · (v00S2 + (u00 + v10)S + u10)
2k + (S2k + v00S + u00)

2k+1 = 0 ,

33

by computing its GCD with Sq + S. This technique extracts all such s alge-
braically for any B, which ensures that LHS(X) automatically splits.

On average one expects there to be one such s ∈ Fq for each B. Then for
each such s we check whether RHS(Y)/p(Y) splits, which we assume occurs
with probability 1/(d1−1)!. In general we therefore need sufficiently many B’s
in SB for this to occur with good probability, i.e., that q/23k > (d1 − 1)!.

4.2 Case 1: n ≈ 2k · d1 and 2k ≈ d1

In this section we will show the following:

Heuristic Result 2 (i). Let q = 2l, let k | l and let n be such that (5) holds.
Then for n ≈ 2k · d1 where 2k ≈ d1, the DLP can be solved with complexity
LQ(1/3, (8/9)

1/3) ≈ LQ(1/3, 0.961).

This is the simplest case we present; however for the sake of completeness
and ease of exposition, we explicitly tailor the derivation presented in §3.2.
By our relation generation method, the l.h.s. polynomial (2) always splits,
whereas the probability of (4) being smooth is approximately 1/

√
n!. Using

the standard approximation log n! ≈ n logn, the logarithm of the probability
P of both sides being smooth is therefore:

logP ≈ −
√
n log

√
n = −1

2

√
n log n .

The size of the sieving space is q3/23k, and since we require q relations we
must have:

q3 P

23k
≥ q , or 2 log q ≥

(3
2
+

√
n

2

)
logn ≈

√
n

2
log n .

Ignoring low order terms, by (5) this is equivalent to

2α ≥ 1

3
√
α
, or α ≥ 6−2/3 . (7)

Given that we require q relations, the expected time to collect these relations
is

q

P
= LQ

(
1/3 , α+

1

3
√
α

)
,

and hence c1 = α + 1
3
√
α
. Since the linear algebra is quadratic in the size of

the factor base, we also have c2 = 2α.

For the descent, as in [16], let the smoothness bound be m = µ
√
n. Then

the probability of finding such an expression is

1 /LQ

(
1/3 ,

1

3µ
√
α

)
.

34

If the descent is to be no more costly than either the relation generation or
the linear algebra, then we must have

1

3µ
√
α

≤ max
{
α+

1

3
√
α
, 2α

}
. (8)

We also need to ensure three further conditions are satisfied. Firstly, that the
cost of all the special-q eliminations is no more than LQ(1/3,max{c1, c2}).
Secondly, that there are enough (r, s) pairs to ensure a relation is found. And
thirdly, that during the descent the degrees of the polynomials being tested
for smoothness is really descending.

By the discussion in §4.1, in order to eliminate degree 2 elements we need
q ≥ 23k (d1 − 1)!, or equivalently,

α ≥ 1

3
√
α
, or α ≥ 3−2/3 .

Since for degree 3 special-q LHS(X) will not have the form (2), we need
to check that the smoothness probability does not impose an extra condi-
tion on α. For p(Y) a degree 3 irreducible to be eliminated, a reduced basis
(u0(Y), u1(Y)), (v0(Y), v1(Y)) for the lattice Lp(Y) can be found with degrees
(1, 1), (0, 2). Hence with r now allowed to be monic of degree one and s ∈ Fq,
we have

(w0(Y), w1(Y)) =
(
(Y +r0)u0(Y)+s v0(Y) , (Y +r0)u1(Y)+s v1(Y)

)
∈ Lp(Y),

with degrees (2, 2). As before, we have

w0(Y) g1(Y) + w1(Y) ≡ 0 (mod p(Y)) ,

and the corresponding polynomial LHS(X) is

w0(X
2k)X + w1(X

2k) .

Once divided by p(Y), the degree of the Y -side is d1 − 1 ≈ √
n while the

degree of the X-side is 2k+1+1 ≈ 2
√
n. The logarithm of the probability that

a degree n polynomial over Fq is m-smooth, for q and n tending to infinity but
m fixed, can be estimated by −(n/m) log (n/m), as shown in [16]. Therefore
the log of the probability P of both sides being 2-smooth is:

logP ≈ −
√
n

2
log

√
n

2
− 2

√
n

2
log

2
√
n

2
≈ −3

2

√
n log

√
n

2
≈ −3

4

√
n logn ,

and therefore P = 1/LQ(1/3,
1

2
√
α
). Since the (r, s) search space has size q2

(which is also the complexity of the linear algebra), we require that

2α ≥ 1

2
√
α

or α ≥ 16−1/3 .

35

Since 16−1/3 < 3−2/3, this imposes no additional constraint on α. Hence we
can set α = 3−2/3, and one can check that in this case, c1 = c2 = c3 = 2α,
giving complexity

LQ(1/3, (8/9)
1/3) ≈ LQ(1/3, 0.961) ,

which is precisely the complexity Joux obtained using either optimal one-
sided, or advanced pinpointing [13]. Furthermore for this α, (8) implies that
µ ≥ 1/2. For an upper bound, note that for special-q of degree µ

√
n, the degree

of RHS(Y) is about
√
n(1− µ/2), while the degree of LHS(X) is about µn/2,

so that µ < 2 ensures that the descent is effective.

4.3 Case 2: n ≈ 2k · d1 and 2k ≫ d1

In this section we will show the following:

Heuristic Result 2 (ii). Let q = 2l, let k | l and let n be such that (5)
holds. Then for n ≈ 2k · d1 where 2k ≫ d1, the DLP can be solved with com-
plexity between LQ(1/3, (4/9)

1/3) ≈ LQ(1/3, 0.763) and LQ(1/3, (1/2)
1/3) ≈

LQ(1/3, 0.794).

Observe that interestingly, these two complexities are precisely the square-
roots of the complexities of Coppersmith’ algorithm [5], for which c = (32/9)1/3

and 41/3, the lower of the two being the complexity of the ordinary FFS [1,
14].

For n and q of the form (5), we claim that c1 = α, c2 = 2α, and that there
are sufficiently many relations available. In particular, if we write d1 = nβ

with β < 1/2 and 2k = n1−β , then again by our relation generation method,
the l.h.s. polynomial (2) always splits, and the log of the probability P of both
sides being 1-smooth is:

logP ≈ −βnβ log n.

By (5) we have

−βnβ log n ≈ − 2β

3αβ

(
logQ

log logQ

)2β/3

(log logQ)

= − 2β

3αβ
(logQ)2β/3 (log logQ)1−2β/3 .

Hence the expected time of the relation generation is

q

P
= LQ(1/3, α) · LQ

(
2β/3,

2β

3αβ

)
.

For β < 1/2 the second term on the right is absorbed by the o(1) term in the
first term, and hence c1 = α and c2 = 2α. The size of the sieving space is
q3/23k, and since we require q relations we must have:

q3 P

23k
≥ q , or LQ(1/3, 2α) ≥ LQ

(
2β/3,

2β

3αβ

)
,

36

which holds for any α > 0 when β < 1/2.
For the descent (as for Case 1) the cost of finding the first µ

√
n-smooth

relation is LQ(1/3,
1

3µ
√
α
). And as before, for degree 2 special-q, the X-side

has the same form and the condition on q arising from the search space being
sufficiently large is always satisfied, since

q ≥ 23k (d1 − 1)! = n3(1−β) LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
Hence degree 3 special-q are the bottleneck. As in the first case, with r

allowed to be monic of degree one and s ∈ Fq, the degree of RHS(Y) is d1 − 1
while the degree of LHS(X) is 2k+1+1. These degrees are clearly unbalanced.
However, we can employ the following tactic to balance them.

Since g1(Y)2
k
+ Y = 0, we let X ′ = g1(Y)2

a
and thus Y = X ′2k−a

. We are
free to choose any 1 < a < k, as an elimination of a special-q using Y and X ′

can be written in terms of Y and X by powering by a power of 2. With r
allowed to be monic of degree one and s ∈ Fq we have (w0(Y), w1(Y)) ∈ Lp(Y)

with degrees (2, 2), and our new expressions become

w0(Y) g1(Y)2
a
+ w1(Y) ≡ 0 (mod p(Y)) .

The corresponding polynomial LHS(X ′) is

w0(X
′2k−a

)X ′ + w1(X
′2k−a

) .

Assuming the degrees are (approximately) the same, taking logs we have

k − a+ 1 = log2 (d1) + a , or a = (k + 1− log2 (d1))/2 .

Since a must be an integer, rather than a real variable, we must choose the
nearest integer to this value. In the best case, we can take a to be this exact
value, and consequently both degrees are

√
2d1 2

k/2 =
√
2
√
n. Therefore the

log of the probability P of both sides being 2-smooth is:

logP ≈ −
√
2

2

√
n log

(√2

2

√
n
)
−

√
2

2

√
n log

(√2

2

√
n
)
≈ −

√
2

2

√
n log n ,

and hence P = LQ(1/3,−
√
2

3
√
α
). In order to have a sufficiently large search

space we must therefore have

2α ≥
√
2

3
√
α
, or α ≥ 18−1/3 .

For α = 18−1/3 the descent initiation stipulates that µ ≥ α−3/2/6 = 1/
√
2,

and any µ ∈ [1/
√
2,
√
n) suffices. We therefore have a total complexity of

LQ(1/3, 2α) = LQ(1/3, (4/9)
1/3) ≈ LQ(1/3, 0.763) .

37

On the other hand when we need to round a to the nearest integer, the
degrees can become unbalanced so that the degree of one side is up to double
the degree of the other. In this case a simple calculation shows that the optimal
α is 16−1/3, giving a complexity of

LQ(1/3, 2α) = LQ(1/3, (1/2)
1/3) ≈ LQ(1/3, 0.794) .

Naturally, for a ratio of degrees in (1/2, 2), we get c-values in between. This
situation is redolent of Coppersmith’s algorithm [5], in which precisely the
same issue arises when forcing a real variable to take integer arguments only.

Note that this degree balancing technique also works for special-q of any
degree, making the descent far more rapid than for Case 1.

Remark 1. Observe that the best-case complexity with c = (4/9)1/3 is pre-
cisely the complexity of the oracle-assisted Static Diffie-Hellman Problem in
finite fields of small characteristic [17, §3]. Our result may therefore seem
unsurprising, since the complexity of computing the logarithms of the factor
base elements is never more than the complexity of the descent, and is thus
effectively free. However, this reasoning overlooks the fact that we are working
with a medium-sized base field, as opposed to the traditional FFS setting with
a very small base field. In contrast to the result in [17, §3], our complexities
depend crucially on our degree two elimination method, in addition to the fast
computation of degree one logarithms.

5 Application to the DLP in F21971 and F23164

In this section we provide details of our implementation for discrete logarithm
computations in the finite fields with 21971 (as announced in [9]) and 23164

elements, respectively.

5.1 Discrete Logarithms in F21971

In order to represent the finite field with 21971 elements we first defined Fq =
F227 by F2[T]/(T

27+T 5+T 2+T +1). Denoting by t a root of this irreducible
in F227 we defined F21971 = Fq73 by Fq[X]/(X73 + t). For x a root of X73 + t
in Fq73 , we defined y by y := x8, and we therefore also have x = t/y9.

Since we use a Kummer extension, the elements of the factor base are re-
lated via the generator of the Galois group of Fq73/Fq [16, 13], and one can
therefore quotient out by the action of this automorphism to reduce the num-
ber of variables from 227 to ≈ 227/73. As stated in §3, we can take this idea
even further. In fact, x2

9

= c x for c = t7 ∈ Fq, so the map σ : a → a2
9

is
an additional automorphism which preserves the set of degree one factor base
elements. The map σ3 equals the Frobenius a → aq (of order 73) and hence σ
generates a group G of order 219. Considering the orbits of G acting on the
factor base elements, we find 612 864 orbits of full size 219, seven of size 73,

38

and one of size 1, resulting in N = 612 872 orbits, which gives the number of
factor base variables.

Since the degrees of the polynomials relating x and y are nearly bal-
anced, the complexity of our relation generation falls into Case 1 in §4.2,
which matches Joux’s optimal one-sided, or advanced pinpointing for Kum-
mer extensions. However, for Kummer extensions for which the degrees are
balanced — as opposed to being very skewed as in §3.4 where 2k ≫ d1 —
the advanced pinpointing is faster in practice, and so we used it for relation
generation. We computed approximately 10N relations in about 14 core-hours
computation time. For simplicity, we keep only those relations with distinct
factors; this ensures that each entry of the relation matrix is a power of two,
and hence all element multiplications in the matrix-vector products consist of
cyclic rotations modulo 21971 − 1.

After relation generation, we performed structured Gaussian elimination
(SGE) (in a version based on [15]) to reduce the number of variables and
thus to decrease the cost for the subsequent linear algebra step. During our
experiments we made the observation that additional equations are indeed
useful for reducing the number of variables. However, the benefit of SGE is
unclear as the row weight is being increased. We therefore stopped the SGE at
this point, which resulted in a 528 812×527 766 matrix of constant row weight
19. The running time here was about 10 minutes on a single core.

We obtained the following partial factorisation of 21971 − 1:

7 · 732 · 439 · 3943 · 262657 · 2298041 · 10178663167 · 27265714183 · 9361973132609

· 1406791071629857 · 5271393791658529 · 671165898617413417 · 2762194134676763431

· 4815314615204347717321 · 42185927552983763147431373719

· 22068362846714807160397927912339216441

· 781335393705318202869110024684359759405179097 · C338 ,

where C338 is a 338-digit composite. We took as our modulus for the linear al-
gebra step the product of C338 and the six largest prime factors of the cofactor,
which has 507 digits. We applied a parallel version of Lanczos’ algorithm (see
[18]) using OpenMP on an SGI Altix ICE 8200EX cluster using Intel (West-
mere) Xeon E5650 hex-core processors and GNU Multi-Precision library [11],
taking 2220 core-hours in total.

For the DLP we took as (a presumed) generator g = x + 1 ∈ F
×
21971

and
the target element was set as usual to be

xπ =
72∑

i=0

τ(⌊π · qi+1⌋ mod q)xi ,

where τ takes the binary representation of an integer and maps to Fq via
2i 7→ ti. We first solved the target logarithm in the subgroups of order the first
11 terms in the factorisation using either linear search or Pollard’s rho [22].

39

The descent proceeded by first finding an i ∈ N such that

xπ g
i = z1/z2 ,

where both z1 and z2 were 7-smooth. We implemented the descent in such a
way that at the early phase of the algorithm the expected subsequent costs
are as small as possible. This means that we try to find factorisations which
consist of as many small degree factors as possible. We used about 40 core-
hours to find an exponent i with favourable factorisation patterns and found
i = 47 147 576 to be a good choice. We then spent about 3 hours to perform
the descent down to degree 3. As stated in §3 and §4, at each stage during the
descent, we can eliminate a given special-q on either the x-side or on the y-side,
one of which may be much faster. Computing the elimination probabilities we
found that eliminating on the y-side is always faster. Indeed, for degree 2
special-q we must perform this on the y-side, as it is not possible to do so on
the x-side, due to the factorisation patterns of (2).

At this point we were left with 103 special-q of degree 3, as opposed to the
≈ 500 expected with a random 7-smooth split of xπ g

i. The expected cost of
eliminating each of these is 225.1 2-smoothness tests. These special-q elements
were resolved on the same SGI Altix ICE 8200EX cluster in about 850 core-
hours, using Shoup’s Number Theory Library [24], resulting in 1140 special-q
elements of degree 2. Using the technique of §4.1, we reduced the cost of the
elimination of each of these by a factor of 29 = 23k, and all their logarithms
were computed in 5 core-hours, completing the descent.

Thus the running time for solving an instance of the discrete logarithm
problem completely in the finite field F21971 sums to 14 + 2220 + 898 = 3132
core-hours in total. Finally, we found that logg(xπ) equals

119929842153541068660911463719888558451868527554471633523689590076090219879

574578400818114877593394465603830519782541742360236535889937362200771117361

678269423101163403135355522280804113903215273555905901082282248240021928787

820730402856528057309658868827900441683510034408596191242700060128986433752

110002214380289887546061125224587971197872750805846519623140437645739362938

235417361611681082562778045965789270956115892417357940067473968434606299268

294291957378226451182620783745349502502960139927453196489740065244795489583

279208278827683324409073424466439410976702162039539513377673115483439 .

5.2 Discrete Logarithms in F23164

For this case we defined Fq = F228 = F2[T]/(T
28 + T + 1). We denote by t a

root of this irreducible in F228 . Furthermore, let Fq113 = Fq[X]/(X113 + t) and
denote by x a root of X113 + t in F23164 . We defined y by y = x16, and we
therefore also have x = t/y7.

As in the previous section we use the Kummer extension idea of [16, 13] to
reduce the size of the factor base. Again we can use a larger group than just the

40

Galois group of Fq113/Fq, since x
214 = c x for c = t9+ t8+ t5+ t4 ∈ Fq and thus

the map σ : a → a2
14

is an additional factor base preserving automorphism.
The map σ2 equals the Frobenius a → aq and hence σ generates a group G
of order 226. Considering the orbits of G acting on the factor base elements,
we find N = 1187 841 orbits in total, which gives the number of factor base
variables.

For relation generation, since 16 > 7 the degrees are unbalanced and hence
more favourable toward the use of our relation generation method as given
in §3.2. It produces one relation in just under a second, so that more than
N relations can be found in about 350 core-hours. However, thanks to our
choice of g2, Joux’s pinpointing methods also benefit from the higher splitting
probability as explained by Theorem 1, and so for this Kummer extension, it
is still preferable to use Joux’s advanced pinpointing method, which generates
about 10N relations in approximately 2 hours on a single-core.

With the structured Gaussian elimination step in mind we computed ap-
proximately 10N relations and performed SGE on this matrix to reduce the
number of variables, where we stopped again at the point when the row weight
is being increased. The result was a 1 066 010×1 064 991 matrix of constant row
weight 25, which constitutes a reduction of 10.3% in the number of variables.

The full factorisation of 23164 − 1 (obtained from the Cunningham ta-
bles [25]) is:

3 · 5 · 29 · 43 · 1132 · 127 · 227 · 1583 · 3391 · 6329 · 23279 · 48817 · 58309 · 65993 · 85429

· 1868569 · 2362153 · 116163097 · 636190001 · 7920714887 · 54112378027

· 1066818132868207 · 94395483835364237 · 362648335437701461 · 491003369344660409

· 15079116213901326178369 · 10384593717069655112945804582584321

· 1621080768750408973059704415815994507256956989913429764153

· 2549280727345379556480596752292189634269829765250993670402549042422649

· 4785290367491952770979444950472742768748481440405231269246278905154317

· 9473269157079395685675919841491177973411952441563539679986494109833096556

0269355785101434237

· 3089373243567970615946973825901451962366657227182021958407434474458178967

78913944687997002267023826460611132581755004799

· 3324813819582203465990827109237712556609800137361416392155020337627510135

82088798815990776059210975124107935798363184741320908696967121 · P190 ,

where P190 is a 190-digit prime.

We then ran a parallel version of the Lanczos’ algorithm on several nodes
of the SGI Altix ICE 8200EX cluster, using MPI and OpenMP parallelisa-
tion techniques on 144 cores and again the GNU Multi-Precision library [11],
taking 85488 core-hours in total. Note that since the nodes we used for the
computation were not very “well-connected,” the total running time would
have been reduced to around 30000 core-hours if we had run our algorithm on
12 cores.

41

For the DLP we took as our (proven) generator g = x+ t+ 1 ∈ F
×
23164

and

a target element set as usual to be xπ =
∑113

i=0 τ(⌊π · qi+1⌋ mod q)xi.

As before the descent proceeded by first finding an i ∈ N such that xπ g
i =

z1/z2, where both z1 and z2 were here 16-smooth. At each stage, we choose to
sieve for the special-q on the y-side.

In this case we put even more effort in analysing and optimising the descent
in the earlier stages so that the expected subsequent costs will be minimised. In
fact we associated a cost kd to each factor of degree d arising in the factorisation
of the l.h.s. and r.h.s. polynomials, which we estimated by considering the
distribution of factorisation pattern.

We used about 70 core-hours to find the 16-smooth initial fraction z1/z2,
then spent 210 core-hours for the descent down to degree 4, and used 340 core-
hours for processing the degree 4 polynomials. At this point we had 71 poly-
nomials of degree 3, which needed an expected number of 234.1 2-smoothness
tests to be resolved. These special-q elements have been processed by the same
SGI Altix ICE 8200EX cluster in about 20972 core-hours, using Shoup’s Num-
ber Theory Library [24], and resulted in 1239 special-q elements of degree 2.
Finally, using the technique in §4.1, these elements were eliminated in about 10
core-hours, completing the descent.

The running time for solving an instance of the discrete logarithm problem
completely in the finite field F23164 sums to 350+85488+20972+210+340+10 =
107092 core-hours (as already indicated, this figure would be reduced to around
52000 core-hours if Lanczos’ algorithm was run on 12 cores). Finally, we found
that logg(xπ) equals

241095867208470377990120207726164220907051431328878753338580871702487845657

126883120634910367653233575538571774779776654573178495647701688094481773173

140524389502529386852264636049383546885561763318178634174789337030959840258

271899626361867369755406779988551274283201239012948389915300241739340043916

105822834002897204293036197694065337903255793451858773664350130030722091666

253172541070447948299781221019342860701064036544430331967753114646806335063

300203074234861067471668411998204544319176832353801982221924995804295426167

112306970795960798988644631100037393291558580412406942004555116148790387654

960490008429769544400790081908807239407134157724166048246419405503557398035

897999852593196954031439629768776850999887720870561741913055531864041654707

840433795403753200520891617150254756586728215941551355064840779765682398993

156390000024249110739956919350069293033670423070299581557636664993721204536

86303873671488016409635578117870889230278649164378133 .

Observe that this computation also breaks the elliptic curve DLP for super-
singular curves defined over F2791 , with embedding degree 4. However, since
791 is not prime, even before this break, such curves would not have been
recommended, due to the potential applicability of Weil descent attacks [8].

42

6 Conclusion

We have presented and analysed new variants of the medium-sized base field
FFS, for binary fields, which have complexities as low as Lqn(1/3, (4/9)

1/3) for
computing arbitrary logarithms. Furthermore, for fields possessing a subfield
of an appropriate size, we have provided the first ever heuristic polynomial time
algorithm for finding the discrete logarithms of degree one and two elements,
which have both been verified experimentally. To illustrate the efficiency of
the methods, we have successfully solved the DLP in the finite fields F21971

and F23164 , setting a record for binary fields.
It would be interesting to know whether there are more general theorems

on splitting behaviours for other polynomials arising during the descent, and
also to what extent the known theorems apply to other characteristics.

Acknowledgements

The authors would like to extend their thanks to the Irish Centre for High-End
Computing (ICHEC) — and Gilles Civario in particular — for their support
throughout the course of our computations.

References

1. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete
logarithms over finite fields. Inform. and Comput., 151(1-2):5–16, 1999.

2. Daniel V. Bailey, Christof Paar, Gabor Sarkozy, and Micha Hofri. Computation in
optimal extension fields. In Conference on The Mathematics of Public Key Cryptography,
The Fields Institute for Research in the Mathematical Sciences, pages 12–17, 2000.

3. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–
305, 2004.

4. F. R. K. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2(2):187–196, 1989.
5. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE

Trans. Inform. Theory, 30(4):587–593, 1984.
6. Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Alge-

braic cryptanalysis of McEliece variants with compact keys. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 279–298. Springer, Heidelberg, 2010.

7. Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault. Improv-
ing the complexity of index calculus algorithms in elliptic curves over binary fields. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 27–44. Springer, Heidelberg, 2012.

8. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive facets
of Weil descent on elliptic curves. J. Cryptology, 15(1):19–46, 2002.

9. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (21971). NMBRTHRY list, 19 Feb 2013.

10. Robert Granger and Frederik Vercauteren. On the discrete logarithm problem on alge-
braic tori. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 66–85.
Springer, Heidelberg, 2005.

11. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

12. Tor Helleseth and Alexander Kholosha. x2
l
+1 + x + a and related affine polynomials

over GF(2k). Cryptogr. Commun., 2(1):85–109, 2010.

43

13. Antoine Joux. Faster index calculus for the medium prime case application to 1175-
bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 177–193. Springer, Heidelberg, 2013.

14. Antoine Joux and Reynald Lercier. The function field sieve is quite special. In Claus
Fieker and David R. Kohel, editors, Algorithmic number theory (Sydney, 2002), volume
2369 of LNCS, pages 431–445. Springer, Heidelberg, 2002.

15. Antoine Joux and Reynald Lercier. Improvements to the general number field sieve
for discrete logarithms in prime fields: a comparison with the gaussian integer method.
Math. Comput., 72(242):953–967, 2003.

16. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 254–270.
Springer, Heidelberg, 2006.

17. Antoine Joux, Reynald Lercier, David Naccache, and Emmanuel Thomé. Oracle-assisted
static diffie-hellman is easier than discrete logarithms. In Matthew G. Parker, editor,
Cryptography and Coding, volume 5921 of LNCS, pages 351–367. Springer, Heidelberg,
2009.

18. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over
finite fields. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO ’90, volume
537 of LNCS, pages 109–133. Springer, Heidelberg, 1991.

19. Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, Heidelberg, 1993.

20. Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp.,
56(193):329–347, 1991.

21. Rafael Misoczki and Paulo S. Barreto. Compact McEliece keys from Goppa codes. In
Michael J. Jacobson, Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected
Areas in Cryptography, volume 5867 of LNCS, pages 376–392. Springer, Heidelberg,
2009.

22. J. M. Pollard. Monte carlo methods for index computation (mod p). Math. Comp.,
32(143):918–924, 1978.

23. Karl Rubin and Alice Silverberg. Torus-based cryptography. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 349–365. Springer, Heidelberg, 2003.

24. Victor Shoup. NTL: A library for doing number theory, 5.5.2 edition, 2009. http:

//www.shoup.net/ntl/.
25. Sam Wagstaff et al. The Cunningham Project. http://homes.cerias.purdue.edu/

~ssw/cun/index.html.
26. Daqing Wan. Generators and irreducible polynomials over finite fields. Math. Comp.,

66(219):1195–1212, 1997.

44

Solving a 6120-bit DLP on a Desktop Computer⋆

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Complex & Adaptive Systems Laboratory and
School of Mathematical Sciences
University College Dublin, Ireland

{farukgologlu,robbiegranger}@gmail.com, {gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we show how some recent ideas regarding the discrete
logarithm problem (DLP) in finite fields of small characteristic may be applied
to compute logarithms in some very large fields extremely efficiently. By com-
bining the polynomial time relation generation from the authors’ CRYPTO
2013 paper, an improved degree two elimination technique, and an analogue
of Joux’s recent small-degree elimination method, we solved a DLP in the
record-sized finite field of 26120 elements, using just a single core-month. Rela-
tive to the previous record set by Joux in the field of 24080 elements, this repre-
sents a 50% increase in the bitlength, using just 5% of the core-hours. We also
show that for the fields considered, the parameters for Joux’s LQ(1/4 + o(1))
algorithm may be optimised to produce an LQ(1/4) algorithm.

Keywords: Discrete logarithm problem, binary finite fields

1 Introduction

The understanding of the hardness of the DLP in the multiplicative group
of finite extension fields could be said to be undergoing a mini-revolution. It
began with Joux’s 2012 paper in which he introduced a method of relation
generation dubbed ‘pinpointing’, which reduces the time required to obtain
the logarithms of the elements of the factor base [11]. For medium-sized base
fields, this technique has heuristic complexity as low as LQ(1/3, 2/3

2/3) ≈
LQ(1/3, 0.961)

1, where

LQ(a, c) = exp
(

(c+ o(1)) (logQ)a(log logQ)1−a
)

,

and Q is the cardinality of the finite field. This improves upon the previous
best by Joux and Lercier [17] LQ(1/3, 3

1/3) ≈ LQ(1/3, 1.442). To demonstrate
the practicality of this approach, Joux solved two example DLPs in fields of
bitlength 1175 and 1425 respectively, both with prime base fields.

Soon afterwards the present authors showed that in the context of binary
fields (and more generally small characteristic fields), finding relations for the

⋆ Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant
06/MI/006. The fourth author was in addition supported by SFI Grant 08/IN.1/I1950.

1 On foot of recent communications [13], the complexity may in fact be LQ(1/3, 2
1/3).

45

factor base can be polynomial time in the size of the field [6]. By extending
the basic idea to eliminate degree two elements during the descent phase, for
medium-sized base fields an heuristic complexity as low as LQ(1/3, (4/9)

1/3) ≈
LQ(1/3, 0.763) was achieved; this approach was demonstrated via the solution
of a DLP in the field F21971 [7], and in the field F23164 .

After the initial publication of [6], Joux released a preprint [12] detailing
an algorithm for solving the discrete logarithm problem for fields of the form
Fq2n , with q = pℓ and n ≈ q, which was used in the solving of a DLP in
F21778 [14], and later in F24080 [15]. This algorithm has heuristic complexity
LQ(1/4+ o(1)), and also has an heuristic polynomial time relation generation
method, similar in principle to that in [6]. While the degree two element elim-
ination in [6] is arguably superior, for other small degrees, Joux’s elimination
method is faster, resulting in the stated complexity. Joux’s discrete logarithm
computation in F24080 [15] required about 14,100 core-hours: 9,300 core-hours
for the computation of the logarithms of all degree one and two elements; and
4,800 core-hours for the descent step, i.e., for computing the logarithm of an
arbitrary element. For this computation, the field F24080 was represented as a
degree 255 Kummer extension of F216 , i.e., F(q2)q−1 with q = 28, as per [12]. The
use of Kummer extensions (with extension degree either q − 1 or q + 1) gives
a reduction in the size of the degree one and two factor base [17, 11, 12]; they
are therefore preferable when it comes to setting record DLP computations.

The relation generation method in [6, §3.3] applies to larger base fields
of the form Fqk with k ≥ 3 (rather than k = 2) and extension degrees up
to n ≈ qδ1 with δ1 ≥ 1 a small integer. Hence the methods in this paper
naturally apply to any extension degree. Note that this representation offers
greater flexibility than Joux’s (which can represent extension degrees up to
q + δ′1) for essentially the same algorithmic cost, and may therefore provide a
more practical DLP break when small base fields need to be embedded into
larger ones in order to apply the attacks. However, here we choose to focus on
Kummer extensions of degree q ± 1, as these optimise the relation generation
efficiency [6, §3.4], and linear algebra step. While the two DLP breaks in
the fields F21971 and F23164 contained therein did not fully exploit the above
‘extreme’ fields in which the extension degree is polynomially related to the
size of the base field, thanks to Joux’s fast small-degree elimination method,
one can now do this more efficiently. Hence, with a view to solving the DLP
in larger fields than before and in as short a time as possible, in this work
we identify a family of fields for which the DLP is very easily solved, relative
to other fields of a similar size. While this does not mean other fields of a
similar size are infeasible to break, it requires more time in practice to find
the logarithms of the factor base elements, with the complexities remaining
the same.

One benefit of using base fields with k ≥ 3 is that there is an efficient
probabilistic elimination technique for degree two elements [6, §4.1]. For any

46

fixed k ≥ 4 the elimination probability very quickly tends to 1 for increasing
q. In this paper we present an improved technique which allows one to find
the logarithm of degree two elements extremely fast, once the logarithms of all
degree one elements are known. However, for k = 3 the elimination probability
is 1/(2(δ1 − 1)!), or exactly 1/2 for F26120 = F(q3)q−1 with q = 28. Therefore
the natural next choice is to set k = 4 and solve a DLP in F28160 = F(q4)q−1 .
This would require solving a sparse linear system in ≈ 4.2 · 106 variables, and
a slightly more costly descent step. Instead of carrying out this computation,
we devised a technique for the 6120 bit case for which the elimination of each
degree two element took only 0.03 seconds, and which required solving a much
smaller linear system in 21,932 variables. This culminated in the resolution of
a DLP in F26120 in under 750 core-hours [8], which represents a 50% increase in
bitlength over the previous record, whilst requiring just 5% of the computation
time.

We note that the solving of DLPs in F26120 = F224·255 renders insecure all
pairing-based protocols based on supersingular curves of genus one and two
over F2255 , since the correponding embedding degrees are 4 and 12 (in the best
cases), respectively [1]. However, since 255 is not prime, such curves would
not be recommended due to possible Weil descent attacks [5]. In any case,
the Jacobians of the curves do not have prime or nearly prime order and so
are not cryptographically interesting. As stated above, we could just as easily
have solved the corresponding DLP with extension degree q + 1 rather than
q − 1, i.e., with extension degree 257 rather than 255. However, since the full
factorisation of 26120−1 is known, we were able to use a proven generator and
so for completeness we chose to solve this case.2

Since our break of the DLP in F26120 may be considered as a proof-of-
concept implementation for our approach, at the time we were not overly
concerned with the issue of complexity. Indeed, as the elimination times are
reasonable and as just noted, comparable to Joux’s elimination timings, fur-
ther experimentation is needed to ascertain if the performance is comparable
for larger systems. However, one basic difference between the two approaches
is that the quadratic systems which arise when using our analogue of Joux’s
small-degree elimination method are not bilinear, and hence are not guar-
anteed to enjoy the same resolution complexity, as given in Spaenlehauer’s
thesis [25, Cor. 6.30]. Therefore, we can not currently argue that the heuris-
tic complexity is the same. Nevertheless, we show that with a better choice
of parameter and a tighter analysis, the final part of the descent in Joux’s

2 Forty days after the announcement of our full DLP break in F26120 = F224·255 [8] – and after
the submission of this paper – Joux announced a break of the DLP in a 1843-bit subgroup
of F

×

26168
= F

×

224·257
, using a nearly identical degree two elimination technique and the

same descent parameters, in under 550 core-hours [16]. Noting that the logarithms were
not computed in the full multiplicative group and that this computation was performed on
faster processors, it is clear that the number of our core-hours and Joux’s are comparable.
In this case too the corresponding Jacobians do not have prime or nearly prime order.

47

LQ(1/4 + o(1)) algorithm may be improved to an LQ(1/4) algorithm, for the
fields we consider, i.e., those for which the extension degree is polynomially
related to the size of the basefield. Since the other phases of the algorithm have
complexity LQ(1/4), or lower, the overall complexity for solving the DLP is
LQ(1/4) as well.

The remainder of the paper is organised as follows. §2 explains our field
setup and algorithm in detail. §3 covers the other essential algorithms and
issues regarding the computation. §4 gives the details of a discrete logarithm
computation in F26120 , while finally in §5 we briefly address the issue of com-
plexity.

2 The Algorithm

The following describes the field setup and index calculus method that we use
for our discrete logarithm computation.

2.1 Setup

We consider here Kummer extensions, which are our focus for efficiency rea-
sons; the general case can be found in [6, §3.3] and is recalled in §5.

Let ℓ, k be positive integers, q := 2ℓ, and n := q − 1. We construct the
finite field F(qk)n of bit length ℓkn = ℓk(q − 1) in which we solve the DLP,

as follows3. As stated in the introduction, the case n := q + 1 follows mutatis
mutandis.

We express our base field Fqk as a degree k extension of Fq. Then we choose
γ ∈ Fqk such that the polynomial Xn + γ is irreducible in Fqk [X] and define
F(qk)n as the Kummer extension

Fqk(x)
∼= Fqk [X]/

(

(Xn + γ)Fqk [X]
)

,

where x is a root of the polynomial Xn + γ in F(qk)n . Note that a Kummer

extension of degree n over Fqk exists if and only if n | qk − 1. Throughout
the paper, the upper case letters X,W, . . . are used for indeterminates and the
lower case letters x,w, . . . are reserved for finite fields elements that are roots
of polynomials.

The following table displays the bit length ℓkn of the finite field F(qk)n for
various choices of the numbers ℓ and k.

k \ ℓ 6 7 8 9

3 1134 2667 6120 13797
4 1512 3556 8160 18396
5 1890 4445 10200 22995
6 2268 5334 12240 27594

3 Our choice of representation of the finite field F(qk)n will be advantageous for our method
to solve the DLP. Note that it is a computationally easy problem to switch between two
different representations of a finite field [22].

48

In §4, we will give the details of the discrete logarithm computation when
ℓkn = 6120. The algorithm we explain in this section may be successfully
applied to any of the above parameters with k ≥ 4, whereas for k = 3 one
would normally be required to precompute the logarithms of all degree two
elements using a method analogous to Joux’s [12]. However, for k = 3 and
ℓ = 8, precomputation can be avoided entirely; see §4.4.

2.2 Factor Base and Automorphisms

The factor base we use consists of the elements in F(qk)n which have degree one
in the polynomial representation over Fqk , i.e., we consider the set {x+a | a ∈
Fqk}. As noted in [17, 11, 6], factor base preserving automorphisms of F(qk)n ,
which are provided by Kummer extensions, can be used to significantly reduce
the number of variables involved in the linear algebra step. Indeed, the map
σ := Frobℓ : α → αq satisfies σ(x) = γx with γ ∈ Fqk , and thus preserves the

factor base. Furthermore, for ϕ := σk = Frobℓk : α → αqk we have ϕ(x) = µx
with µ ∈ Fq a primitive n-th root of unity, and thus we find

(x+ a)q
kj+i

= σkj+i(x+ a) = σi(ϕj(x+ a)) = σi(µjx+ a) = µjγeix+ aq
i
,

where e0 = 0 and ei = qei−1 + 1 for 1 ≤ i < k; thus it follows that

log
(

x+
aq

i

µjγei

)

= qkj+i log(x+ a)

for all 0 ≤ j < n and 0 ≤ i < k.
The automorphism σ generates a group of order kn, which acts on the set

of qk factor base elements, thus dividing the factor base into about N orbits,

where N ≈ qk

kn ≈ 1
kq

k−1 is the number of variables to consider.

2.3 Relation Generation

In order to generate relations between the factor base elements we use the
method from [6, §3.1-4]. We exploit properties of polynomials of the form

FB(X) := Xq+1 +BX +B ,

which have been studied by Bluher [2] and Helleseth/Kholosha [10]. We recall
in particular the following result of Bluher [2] (see also [10, 6]):

Theorem 1. The number of elements B ∈ F
×
qk

such that the polynomial

FB(X) splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k odd ,

qk−1 − q

q2 − 1
if k even .

49

Let B ∈ F
×
qk

be an element such that FB(X) splits and denote its roots

by µi, for i = 1, . . . , q + 1. For arbitrary a, b ∈ Fqk (with aq 6= b) there exists

c ∈ Fqk with (aq + b)q+1 = B (ab+ c)q and we then find that

f(X) := FB

(ab+ c

aq + b
X + a

)

= Xq+1 + aXq + bX + c

and that f(X) also splits over Fqk , with roots νi :=
ab+c
aq+b µi + a.

Now by the definition of F(qk)n we have xn = γ and thus xq = γx, with
γ ∈ Fqk . Hence in F(qk)n we have

f(x) = γx2 + aγx+ bx+ c = γ(x2 + (a+ b
γ)x+ c

γ) = γg(x) ,

where g(X) := X2 + (a+ b
γ)X + c

γ . Hence, if the polynomial g(X) splits, i.e.,
if g(X) = (X + ξ1)(X + ξ2), which heuristically occurs with probability 1/2,
then we find a relation of factor base elements, namely

q+1
∏

i=1

(x+ νi) = γ(x+ ξ1)(x+ ξ2) .

Such a relation corresponds to a linear relation between the logarithms of
the factor base elements. Once we have found more than N relations we can
solve the discrete logarithms of the factor base elements by means of linear
algebra; see §3.3.

2.4 Individual Logarithms

After the logarithms of the factor base elements have been found, a general
individual discrete logarithm can be computed, as is common, by a descent
strategy. The basic idea of this method is trying to write an element, given
by its polynomial representation over Fqk , as a product in F(qk)n of factors
represented by lower degree polynomials. By applying this principle recursively
a descent tree is constructed, and one can eventually express a given target
element by a product of factor base elements, thus solving the DLP.

While for large degree polynomials it is relatively easy to find an expres-
sion involving lower degree polynomials by a standard approach, this method
becomes increasingly less efficient as the degree becomes smaller. In addition,
the number of small degree polynomials in the descent tree grows significantly
with lower degree. We therefore propose new methods for degree 2 elimination
and small degree descent, which are inspired by the recent works [6] and [12]
respectively.

50

Degree 2 Elimination Given a polynomial Q(X) := X2+q1X+q0 ∈ Fqk [X]
we aim at expressing the corresponding finite field element Q(x) ∈ F(qk)n as a
product of factor base elements. In essence, what we do is just the reverse of
the degree one relation generation, with the polynomial g(X) set to be Q(X).

In particular, we compute – when possible – a, b, c ∈ Fqk such that, up to a

multiplicative constant in F
×
qk
, Q(x) = x2+ q1x+ q0 equals xq+1+axq + bx+ c

where the polynomial Xq+1 + aXq + bX + c splits into linear factors (cf. [6,
§4.1]).

As xn = γ holds, we have xq+1 + axq + bx + c = γ(x2 + (a + b
γ)x + c

γ)
and comparing coefficients we find γq0 = c and γq1 = γa + b. Now letting
B ∈ F

×
qk

be an element satisfying the splitting property of Theorem 1 and

combining the previous equations with (aq + b)q+1 = B (ab+ c)q we arrive at
the condition

(aq + γa+ γq1)
q+1 +B(γa2 + γq1a+ γq0)

q = 0 .

Considering Fqk as a degree k extension over Fq this equation gives a quadratic
system in the k Fq-components of a, which can be solved very fast by a Gröbner
basis method.

Heuristically, for each of the above B’s the probability of success of this
method, i.e., when an a ∈ Fqk as above exists, is 1/2. Note that if k = 3 there
is just one single B in the context of Theorem 1, and so this direct method
fails in half of the cases. However, as noted earlier, this issue can be resolved
under certain circumstances, e.g., for ℓ = 8; see §4.4.

Small Degree Descent The following describes the Gröbner basis descent of
Joux [12] applied in the context of the polynomials FB(X) = Xq+1+BX +B
of Theorem 1. Let f(X) and g(X) be polynomials over Fqk of degree δf and

δg respectively. We substitute X by the rational function f(X)
g(X) and thus find

that the polynomial

P (X) := f(X)q+1 +Bf(X) g(X)q +Bg(X)q+1

factors into polynomials of degree at most δ = max{δf , δg}. Since xq = γx
holds in F(qk)n the element P (x) can also be represented by a polynomial of
degree 2δ.

Now given a monic polynomial Q(X) ∈ Fqk [X] of degree 2δ (resp. 2δ−1) to
be eliminated we consider the equation P (x) = Q(x) (resp. P (x) = (x+a)Q(x)
with some random fixed a ∈ Fqk). It results as above in a quadratic system
of Fq-variables representing the coefficients of f(X) and g(X) in Fqk , and can
be solved by a Gröbner basis algorithm. In order to minimise the number of
variables involved we set f(X) to be monic of degree δf = δ and g(X) of
degree δg = δ−1, resulting in kδ+kδ = 2kδ variables in Fq. Since the number
of equations to be satisfied equals 2kδ as well, we find a solution of this system
with good probability.

51

Large Degree Descent This part of the descent is somewhat classical
(see [17] for example), but includes the degree balancing technique described
in [6, §4], which makes the descent far more rapid when the base field Fqk is a
degree k extension of a non-prime field. In the finite field F(qk)n we let y := xq

and x̄ := x2
ℓ−a

for some suitably chosen integer 1 < a < k. Then y = x̄2
a

and x̄ = (yγ)
2ℓ−a

holds. Now for given Q(X) ∈ Fqk [X] of degree d representing
Q(y) we consider the lattice

L :=
{

(w0, w1) : Q(X) | (Xγ)
2ℓ−a

w0(X) + w1(X)
}

⊆ Fqk [X]2 .

By Gaussian lattice reduction we find a basis (u0, u1), (v0, v1) of L of degree
≈ d/2 and can thus generate lattice elements (w0, w1) = r(u0, u1) + s(v0, v1)
of low degree. In F(qk)n we then consider the equation

x̄w0(x̄
2a) + w1(x̄

2a) = x̄w0(y) + w1(y) = (yγ)
2ℓ−a

w0(y) + w1(y) ,

where the right-hand side is divisible by Q(y) by construction, and a is chosen
so as to make the degrees of both sides as close as possible. The descent is
successful whenever a lattice element (w0, w1) is found such that the involved

polynomials Xw0(X
2a) + w1(X

2a) and 1
Q(x)(X

2ℓ−a
w0(X) + γ2

ℓ−a
w1(X)) are

(d− 1)-smooth, i.e., have only factors of degree less than d.

3 Other Essentials

In this section we give an explicit account of further basics required for a
discrete logarithm computation.

3.1 Factorisation of the Group Order

The factorisation of the group order |F×
(qk)n

| = 2ℓkn−1 is of interest for several

reasons. Firstly it indicates the difficulty of solving the associated DLP using
the Pohlig-Hellman algorithm. Secondly it enables one to provably find a gen-
erator. Finally, it determines the small factors for which we apply Pollard’s
rho method, and the large factors for the linear algebra computation. Since
the complexity of the Special Number Field Sieve [20] is much higher than
the present DLP algorithms, it is unlikely that one can completely factorise
2ℓkn − 1 in cases of interest in a reasonable time. In these cases it is vital to
at least know all the small prime factors of the group order, which can be
accomplished using the Elliptic Curve Method [21] and the identity

2ℓkn − 1 =
∏

d|ℓkn

Φd(2) ,

where Φd ∈ Z[x] denotes the d-th cyclotomic polynomial.

52

3.2 Pohlig-Hellman and Pollard’s Rho Method

In order to compute a discrete logarithm in a group G of order m we can use
any factorisation of m = m1 · . . . · mr into pairwise coprime factors mi and
compute the discrete log modulo each factor. Indeed, if we are to compute
z = logα β it suffices to compute logαci β

ci with ci = m/mi, which determines
z mod mi. With the information of z mod mi for all i one easily determines z
(mod m) by the Chinese Remainder Theorem.

For the small prime (power) factors of m we use Pollard’s rho method
to compute the discrete logarithm modulo each factor. Regarding the large
factors of m we find it most efficient to combine them into a single product
m∗, so that in the linear algebra step of the index calculus method we work
over the ring Zm∗

. Note that each iteration of the Lanczos method that we use
for the linear algebra problem requires the inversion of a random element in
Zm∗

; this is the reason why we separate the small factors of the group order
from the large ones.

3.3 Linear Algebra

The relation generation phase of the index calculus method produces linear
relations among the logarithms of the factor base elements. As the factor base
logs are also related by the automorphism group as explained in §2.2 the
number N of variables is reduced and the linear relations will have coefficients
being powers of 2. Once M > N relations have been generated we have to find
a nonzero solution vector for the linear system. To ensure that the matrix is
of maximal rank N − 1 we generate M ≈ N + 100 relations. As noted earlier

the number of variables N is expected to be about qk

kn ≈ 1
kq

k−1.
We let B be the M × N matrix of the relations’ coefficients, which is a

matrix of constant row-weight q + 3. We have to find a nonzero vector v of
length N such that Bv = 0 modulo m∗, the product of the large prime factors
of the group order m. A common approach in index calculus algorithms is to
reduce the matrix size at this stage by using a structured Gaussian elimination
(SGE) method. In our case, however, the matrix is not extremely sparse while
its size is quite moderate, hence the expected benefit from SGE would be
minimal and we refrained from this step.

We use the iterative Lanczos method [19, 18] to solve the linear algebra
problem, which we briefly describe here. Let A = BtB, which is a symmetric
N×N matrix. We let v ∈ Z

N
m∗ be random, w = Av, and find a vector x ∈ Z

N
m∗

such that Ax = w holds (since A(x − v) = 0 we have thus found a kernel
element). We compute the following iteration

w0 = w , v0 = Aw0 , w1 = v0 −
(v0, v0)

(v0, w0)
w0

vi = Awi , wi+1 = vi −
(vi, vi)

(vi, wi)
wi −

(vi, vi−1)

(vi−1, wi−1)
wi−1

53

and stop once (vj , wj) = 0; if wj 6= 0 the algorithm fails, otherwise we find the
solution vector

x =

j−1
∑

i=0

(w,wi)

(vi, wi)
wi .

Performing the above iteration consists essentially of several matrix-vector
products, scalar-vector multiplications, and vector-vector inner products. As
the matrix is sparse and consists of entries being powers of 2 the matrix-vector
products can be carried out quite efficiently. Therefore, the scalar multiplica-
tions and inner products consume a significant part of the computation time.
We have used a way to reduce the number of inner products per iteration, as
was suggested recently [23].

Indeed, using the A-orthogonality (vi, wj) = wt
iAwj = 0 for i 6= j we find

that

(vi, vi−1) = (vi, wi) and (w,wi+1) = −
(vi, vi)

(vi, wi)
(w,wi)−

(vi, vi−1)

(vi−1, wi−1)
(w,wi−1).

Now at each iteration, given wi we compute the matrix-vector product
Bwi and the inner product ai := (vi, wi) = (Bwi, Bwi), as well as vi = Awi =
Bt(Bwi) and bi := (vi, vi) = (Awi, Awi). We then have the simplified iteration

w0 = w , w1 = v0 −
b0
a0

w0 , wi+1 = vi −
bi
ai
wi −

ai
ai−1

wi−1

and the solution vector x =
∑j−1

i=0
ci
ai
wi, where ci := (w,wi) can be computed

by the iteration

c0 = (w,w) , c1 = a0 −
b0
a0

c0 , ci+1 = −
bi
ai
ci −

ai
ai−1

ci−1 .

We see that each iteration requires merely two matrix-vector products,
three scalar multiplications, and two inner products.

3.4 Target Element

In order to set ourselves a DLP challenge we construct the ‘random’ target
element β ∈ F(qk)n using the binary digits expansion of the mathematical

constant π. More precisely, considering the qk-ary expansion

π = 3 +
∞
∑

i=1

ci q
−ki with ci ∈ Sqk := {0, 1, . . . , qk − 1}

we use a bijection between the sets Sqk and Fqk , which is defined by the

mappings ϕq : Fq → {0, . . . , q− 1}:
∑ℓ−1

i=0 ait
i 7→

∑ℓ−1
i=0 ai2

i and ϕ : Fqk → Sqk :
∑k−1

j=0 bjw
j 7→

∑k−1
j=0 ϕq(bj)q

j , and construct in this way the target element

βπ :=
n−1
∑

i=0

ϕ−1(ci+1)x
i ∈ F(qk)n .

54

4 Discrete Logarithms in F26120

In this section we document the breaking of DLP in the case ℓ = 8 and k = 3,
i.e., in F26120 . The salient features of the computation are:

– The relation generation for degree one elements took 15 seconds4.

– The corresponding linear algebra took 60.5 core-hours.

– In contrast to [15, 12], we computed the logarithm of degree 2 irreducibles
on the fly; each took on average 0.03 seconds.

– The descent was designed so as to significantly reduce the number of bot-
tleneck (degree 6) eliminations. As a result, the individual logarithm phase
took just under 689 core-hours.

4.1 Setup

We first defined F28 using the irreducible polynomial T 8 + T 4 + T 3 + T + 1.
Letting t be a root of this polynomial, we defined F224/F28 using the irreducible
polynomial W 3 + t. Letting w be a root of this polynomial, we finally defined
F26120/F224 using the irreducible polynomial X255 +w+ 1, where we denote a
root of this polynomial by x.

We chose as a generator g = x + w, which has order 26120 − 1; this was
proven via the prime factorisation of 26120 − 1, which is provided in [8]. As
usual, the target element was set to be βπ as explained in §3.4.

4.2 Relation Generation

Our factor base is simply the set of degree one elements of F26120/F224 . As
detailed in §2.2, quotienting out by the action of the 8-th power of Frobenius
produces 21,932 distinct orbits. To obtain relations, as explained in §2.3, we
make essential use of the single polynomial X257 +X + 1, which splits com-
pletely over F224 . In particular, letting y := x256 so that x = y

w+1 , the F26120

element xy + ay + bx + c corresponds to X257 + aX256 + bX + c on the one
hand, and X2

w+1 + aX + bX
w+1 + c on the other. The first of these transforms to

X257+X +1 if and only if (a256+ b)257 = (ab+ c)256. So for randomly chosen
(a, b) we compute c and check whether the corresponding quadratic splits. If
it does – which occurs with probability 1/2 – we obtain a relation. Thanks to
the simplicity of this approach, we collected 22,932 relations and wrote these
to a matrix in 15 seconds using C++/NTL [24].

4 In our inital announcement [8] we stated a running time of 60 seconds for the relation
generation. The reason for this higher running time was an unnecessary step of ordering
the matrix entries, which we have discounted here.

55

4.3 Linear Algebra

We took as our modulus the product of the largest 35 factors of 26120−1 listed
in [8], which has bitlength 5121. We ran a parallelised C/GMP [9] implemen-
tation of Lanczos’ algorithm on four of the Intel (Westmere) Xeon E5650
hex-core processors of ICHEC’s SGI Altix ICE 8200EX Stokes cluster. This
took 60.5 core-hours (just over 2.5 hours wall time).

4.4 Individual Logarithm

Degree 2 Elimination For computing the discrete logarithm of a degree two
element Q(x) = x2+ q1x+ q0 we try to equate Q(x) with x257+ax256+ bx+ c,
where (a256 + b)257 = (ab+ c)256. If this fails we apply the following strategy,
making use of the fact that F224 can also be viewed as a field extension of
F26 . We consider y = x256 and x̄ = x4, so that y = x̄64 and x̄ = (yγ)

4 holds,

and apply the large degree descent method to Q̄(X) := Q(Xγ) (note that

Q̄(y) = Q(x)). Considering the lattice L (see §2.4) we construct a basis of the
form (X + u0, u1), (v0, X + v1), where u0, u1, v0, v1 ∈ F224 . Then for s ∈ F224

we have lattice elements (X + u0 + sv0, sX + u1 + sv1) ∈ L. Now for each
B ∈ F224 such that X65 +BX +B splits, we solve for s ∈ F224 satisfying

(v0s
2 + (u0 + v1)s+ u1)

64 = B (s64 + v0s+ u0)
65 ,

which can be expressed as a quadratic system in the F26-components of s,
and thus solved by a Gröbner basis computation over F26 . We then have an
equation

x̄65 + ax̄64 + bx̄+ c = 1
γ4 (y

5 + by4 + aγ4y + cγ4)

with a = s, b = γs+q1, and c = q0
γ , where the left-hand side polynomial splits,

while the right-hand side polynomial contains Q̄(X).
The polynomial X5 + bX4 + aγ4X + cγ4 = Q̄(X)R(X) has the property

that R(X) always factors into a linear and an irreducible quadratic polynomial
over Fqk . Indeed, by a result of Bluher [2, Thm. 4.3], for any B ∈ F224 and any
d ≥ 1, the number of roots in F224d of the polynomial FB(X) = X5+BX +B
equals either 0, 1, 2, or 5. Since X5 + bX4 + aγ4X + cγ4 can be rewritten
as X5 + BX + B via a linear transformation (except when aγ4 = b4), the
same holds also regarding the F224d-roots of this polynomial. Now applying
Bluher’s result for d = 1 we see that R(X) can not split into linear factors,
and by Bluher’s result for d = 3 we conclude that R(X) can not be irreducible.
Hence, R(X) is the product of linear and a quadratic polynomial, which we
call Q′(X).

Now if Q′(X) is resolvable by the direct method, we have successfully
eliminated the original polynomial Q(X). The number of B such that X65 +
BX+B splits over Fq equals 64, according to Theorem 1, and by experiment,
for each one the success probability to find a resolvable polynomial Q′(X) is
about 0.4.

56

Performing the Descent Using C++/NTL we first used continued fractions
to express the target element βπ as a ratio of two 27-smooth polynomials, which
took 10 core-hours, and then we applied the three different descent strategies
as explained in §2.4.

We used the large degree descent strategy to express all of the featured
polynomials using polynomials of degree 6 or less. This took a further 495 core-
hours. While we could have performed this part of the descent more efficiently,
as noted above we opted to find expressions which resulted in a relatively small
number of degree 6 polynomials – which are the bottleneck eliminations for
the subsequent descent – namely 326.

For degrees 6 down to 3 we used the analogue of Joux’s small degree
elimination method, based on the same polynomial that we used for relation
generation, i.e., X257 +X +1, rather than the polynomial X256 +X that was
used in [15], since the resulting performance was slightly better. Finally, we
performed the degree 2 elimination as outlined above.

For convenience we coded the eliminations of polynomials of degrees 6
down to 2 in Magma [3] V2.16-12, using Faugere’s F4 algorithm [4]. The total
time for this part was just over 183.5 core-hours on a 2GHz AMD Opteron
computer.

For the logarithm modulo the cofactor of our modulus we used either linear
search or Pollard’s rho method, which took 20 minutes in total in C++/NTL.
Thus the total time for the descent was just under 689 hours.

Finally, we found5 that βπ = glog, with log =

13858759836397869262547571128312317100923636150389699236649593170451770028

01271780222348940986175813601314418350742563637306244268142932334742725215

98166126957928116825443110965404253837938808595404111035238027107772178822

93928187340345199973181514007348176651371535844927931455679735244624686031

79467501244756894744062749423560359365016740509334489092010298345222267322

47771897083223217282051573645013603613042367782716361877817938374393824313

01907362478638761841403754168112028404465938319290743685252639208772430477

54516312718252509681114514005027334043817696752552891273466393500982215708

44400380788516332496583882522436381918008200167032186350245107751346979596

31469615366671616895148194809106006673018476675813777394430387542983086720

54639181442568439117307472651461541934380416278336617397750571612363460962

36566875251277843062329973044475486561062204356908568471471279383781038538

81888446379698990607607984324812725202083970588643607121365057518670745694

85840723789169429253691408684171964795734810327114810217291628659735881740

5 Magma verification code for this solution is available from [8].

57

96389913305607677858033996361734905537150362024720515772660781208855505434

33105576657001421187560294063357576385045750307908707437658530447052041132

02462922553757114575735552860602366993170394544793267182811289614232751427

87569425690532833283344049635521302596000897192512036695298807294032964530

95969137708720454634896013276009554410598019825524549320241283159389198478

81524179576919398171123661820636875299153651503611802144512343876568832561

49355994405051149585969163075307026647956035683671589546448539955132726112

03493865596129185620342224768038702907847352095116033447252547507168067262

36615872927203296061825120443121943571561392013409520378729752432544760815

54937002122953415949407262137232099852298394838422907643191397673290238344

1830460409758599159285365304456971453176680449737096483324156185041 .

4.5 Total Running Time

The total running time is 689+60.5 = 749.5 core-hours. Note that most of the
computation (all except the linear algebra part) was performed on a personal
computer. On a modern quad-core PC, the total running time would be around
a week.

5 Complexity Considerations

In this section we prove a tighter complexity result than that given in [12] for
the new small-degree stage of the descent. As stated in §1, the systems arising
from the small-degree elimination in §2.4 are quadratic, but not bilinear. As
such, they do not necessarily enjoy the same resolution complexity as bilinear
quadratic systems, as given by a theorem due to Spaenlehauer [25, Cor. 6.30].
However, if one instead reverts to using the polynomial Xq −X, then one can
argue as follows.

Let the fields under consideration be F(qk)n , with k ≥ 3 fixed, n ≈ qδ1 and
δ1 ≥ 1 a small integer, as per the field representation described in [6, §3.3],
and q → ∞. This is achieved by finding a polynomial p1 of degree δ1 such that
p1(X

q) − X ≡ 0 (mod I(X)), with I(X) irreducible of degree n. By letting
x ∈ F(qk)n be a root of I(X) and y := xq, one also has x = p1(y), and therefore
two related representations of F(qk)n .

For simplicity we assume δ1 = 1; the case δ1 > 1 can be treated similarly.
The cardinality of F(qk)n is ≈ qkq and we have

Lqkq(1/4, c) = exp
(

(c+ o(1))(kq log q)1/4(log(kq log q))3/4
)

= exp
(

(ck1/4 + o(1)) q1/4 log q
)

. (1)

We now recall Joux’s elimination method. The final part of the descent
starts with an element Q(x) of degree D ≈ α1q

1/2 which is to be eliminated;

58

here, α1 is a constant that depends on the efficiency of the classical large-degree
descent. For a parameter 1 < d < D/2 yet to be optimised, we substitute
X = f(X)/g(X) into Xq −X with deg(f) = d and deg(g) = D− d, both with
yet-to-be determined Fqk coefficients. In this case one has the F(qk)n-relation

f(x)qg(x)− f(x)g(x)q =
(

f(x)qg(x)− f(x)g(x)q
)

mod I(x). (2)

By the factorisation of Xq − X over Fq, the LHS of Eq. (2) has irreducible
factors of degree at most D − d. On the RHS one stipulates that it be zero
mod Q(x). This condition can be expressed as a bilinear quadratic system in
the dk Fq-components of the coefficients of f and the (D−d)k Fq-components
of the coefficients of g. Since Q(x) has D coefficients in Fqk one expects there
to be O(1) solutions to this system when both f and g are monic. Hence by
varying the leading coefficient of one of them, one expects many solutions.

The degree of the RHS of Eq. (2) depends on the representation of the field
F(qk)n . Recall that in Joux’s field representation, one has h0(X), h1(X) of very
low degree δh0 , δh1 such that h1(X)Xq − h0(X) ≡ 0 (mod I(X)), with I(X)
irreducible of degree n and n ≈ q. Now on the RHS of Eq. (2) one replaces
each occurrence of xq by h0(x)/h1(x), and thus the cofactor of Q(x) on the
RHS has degree (D − d)(max{δh0 , δh1} − 1). For each solution to the bilinear
quadratic system, it is tested for (D− d)-smoothness, and when it is, one has
successfully represented Q(x) as a product of at most q field elements of degree
at most D − d (ignoring the negligible number of factors from the cofactor).

Using our field representation, recall that y = xq and hence

f(x)q =
d

∑

i=0

f q
i y

i and g(x)q =
D−d
∑

j=0

gqjy
j .

Then also using x = p1(y), the RHS of Eq. (2) becomes:

(d
∑

i=0

f q
i y

i

)(D−d
∑

j=0

gjp1(y)
j

)

−

(d
∑

i=0

fip1(y)
i

)(D−d
∑

j=0

gqjy
j

)

,

so that the cofactor of Q(y) has degree (D − d)(δ1 − 1) in y.

By repeating the above elimination technique recursively for each element
occurring in the product until only degree one or degree two elements remain,
the logarithm of Q(x) is computed. So what is the optimal d? Joux’s analy-
sis [12] indicates that d = O(q1/4(log q)1/2) should be used, giving an overall
complexity of exp

(

(c′ + o(1)) q1/4(log q)3/2
)

for some c′, which is Lqkq(1/4 +

o(1), c′), due to the presence of the extra (log q)1/2 factor, relative to Eq. (1).

However, one can instead set d ≈ α2q
1/4, as we now show (the constant

α2 is to be optimised later). Let C(D, d) be the cost of expressing a degree D
element as a product of elements of degree at most d, when the numerator f

59

has degree d at each step. If C0(D, d) is the cost of resolving the corresponding
bilinear quadratic system, we have

C(D, d) = C0(D, d) + q C(D − d, d)

= C0(D, d) + q
(

C0(D − d, d) + q C(D − 2d, d)
)

= · · · =

⌊D/d⌋−1
∑

i=0

qiC0(D − id, d) .

Since C0(D − id, d) ≤ C0(D, d) for all i and since
∑⌊D/d⌋−1

i=0 qi ≤ qD/d we get
the upper bound

C(D, d) ≤ qD/dC0(D, d) .

As in [12], we need the following essential lemma.

Lemma 1 ([25, Cor. 6.30]). The arithmetic complexity (measured in
Fq-operations) of computing a Gröbner basis of a generic bilinear sys-
tem f1, . . . , fnx+ny ∈ Fq[x0, . . . , xnx−1, y0, . . . , yny−1] with Faugere’s F4 algo-
rithm [4] is bounded by

O
(

min(nx, ny) (nx + ny)

(

nx + ny +min(nx, ny) + 2

min(nx, ny) + 2

)ω
)

,

where ω is the exponent of matrix multiplication.

Hence, using the estimate
(

a+2
b+2

)

≤ (ab)
2
(

a
b

)

≤ (ab)
2(e a

b)
b = eb(ab)

b+2, we have

C0(D, d) = O
(

k2Dd

(

k(D + d) + 2

kd+ 2

)ω
)

= O
(

k2Ddekωd
(

D + d

d

)kωd+2ω
)

,

and, neglecting the lower order terms, we get

logC0(D, d) =
(

kωd log(D/d)
)

(1 + o(1)) .

Therefore, we have

logC(D, d) =
(

(D/d) log q + kωd log(D/d)
)

(1 + o(1))

=
(

(

α1

α2
+

kωα2

4

)

q1/4 log q
)

(1 + o(1)) ,

and in particular, for the optimal choice α2 = (4α1/kω)
1/2, we get

logC(D, d) =
(

(kωα1)
1/2q1/4 log q

)

(1 + o(1)) .

Thus, taking into account Eq. (1), we arrive at the complexity

C(D, d) = Lqkq(1/4 , k
1/4(ωα1)

1/2) . (3)

60

Observe that the number of degree d ≈ α2q
1/4 elements in such an expres-

sion for the initial degree D ≈ α1q
1/2 element is O(q(α1/α2)q1/4). Note that this

choice of d represents the optimal balance between the number of nodes in the
descent tree at level d and the cost of resolving the bilinear systems.

Moreover, exactly the same argument shows that C(αjq
1/2j , αj+1q

1/2j+1
) =

Lqkq(1/2
j+1), and so the cost of expressing each of the Lqkq(1/4) degree α2q

1/4

elements in terms of elements of degree α3q
1/8 is Lqkq(1/8), and therefore for

any j > 1 the total cost down to degree αjq
1/2j never exceeds Lqkq(1/4). After

j = ⌈log2 log2 q⌉ of the above sequence of steps we have ⌊q1/2
j
⌋ = 1, and the

total cost is precisely that given in Eq. (3).
As the complexity of the initial splitting of a target element into a product

of elements of degree at most α0q
3/4 is Lqkq(1/4), as is the complexity of

classical descent from degree α0q
3/4 to degree α1q

1/2, the above tighter analysis
demonstrates that for the fields considered, Joux’s algorithm has complexity
Lqkq(1/4) as well, for both his and our field representations. We have omitted
the determination of the optimal parameters α0 and α1, since this is beyond
our focus on proving that the full algorithm is L(1/4).

References

1. Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó’ hÉigeartaigh, and Michael Scott.
Efficient pairing computation on supersingular abelian varieties. Des. Codes Cryptogr.,
42(3):239–271, 2007.

2. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–
305, 2004.

3. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

4. Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra, 139(1-3):61–88, 1999.

5. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive facets
of Weil descent on elliptic curves. J. Cryptology, 15(1):19–46, 2002.

6. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function
field sieve and the impact of higher splitting probabilities: Application to discrete loga-
rithms in F21971 and F23164 . In Ran Canetti and Juan Garay, editors, CRYPTO 2013,
volume 8043 of LNCS, pages 109–128. Springer, Heidelberg, 2013.

7. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (21971). NMBRTHRY list, 19 Feb 2013.

8. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (26120). NMBRTHRY list, 11 Apr 2013.

9. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

10. Tor Helleseth and Alexander Kholosha. x2l+1 + x + a and related affine polynomials
over GF(2k). Cryptogr. Commun., 2(1):85–109, 2010.

11. Antoine Joux. Faster index calculus for the medium prime case. Application to 1175-
bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 177–193. Springer, Heidelberg, 2013.

12. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1))
in very small characteristic. Cryptology ePrint Archive, Report 2013/095, 2013.
http://eprint.iacr.org/.

61

13. Antoine Joux. Personal communication, 2013.
14. Antoine Joux. Discrete Logarithms in GF (21778). NMBRTHRY list, 11 Feb 2013.
15. Antoine Joux. Discrete Logarithms in GF (24080). NMBRTHRY list, 22 Mar 2013.
16. Antoine Joux. Discrete Logarithms in GF (26168). NMBRTHRY list, 21 May 2013.
17. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case.

In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 254–270.
Springer, Heidelberg, 2006.

18. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over
finite fields. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO ’90, volume
537 of LNCS, pages 109–133. Springer, Heidelberg, 1991.

19. Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Research Nat. Bur. Standards, 45:255–282,
1950.

20. Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, Heidelberg, 1993.

21. Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2),
126(3):649–673, 1987.

22. Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp.,
56(193):329–347, 1991.

23. Ilya Popovyan. Efficient parallelization of lanczos type algorithms. Cryptology ePrint
Archive, Report 2011/416, 2011. http://eprint.iacr.org/.

24. Victor Shoup. NTL: A library for doing number theory, 5.5.2 edition, 2009.
http://www.shoup.net/ntl/.

25. Pierre-Jean Spaenlehauer. Solving multihomogeneous and determinantal systems al-
gorithms - complexity - applications. Ph.D. thesis, Université Pierre et Marie Curie
(UPMC), 2012.

62

Breaking ‘128-bit Secure’ Supersingular
Binary Curves⋆

(or how to solve discrete logarithms in F24·1223 and F212·367)

Robert Granger1, Thorsten Kleinjung1, and Jens Zumbrägel2

1 Laboratory for Cryptologic Algorithms, EPFL, Switzerland
2 Institute of Algebra, TU Dresden, Germany

robbiegranger@gmail.com, thorsten.kleinjung@epfl.ch, jens.zumbragel@ucd.ie

Abstract. In late 2012 and early 2013 the discrete logarithm problem (DLP)
in finite fields of small characteristic underwent a dramatic series of break-
throughs, culminating in a heuristic quasi-polynomial time algorithm, due
to Barbulescu, Gaudry, Joux and Thomé. Using these developments, Adj,
Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed the concrete security of
the DLP, as it arises from pairings on (the Jacobians of) various genus one
and two supersingular curves in the literature, which were originally thought
to be 128-bit secure. In particular, they suggested that the new algorithms
have no impact on the security of a genus one curve over F21223 , and reduce
the security of a genus two curve over F2367 to 94.6 bits. In this paper we pro-
pose a new field representation and efficient general descent principles which
together make the new techniques far more practical. Indeed, at the ‘128-bit
security level’ our analysis shows that the aforementioned genus one curve has
approximately 59 bits of security, and we report a total break of the genus two
curve.

Keywords: Discrete logarithm problem, supersingular binary curves, pair-
ings, finite fields

1 Introduction

The role of small characteristic supersingular curves in cryptography has been
a varied and an interesting one. Having been eschewed by the cryptographic
community for succumbing spectacularly to the subexponential MOV attack
in 1993 [40], which maps the DLP from an elliptic curve (or more generally, the
Jacobian of a higher genus curve) to the DLP in a small degree extension of
the base field of the curve, they made a remarkable comeback with the advent
of pairing-based cryptography in 2001 [42, 31, 9]. In particular, for the latter
it was reasoned that the existence of a subexponential attack on the DLP
does not ipso facto warrant their complete exclusion; rather, provided that
the finite field DLP into which the elliptic curve DLP embeds is sufficiently
hard, this state of affairs would be acceptable.

⋆ The second author acknowledges the support of the Swiss National Science Foundation,
via grant numbers 206021-128727 and 200020-132160, while the third author acknowledges
the support of the Irish Research Council, grant number ELEVATEPD/2013/82.

63

Neglecting the possible existence of native attacks arising from the super-
singularity of these curves, much research effort has been expended in making
instantiations of the required cryptographic operations on such curves as effi-
cient as possible [6, 17, 14, 28, 27, 5, 30, 7, 11, 18, 3, 1], to name but a few, with
the associated security levels having been estimated using Coppersmith’s al-
gorithm from 1984 [12, 39]. Alas, a series of dramatic breakthrough results for
the DLP in finite fields of small characteristic have potentially rendered all of
these efforts in vain.

The first of these results was due to Joux, in December 2012, and con-
sisted of a more efficient method – dubbed ‘pinpointing’ – to obtain relations
between factor base elements [32]. For medium-sized base fields, this tech-
nique has heuristic complexity as low as L(1/3, 21/3) ≈ L(1/3, 1.260)†, where
as usual L(α, c) = LQ(α, c) = exp((c + o(1))(logQ)α(log logQ)1−α), with Q
the cardinality of the field. This improved upon the previous best complexity
of L(1/3, 31/3) ≈ L(1/3, 1.442) due to Joux and Lercier [37]. Using this tech-
nique Joux solved example DLPs in fields of bitlength 1175 and 1425, both
with prime base fields.

Then in February 2013, Göloğlu, Granger, McGuire and Zumbrägel used
a specialisation of the Joux-Lercier doubly-rational function field sieve (FFS)
variant [37], in order to exploit a well-known family of ‘splitting polynomials’,
i.e., polynomials which split completely over the base field [19]. For fields of
the form Fqkn with k ≥ 3 fixed (k = 2 is even simpler) and n ≈ dq for a fixed
integer d ≥ 1, they showed that for binary (and more generally small char-
acteristic) fields, relation generation for degree one elements runs in heuristic
polynomial time, as does finding the logarithms of degree two elements (if qk

can be written as q′k
′
for k′ ≥ 4), once degree one logarithms are known. For

medium-sized base fields of small characteristic a heuristic complexity as low
as L(1/3, (4/9)1/3) ≈ L(1/3, 0.763) was attained; this approach was demon-
strated via the solution of example DLPs in the fields F21971 [21] and F23164 .

After the initial publication of [19], Joux released a preprint [33] detailing
an algorithm for solving the discrete logarithm problem for fields of the form
Fq2n , with n ≤ q + d for some very small d, which was used to solve a DLP
in F21778 [34] and later in F24080 [35]. For n ≈ q this algorithm has heuristic
complexity L(1/4 + o(1), c) for some undetermined c, and also has a heuristic
polynomial time relation generation method, similar in principle to that in [19].
While the degree two element elimination method in [19] is arguably superior
– since elements can be eliminated on the fly – for other small degrees Joux’s
elimination method is faster, resulting in the stated complexity.

In April 2013 Göloğlu et al. combined their approach with Joux’s to solve
an example DLP in the field F26120 [22] and later demonstrated that Joux’s
algorithm can be tweaked to have heuristic complexity L(1/4, c) [20], where
c can be as low as (ω/8)1/4 [24], with ω the linear algebra constant, i.e., the

† The original paper states a complexity of L(1/3, (8/9)1/3) ≈ L(1/3, 0.961); however, on
foot of recent communications the constant should be as stated.

64

exponent of matrix multiplication. Then in May 2013, Joux announced the
solution of a DLP in the field F26168 [36].

Most recently, in June 2013, Barbulescu, Gaudry, Joux and Thomé an-
nounced a quasi-polynomial time for solving the DLP [4], for fields Fqkn with
k ≥ 2 fixed and n ≤ q + d with d very small, which for n ≈ q has heuristic
complexity

(log qkn)O(log log qkn). (1)

Since (1) is smaller than L(α, c) for any α > 0, it is asymptotically the most
efficient algorithm known for solving the DLP in finite fields of small char-
acteristic, which can always be embedded into a field of the required form.
Interestingly, the algorithmic ingredients and analysis of this algorithm are
much simpler than for Joux’s L(1/4 + o(1), c) algorithm.

Taken all together, one would expect the above developments to have a
substantial impact on the security of small characteristic parameters appearing
in the pairing-based cryptography literature. However, all of the record DLP
computations mentioned above used Kummer or twisted Kummer extensions
(those with n dividing qk ∓ 1), which allow for a reduction in the size of
the factor base by a factor of kn and make the descent phase for individual
logarithms relatively easy. While such parameters are preferable for setting
records (most recently in F29234 [26]), none of the parameters featured in the
literature are of this form, and so it is not a priori clear whether the new
techniques weaken existing pairing-based protocol parameters.

A recent paper by Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez has
begun to address this very issue [2]. Using the time required to compute a single
multiplication modulo the cardinality of the relevant prime order subgroup as
their basic unit of time, which we denote by Mr, they showed that the DLP in
the field F36·509 costs at most 273.7 Mr. One can arguably interpret this result
to mean that this field has 73.7 bits of security†. This significantly reduces the
intended security level of 128 bits (or 111 bits as estimated by Shinohara et

al. [43], or 102.7 bits for the Joux-Lercier FFS variant with pinpointing, as
estimated in [2]). An interesting feature of their analysis is that during the
descent phase, some elimination steps are performed using the method from
the quasi-polynomial time algorithm of Barbulescu et al., when one might have
expected these steps to only come into play at much higher bitlengths, due to
the high arity of the arising descent nodes.

In the context of binary fields, Adj et al. considered in detail the DLP in
the field F212·367 , which arises via a pairing from the DLP on the Jacobian of a
supersingular genus two curve over F2367 , first proposed in [3], with embedding
degree 12. Using all of the available techniques they provided an upper bound

† The notion of bit security is quite fuzzy; for the elliptic curve DLP it is usually intended
to mean the logarithm to the base 2 of the expected number of group operations, however
for the finite field DLP different authors have used different units, perhaps because the
cost of various constituent algorithms must be amortised into a single cost measure. In
this work we time everything in seconds, while to achieve a comparison with [2] we convert
to Mr.

65

of 294.6 Mr for the cost of breaking the DLP in the embedding field, which is
some way below the intended 128-bit security level. In their conclusion Adj et
al. also suggest that a commonly implemented genus one supersingular curve
over F21223 with embedding degree 4 [30, 7, 11, 18, 1], is not weakened by the
new algorithmic advances, i.e., its security remains very close to 128 bits.

In this work we show that the above security estimates were incredibly
optimistic. Our techniques and results are summarised as follows.

– Field representation: We introduce a new field representation that can
have a profound effect on the resulting complexity of the new algorithms.
In particular it permits the use of a smaller q than before, which not only
speeds up the computation of factor base logarithms, but also the descent
(both classical and new).

– Exploit subfield membership: During the descent phase we apply a
principle of parsimony, by which one should always try to eliminate an
element in the target field, and only when this is not possible should one
embed it into an extension field. So although the very small degree log-
arithms may be computed over a larger field, the descent cost is greatly

reduced relative to solving a DLP in the larger field.

– Further descent tricks: The above principle also means that elements
can automatically be rewritten in terms of elements of smaller degree, via
factorisation over a larger field, and that elements can be eliminated via
Joux’s Gröbner basis computation method [33] with k = 1, rather than
k > 1, which increases its degree of applicability.

– ‘128-bit secure’ genus one DLP: We show that the DLP in F24·1223 can
be solved in approximately 240 s, or 259 Mr, with r a 1221-bit prime.

– ‘128-bit secure’ genus two DLP: We report a total break of the DLP
in F212·367 (announced in [25]), which took about 52240 core-hours.

– L(1/4, c) technique only: Interestingly, using our approach the elimina-
tion steps à la Barbulesu et al. [4] were not necessary for the above estimate
and break.

The rest of the paper is organised as follows. In §2 we describe our field
representation and our target fields. In §3 we present the corresponding poly-
nomial time relation generation method for degree one elements and degree
two elements (although we do not need the latter for the fields targeted in
the present paper), as well as how to apply Joux’s small degree elimination
method [33] with the new representation. We then apply these and other tech-
niques to F24·1223 in §4 and to F212·367 in §5 . Finally, we conclude in §6.

66

2 Field Representation and Target Fields

In this section we introduce our new field representation and the fields whose
DLP security we will address. This representation, as well as some preliminary
security estimates, were initially presented in [23].

2.1 Field Representation

Although we focus on binary fields in this paper, for the purposes of generality,
in this section we allow for extension fields of arbitrary characteristic. Hence
let q = pl for some prime p, and let K = Fqkn be the field under consideration,
with k ≥ 1.

We choose a positive integer dh such that n ≤ qdh + 1, and then choose
h0, h1 ∈ Fqk [X] with max{deg(h0), deg(h1)} = dh such that

h1(X
q)X − h0(X

q) ≡ 0 (mod I(X)), (2)

where I(X) is an irreducible degree n polynomial in Fqk [X]. Then K =
Fqk [X]/(I(X)). Denoting by x a root of I(X), we introduce the auxiliary
variable y = xq, so that one has two isomorphic representations of K, namely
Fqk(x) and Fqk(y), with σ : Fqk(y) → Fqk(x) : y 7→ xq. To establish the inverse
isomorphism, note that by (2) in K we have h1(y)x − h0(y) = 0, and hence
σ−1 : Fqk(x) → Fqk(y) : x 7→ h0(y)/h1(y).

The knowledgeable reader will have observed that our representation is a
synthesis of two other useful representations: the one used by Joux [33], in
which one searches for a degree n factor I(X) of h1(X)Xq − h0(X); and the
one used by Göloğlu et al. [19, 20], in which one searches for a degree n factor
I(X) of X − h0(X

q). The problem with the former is that it constrains n
to be approximately q. The problem with the latter is that the polynomial
X − h0(X

q) is insufficiently general to represent all degrees n up to qdh. By
changing the coefficient ofX in the latter from 1 to h1(X

q), we greatly increase
the probability of overcoming the second problem, thus combining the higher
degree coverage of Joux’s representation with the higher degree possibilities
of [19, 20].

The raison d’être of using this representation rather than Joux’s represen-
tation is that for a given n, by choosing dh > 1, one may use a smaller q. So
why is this useful? Well, since the complexity of the new descent methods is
typically a function of q, then subject to the satisfaction of certain constraints,
one may use a smaller q, thus reducing the complexity of solving the DLP. This
observation was our motivation for choosing field representations of the above
form.

Another advantage of having an h1 coefficient (which also applies to Joux’s
representation) is that it increases the chance of there being a suitable (h1, h0)
pair with coefficients defined over a proper subfield of Fqk , which then permits
one to apply the factor base reduction technique of [37], see §4 and §5.

67

2.2 Target Fields

For i ∈ {0, 1} let Ei/F2p : Y 2 + Y = X3 + X + i. These elliptic curves are
supersingular and can have prime or nearly prime order only for p prime, and
have embedding degree 4 [16, 6, 17]. We focus on the curve

E0/F21223 : Y 2 + Y = X3 +X, (3)

which has a prime order subgroup of cardinality r1 = (21223 + 2612 + 1)/5,
of bitlength 1221. This curve was initially proposed for 128-bit secure proto-
cols [30] and has enjoyed several optimised implementations [7, 11, 18, 1]. Many
smaller p have also been proposed in the literature (see [5, 16], for instance),
and are clearly weaker.

For i ∈ {0, 1} let Hi/F2p : Y 2 + Y = X5 + X3 + i. These genus two
hyperelliptic curves are supersingular and can have a nearly prime order Ja-
cobian only for p prime (note that 13 is always a factor of #JacH0

(F2p), since
#JacH0

(F2) = 13), and have embedding degree 12 [5, 16]. We focus on the
curve

H0/F2367 : Y 2 + Y = X5 +X3, (4)

with #JacH(F2367) = 13 · 7170258097 · r2, and r2 = (2734+2551+2367+2184+
1)/(13 · 7170258097) is a 698-bit prime, since this was proposed for 128-bit
secure protocols [3], and whose security was analysed in depth by Adj et al.
in [2].

3 Computing the Logarithms of Small Degree Elements

In this section we adapt the polynomial time relation generation method
from [19] and Joux’s small degree elimination method [33] to the new field rep-
resentation as detailed in §2.1. Note that henceforth, we shall refer to elements
of Fqkn = Fqk [X]/(I(X)) as field elements or as polynomials, as appropriate,
and thus use x and X (and y and Y) interchangeably. We therefore freely
apply polynomial ring concepts, such as degree, factorisation and smoothness,
to field elements.

In order to compute discrete logarithms in our target fields we apply the
usual index calculus method. It consists of a precomputation phase in which
by means of (sparse) linear algebra techniques one obtains the logarithms of
the factor base elements, which will consist of the low degree irreducible poly-
nomials. Afterwards, in the individual logarithm phase, one applies procedures
to recursively rewrite each element as a product of elements of smaller degree,
in this way building up a descent tree, which has the target element as its root
and factor base elements as its leaves. This proceeds in several stages, starting
with a continued fraction descent of the target element, followed by a special-
Q lattice descent (referred to as degree-balanced classical descent, see [19]),
and finally using Joux’s Gröbner basis descent [33] for the lower degree ele-
ments. Details of the continued fraction and classical descent steps are given

68

in §4, while in this section we provide details of how to find the logarithms of
elements of small degree.

We now describe how the logarithms of degree one and two elements (when
needed) are to be computed. We use the relation generation method from [19],
rather than Joux’s method [33], since it automatically avoids duplicate rela-
tions. For k ≥ 2 we first precompute the set Sk, where

Sk = {(a, b, c) ∈ (Fqk)
3 | Xq+1 + aXq + bX + c splits completely over Fqk}.

For k = 2, this set of triples is parameterised by (a, aq,Fq ∋ c 6= aq+1), of which
there are precisely q3 − q2 elements. For k ≥ 3, Sk can also be computed very
efficiently, as follows. Assuming c 6= ab and b 6= aq, the polynomial Xq+1 +
aXq + bX + c may be transformed (up to a scalar factor) into the polynomial

fB(X) = X
q+1

+ BX + B, where B = (b−aq)q+1

(c−ab)q , and X = c−ab
b−aqX − a. The

set L of B ∈ Fqk for which fB splits completely over Fqk can be computed
by simply testing for each such B whether this occurs, and there are precisely
(qk−1 − 1)/(q2 − 1) such B if k is odd, and (qk−1 − q)/(q2 − 1) such B if k is
even [8]. Then for any (a, b) such that b 6= aq and for each B ∈ L, we compute

via B = (b−aq)q+1

(c−ab)q the corresponding (unique) c ∈ Fqk , which thus ensures that

(a, b, c) ∈ Sk. Note that in all cases we have |Sk| ≈ q3k−3.

3.1 Degree 1 Logarithms

We define the factor base B1 to be the set of linear elements in x, i.e., B1 =
{x − a | a ∈ Fqk}. Observe that the elements linear in y are each expressible

in B1, since (y − a) = (x− a1/q)q.
As in [37, 19, 20], the basic idea is to consider elements of the form xy +

ay + bx + c with (a, b, c) ∈ Sk. The above two field isomorphisms induce the
following equality in K:

xq+1 + axq + bx+ c =
1

h1(y)

(

yh0(y) + ayh1(y) + bh0(y) + ch1(y)
)

. (5)

When the r.h.s. of (5) also splits completely over Fqk , one obtains a relation
between elements of B1 and the logarithm of h1(y). One can either adjoin
h1(y) to the factor base, or simply use an h1(y) which splits completely over
Fqk .

We assume that for each (a, b, c) ∈ Sk that the r.h.s. of (5) – which has
degree dh + 1 – splits completely over Fqk with probability 1/(dh + 1)!. Hence
in order for there to be sufficiently many relations we require that

q3k−3

(dh + 1)!
> qk, or equivalently q2k−3 > (dh + 1)!. (6)

When this holds, the expected cost of relation generation is (dh + 1)! · qk ·
Sqk(dh + 1, 1), where Sqk(n,m) denotes the cost of testing whether a degree n

69

polynomial is m-smooth, i.e., has all of its irreducible factors of degree ≤ m.
The cost of solving the resulting linear system using sparse linear algebra
techniques is O(q2k+1) arithmetic operations modulo the order r subgroup in
which one is working.

3.2 Degree 2 Logarithms

For degree two logarithms, there are several options. The simplest is to apply
the degree one method over a quadratic extension of Fqk , but in general (with-

out any factor base automorphisms) this will cost O(q4k+1) modular arithmetic
operations. If k ≥ 4 then subject to a condition on q, k and dh, it is possible
to find the logarithms of irreducible degree two elements on the fly, using the
techniques of [19, 20]. In fact, for the DLP in F212·367 we use both of these
approaches, but for different base fields, see §5.

Although not used in the present paper, for completeness we include here
the analogue in our field representation of Joux’s approach [33]. Since this
approach forms the basis of the higher degree elimination steps in the quasi-
polynomial time algorithm of Barbulescu et al., its analogue in our field rep-
resentation should be clear.

We define B2,u to be the set of irreducible elements of Fqk [X] of the form

X2 + uX + v. For each u ∈ Fqk one expects there to be about qk/2 such

elements†. As in [33], for each u ∈ Fqk we find the logarithms of all the elements
of B2,u simultaneously. To do so, consider (5) but with x on the l.h.s. replaced
withQ = x2+ux. Using the field isomorphisms we have thatQq+1+aQq+bQ+c
is equal to

(y2+uqy)
(

(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)
)

+ a(y2+uqy) + b
(

(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)) + c

= 1
h1(y)2

(

(y2+uqy)(h0(y)
2+uh0(y)h1(y)+ah1(y)

2)+b(h0(y)
2+uh0(y)h1(y))+ch1(y)

2
)

.

The degree of the r.h.s. is 2(dh + 1), and when it splits completely over Fqk

we have a relation between elements of B2,u and degree one elements, whose
logarithms are presumed known, which we assume occurs with probability
1/(2(dh + 1))!. Hence in order for there to be sufficiently many relations we
require that

q3k−3

(2(dh + 1))!
>

qk

2
, or equivalently q2k−3 > (2(dh + 1))!/2. (7)

Observe that (7) implies (6). When this holds, the expected cost of relation
generation is (2(dh + 1))! · qk · Sqk(2(dh + 1), 1)/2. The cost of solving the

resulting linear system using sparse linear algebra techniques is again O(q2k+1)
modular arithmetic operations, where now both the number of variables and
the average weight is halved relative to the degree one case. Since there are qk

† For binary fields there are precisely qk/2 irreducibles, since X2 + uX + v is irreducible if
and only if TrF

qk
/F2(v/u

2) = 1.

70

such u, the total expected cost of this stage is O(q3k+1) modular arithmetic
operations, which may of course be parallelised.

3.3 Joux’s Small Degree Elimination with the New Representation

As in [33], let Q be a degree dQ element to be eliminated, let F (X) =
∑dF

i=0 fiX
i, G(X) =

∑dG
j=0 gjX

j ∈ Fqk [X] with dF + dG + 2 ≥ dQ, and as-
sume without loss of generality dF ≥ dG. Consider the following expression:

G(X)
∏

α∈Fq

(F (X)− αG(X)) = F (X)qG(X)− F (X)G(X)q (8)

The l.h.s. is max(dF , dG)-smooth. The r.h.s. can be expressed modulo
h1(X

q)X − h0(X
q) in terms of Y = Xq as a quotient of polynomials of rela-

tively low degree by using

F (X)q =

dF
∑

i=0

f q
i Y

i, G(X)q =

dG
∑

j=0

gqjY
j and X ≡

h0(Y)

h1(Y)
.

Then the numerator of the r.h.s. becomes

(

dF
∑

i=0

f q
i Y

i
)(

dG
∑

j=0

gqjh0(Y)jh1(Y)dF−j
)

−
(

dF
∑

i=0

f q
i h0(Y)ih1(Y)dF−i

)(

dG
∑

j=0

gqjY
j
)

.

(9)
Setting (9) to be 0 modulo Q(Y) gives a system of dQ equations over Fqk

in the dF +dG+2 variables f0, . . . , fdF , g0, . . . , gdG . By choosing a basis for Fqk

over Fq and expressing each of the dF +dG+2 variables f0, . . . , fdF , g0, . . . , gdG
in this basis, this system becomes a bilinear quadratic system† of kdQ equations
in (dF +dG+2)k variables. To find solutions to this system, one can specialise
(dF + dG + 2 − dQ)k of the variables in order to make the resulting system
generically zero-dimensional while keeping its bilinearity, and then compute
the corresponding Gröbner basis, which may have no solution, or a small
number of solutions. For each solution, one checks whether (9) divided by
Q(Y) is (dQ − 1)-smooth: if so then Q has successfully been rewritten as a
product of elements of smaller degree; if no solutions give a (dQ − 1)-smooth
cofactor, then one begins again with another specialisation.

The degree of the cofactor of Q(Y) is upper bounded by dF (1 + dh)− dQ,
so assuming that it behaves as a uniformly chosen polynomial of such a degree
one can calculate the probability ρ that it is (dQ − 1)-smooth using standard
combinatorial techniques.

Generally, in order for Q to be eliminable by this method with good prob-
ability, the number of solutions to the initial bilinear system must be greater
than 1/ρ. To estimate the number of solutions, consider the action of Gl2(Fqk)

† The bilinearity makes finding solutions to this system easier [45], and is essential for the
complexity analysis in [33] and its variant in [20].

71

on the set of pairs (F,G). The subgroups Gl2(Fq) and F
×
qk

(via diagonal em-

bedding) both act trivially on the set of relations, modulo multiplication by
elements in F

×
qk
. Assuming that the set of (F,G) quotiented out by the ac-

tion of the compositum of these subgroups (which has cardinality ≈ qk+3),
generates distinct relations, one must satisfy the condition

q(dF+dG+1−dQ)k−3 > 1/ρ . (10)

Note that while (10) is preferable for an easy descent, one may yet violate it and
still successfully eliminate elements by using various tactics, as demonstrated
in §5.

4 Concrete Security Analysis of F24·1223

In this section we focus on the DLP in the 1221-bit prime order r1 subgroup
of F×

24·1223
, which arises from the MOV attack applied to the genus one su-

persingular curve (3). By embedding F24·1223 into its degree two extension
F28·1223 = F29784 we show that, after a precomputation taking approximately
240 s, individual discrete logarithms can be computed in less than 234 s.

4.1 Setup

We consider the field F28·1223 = Fqn with q = 28 and n = 1223 given by the
irreducible factor of degree n of h1(X

q)X − h0(X
q), with

h0 = X5 + tX4 + tX3 +X2 + tX + t , h1 = X5 +X4 +X3 +X2 +X + t ,

where t is an element of F22 \ F2. Note that the field of definition of this
representation is F22 .

Since the target element is contained in the subfield F24·1223 , we begin the
classical descent over F24 , we switch to Fq = F28 , i.e., k = 1, for the Gröbner
basis descent, and, as explained below, we work over Fqk with either k = 1 or
a few k > 1 to obtain the logarithms of all factor base elements.

4.2 Linear Algebra Cost Estimate

In this precomputation we obtain the logarithms of all elements of degree at
most four over Fq. Since the degree 1223 extension is defined over F22 in our
field representation, by the action of the Galois group Gal(Fq/F22) on the
factor base, the number of irreducible elements of degree j whose logarithms
are to be computed can be reduced to about 28j/(4j) for j ∈ {1, 2, 3, 4}.

One way to obtain the logarithms of these elements is to carry out the
degree 1 relation generation method from §3.1, together with the elementary
observation that an irreducible polynomial of degree k over Fq splits completely
over Fqk . First, computing degree one logarithms over Fq3 gives the logarithms
of irreducible elements of degrees one and three over Fq. Similarly, computing

72

degree one logarithms over Fq4 gives the logarithms of irreducible elements of
degrees one, two, and four over Fq. The main computational cost consists in
solving the latter system arising from Fq4 , which has size 228 and an average
row weight of 256.

However, we propose to reduce the cost of finding these logarithms by using
k = 1 only, in the following easy way. Consider §3.3, and observe that for each
polynomial pair (F,G) of degree at most d, one obtains a relation between
elements of degree at most d when the numerator of the r.h.s. is d-smooth
(ignoring factors of h1). Note that we are not setting the r.h.s. numerator to
be zero modulo Q or computing any Gröbner bases. Up to the action of Gl2(Fq)
(which gives equivalent relations) there are about q2d−2 such polynomial pairs.
Hence, for d ≥ 3 there are more relations than elements if the smoothness
probability of the r.h.s. is sufficiently high. Notice that k = 1 implies that the
r.h.s. is divisible by h1(Y)Y −h0(Y), thus increasing its smoothness probability
and resulting in enough relations for d = 3 and for d = 4. After having solved
the much smaller system for d = 3 we know the logarithms of all elements up
to degree three, so that the average row weight for the system for d = 4 can
be reduced to about 1

4 · 256 = 64 (irreducible degree four polynomials on the
l.h.s.). As above the size of this system is 228.

The cost for generating the linear systems is negligible compared to the
linear algebra cost. For estimating the latter cost we consider Lanczos’ algo-
rithm to solve a sparse N×N , N = 228, linear system with average row weight
W = 64. As noted in [41, 20] this algorithm can be implemented such that

N2 (2W ADD+ 2SQR+ 3MULMOD) (11)

operations are used. On our benchmark system, an AMD Opteron 6168 pro-
cessor at 1.9GHz, using [29] our implementation of these operations took 62
ns, 467 ns and 1853 ns for an ADD, a SQR and a MULMOD, respectively,
resulting in a linear algebra cost of 240 s.

As in [2], the above estimate ignores communication costs and other pos-
sible slowdowns which may arise in practice. An alternative estimate can be
obtained by considering a problem of a similar size over F2 and extrapolating
from [38]. This gives an estimated time of 242 s, or for newer hardware slightly
less. Note that this computation was carried out using the block Wiedemann
algorithm [13], which we recommend in practice because it allows one to dis-
tribute the main part of the computation. For the sake of a fair comparison
with [2] we use the former estimate of 240 s.

4.3 Descent Cost Estimate

We assume that the logarithms of elements up to degree four are known, and
that computing these logarithms with a lookup table is free.

Small Degree Descent. We have implemented the small degree descent
of §3.3 in Magma [10] V2.20-1, using Faugere’s F4 algorithm [15]. For each

73

degree from 5 to 15, on the same AMD Opteron 6168 processor we timed
the Gröbner basis computation between 106 and 100 times, depending on the
degree. Then using a bottom-up recursive strategy we estimated the following
average running times in seconds for a full logarithm computation, which we
present to two significant figures:

C[5, . . . , 15] = [0.038 , 2.1 , 2.1 , 93 , 95 , 180 , 190 , 3200 , 3500 , 6300 , 11000] .

Degree-Balanced Classical Descent. From now on, we make the conser-
vative assumption that a degree n polynomial which is m-smooth, is a product
of n/m degree m polynomials. In practice the descent cost will be lower than
this, however, the linear algebra cost is dominating, so this issue is incon-
sequential for our security estimate. The algorithms we used for smoothness
testing are detailed in the full version of the paper.

For a classical descent step with degree balancing we consider polynomials
P (X2a , Y) ∈ Fq[X,Y] for a suitably chosen integer 0 ≤ a ≤ 8. It is advanta-
geous to choose P such that its degree in one variable is one; let d be the degree
in the other variable. In the case degX2a (P) = 1, i.e., P = v1(Y)X2a + v0(Y),
deg vi ≤ d, this gives rise to the relation

L2a

v =
(Rv

h1(X)2a

)28

where
Lv = ṽ1(X

28−a
)X + ṽ0(X

28−a
) ,

Rv = v1(X)h0(X)2
a
+ v0(X)h1(X)2

a

in Fq[X]/(h1(X
q)X − h0(X

q)) with degLv ≤ 28−ad + 1, degRv ≤ d + 5 · 2a,
and ṽi being vi with its coefficients powered by 28−a, for i = 0, 1. Similarly,
in the case degY (P) = 1, i.e., P = w1(X

2a)Y + w0(X
2a), degwi ≤ d, we have

the relation

L2a

w =
(Rw

h1(X)2ad

)28

where
Lw = w̃1(X)X28−a

+ w̃0(X) ,

Rw = h1(X)2
ad
(

w1

(

(h0(X)
h1(X))

2a
)

X + w0

(

(h0(X)
h1(X))

2a
))

with degLw ≤ d + 28−a, degRw ≤ 5 · 2ad + 1 and again w̃i being wi with its
coefficients powered by 28−a, for i = 0, 1.

The polynomials vi (respectively wi) are chosen in such a way that either
the l.h.s. or the r.h.s. is divisible by a polynomial Q(X) of degree dQ. Gaussian
reduction provides a lattice basis (u0, u1), (u

′
0, u

′
1) such that the polynomial

pairs satisfying the divisibility condition above are given by rui + su′i for
i = 0, 1, where r, s ∈ Fq[X]. For nearly all polynomials Q it is possible to
choose a lattice basis of polynomials with degree ≈ dQ/2 which we will assume
for all Q appearing in the analysis; extreme cases can be avoided by look-ahead
or backtracking techniques. Notice that a polynomial Q over F24 ⊂ Fq can be
rewritten as a product of polynomials which are also over F24 , by choosing
the basis as well as r and s to be over F24 . This will be done in all steps
of the classical descent. The polynomials r and s are chosen to be of degree
four, resulting in 236 possible pairs (multiplying both by a common non-zero
constant gives the same relation).

74

In the final step of the classical eliminations (from degree 26 to 15) we
relax the criterion that the l.h.s. and r.h.s. are 15-smooth, allowing also ir-
reducibles of even degree up to degree 30, since these can each be split over
Fq into two polynomials of half the degree, thereby increasing the smoothness
probabilities. Admittedly, if we follow our worst-case analysis stipulation that
all polynomials at this step have degree 26, then one could immediately split
each of them into two degree 13 polynomials. However, in practice one will en-
counter polynomials of all degrees ≤ 26 and we therefore carry out the analysis
without using the splitting shortcut, which will still provide an overestimate
of the cost of this step.

In the following we will state the logarithmic cost (in seconds) of a classical
descent step as cl + cr + cs, where 2cl and 2cr denote the number of trials to
get the left hand side and the right hand side m-smooth, and 2cs s is the time
required for the corresponding smoothness test. Our smoothness tests were
benchmarked on the AMD Opteron 6168 processor.

– dQ = 26 to m = 15: We choose degX2a P = 1, a = 5, Q on the right,
giving d = 17 and (deg(Lv), deg(Rv)) = (137, 151). On average the
smoothness test S28(137, 30) takes 1.9 ms, giving a logarithmic cost of
13.4 + 15.6 − 9.0, hence 220.0 s. The expected number of factors is 19.2,
so the subsequent cost will be less than 217.7 s. Note that, as explained
above, we use the splitting shortcut for irreducibles of even degree up to
30, resulting in the higher than expected smoothness probabilities.

– dQ = 36 to m = 26: We choose degX2a P = 1, a = 5, Q on the
right, giving d = 22 and (deg(Lv), deg(Rv)) = (177, 146). On average
the smoothness test S28(146, 26) takes 1.9 ms, giving a logarithmic cost
18.7 + 13.6− 9.0, hence 223.3 s. The expected number of factors is 12.4, so
the subsequent cost will be less than 223.9 s.

– dQ = 94 to m = 36: We choose degY P = 1, a = 0, Q on the left, giving
d = 51 and (deg(Lw), deg(Rw)) = (213, 256). On average the smoothness
test S28(213, 36) takes 5.1 ms, giving a logarithmic cost 15.0 + 20.3− 7.5,
hence 227.8 s. The expected number of factors is 13.0, so the subsequent
cost will be less than 228.4 s.

Continued Fraction Descent. For the continued fraction descent we mul-
tiply the target element by random powers of the generator and express the
product as a ratio of two polynomials of degree at most 611. For each such
expression we test if both the numerator and the denominator are 94-smooth.
On average the smoothness test S28(611, 94) takes 94 ms, giving a logarithmic
cost of 17.7+17.7−3.4, hence 232.0 s. The expected number of degree 94 factors
on both sides will be 13, so the subsequent cost will be less than 232.8 s.

Total Descent Cost. The cost for computing an individual logarithm is
therefore upper-bounded by 232.0 s + 232.8 s < 234 s.

75

4.4 Summary

The main cost in our analysis is the linear algebra computation which takes
about 240 s, with the individual logarithm stage being considerably faster. In
order to compare with the estimate in [2], we write the main cost in terms ofMr

which gives 259 Mr, and thus an improvement by a factor of 269. Nevertheless,
solving a system of cardinality 228 is still a formidable challenge, but perhaps
not so much for a well-funded adversary. For completeness we note that if one
wants to avoid a linear algebra step of this size, then one can work over different
fields, e.g., with q = 210 and k = 2, or q = 212 and k = 1. However, while
this allows a partitioning of the linear algebra into smaller steps as described
in §3.2 but at a slightly higher cost, the resulting descent cost is expected to
be significantly higher.

5 Solving the DLP in F212·367

In this section we present the details of our solution of a DLP in the 698-bit
prime order r2 subgroup of F×

212·367
= F

×
24404

, which arises from the MOV attack
applied to the Jacobian of the genus two supersingular curve (4). Note that
the prime order elliptic curve E1/F2367 : Y 2+Y = X3+X+1 with embedding
degree 4 also embeds into F24404 , so that logarithms on this curve could have
easily been computed as well.

5.1 Setup

To compute the target logarithm, as stated in §1 we applied a principle of
parsimony, namely, we tried to solve all intermediate logarithms in F212·367 ,
considered as a degree 367 extension of F212 , and only when this was not
possible did we embed elements into the extension field F224·367 (by extending
the base field to F224) and solve them there.

All of the classical descent down to degree 8 was carried out over F212·367 ,
which we formed as the compositum of the following two extension fields. We
defined F212 using the irreducible polynomial U12+U3+1 over F2, and defined
F2367 over F2 using the degree 367 irreducible factor of h1(X

64)X − h0(X
64),

where h1 = X5 +X3 +X + 1, and h0 = X6 +X4 +X2 +X + 1. Let u and x
be roots of the extension defining polynomials in U and X respectively, and
let c = (24404 − 1)/r2. Then g = x + u7 is a generator of F×

24404
and ḡ = gc

is a generator of the subgroup of order r2. As usual, our target element was
chosen to be x̄π = xcπ where

xπ =
4403
∑

i=0

(⌊π · 2i+1⌋ mod 2) · u11−(i mod 12) · x⌊i/12⌋.

The remaining logarithms were computed using a combination of tactics,
over F212 when possible, and over F224 when not. These fields were constructed

76

as degree 2 and 4 extensions of F26 , respectively. To define F26 we used the
irreducible polynomial T 6 + T + 1. We then defined F212 using the irreducible
polynomial V 2 + tV + 1 over F26 , and F224 using the irreducible polynomial
W 4 +W 3 +W 2 + t3 over F26 .

5.2 Degree 1 Logarithms

It was not possible to find enough relations for degree 1 elements over F212 ,
so in accordance with our stated principle, we extended the base field to F224

to compute the logarithms of all 224 degree 1 elements. We used the polyno-
mial time relation generation from §3.1, which took 47 hours. This relative
sluggishness was due to the r.h.s. having degree dh + 1 = 7, which must split
over F224 . However, this was faster by a factor of 24 than it would have been
otherwise, thanks to h0 and h1 being defined over F2. This allowed us to use
the technique from [37] to reduce the size of the factor base via the automor-
phism (x+a) 7→ (x+a)2

367

, which fixes x but has order 24 on all non-subfield
elements of F224 , since 367 ≡ 7 mod 24 and gcd(7, 24) = 1. This reduced the
factor base size to 699252 elements, which was solved in 4896 core hours on a
24 core cluster using Lanczos’ algorithm, approximately 242 times faster than
if we had not used the automorphisms.

5.3 Individual Logarithm

We performed the standard continued fraction initial split followed by degree-
balanced classical descent as in §4.3, using Magma [10] and NTL [44], to
reduce the target element to an 8-smooth product in 641 and 38224 core hours
respectively. The most interesting part of the descent was the elimination of
the elements of degree up to 8 over F212 into elements of degree one over
F224 , which we detail below. This phase was completed using Magma and
took a further 8432 core hours. However, we think that the combined time
of the classical and non-classical parts could be reduced significantly via a
backwards-induction analysis of the elimination times of each degree.

Small Degree Elimination. As stated above we used several tactics to
achieve these eliminations. The first was the splitting of an element of even
degree over F212 into two elements of half the degree (which had the same
logarithm modulo r2) over the larger field. This automatically provided the
logarithms of all degree 2 elements over F212 . Similarly elements of degree 4
and 8 over F212 were rewritten as elements of degree 2 and 4 over F224 , while
we found that degree 6 elements were eliminable more efficiently by initially
continuing the descent over F212 , as with degree 5 and 7 elements.

The second tactic was the application of Joux’s Gröbner basis elimina-
tion method from §3.3 to elements over F212 , as well as elements over F224 .
However, in many cases condition (10) was violated, in which case we had to

77

employ various recursive strategies in order to eliminate elements. In partic-
ular, elements of the same degree were allowed on the r.h.s. of relations, and
we then attempted to eliminate these using the same (recursive) strategy. For
degree 3 elements over F212 , we even allowed degree 4 elements to feature on
the r.h.s. of relations, since these were eliminable via the factorisation into
degree 2 elements over F224 .

In Figure 1 we provide a flow chart for the elimination of elements of
degree up to 8 over F212 , and for the supporting elimination of elements of
degree up to 4 over F224 . Nearly all of the arrows in Figure 1 were necessary
for these field parameters (the exceptions being that for degrees 4 and 8 over
F212 we could have initially continued the descent along the bottom row, but
this would have been slower). The reason this ‘non-linear’ descent arises is due
to q being so small, and dH being relatively large, which increases the degree of
the r.h.s. cofactors, thus decreasing the smoothness probability. Indeed these
tactics were only borderline applicable for these parameters; if h0 or h1 had
degree any larger than 6 then not only would most of the descent have been
much harder, but it seems that one would be forced to compute the logarithms
of degree 2 elements over F224 using Joux’s linear system method from §3.2,
greatly increasing the required number of core hours. As it was, we were able
to eliminate degree 2 elements over F224 on the fly, as we describe explicitly
below.

Finally, we note that our descent strategy is considerably faster than the
alternative of embedding the DLP into F224·367 and performing a full descent
in this field, even with the elimination on the fly of degree 2 elements over
F224 , since much of the resulting computation would constitute superfluous
effort for the task in hand.

Degree 2 Elimination over F224. LetQ(Y) be a degree two element which is
to be eliminated, i.e., written as a product of degree one elements. As in [19, 20]
we first precompute the set of 64 elements B ∈ F224 such that the polynomial
fB(X) = X65 +BX +B splits completely over F224 (in fact these B’s happen
to be in F212 , but this is not relevant to the method). We then find a Gaussian-
reduced basis of the lattice LQ(Y) defined by

LQ(Y) = {(w0(Y), w1(Y)) ∈ F224 [Y]2 : w0(Y)h0(Y)+w1(Y)h1(Y) ≡ 0 (mod Q(Y))}.

Such a basis has the form (u0, Y + u1), (Y + v0, v1), with ui, vi ∈ F224 , ex-
cept in rare cases, see Remark 1. For s ∈ F224 we obtain lattice elements
(w0(Y), w1(Y)) = (Y + v0 + su0, sY + v1 + su1).

Using the transformation detailed in §3, for each B ∈ F224 such that fB
splits completely over F224 we perform a Gröbner basis computation to find
the set of s ∈ F224 that satisfy

B =
(s64 + u0s+ v0)

65

(u0s2 + (u1 + v0)s+ v1)64
,

78

1 2 3 4

1 2 3 4 5 6 7 8

F224

F212

ι ιs
s

s

Fig. 1. This diagram depicts the set of strategies employed to eliminate elements over F212

of degree up to 8. The encircled numbers represent the degrees of elements over F212 on
the bottom row, and over F224 on the top row. The arrows indicate how an element of a
given degree is rewritten as a product of elements of other degrees, possibly over the larger
field. Unadorned solid arrows indicate the maximum degree of elements obtained on the
l.h.s. of the Gröbner basis elimination method; likewise dashed arrows indicate the degrees
of elements obtained on the r.h.s. of the Gröbner basis elimination method, when these are
greater than those obtained on the l.h.s. Dotted arrows indicate a fall-back strategy when
the initial strategy fails. An s indicates that the element is to be split over the larger field
into two elements of half the degree. An ι indicates that an element is promoted to the
larger field. Finally, a loop indicates that one must use a recursive strategy in which further
instances of the elimination in question must be solved in order to eliminate the element in
question.

by first expressing s in a F224/F26 basis, which results in a quadratic system
in 4 variables. This ensures that the l.h.s. splits completely over F224 . For each
such s we check whether the r.h.s. cofactor of Q(Y), which has degree 5, is
1-smooth. If this occurs, we have successfully eliminated Q(Y).

However, one expects on average just one s per B, and so the probability of
Q(Y) being eliminated in this way is 1− (1−1/5!)64 ≈ 0.415, which was borne
out in practice to two decimal places. Hence, we adopted a recursive strategy
in which we stored all of the r.h.s. cofactors whose factorisation degrees had
the form (1, 1, 1, 2) (denoted type 1), or (1, 2, 2) (denoted type 2). Then for
each type 1 cofactor we checked to see if the degree 2 factor was eliminable
by the above method. If none were eliminable we stored every type 1 cofactor
of each degree 2 irreducible occurring in the list of type 1 cofactors of Q(Y).
If none of these were eliminable (which occurred with probability just 0.003),
then we reverted to the type 2 cofactors, and adopted the same strategy just
specified for each of the degree 2 irreducible factors. Overall, we expected our
strategy to fail about once in every 6 · 106 such Q(Y). This happened just
once during our descent, and so we multiplied this Q(Y) by a random linear
polynomial over F224 and performed a degree 3 elimination, which necessitates
an estimated 32 degree 2 polynomials being simultaneously eliminable by the
above method, which thanks to the high probability of elimination, will very
likely be successful for any linear multiplier.

79

5.4 Summary

Finally, after a total of approximately 52240 core hours (or 248 Mr2), we found
that x̄π = ḡlog, with (see [25] for a Magma verification script) log =

40932089202142351640934477339007025637256140979451423541922853874473604

39015351684721408233687689563902511062230980145272871017382542826764695

59843114767895545475795766475848754227211594761182312814017076893242 .

Remark 1. During the descent, we encountered several polynomials Q(Y) that
were apparently not eliminable via the Gröbner basis method. We discovered
that they were all factors of h1(Y) · c+ h0(Y) for c ∈ F212 or F224 , and hence
h0(Y)/h1(Y) ≡ c (mod Q(Y)). This implies that (9) is equal to F (c)G(q)(Y)+
F (q)(Y)G(c) modulo Q(Y), where G(q) denotes the Frobenius twisted G and
similarly for F (q). This cannot become 0 modulo Q(Y) if the degrees of F
and G are smaller than the degree of Q, unless F and G are both constants.
However, thanks to the field representation, finding the logarithm of these
Q(Y) turns out to be easy. In particular, if h1(Y) · c + h0(Y) = Q(Y) · R(Y)
then Q(Y) = h1(Y)((h0/h1)(Y) + c)/R(Y) = h1(Y)(X + c)/R(Y), and thus
modulo r2 we have log(Q(y)) ≡ log(x + c) − log(R(y)), since log(h1(y)) ≡ 0.
Since (x+ c) is in the factor base, if we are able to compute the logarithm of
R(y), then we are done. In all the cases we encountered, the cofactor R(y) was
solvable by the above methods.

6 Conclusion

We have introduced a new field representation and efficient descent principles
which together make the recent DLP advances far more practical. As example
demonstrations, we have applied these techniques to two binary fields of central
interest to pairing-based cryptography, namely F24·1223 and F212·367 , which arise
as the embedding fields of (the Jacobians of) a genus one and a genus two
supersingular curve, respectively. When initially proposed, these fields were
believed to be 128-bit secure, and even in light of the recent DLP advances,
were believed to be 128-bit and 94.6-bit secure. On the contrary, our analysis
indicates that the former field has approximately 59 bits of security and we
have implemented a total break of the latter.

References

1. Jithra Adikari, M. Anwar Hasan, and Christophe Nègre. Towards faster and greener
cryptoprocessor for eta pairing on supersingular elliptic curve over F21223 . In Selected

Areas in Cryptography—SAC 2012, volume 7707 of LNCS, pages 166–183. Springer,
2012.

2. Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco Rodŕıguez-Henŕıquez. Weak-
ness of F36·509 for discrete logarithm cryptography. In Pairing-based Cryptography—

Pairing 2013, volume 8365 of LNCS, pages 20–44. Springer, 2013.

80

3. Diego F. Aranha, Jean-Luc Beuchat, Jérémie Detrey, and Nicolas Estibals. Optimal eta
pairing on supersingular genus-2 binary hyperelliptic curves. In Topics in Cryptology—

CT-RSA 2012, volume 7178 of LNCS, pages 98–115. Springer, 2012.
4. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic

quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Advances in Cryptology—EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16.
Springer, 2014.

5. Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó’ Héigeartaigh, and Michael Scott.
Efficient pairing computation on supersingular abelian varieties. Des. Codes Cryptogra-

phy, 42(3):239–271, March 2007.
6. Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algo-

rithms for pairing-based cryptosystems. In Advances in Cryptology—CRYPTO 2002,
volume 2442 of LNCS, pages 354–368. Springer, 2002.

7. Jean-Luc Beuchat, Emmanuel López-Trejo, Luis Mart́ınez-Ramos, Shigeo Mitsunari,
and Francisco Rodŕıguez-Henŕıquez. Multi-core implementation of the Tate pairing
over supersingular elliptic curves. In Cryptology and Network Security—CANS 2009,
volume 5888 of LNCS, pages 413–432. Springer, 2009.

8. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–
305, 2004.

9. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Ad-

vances in Cryptology—CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
2001.

10. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

11. Sanjit Chatterjee, Darrel Hankerson, and Alfred Menezes. On the efficiency and security
of pairing-based protocols in the type 1 and type 4 settings. In Arithmetic of Finite

Fields, volume 6087 of LNCS, pages 114–134. Springer, 2010.
12. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE

Transactions on Information Theory, 30(4):587–593, 1984.
13. Don Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiede-

mann algorithm. Mathematics of Computation, 62(205):333–350, 1994.
14. Iwan Duursma and Hyang-Sook Lee. Tate pairing implementation for hyperelliptic

curves y2 = xp
− x + d. In Advances in Cryptology—ASIACRYPT 2003, volume 2894

of LNCS, pages 111–123. Springer, 2003.
15. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). J.

Pure Appl. Algebra, 139(1-3):61–88, 1999.
16. Steven D. Galbraith. Supersingular curves in cryptography. In Advances in Cryptology—

ASIACRYPT 2001, volume 2248 of LNCS, pages 495–513. Springer, 2001.
17. Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the Tate pair-

ing. In Algorithmic Number Theory—ANTS-V, volume 2369 of LNCS, pages 324–337.
Springer, 2002.

18. Santosh Ghosh, Dipanwita Roychowdhury, and Abhijit Das. High speed cryptoprocessor
for ηt pairing on 128-bit secure supersingular elliptic curves over characteristic two fields.
In Cryptographic Hardware and Embedded Systems—CHES 2011, volume 6917 of LNCS,
pages 442–458. Springer, 2011.

19. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function
field sieve and the impact of higher splitting probabilities: Application to discrete loga-
rithms in F21971 and F23164 . In Advances in Cryptology—CRYPTO 2013, volume 8043
of LNCS, pages 109–128. Springer, 2013.

20. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Solving a 6120-bit
DLP on a desktop computer. In Selected Areas in Cryptography—SAC 2013, volume
8282 of LNCS, pages 136–152. Springer, 2014.

21. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (21971). NMBRTHRY list, 19/2/2013.

22. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (26120). NMBRTHRY list, 11/4/2013.

81

23. Robert Granger. On the function field sieve and the impact of higher splitting proba-
bilities, 2013. Presentation at the 17th Workshop on Elliptic Curve Cryptography, 16
September 2013.

24. Robert Granger. Solving a 6120-bit DLP on a desktop computer, 2013. Presentation at
Selected Areas in Cryptography 2013, 15 August 2013.

25. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete logarithms in the
Jacobian of a genus 2 supersingular curve over GF (2367). NMBRTHRY list, 30/1/2014.

26. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete Logarithms in
GF (29234). NMBRTHRY list, 31/1/2014.

27. Robert Granger, Dan Page, and Martijn Stam. Hardware and software normal basis
arithmetic for pairing-based cryptography in characteristic three. IEEE Trans. Com-

puters, 54(7):852–860, 2005.
28. Robert Granger, Dan Page, and Martijn Stam. On small characteristic algebraic tori in

pairing-based cryptography. LMS J. Comput. Math., 9:64–85, 2006.
29. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple

Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.
30. Darrel Hankerson, Alfred Menezes, and Michael Scott. Software implementation of

pairings. In Identity-Based Cryptography, vol. 2, Cryptology and Information Security,
pages 188–206. IOS Press, 2008.

31. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Num-

ber Theory—ANTS-IV, volume 1838 of Lecture Notes in Comput. Sci., pages 385–393.
Springer, Berlin, 2000.

32. Antoine Joux. Faster index calculus for the medium prime case. Application to 1175-bit
and 1425-bit finite fields. In Advances in Cryptology—EUROCRYPT 2013, volume 7881
of LNCS, pages 177–193. Springer, 2013.

33. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. In Selected Areas in Cryptography—SAC 2013, volume 8282 of
LNCS, pages 355–379. Springer, 2014.

34. Antoine Joux. Discrete Logarithms in GF (21778). NMBRTHRY list, 11/2/2013.
35. Antoine Joux. Discrete Logarithms in GF (24080). NMBRTHRY list, 22/3/2013.
36. Antoine Joux. Discrete Logarithms in GF (26168). NMBRTHRY list, 21/5/2013.
37. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case.

In Advances in Cryptology—EUROCRYPT 2006, volume 4004 of LNCS, pages 254–270.
Springer, 2006.

38. Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé,
Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne
Osvik, Herman J. J. te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization
of a 768-bit RSA modulus. In Advances in Cryptology—CRYPTO 2010, volume 6223 of
LNCS, pages 333–350. Springer, 2010.

39. Arjen K. Lenstra. Unbelievable security: Matching AES security using public key sys-
tems. In Advances in Cryptology—ASIACRYPT 2001, volume 2248 of LNCS, pages
67–86. Springer, 2001.

40. Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646,
1993.

41. Ilya Popovyan. Efficient parallelization of lanczos type algorithms. Cryptology ePrint
Archive, Report 2011/416, 2011. http://eprint.iacr.org/.

42. Ryuichi Sakai, Shigeo Mitsunari, and Masao Kasahara. Cryptographic schemes based
on pairing over elliptic curve. IEIC Technical Report, 101(214):75–80, 2001.

43. Naoyuki Shinohara, Takeshi Shimoyama, Takuya Hayashi, and Tsuyoshi Takagi. Key
length estimation of pairing-based cryptosystems using ηt pairing. In Information Se-

curity Practice and Experience, volume 7232 of LNCS, pages 228–244. Springer, 2012.
44. Victor Shoup. NTL: A library for doing number theory, 5.5.2 edition, 2009. http:

//www.shoup.net/ntl/.
45. Pierre-Jean Spaenlehauer. Solving multihomogeneous and determinantal systems al-

gorithms - complexity - applications. Ph.D. thesis, Université Pierre et Marie Curie
(UPMC), 2012.

82

On the discrete logarithm problem in

finite fields of fixed characteristic

Robert Granger⋆, Thorsten Kleinjung⋆⋆, and Jens Zumbrägel⋆ ⋆ ⋆

Laboratory for Cryptologic Algorithms
School of Computer and Communication Sciences

École polytechnique fédérale de Lausanne
Switzerland

{robert.granger,thorsten.kleinjung,jens.zumbragel}@epfl.ch

Abstract. For q a prime power, the discrete logarithm problem (DLP) in F×
q

consists in finding, for any g ∈ F×
q and h ∈ 〈g〉, an integer x such that gx = h.

For each prime p we exhibit infinitely many extension fields Fpn for which the
DLP in F×

pn can be solved in expected quasi-polynomial time.

1 Introduction

In this paper we prove the following result.

Theorem 1. For every prime p there exist infinitely many explicit extension
fields Fpn with for which the DLP in F×

pn can be solved in expected quasi-
polynomial time

exp
(
(1/ log 2 + o(1)) log2 n

)
. (1)

Theorem 1 is an easy corollary of the following much stronger result, which
we prove by presenting a randomised algorithm for solving any such DLP.

Theorem 2. Given a prime power q that is not a power of 4, an integer
k ≥ 18, polynomials h0, h1 ∈ Fqk [X] of degree at most two and an irreducible

degree l factor I of h1X
q − h0, the DLP in F×

qkl
where Fqkl

∼= Fqk [X]/(I) can
be solved in expected time

qlog2 l+O(k). (2)

To deduce Theorem 1 from Theorem 2, note that thanks to Kummer the-
ory, when l = q−1 such h0, h1 are known to exist; indeed, for all k there exists
an a ∈ Fqk such that I := Xq−1 − a ∈ Fqk [X] is irreducible and therefore
I | Xq − aX. By setting q = pi for any i ≥ 1 (odd for p = 2), k ≥ 18 with
k = o(log q), l = q − 1 = pi − 1 and finally n = ik(pi − 1), applying (2) proves

⋆ Supported by the Swiss National Science Foundation via grant number 200021-156420.
⋆⋆ Supported by the Swiss National Science Foundation via grant number 200020-132160.

⋆ ⋆ ⋆ The work was partially done while the author was with the Institute of Algebra, TU
Dresden, Germany, supported by the Irish Research Council via grant number ELE-
VATEPD/2013/82.

83

that the DLP in this representation of F×
pn can be solved in expected time (1).

As one can compute an isomorphism between any two representations of F×
pn

in polynomial time [41], this completes the proof. Observe that by using the
same argument one may also replace the prime p in Theorem 1 by any prime
power that is not a power of 4.

In order to apply Theorem 2 to the DLP in F×
pn with p fixed and arbitrary n,

one should first embed the DLP into one in an appropriately chosen F×
qkn

.

By this we mean that q = pi should be at least n − 2 (so that h0, h1 may
exist) but not too large, and that 18 ≤ k = o(log q), so that the resulting
complexity (2) is given by (1) as n → ∞. Proving that appropriate h0, h1 ∈
Fqk [X] exist for such q and k would complete our approach and prove the far

stronger result that the DLP in F×
pn can be solved in expected time (1) for

all sufficiently large n. However, this seems to be a very hard problem, even
if heuristically it would appear to be almost certain. What is striking about
Theorem 2 is that in contrast to all finite field DLP algorithms from the past
thirty years, it is rigorous, and our algorithm is therefore guaranteed to work
once an appropriate field representation is found.

Note that if one could prove the existence of an infinite sequence of primes p
(or more generally prime powers) for which p−1 is quasi-polynomially smooth
in log p, then the Pohlig-Hellman algorithm [45] (discovered independently by
Silver) would also give a rigorous – and deterministic – quasi-polynomial time
algorithm for solving the DLP in such fields, akin to Theorem 1. However, such
a sequence is not known to exist and even if it were, Theorem 1 is arguably
more interesting since our algorithm exploits properties of the fields in question
rather than just the factorisation of the order of their multiplicative groups.
Furthermore, the fields to which our algorithm applies are explicit, whereas
it may be very hard to find members of such a sequence of primes (or prime
powers), should one exist.

Gauss was probably the first to define discrete logarithms – or indices, as
he called them, with respect to a primitive root – noting their usefulness for
computing n-th roots modulo primes [50, art. 57–60]. Since he suggested the
use of look-up tables for this purpose, the algorithm he used for computing
logarithms in the tiny examples to which he applied the technique was almost
certainly just tabulation via exponentiation. However, Gauss noted in art. 58
that the table need only consist of indices for primes, implicitly assuming
that integers less than the modulus can be factorised efficiently. In the early
1920s Kraitchik developed this observation into what is now called the Index
Calculus Method (ICM) [38, 39]; evidently a very natural idea, it was also
discovered independently by Cunningham at around the same time, see [53],
and rediscovered by Adleman [1], Merkle [43] and Pollard [46] in the late 1970s.
In this context the ICM proceeds by first defining a factor base consisting of
primes up to some smoothness bound B. One then searches for multiplicative
relations between elements of the factor base; one can do this for instance

84

by computing random powers of the primitive root g modulo p and storing
those which are B-smooth. These relations between factor base elements (and
g) each induce a linear equation between their logarithms with respect to g,
and once there are sufficiently many relations the logarithms of the factor
base elements can be computed via a linear algebra elimination. The second
phase of the ICM consists of computing the logarithm of a target element h
which is not B-smooth. In this setting one can multiply h by random powers
of g until the product is B-smooth, at which point its logarithm is easily
determined. Exploiting the distribution of Lp(1/2)-smooth integers amongst
integers less than p [14, 12, 13] gives a heuristic Lp(1/2) algorithm for the DLP
in F×

p [1]; here, as is usual for such algorithms, we use the following measure
of subexponentiality:

Lp(α, c) = exp
(
(c+ o(1))(log p)α(log log p)1−α

)
,

where for simplicity we sometimes suppress the subscript, the constant c, or
both. The algorithm just described can be made rigorous for both prime fields
and fixed characteristic extension fields [47, 18].

In 1984 Coppersmith proposed the first heuristic L(1/3, c) algorithm for
fields of the form F2n [10, 11] with the constant c being a periodic function
of n satisfying (32/9)1/3 < c < 41/3. Coppersmith’s algorithm exhibits similar
periodic behaviour for extensions fields of any fixed characteristic. In 1994
Adleman proposed the Function Field Sieve (FFS) [2] – an analogue of the
famous Number Field Sieve [40] – which can also be seen as a generalisation
of Coppersmiths algorithm. This was refined by Adleman and Huang in 1999,
achieving a heuristic complexity of L(1/3, (32/9)1/3) for extension fields of any
fixed characteristic [3].

For fixed characteristic extension fields, the main difference between the
L(1/2) and L(1/3) algorithms is that during relation generation the former
generates elements of degree ≈ n and searches for sufficiently many which are
Õ(n1/2)-smooth (where the Õ indicates suppressed log factors), whereas algo-
rithms of the latter type generate elements of degree Õ(n2/3) and search for
sufficiently many which are Õ(n1/3)-smooth. In the former case the elements
can be generated uniformly and so one can apply smoothness results to obtain
a rigorous algorithm. Crucially, for the L(1/3) algorithms the elements gener-
ated are not uniformly distributed amongst elements of that degree and hence
the complexity analysis is only heuristic. A second difference is that during the
individual logarithm phase of the L(1/3) algorithms one needs to recursively
express a target element as a product of irreducible elements of lower degrees
– with one iteration of this process being known as an elimination of that
element – which produces a tree with the target element at its root and the
elements produced by this process at its nodes. After sufficiently many itera-
tions the elements at the leaves of this tree will be contained entirely in the
factor base and so the logarithm of the target element can easily be computed

85

via backtracking. Since this process descends through elements of lower and
lower degree, the individual logarithm phase is also known as the descent.

In order to obtain algorithms of better complexity – at least for the first
phase of the ICM – there are two natural directions that one could explore:
firstly, one could attempt to generate relations between elements of lower de-
gree, which heuristically would have a higher probability of being smooth; or
secondly, one could attempt to generate relations which have better than ex-
pected smoothness properties (or possibly a combination of both). The second
idea is perhaps far less obvious and more nuanced than the first; indeed until
recently it does not seem to have been appreciated that it was even a possibil-
ity, most likely because from an algorithm analysis perspective it is desirable
that the expected smoothness properties hold. For nearly three decades there
was no progress in either direction; the only development in fixed characteristic
being a practical improvement [34], while for so-called medium characteristic
fields – those for which the base field cardinality satisfies q = Lqn(1/3) – a
slight reduction in the constant was achieved, to c = 31/3 ≈ 1.44 [35] and
to c = 21/3 ≈ 1.26 [28], the latter using a clever method to amplify one
relation into many others. Note that we mention the medium characteristic
developments because they can be applied to fixed characteristic extensions
for appropriate extension degrees. Given the immense importance of the DLP
to public key cryptography ever since its inception in 1976 [17], this plateau in
progress could have been taken as strong evidence of the problem’s hardness.
However, in 2013 a series of algorithmic breakthroughs occurred which demon-
strated that for fixed characteristic fields the DLP is, at least heuristically, far
easier than originally believed.

In particular, in February 2013, Göloğlu, Granger, McGuire and Zumbrägel
showed that for binary (and more generally fixed characteristic) fields of a cer-
tain form, relation generation for degree one elements runs in heuristic poly-
nomial time, as does computing the logarithms of degree two elements using a
technique which eliminates them on the fly, i.e., individually and quickly [19,
20], which was previously the bottleneck in the descent when using the stan-
dard techniques. This was the first example of the second idea alluded to above
as it demonstrated how to generate relations which are 1-smooth for arbitrarily
large degree, completely contradicting the usual smoothness heuristics. How-
ever, the efficient elimination of higher degree elements remained an unresolved
problem. For fields of essentially the same form Joux independently gave: a
degree one relation generation method which is isomorphic to that of Göloğlu
et al.; a very different degree two elimination method; and a new small de-
gree element elimination method which resulted in an algorithm with heuristic
complexity L(1/4 + o(1)) [30, 29]. Combinations and variations of these tech-
niques led to several large scale DLP computations and records [31, 22, 32, 23,
33, 25, 26, 21, 24], the largest of which at the time of writing was in the field
F29234 .

86

Then in June 2013, for fields of the same form and of bitlength λ, Bar-
bulescu, Gaudry, Joux and Thomé announced a heuristic quasi-polynomial
time algorithm (referred to hereafter as the original QPA) for solving the
DLP [5], which has complexity

λO(log λ). (3)

Since (3) is smaller than L(α) for any α > 0, it is asymptotically the most
efficient algorithm known for solving the DLP in finite fields of fixed charac-
teristic. It also results in an immediate L(α+o(1)) algorithm when q = Lqn(α)
for 0 ≤ α < 1/3. The principal idea behind the elimination steps of the origi-
nal QPA may be viewed as a generalisation of Joux’s degree two elimination
method [29], which finds the logarithms of all translates of a degree two ele-
ment simultaneously via the collection of suitable relations and a subsequent
linear algebra elimination.

The principal idea behind our new QPA may be viewed as a generalisation
of the degree two elimination method of [20]. In particular, let h be an element
of degree 2d that we wish to eliminate, which we assume is irreducible when
considered as an element of the polynomial ring. By taking a degree d extension
of the base field, h factors into a product of d irreducible quadratics. Applying
the degree two elimination method of [20] to any one of these quadratics
enables one to rewrite the quadratic as a product of linear elements over the
degree d extension of the base field. To return to the original base field one
simply applies the relevant norm, which takes the linear elements to powers of
irreducible elements of order dividing d and the quadratic element back to the
original element h which was to be eliminated, thus completing its elimination.
If the target element has degree a power of two then this elimination can
be applied recursively, halving the degree (or more) of the elements in the
descent tree upon each iteration. Central to our proof of Theorem 2 is our
demonstration that this recursive step can always be carried out successfully.
For the purpose of building a full DLP algorithm which may be applied to
any target element, one can use a Dirichlet-type theorem due to Wan [52,
Thm. 5.1] to ensure that any field element is equivalent to an irreducible of
degree a power of two only slightly larger than the extension degree of the
field in question.

A remarkable property of the above descent method is that it does not
require any smoothness assumptions about non-uniformly distributed poly-
nomials, in contrast to all previous index calculus algorithms, including the
original QPA. So while the polynomial time relation generation techniques
of [20, 29] in a sense resisted smoothness heuristics, our new descent method
completely eliminates them. We emphasise that our new QPA is radically dif-
ferent from the original QPA of Barbulescu et al., while it is its very algebraic
nature that makes our rigorous analysis possible. Given the essential use of
smoothness heuristics in the original QPA, as well as one other heuristic, it

87

seems unlikely that it can be made rigorous, even if the existence of appro-
priate field representations are assumed or proven. Furthermore, while not of
central interest to the results of the present paper, we remark that our elim-
ination steps are extremely practical, even for relatively small fields [44, 37],
whereas the bitlengths for which the original QPA becomes effective have yet
to be determined.

The sequel is organised as follows. In Section 2 we describe our algorithm
and explain why the steps are sufficient for our purpose. We then give a brief
review of the FFS in Section 3 and fix some notation. In Section 4 we provide
details of the building block behind our new descent and explain why its
successful application implies Theorem 2, and hence Theorem 1. In Section 5
we complete the proof of these theorems by demonstrating that the descent
step is indeed always successful. We conclude in Section 6.

2 The algorithm

As per Theorem 2, let q be a prime power that is not a power of 4 and let
k ≥ 18 be an integer; the reasons for these bounds are explained in Sections 4
and 5. We also assume there exist h0, h1, I ∈ Fqk [X] with deg(h0), deg(h1) ≤ 2

and I a degree l irreducible factor of h1X
q − h0. Finally, let g ∈ F×

qkl
and let

h ∈ 〈g〉 be the target element for the DLP to base g.
We now present our algorithm, which differs slightly from the traditional

ICM as described in Section 1 in that it does not first compute the logarithms
of the factor base elements and then apply a descent strategy. Instead, one
computes many descents for elements of the form gαhβ (just one more than
the number of factor base elements suffices) and then applies a linear alge-
bra elimination. This approach and its analysis was first used by Enge and
Gaudry [18], however the algorithm and argument we present follows very
closely those used by Diem in the context of the elliptic curve DLP [16].
A small but important difference between our algorithm and Diem’s is that
we cannot assume that we know the factorisation of the order of the rele-
vant group, since the fastest proven factorisation algorithms have complexity
L(1/2) [47, 51, 42] and are therefore insufficient for our purpose.

Input: A prime power q; an integer k ≥ 18; a positive integer l; polynomials
h0, h1, I ∈ Fqk [X] with deg(h0), deg(h1) ≤ 2 and I a degree l irreducible factor

of h1X
q − h0; g ∈ F×

qkl
and h ∈ 〈g〉.

Output: An integer x such that gx = h.

1. Let N = qkl − 1, let F = {F ∈ Fqk [X] | degF ≤ 1, F 6= 0} ∪ {h1} and

denote its elements by F1, . . . , Fm, where m = |F| = q2k.
2. Construct a matrix R = (ri,j) ∈ (Z/NZ)(m+1)×m and column vectors α, β ∈

(Z/NZ)m+1 as follows. For each i with 1 ≤ i ≤ m+1 choose αi, βi ∈ Z/NZ

88

uniformly and independently at random and apply the (randomised) descent
algorithm of Section 4 to gαihβi to express this as

gαihβi =
m∏

j=1

F
ri,j
j .

3. Compute a lower row echelon form R′ of R by using invertible row transforma-
tions; apply these row transformations also to α and β, and denote the results
by α′ and β′.

4. If gcd(β′
1, N) > 1, go to Step 2.

5. Return an integer x such that α′
1 + xβ′

1 ≡ 0 (mod N).

We now explain why the algorithm is correct and discuss the running time,
treating the descent in Step 2 as a black box algorithm for now. Henceforth, we
assume that any random choices used in the descent executions are indepen-
dent from each other and of the randomness of α and β. For the correctness,
note that gα

′
1hβ

′
1 = 1 holds after Step 3, since the first row of R′ vanishes.

Thus for any integer x such that α′
1 + xβ′

1 ≡ 0 (mod N) we have gx = h,
provided that β′

1 is invertible in Z/NZ.

Lemma 1. After Step 3 of the algorithm the element β′
1 ∈ Z/NZ is uniformly

distributed. Therefore, the algorithm succeeds with probability ϕ(N)/N , where
ϕ denotes Euler’s phi function.

Proof. We follow the argument from [18, Sec. 5] and [16, Sec. 2.3]. As h ∈ 〈g〉,
for any fixed value βi = b ∈ Z/NZ the element gαihb is uniformly distributed
over the group 〈g〉, therefore the element gαihβi is independent of βi. As the
executions of the descent algorithm are assumed to be independent, we have
that the row (ri,1, . . . , ri,m) is also independent of βi. It follows that the ma-
trix R is independent of the vector β. Then the (invertible) transformation
matrix U ∈ (Z/NZ)(m+1)×(m+1) is also independent of β, so that β′ = Uβ
is uniformly distributed over (Z/NZ)m+1, since β is. From this the lemma
follows. ⊓⊔

Regarding the running time, for Step 3 we note that a lower row echelon
form ofR can be obtained using invertible row transformations as for the Smith
normal form, which along with the corresponding transformation matrices can
be computed in polynomial time [36], so that Step 3 takes time polynomial
in m and logN . Furthermore, from [48] we obtain N/ϕ(N) ∈ O(log logN).
Altogether this implies that the DLP algorithm has quasipolynomial expected
running time (in logN), provided the descent is quasipolynomial. We defer a
detailed complexity analysis of the descent to Section 4.

Observe that the algorithm does not require g to be a generator of F×
qkl

,
which is in practice hard to test without factorising N . In fact, the algorithm

89

gives rise to a Monte Carlo method for deciding group membership h ∈ 〈g〉.
Indeed, if a discrete logarithm logg h has been computed, then obviously h ∈
〈g〉; thus if h 6∈ 〈g〉, we always must have gcd(β′

1, N) > 1 in Step 4.
Practitioners may have noticed inefficiencies in the algorithm. In particular,

in the usual index calculus method one precomputes the logarithms of all
factor base elements and then applies a single descent to the target element
to obtain its logarithm. Moreover, one usually first computes the logarithm in
F×
qkl

/F×
qk
, i.e., one ignores multiplicative constants and therefore includes only

monic polynomials in the factor base, obtaining the remaining information by
solving an additional DLP in F×

qk
. However, the setup as presented simplifies

and facilitates our rigorous analysis.

3 Overview of the Function Field Sieve

In this section we briefly review the classical FFS and describe some of the
recent techniques. The knowledgeable reader may omit this section, having
familiarised themself with the notation via a brief look at Fig. 1.

Given the embedding of Fpn into Fqkl as described in the introduction, we
focus purely on the latter. A relation in Fqkl is an equality of products of ele-

ments in F×
qkl

, or, equivalently, a linear combination of logarithms of elements

in F×
qkl

whose sum is zero. All variants of the FFS rely on the following basic

method for obtaining relations. Let R = Fqk [X,Y] and let f1, f2 ∈ R be two
irreducible polynomials such that R12 = R/(f1, f2) is a finite ring surjecting
onto the target field Fqkl . Furthermore, for i = 1, 2, let Ri = Fqk [X,Y]/(fi)
and Zi ∈ R such that the quotient field Quot(Ri) is a finite extension of the
rational function field Quot(Qi) where Qi = Fqk [Zi]. This is summarised in
Fig. 1.

Via the maps π, ϕ1 and ϕ2, logarithms in F×
qkl

can be extended to a notion

of logarithms in Ri \ (π ◦ ϕi)
−1(0), i = 1, 2. Therefore, relations can also be

viewed as linear combinations of logarithms of elements in R1 and in R2 whose
sum is zero. It is always implicitly assumed that all logarithms are defined,
i.e., that the sets (π ◦ ϕi)

−1(0), i = 1, 2, are avoided.
A polynomial P ∈ R gives rise to a relation by decomposing P mod fi in Ri

for i = 1 and i = 2 (and mapping down to R12 or Fqkl if desired). Sufficiently
many non-trivial relations amongst elements of a set of bounded size allow
one to compute logarithms in this set. If the multiplicative closure of such a
set is F×

qkl
, arbitrary logarithms can be computed by expressing an element as

a product of elements of this set. As was described in Section 1, this is done
by following a descent strategy in which elements, also called special-Q, are
recursively rewritten as ‘easier’ elements using relations as above.

In the classical FFS the polynomials f1, f2 are chosen such that their
degrees are as low as possible, typically of the form f1 = Y − a(X), f2 =∑d

j=0 bj(X)Y j with degX(a) = e, degX(bj) < e and de > l, and Z1 = Z2 = X

90

R = Fqk [X,Y]

R1 = Fqk [X,Y]/(f1) Fqk [X,Y]/(f2) = R2

Q1 = Fqk [Z1] Fqk [Z2] = Q2

R12 = Fqk [X,Y]/(f1, f2)

Fqkl

ϕ1 ϕ2

π

Fig. 1: Setup for the FFS

so that the extensions Quot(Ri)/Quot(Qi), i = 1, 2, are of degree 1 and de-
gree d, respectively. By choosing P as a low-degree polynomial, the degrees of
the norms NQuot(Ri)/Quot(Qi)(P mod fi), i = 1, 2, are not too big and therefore
the chance of both norms splitting into low-degree polynomials is sufficiently
high. With judiciously selected parameters this gives a heuristic running time
of L(1/3).

The main difference between the classical FFS and the recent variations [20,
29, 5] is where the relation generation begins. In the recent variations a product
of low-degree polynomials P̃ =

∏
P̃j in R1 is constructed in such a way that

it can be lifted to a low-degree polynomial P ∈ R and such that its reduction
P mod f2 is of sufficiently low degree, where by low degree we mean that the
norm has low degree. This can be achieved by choosing q to be of the order
of l, f1 = Y − Xq† and f2 of low degree. Then R1 = Fqk [X] and low-degree
polynomials F,G ∈ R1 give rise to relations via

P̃ = F qG− FGq = G
∏

α∈Fq

(F − αG) =
∏

P̃j , (4)

since F q (resp.Gq) can be expressed as a degree degF (resp. degG) polynomial
in Y , and thus P̃ can be lifted to a low-degree polynomial P . This yields a

† An interesting historical aside is that this specialisation was also proposed by Shinohara
et al in January 2012 in order to half the size of the factor base when q is a power of
the characteristic [49, Sec. 4.1], but its impact on relation generation was not considered.
Furthermore, in December 2012 Joux used f1 = Y −Xd for medium characteristic fields
with prime base fields [28], which does not help in finding a relation, but does allow one
to generate many relations once one has been found, via transformations of the roots.
Viewed in this context the selection of f1 = Y −Xq in [19] and [30] is a very natural (and
indeed fertile) one, even if the ensuing approaches diverge in terms of field representation,
relation generation and small degree elements elimination.

91

heuristic polynomial time algorithm for finding relations between elements of
Fqkl that are, via ϕ1 and π, images of polynomials of bounded degree.

In the descent phase it is advantageous to choose f2 such that its degree in
X or in Y is one (cf. [24] and [29] respectively), which implies that Quot(R2) =
Quot(Q2) with Z2 = Y or Z2 = X, respectively. More precisely, writing f2 =
h1X − h0 or f2 = h1Y − h0 respectively, with hi ∈ Q2, i = 0, 1, implies
R2 = Fqk [Z2][

1
h1
]. Up to the logarithm of h1, the logarithm of a polynomial of

R1 can be related to the logarithm of a corresponding polynomial in R2 (the
same polynomial for Z2 = X and a Frobenius twist for Z2 = Y) which allows
one to view a special-Q (the element to be eliminated) as coming from R1 or
from R2. In the latter case, the condition that a polynomialQ ∈ R2, a lift of the
special-Q element, divides P mod f2 for a P arising via (4), can be expressed
as a bilinear quadratic system which gives, for appropriate parameter choices,
an algorithm with heuristic running time L(1/4 + o(1)).

In the other case, namely the special-Q element being lifted to Q ∈ R1, a
certain set of polynomials in R1 containing Q is chosen in such a way that pairs
F,G from this set generate via (4) sufficiently many relations with P mod f2
splitting into polynomials of sufficiently low degree. Solving a linear system
of equations then expresses the logarithm of the special-Q element as a linear
combination of logarithms of polynomials in R2 of sufficiently low degree (and
h1), resulting in the original QPA.

Actually, the relations in the original QPA (and in [29]) are generated in
a slightly different manner by applying linear fractional transformations to
the polynomial A = Xq − X =

∏
α∈Fq

(X − α). The subgroup PGl2(Fq) ⊂

PGl2(Fqk) is the largest subgroup fixing this polynomial, so that the action

of PGl2(Fqk)/PGl2(Fq) on A produces q3k−qk

q3−q
polynomials, each splitting into

linear polynomials and whose only non-zero terms correspond to the monomi-
als Xq+1, Xq, X and 1.

4 The Descent

In this section we detail the building block behind our new descent and explain
why its successful application implies Theorem 2, and hence Theorem 1. In the
terminology of the previous section, the setup for Fqkl has f1 = Y −Xq and
f2 = h1Y −h0 with hi ∈ Fqk [X] of degree at most two for i = 0, 1, with h1X

q−
h0 having an irreducible factor I of degree l, i.e., R12 = Fqk [X,Y]/(f1, f2)

surjects onto Fqkl . This implies R1 = Fqk [X] and R2 = Fqk [X][1
h1
]. We assume

(without loss of generality) that h0 and h1 are coprime. Since the logarithm
of h1 will appear in almost every relation and h1 is of degree at most two,
we adjoin it to the factor basis F , and for the sake of simplicity it will be
suppressed in the following description.

92

4.1 On-the-fly degree two elimination

In this subsection we review the on-the-fly degree two elimination method
from [20], adjusted for the present framework. In [6] the affine portion of
the set of polynomials obtained as linear fractional transformations of Xq −
X is parameterised as follows. Let B be the set of B ∈ Fqk such that the
polynomial Xq+1 − BX + B splits completely over Fqk , the cardinality of

which is approximately qk−3 [6, Lemma 4.4]. Scaling and translating these
polynomials means that all the polynomials Xq+1+aXq+ bX+ c with c 6= ab,

b 6= aq and B = (b−aq)q+1

(c−ab)q split completely over Fqk whenever B ∈ B.

Let Q (viewed as polynomial in R2) be an irreducible quadratic polynomial
to be eliminated and let LQ ⊂ Fqk [X]2 be the lattice defined by

LQ = {(w0, w1) ∈ Fqk [X]2 | w0h0 + w1h1 ≡ 0 (mod Q)}. (5)

In the case that Q divides w0h0 + w1h1 6= 0 for some w0, w1 ∈ Fqk , then Q =

w(w0h0+w1h1) for some w ∈ F×
qk
, since the degree on the right hand side is at

most two. Therefore, the relation generated from P = w0Y + w1 ∈ R relates

the logarithm of Q with the logarithm of w0X
q +w1 = (w

1/q
0 X +w

1/q
1)q ∈ R1

(and the logarithm of h1). In the other case, LQ has a basis of the form
(1, u0X + u1), (X, v0X + v1) with ui, vi ∈ Fqk . Since the polynomial P =

XY +aY +bX+cmaps to 1
h1
((X+a)h0+(bX+c)h1) in R2,Q divides P mod f2

if and only if (X+a, bX+ c) ∈ LQ. Note that the numerator of P mod f2 is of
degree at most three, thus it can at worst contain a linear factor besides Q. If

the triple (a, b, c) also satisfies c 6= ab, b 6= aq and (b−aq)q+1

(c−ab)q ∈ B, then P mod f1
splits into linear factors and the logarithm of Q has been rewritten in terms
of logarithms of linear polynomials.

Algorithmically, a triple (a, b, c) satisfying all conditions can be found in
several ways. Choosing a B ∈ B, considering (X + a, bX + c) = a(1, u0X +
u1) + (X, v0X + v1) and rewriting b = u0a + v0 and c = u1a + v1 gives the
condition

B =
(−aq + u0a+ v0)

q+1

(−u0a2 + (−v0 + u1)a+ v1)q
. (6)

By expressing a in an Fqk/Fq basis, (6) results in a quadratic system in k
variables [21]. Using a Gröbner basis algorithm the running time is exponential
in k. Alternatively, and this is one of the key observations for the present work,
equation (6) can be considered as a polynomial of degree q2+q in a whose roots

can be found in polynomial time in q and in k by taking a GCD with aq
k

− a
in Fqk [a] [20]. One can also check for random (a, b, c) such that the lattice
condition holds, whether Xq+1 + aXq + bX + c splits into linear polynomials,
which happens with probability q−3. This is also polynomial time in q and
in k.

These degree 2 elimination methods will fail when Q divides h1X
q − h0,

because this would imply that the polynomial P mod f1 = Xq+1+aXq+bX+c

93

is divisible by Q whenever P mod f2 is, a problem first discussed in [8]. Such
polynomials Q or their roots will be called traps of level 0. Similarly, these
degree 2 elimination methods might also fail when Q divides h1X

qk+1

− h0, in
which case such polynomials Q or their roots will be called traps of level k.
By considering the degrees it follows easily that there are at most q + 2 traps
of level 0 and at most qk+1 + 2 traps of level k for k > 0.

4.2 Elimination requirements

As we will see shortly, the on-the-fly degree two elimination method can be
transformed into an elimination method for irreducible even degree polyno-
mials. We now present a theorem which states that under some assumptions
this degree two elimination is guaranteed to succeed, and subsequently demon-
strate that it implies Theorem 2, and hence Theorem 1.

Let T be the set of trap roots, i.e., the set of roots of h1X
qkd+1

− h0 for all
d ≥ 0 minus the set of roots of the field-defining polynomial I. A polynomial
in R1 or R2 is said to be good if it has no roots in T . The same definitions are
used when the base field of R1 and R2 is extended.

Theorem 3. Let q > 61 be a prime power that is not a power of 4, let k ≥ 18
be an integer and let h0, h1 ∈ Fqk [X] be of degree at most two with h1X

q − h0
having an irreducible degree l factor. Moreover, let d ≥ 1 be an integer, let
Q ∈ Fqkd [X] be an irreducible quadratic good polynomial such that Q does not
divide w0h0+w1h1 6= 0 for w0, w1 ∈ Fqkd, and let (1, u0X+u1), (X, v0X+v1) be
a basis of the lattice LQ in (5). Then the number of solutions (a,B) ∈ Fqkd ×B

of (6) resulting in good descendents is lower bounded by qkd−5.

This theorem is of central importance for our rigorous analysis and will be
proved in Section 5.

4.3 Degree 2d elimination and descent complexity

Now we demonstrate how the on-the-fly degree two elimination gives rise to
a method for eliminating irreducible even degree polynomials, which will be
the crucial building block for our descent algorithm. As per Theorem 3, let
q > 61 be a prime power that is not a power of 4, let k ≥ 18, and let h0, h1, I
as before.

Proposition 1. Let Q ∈ R2 be an irreducible good polynomial of degree 2d
with d ≥ 1. Then the logarithm of Q can be rewritten as a linear combination
of at most q + 2 logarithms of irreducible good polynomials of degrees dividing
d, in a running time polynomial in q and in d.

Proof. Over the extension Fqkd the polynomial Q splits into d irreducible good
quadratic polynomials; let Q′ be one of them. As explained earlier, we may

94

assume that Q does not divide w0h0 + w1h1 6= 0 for some w0, w1 ∈ Fqkd . By
Theorem 3 we may apply the on-the-fly degree two elimination method for
Q′ ∈ Fqkd [X], which gives a polynomial P ′ ∈ Fqkd [X,Y] such that P ′ mod f1
splits into a product of at most q + 1 good polynomials of degree one over
Fqkd and such that (P ′ mod f2)h1 is a product of Q′ and a good polynomial
of degree at most one. Let P be the product of all conjugates of P ′ under
Gal(Fqkd/Fqk). Since the product of all conjugates of a linear polynomial under
Gal(Fqkd/Fqk) is the d1-th power of an irreducible degree d2 polynomial for d1
and d2 satisfying d1d2 = d, the rewriting assertion of the claim follows.

The three steps of this method – computing Q′, the on-the-fly degree two
elimination (when the second or third approach listed above for solving (6)
is used), and the computation of the polynomial norms – all have running
time polynomial in q and in d, which proves the running time assertion of the
claim. ⊓⊔

By recursively applying Proposition 1 we can express the logarithm of a
good irreducible polynomial of degree 2e, e ≥ 1, in terms of at most (q +
2)e logarithms of linear polynomials. The final step of this recursion, namely
eliminating up to (q + 2)e−1 quadratic polynomials, dominates the running
time, which is thus upper bounded by (q + 2)e times a polynomial in q.

Lemma 2. Any element in R12 can be lifted to an irreducible good polynomial
of degree 2e whenever 2e > 4n, where n = deg(h1X

q − h0).

Proof. By the effective Dirichlet-type theorem on irreducibles in arithmetic
progressions [52, Thm. 5.1], for 2e > 4n the probability of irreducibility for a
random lift is lower bounded by 2−e−1. One may actually find an irreducible
polynomial of degree 2e which is good, since the number of traps (< 2q2

e−1+1)
is much smaller than the number (> q2

e−n2−e−1) of irreducibles produced by
this Dirichlet-type theorem. ⊓⊔

Putting everything altogether, this proves the expected quasi-polynomial
running time of the descent and therefore the running time of our algorithm
in Section 2, establishing Theorem 2.

Finally note that during an elimination step, one need not use the basic
building block as stated, which takes the norms of the linear polynomials
produced back down to Fqk . Instead, one need only take their norms to a
subfield of index 2, thus becoming quadratic polynomials, and then recurse,
as depicted in Fig. 2.

5 Proof of Theorem 3

In this section we prove Theorem 3, which by the arguments of the previous
section demonstrates the correctness of our algorithm and our main theorems.

95

1 2 2
eFqkn

Fq2kn 1 2

Fq4kn 1 2

...

...

F
q2

e−2kn 1 2

F
q2

e−1kn 1 2

Fig. 2: Elimination of irreducible polynomials of degree a power of 2 when considered as
elements of Fqk [X]. The arrow directions տ,← and ց indicate factorisation, degree 2 elim-
ination and taking a norm with respect to the indicated subfield, respectively.

5.1 Notation and statement of supporting results

Let K = Fqkd with kd ≥ 18, let L = Fq2kd be its quadratic extension, and
let Q be an irreducible quadratic polynomial in K[X] such that (1, u0X +
u1), (X, v0X + v1) is a basis of its associated lattice LQ in (5). Then Q is a
scalar multiple of −u0X

2 + (−u1 + v0)X + v1.

Let B be the set of B ∈ K such that the polynomial Xq+1−BX+B splits
completely over K. Using an elementary extension of [27, Theorem 5] the set
B can be characterised as the image of K \ Fq2 under the map

u 7→
(u− uq

2

)q+1

(u− uq)q2+1
. (7)

By this and (6), in order to eliminate Q we need to find (a, u) ∈ K× (K \Fq2)
satisfying

(u−uq
2

)q+1(−u0a
2+(−v0+u1)a+v1)

q− (u−uq)q
2+1(−aq+u0a+v0)

q+1 = 0.

The two terms have a common factor (u−uq)q+1 which motivates the following
definitions. Let α = −u0, β = u1−v0, γ = v1 and δ = −v0 with α, β, γ, δ ∈ K,

96

as well as

D =
U q2 − U

U q − U
=

∏

ǫ∈F
q2

\Fq

(U − ǫ),

E = U q − U =
∏

ǫ∈Fq

(U − ǫ),

F = αA2 + βA+ γ = α(A− ρ1)(A− ρ2) with ρ1, ρ2 ∈ L,

G = Aq + αA+ δ and

P = Dq+1F q − Eq2−qGq+1 ∈ K[A,U].

Note that F equalsQ(−A) (up to a scalar), so that deg(F) = 2, F is irreducible
and ρ1, ρ2 /∈ K. We consider the curve C defined by P = 0 and are interested
in the number of (affine) points (a, u) ∈ C(K) with u /∈ Fq2 . More precisely,
we want to prove the following.

Theorem 4. Let q > 61 be a prime power that is not a power of 4. If the
conditions

(∗) ρq1 + αρ2 + δ 6= 0

(∗∗) ρq1 + αρ1 + δ 6= 0

hold then there are at least qkd−1 pairs (a, u) ∈ K × (K \ Fq2) satisfying
P (a, u) = 0.

The relation of the two conditions to the quadratic polynomial Q as well
as properties of traps are described in the following propositions.

Proposition 2. If condition (∗) is not satisfied, then Q divides h1X
q − h0,

i.e., Q is a trap of level 0. If condition (∗∗) is not satisfied, then Q divides

h1X
qkd+1

− h0, i.e., Q is a trap of level kd. In particular, if Q is a good
polynomial then conditions (∗) and (∗∗) are satisfied.

Proposition 3. Let (a, u), (a′, u′) ∈ K × (K \ Fq2) be two solutions of P = 0
with a 6= a′, corresponding to the polynomials Pa = XY + aY + bX + c and
Pa′ = XY + a′Y + b′X + c′, respectively. Then Pa mod f1 and Pa′ mod f1
have no common roots. Furthermore, the common roots of Pa mod f2 and
Pa′ mod f2 are precisely the roots of Q.

Now we explain how (for q > 61 not a power of 4) Theorem 3 follows
from the above theorem and the propositions. By Proposition 2 an irreducible
quadratic good polynomial Q satisfies the two conditions of Theorem 4. Since
the map (7) is q3 − q : 1 on K \Fq2 , there are at least qkd−4 solutions (a,B) ∈
K×B of (6), which contain at least qkd−4 different values a ∈ K. As there are
at most qd

′+1+2 traps of level d′ for any d′ ≥ 0, the set of traps of level dividing

97

kd
2 and of traps of level 0 has cardinality at most q

kd
2
+3. By Proposition 3 a

trap root can appear in Pa mod fj for at most two values a, at most once for

j = 1 and at most once for j = 2. Hence there are at most q
kd
2
+4 < qkd−5 values

a for which a trap root appears in Pa mod fj , j = 1, 2. Thus there are at least
qkd−5 different values a for which a solution (a,B) leads to an elimination into
logarithms of good polynomials. This finishes the proof of Theorem 3, hence
we focus on proving the theorem and the two propositions above.

5.2 Outline of the proof method

The main step of the proof of the theorem consists in showing that, subject
to conditions (∗) and (∗∗), there exists an absolutely irreducible factor P1 of
P that lies already in K[A,U]. Since the (total) degree of P1 is at most q3+ q,
restricting to the component of the curve defined by P1 and using the Weil
bound for possibly singular plane curves gives a lower bound on the cardinality
of C(K) which is large enough to prove the theorem after accounting for
projective points and points with second coordinate in Fq2 . This argument is
given in the next subsection before dealing with the more involved main step.

For proving the main step the action of PGl2(Fq) on the variable U is
considered. An absolutely irreducible factor P1 of P is stabilised by a subgroup
S1 ⊂ PGl2(Fq) satisfying some conditions. The first step is to show that, after
possibly switching to another absolutely irreducible factor, there are only a
few cases for the subgroup. Then for each case it is shown that the factor is
defined over K[A,U] or that one of the conditions on the parameters is not
satisfied.

Proving the propositions will be done in the final subsection.

5.3 Weil bound

Corollary 2.5 of [4] shows that for an absolutely irreducible plane curve C of
degree d′ we have

|#C(K)− qkd − 1| ≤ (d′ − 1)(d′ − 2)q
kd
2 .

Since degA(P) = q2 + q there are at most q4 + q3 affine points with u ∈ Fq2 .
The number of points at infinity is at most d′ = q3 + q2 < q4. Denoting by
C(K)̃ the set of affine points in C(K) with second coordinate u 6∈ Fq2 one
obtains

|#C(K)̃ | > qkd − (q4 + q3)− d′ − (d′2 − 2)q
kd
2 > qkd − q

kd
2
+8 ≥ qkd−1,

since kd ≥ 18, thus proving the theorem if there exists an absolutely irreducible
factor defined over K[A,U].

98

5.4 PGl2 action

Here the following convention for the action of PGl2(Fq) on P1 and on poly-

nomials is used. A matrix

(
a b
c d

)
∈ PGl2(Fq) acts on P1(M), where M is an

arbitrary field containing Fq, by (x0 : x1) 7→

(
a b
c d

)
(x0 : x1) = (ax0 + bx1 :

cx0+dx1) or, via P
1(M) = M∪{∞}, by x 7→ ax+b

cx+d . This is an action on the left,

i.e., for σ, τ ∈ PGl2(Fq) and x ∈ P1(M) the following holds: σ(τ(x)) = (στ)(x).
On a homogeneous polynomial H in the variables (X0 : X1) the action of

σ =

(
a b
c d

)
is given byHσ(X0 : X1) = H(aX0+bX1 : cX0+dX1). This is an ac-

tion on the right, satisfying H(στ) = (Hσ)τ . In the following we will usually use
this action on the dehomogenised polynomials given by Hσ(X) = H(aX+b

cX+d),
clearing denominators in the appropriate way.

The polynomial P ∈ (K[A])[U] is invariant under PGl2(Fq) acting on the

variable U ; this can be checked by considering the actions of

(
1 b
0 1

)
,

(
a 0
0 1

)

and

(
0 1
1 0

)
, and noticing that PGl2(Fq) is generated by these matrices. Let

P = s

g∏

i=1

Pi, Pi ∈ (K[A])[U], s ∈ K[A],

be the decomposition of P in (K[A])[U] into irreducible factors Pi and possibly
reducible s. Notice that s must divide F q and Gq+1, hence it divides a power
of gcd(F,G). As F is irreducible, gcd(F,G) is either constant or of degree two.
In the latter case ρ1 is a root of G contradicting condition (∗∗). Therefore one
can assume that s ∈ K is a constant.

Let

P = F q
q3−q∏

i=1

(U − ri), ri ∈ K(A),

be the decomposition of P in K(A)[U]. Then PGl2(Fq) permutes the set {ri}
and, since fixed points of PGl2(Fq) lie in Fq2 but ri /∈ Fq2 , the action is free.
Since #PGl2(Fq) = q3 − q the action is transitive.

Therefore the action on the decomposition over K[A,U] is also transitive
(adjusting the Pi by scalars in K[A] if necessary). Denoting by Si ⊂ PGl2(Fq)
the stabiliser of Pi it follows that all Si are conjugates of each other, thus they
have the same cardinality and hence q3 − q = g ·#Si. Moreover the degree of
Pi in U is constant, namely #Si, and also the degree of Pi in A is constant,
thus g | q2 + q = degA(P). In particular, q − 1 | #Si.

99

5.5 Subgroups of PGl2

The classification of subgroups of PSl2(Fq) is well known [15] and allows to
determine all subgroups of PGl2(Fq) [7]. Since #Si is divisible by q − 1 (in
particular #Si > 60), only the following subgroups are of interest (per conju-
gation class only one subgroup is listed):

1. the cyclic group

(
∗ 0
0 1

)
of order q − 1,

2. the dihedral group

(
∗ 0
0 1

)
∪

(
0 1
∗ 0

)
of order 2(q − 1) as well as, in odd

characteristic, its two dihedral subgroups

{(
a 0
0 1

)
| a 6= 0 a square

}
∪

{(
0 1
c 0

)
| c 6= 0 a square

}
and

{(
a 0
0 1

)
| a 6= 0 a square

}
∪

{(
0 1
c 0

)
| c not a square

}
,

both of order q − 1,

3. the Borel subgroup

(
∗ ∗
0 1

)
of order q2 − q,

4. if q is odd, PSl2(Fq) of index 2,
5. if q = q′2 is a square, PGl2(Fq′) of order q

′3 − q′ = q′(q − 1), and
6. PGl2(Fq).

In the last case P is absolutely irreducible, thus it remains to investigate
the first five cases which will be done in the next subsection.

Remark: The condition q > 61 rules out some small subgroups as A4, S4,
and A5. In many of the finitely many cases q ≤ 61 the proof of the theorem
also works (e.g., q not a square and q − 1 ∤ 120). The condition of q not being
a power of even exponent of 2 eliminates the fifth case in characteristic 2;
removing this condition would be of some interest.

5.6 The individual cases

Since the stabilisers Si are conjugates of each other, one can assume without
loss of generality that S1 is one of the explicit subgroups given in the previous
subsection. Then the polynomial P1 is invariant under certain transformations
of U , so that P1 and P can be rewritten in terms of another variable as stated
in the following.

If a polynomial (in the variable U) is invariant under U 7→ aU , a ∈ F×
q , it

can be considered as a polynomial in the variable V = U q−1. For the polyno-
mials D and Eq−1 one obtains

D =
V q+1 − 1

V − 1
and Eq−1 = V (V − 1)q−1.

100

Similarly, in the case of odd q, if a polynomial is invariant under U 7→ aU

for all squares a ∈ F×
q , it can be rewritten in the variable V ′ = U

q−1

2 . For D
and Eq−1 this gives

D =
V ′2q+2 − 1

V ′2 − 1
and Eq−1 = V ′2(V ′2 − 1)q−1.

If a polynomial is invariant under U 7→ U + b, b ∈ Fq, it can be considered
as a polynomial in Ṽ = U q − U which gives

D = Ṽ q−1 + 1 and Eq−1 = Ṽ q−1.

Combining the above yields that a polynomial which is invariant under
both U 7→ aU , a ∈ F×

q , and U 7→ U + b, b ∈ Fq, can be considered as a

polynomial in W = Ṽ q−1 = (U q − U)q−1. For D and Eq−1 one obtains

D = W + 1 and Eq−1 = W.

This is now applied to the various cases for S1.

The cyclic case Rewriting P and P1 in terms of V = U q−1 one obtains

P =
(V q+1 − 1

V − 1

)q+1
F q − V q(V − 1)q

2−qGq+1

and degV (P1) = 1, i.e., P1 = p1V − p0 with pi ∈ K[A], gcd(p0, p1) = 1,
max(deg(p0), deg(p1)) = 1 and it can be assumed that p0 is monic.

The divisibility P1 | P transforms into the following polynomial identity
in K[A]:

(pq+1
0 − pq+1

1

p0 − p1

)q+1
F q = pq1p

q
0(p0 − p1)

q2−qGq+1.

The degree of the first factor on the left hand side is either q2 + q or q2 − 1 (if
p0−ζp1 is constant for some ζ ∈ µq+1(Fq2)\{1}). Since the degrees of the other
factors are all divisible by q, the latter case is impossible. Since deg(F) = 2 one
gets deg(F q) = 2q. Furthermore, deg((p0p1)

q) ∈ {q, 2q}, deg((p0 − p1)
q2−q) ∈

{0, q2 − q} and deg(Gq+1) = q2 + q which implies deg(p0 − p1) = 0, deg(p0) =
deg(p1) = 1 since q > 2.

Let p0 − p1 = c1 ∈ K; in the following ci will be some constants in K.
Since the first factor on the left hand side is coprime to p0p1, it follows

pq+1
0 − pq+1

1

p0 − p1
= c2G, F = c3p0p1 and cq+1

2 cq3 = cq
2−q

1 .

Exchanging ρ1 and ρ2, if needed, one obtains

p0 = A− ρ1, p1 = A− ρ2, c3 = α and c1 = ρ2 − ρ1.

101

Considering the coefficient of Aq in the equation for G gives c2 = 1 and
evaluating this equation at A = ρ2 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.

The dihedral cases The case of the dihedral group of order 2(q − 1) is
considered first. Then, as above, P and P1 can be expressed in terms of V ,
and, since P and P1 are also invariant under V 7→ 1

V , they can be expressed in
terms of W+ = V + 1

V . This gives degW+
(P1) = 1 and with Z = µq+1(Fq2)\{1}

Dq+1V − q2+q

2 =
∏

ζ∈Z

(W+ − (ζ + ζq))
q+1

2 and

PV − q2+q

2 =
(∏

ζ∈Z

(W+ − (ζ + ζq))
q+1

2

)
F q − (W+ − 2)

q2−q

2 Gq+1.

In characteristic 2 each factor of the product over Z appears twice, thus jus-
tifying their exponent q+1

2 .
By writing P1 = p1W+−p0, with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) =

2 and p0 being monic, the divisibility P1 | P transforms into the following poly-
nomial identity in K[A]:

(∏

ζ∈Z

(p0 − (ζ + ζq)p1)
q+1

2

)
F q = pq1(p0 − 2p1)

q2−q

2 Gq+1.

Again the degree of the first factor on the left hand side must be divisible by q
(respectively, q

2 in characteristic 2), and since p0 − (ζ + ζq)p1 can be constant
or linear for at most one sum ζ + ζq, the degree of the first factor must be
q2+ q for q > 4. Also the degree of p0− 2p1 must be zero since q > 2 and thus
the degree of p1 is 2, as well as the degree of F .

In even characteristic p0−2p1 = p0 is a constant, thus p0 = 1 (p0 is monic).
The involution ζ 7→ ζq = ζ−1 on Z has no fixed points, and, denoting by Z2 a
set of representatives of Z modulo the involution, one obtains

∏

ζ∈Z2

(1− (ζ + ζq)p1) = c1G, F = c2p1 and cq+1
1 cq2 = 1.

Modulo F one gets F | c1G−1 which implies c1 ∈ K. Thus c2 ∈ K, p1 ∈ K[A]
and therefore P1 ∈ K[A,U].

In odd characteristic the factor corresponding to ζ = −1, namely (p0 +

2p1)
q+1

2 , is coprime to the other factors in the product and coprime to p1(p0−
2p1). Hence p0 + 2p1 must be a square and its square root must divide G.
Moreover, one gets F = c1p1. Since p0 − 2p1 = c2 is a constant and p0 is

102

monic, one gets c1 = 2α, implying p1 ∈ K[A]. Since p0 + 2p1 = 4p1 + c2 is a
square, its discriminant is zero, thus c2 ∈ K and hence P1 ∈ K[A,U].

If S1 is one of the two dihedral subgroups of order q−1 (which implies that q
is odd), the argumentation is similar. The polynomials P and P1 are expressed

in terms of V ′ = U
q−1

2 and then, since U 7→ 1
cU becomes V ′ 7→ c−

q−1

2
1
V ′ with

c−
q−1

2 = ±1, in terms of W ′
+ = V ′ + 1

V ′ or W ′
− = V ′ − 1

V ′ , respectively. In the
first case P is rewritten as

PV ′−(q2+q) =
(∏

ζ∈Z′

(W ′
+− (ζ+ζ−1))

q+1

2

)
F q− (W ′

+−2)
q2−q

2 (W ′
++2)

q2−q

2 Gq+1

where Z ′ = µ2(q+1)(Fq2) \ {±1}. By setting P1 = p1W
′
+ − p0 with pi ∈ K[A],

gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = 1 and p0 being monic, one obtains

(∏

ζ∈Z′

(p0 − (ζ + ζ−1)p1)
q+1

2

)
F q = p2q1 (p0 − 2p1)

q2−q

2 (p0 + 2p1)
q2−q

2 Gq+1.

Since one of p0±2p1 is not constant, the degree of the right hand side exceeds
the degree of the left hand side for q > 5 which is a contradiction.

In the second case P is rewritten as

PV ′−(q2+q) =
(∏

ζ∈Z′

(W ′
− − (ζ − ζ−1))

q+1

2

)
F q −W ′q2−q

− Gq+1

and by setting P1 = p1W
′
−−p0 with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) =

1 and p0 being monic, one obtains

(∏

ζ∈Z′

(p0 − (ζ − ζ−1)p1)
q+1

2

)
F q = p2q1 pq

2−q
0 Gq+1.

Considering the degrees for q > 5 it follows that p0 must be constant and
hence p1 is of degree one. Since p1 is coprime to the first factor on the left
hand side, it must divide F q which implies ρ1 = ρ2 ∈ K, contradicting the
irreducibility of F .

The Borel case In this case, rewriting P and P1 in terms ofW = (U q−U)q−1

gives

P = (W + 1)q+1F q −W qGq+1

and degW (P1) = 1, P1 = p1W − p0, with pi ∈ K[A], gcd(p0, p1) = 1,
max(deg(p0), deg(p1)) = q and p1 being monic. Then the divisibility P1 | P
transforms into the following polynomial identity in K[A]:

(p0 + p1)
q+1F q = p1p

q
0G

q+1.

103

From deg(Gq+1) = q2 + q, deg(p1p
q
0) ≥ q and deg(F q) ≤ 2q it follows that the

degree of p0+p1 must be q. This implies deg(F q) = deg(p1p
q
0), thus deg(p0) ≤ 2

and therefore deg(p1) = q, deg(p0) ≤ 1 since q > 2.

Since p0 + p1 is coprime to p0p1, it follows

p0 + p1 = c1G, p1 = p̃q, F = c2p̃p0 and cq+1
1 cq2 = 1

for a monic linear polynomial p̃ ∈ K[A].

Exchanging ρ1 and ρ2, if needed, one obtains

p̃ = A− ρ1, p0 = c3(A− ρ2), c1 = 1, c2 = 1 and c3 = α.

Evaluating p0 + p1 = G at A = 0 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.

The PSl2 case This case can only occur for odd q, and then P splits as
P = sP1P2 with a scalar s ∈ K. The map U 7→ aU for a non-square a ∈ Fq

exchanges P1 and P2. Since PSl2(Fq) is a normal subgroup of PGl2(Fq), P2 is

invariant under PSl2(Fq) as well. By rewriting P in terms of W ′ = (U q−U)
q−1

2

one obtains

P = (W ′2 + 1)q+1F q −W ′2qGq+1 = sP1(W
′)P1(−W ′).

Denoting by p0 ∈ K[A] the constant coefficient of P1 ∈ (K[A])[W ′] this be-
comes modulo W ′

F q = sp20

which implies ρ1 = ρ2 ∈ K, contradicting the irreducibility of F .

The case PGl2(Fq′) Since PGl2(Fq′) ⊂ PSl2(Fq) in odd characteristic, one
can reduce this case to the previous case as follows.

Let I1 ⊂ {1, . . . , g} be the subset of i such that Si is a conjugate of S1 by an
element in PSl2(Fq), and let I2 = {1, . . . , g} \ I1. These two sets correspond to
the two orbits of the action of PSl2(Fq) on the Si (or Pi). Both orbits contain
#I1 = #I2 =

g
2 elements and an element in PGl2(Fq) \PSl2(Fq) transfers one

orbit into the other.

Let P̃j =
∏

i∈Ij
Pi, j = 1, 2, then P splits as P = sP̃1P̃2, s ∈ K, and

both P̃j , j = 1, 2, are invariant under PSl2(Fq). Notice that the absolute
irreducibility of P1 and P2 was not used in the argument in the PSl2 case.

104

5.7 Traps

In the following the propositions are proven.

Let Q be an irreducible quadratic polynomial in K[X] such that (1, u0X+
u1), (X, v0X + v1) is a basis of the lattice LQ, so that Q is a scalar multiple of
−u0X

2+(−u1+v0)X+v1 = F (−X) and has roots −ρ1 and −ρ2. By definition
of LQ the pair (h0, h1) must be in the dual lattice (scaled by Q), given by the
basis (u0X + u1,−1), (v0X + v1,−X).

For the assertions concerning conditions (∗) and (∗∗), assume that ρ1, ρ2 ∈
L \K and that

ρq1 + αρj + δ = 0

holds for j = 1 or j = 2.

First consider the case j = 2, i.e., condition (∗). To show that −ρi, i = 1, 2,
are roots of h1X

q − h0 it is sufficient to show this for the basis of the dual
lattice of LQ given above. For (u0X + u1,−1) one computes

−(−ρq1)− u0(−ρ1)− u1 = ρq1 − αρ1 − β + δ = −αρ2 − αρ1 − β = 0,

and for (v0X + v1,−X) one obtains

−(−ρ1)(−ρq1)− v0(−ρ1)− v1 = (−ρq1 − δ)ρ1 − γ = αρ1ρ2 − γ = 0.

Therefore h1X
q − h0 is divisible by Q, which is then a trap of level 0.

In the case j = 1 an analogous calculation shows that −ρqi , i = 1, 2, are

roots of h1X
qkd+1

− h0, namely for (u0X + u1,−1) one has

−(−ρq
kd+1

2)− u0(−ρ2)− u1 = ρq1 − αρ2 − β + δ = −αρ1 − αρ2 − β = 0

and for (v0X + v1,−X) one gets

−(−ρ2)(−ρq
kd+1

2)− v0(−ρ2)− v1 = (−ρq1 − δ)ρ2 − γ = αρ1ρ2 − γ = 0

Therefore h1X
qkd+1

− h0 is divisible by Q, which is then a trap of level kd.
This finishes the proof of Proposition 2.

Regarding Proposition 3, note that a solution (a,B) gives rise to the poly-
nomial Pa = a(u0X + (Y + u1)) + ((Y + v0)X + v1). If, for j = 1 or j = 2,
ρ is a root of Pa mod fj for two different values of a, then ρ is a root of
u0X + (Y + u1) mod fj and of (Y + v0)X + v1 mod fj . Since

−X(u0X+(Y +u1))+(Y +v0)X+v1 = −u0X
2+(−u1+v0)X+v1 = F (−X),

which equals Q up to a scalar, it follows that ρ is also a root of Q. Furthermore,
in the case j = 1 the polynomial Pa mod f1 splits completely, so that ρ ∈ K,
contradicting the irreducibility of Q. This completes the proof of Proposition 3.

105

6 Conclusion

We have proposed the first rigorous randomised quasi-polynomial time algo-
rithm for solving the DLP in infinitely many finite fields of any fixed charac-
teristic. Interestingly, our algorithm does not rely on the notion of smooth-
ness. Furthermore, subject to a conjecture on the existence of irreducibles of a
particular form, our algorithm applies to all extension fields of any fixed char-
acteristic. Resolving this conjecture is therefore an important open problem.

Other questions worthy of future consideration include whether or not
there exists a polynomial time algorithm (either rigorous or heuristic) for the
DLP in fixed characteristic fields, or even harder, what is the true complexity
of the DLP in the fixed characteristic case? Note that a result of F.R.K. Chung
implies that for fields of our form there is no quasi-polynomial lower bound on
the number of linear elements that must be multiplied in order to represent an
arbitrary field element [9, Thm. 8]; indeed a very small (polynomial) number
suffices. Hence there is no representational barrier to obtaining a polynomial
time algorithm, when the factor base consists of linear elements. Another im-
portant question is can the recent ideas be generalised to prime field DLPs? If
this were possible, then it is highly likely that such ideas could be transferred
to the notorious integer factorisation problem.

Acknowledgements

The authors are indebted to Claus Diem for explaining how one can obviate
the need to compute the logarithms of the factor base elements, and wish to
thank him also for some enlightening discussions.

References

1. Leonard M. Adleman. A subexponential algorithm for the discrete logarithm problem
with applications to cryptography. In Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, SFCS ’79, pages 55–60, Washington, DC, USA, 1979.
IEEE Computer Society.

2. Leonard M. Adleman. The function field sieve. In Leonard M. Adleman and Ming-Deh
Huang, editors, Algorithmic Number Theory, volume 877 of Lecture Notes in Computer
Science, pages 108–121. Springer Berlin Heidelberg, 1994.

3. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete
logarithms over finite fields. Inform. and Comput., 151(1-2):5–16, 1999.

4. Yves Aubry and Marc Perret. A Weil theorem for singular curves. In Arithmetic,
geometry and coding theory (Luminy, 1993), pages 1–7. de Gruyter, Berlin, 1996.

5. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Advances in Cryptology—EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16.
Springer, 2014.

6. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–
305, 2004.

106

7. Peter J. Cameron, Gholam R. Omidi, and Behruz Tayfeh-Rezaie. 3-designs from
PGL(2, q). Electron. J. Combin., 13(1):Research Paper 50, 11, 2006.

8. Qi Cheng, Daqing Wan, and Jincheng Zhuang. Traps to the bgjt-algorithm for discrete
logarithms. LMS Journal of Computation and Mathematics, 17:218–229, 2014.

9. Fan-Rong K. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2(2):187–196,
1989.

10. Don Coppersmith. Evaluating logarithms in GF(2n). In Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, STOC ’84, pages 201–207, New
York, NY, USA, 1984. ACM.

11. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Inf. Theor., 30(4):587–594, 1984.

12. Nicolaas G. De Bruijn. On the number of positive integers ≤ x and free of prime factors
> y. Indagationes Mathematicae, 13:50–60, 1951.

13. Nicolaas G. De Bruijn. On the number of positive integers ≤ x and free of prime factors
> y, II. Indagationes Mathematicae, 28:239–247, 1966.

14. Karl Dickman. On the frequency of numbers containing prime factors of a certain relative
magnitude. Arkiv för Matematik, Astonomi och Fysik, 22A (10):1–14, 1930.

15. Leonard E. Dickson. Linear groups: With an exposition of the Galois field theory. Teub-
ner, Leipzig, 1901.

16. Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio Mathe-
matica, 147:75–104, 1 2011.

17. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theor., 22(6):644–654, September 2006.

18. Andreas Enge and Pierrick Gaudry. A general framework for subexponential discrete
logarithm algorithms. Acta Arithmetica, 102:83–103, 2002.

19. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function
field sieve and the impact of higher splitting probabilities. Available from eprint.iacr.

org/2013/074, 15th Feb 2013.
20. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function

field sieve and the impact of higher splitting probabilities. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology—CRYPTO 2013, volume 8043 of LNCS, pages
109–128. Springer, 2013.

21. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Solving a 6120-bit
DLP on a desktop computer. In Selected Areas in Cryptography—SAC 2013, volume
8282 of LNCS, pages 136–152. Springer, 2014.

22. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (21971). NMBRTHRY list, 19/2/2013.

23. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Loga-
rithms in GF (26120). NMBRTHRY list, 11/4/2013.

24. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ’128-bit secure’ su-
persingular binary curves - (or how to solve discrete logarithms in F24·1223 and F212·367).
In Advances in Cryptology—CRYPTO 2014, volume 8617 of LNCS, pages 126–145.
Springer, 2014.

25. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete logarithms in the
Jacobian of a genus 2 supersingular curve over GF (2367). NMBRTHRY list, 30/1/2014.

26. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete Logarithms in
GF (29234). NMBRTHRY list, 31/1/2014.

27. Tor Helleseth and Alexander Kholosha. x2
l
+1 + x + a and related affine polynomials

over GF(2k). Cryptogr. Commun., 2(1):85–109, 2010.
28. Antoine Joux. Faster index calculus for the medium prime case. application to 1175-

bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology—EUROCRYPT 2013, volume 7881 of LNCS, pages 177–193.
Springer, 2013.

107

29. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In Tanja Lange, Kristin Lauter, and Petr Lisonĕk, editors, Selected Areas
in Cryptography—SAC 2013, volume 8282 of LNCS, pages 355–379. Springer, 2014.

30. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. Available from eprint.iacr.org/2013/095, 20th Feb 2013.

31. Antoine Joux. Discrete Logarithms in GF (21778). NMBRTHRY list, 11/2/2013.
32. Antoine Joux. Discrete Logarithms in GF (24080). NMBRTHRY list, 22/3/2013.
33. Antoine Joux. Discrete Logarithms in GF (26168). NMBRTHRY list, 21/5/2013.
34. Antoine Joux and Reynald Lercier. The function field sieve is quite special. In Claus

Fieker and David R. Kohel, editors, Algorithmic number theory (Sydney, 2002), volume
2369 of LNCS, pages 431–445. Springer, 2002.

35. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case.
In Serge Vaudenay, editor, Advances in Cryptology—EUROCRYPT 2006, volume 4004
of LNCS, pages 254–270. Springer, 2006.

36. Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

37. Thorsten Kleinjung. Discrete logarithms in GF(21279). NMBRTHRY list, 17/10/2014.
38. Maurice Kraitchik. Théorie des nombres, volume 1. Paris: Gauthier-Villars, 1922.
39. Maurice Kraitchik. Recherches sur la théorie des nombres, volume 1. Paris: Gauthier-

Villars, 1924.
40. Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number

field sieve, volume 1554 of Lecture Notes in Mathematics. Springer, Heidelberg, 1993.
41. Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp.,

56(193):329–347, 1991.
42. Hendrik W. Lenstra, Jr. and Carl Pomerance. A rigorous time bound for factoring

integers. J. Amer. Math. Soc., 5(3):483–516, 1992.
43. Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford

University, Stanford, CA, USA, 1979.
44. Cecile Pierrot and Antoine Joux. Discrete logarithm record in characteristic 3,

GF(35·479) a 3796-bit field. NMBRTHRY list, 15/9/2014.
45. Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing loga-

rithms over gf(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory,
24(1):106–110, 1978.

46. John M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation, 32:918–924, 1978.

47. Carl Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In
Discrete algorithms and complexity (Kyoto, 1986), volume 15 of Perspect. Comput.,
pages 119–143. Academic Press, Boston, MA, 1987.

48. J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of
prime numbers. Illinois J. Math., 6:64–94, 1962.

49. Naoyuki Shinohara, Takeshi Shimoyama, Takuya Hayashi, and Tsuyoshi Takagi. Key
length estimation of pairing-based cryptosystems using ηt pairing. In Mark D. Ryan, Ben
Smyth, and Guilin Wang, editors, Information Security Practice and Experience, volume
7232 of Lecture Notes in Computer Science, pages 228–244. Springer Berlin Heidelberg,
2012.

50. Carl F. Gauss (translated by Arthur A. Clarke). Disquisitiones Arithmeticae. Yale
University Press, 1965.

51. Brigitte Vallée. Generation of elements with small modular squares and provably fast
integer factoring algorithms. Math. Comp., 56(194):823–849, 1991.

52. Daqing Wan. Generators and irreducible polynomials over finite fields. Mathematics of
Computation, 66:1195–1212, 1997.

53. A. E. Western and J. C. P. Miller. Tables of indices and primitive roots. Royal Society
Mathematical Tables, vol. 9, Cambridge University Press, 1968.

108

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe

Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-

fertigt habe; die aus fremden Quellen direkt oder inhaltlich übernommenen

Stellen sind als solche kenntlich gemacht.

Bei allen eingereichten gemeinschaftlichen Arbeiten erstreckt sich meine Mitar-

beit auf sämtliche Aspekte, einschließlich der Ideenfindung, der Ausarbeitung

und der Implementierung.

Es wurden zuvor keine Habilitationsvorhaben unternommen.

Ich erkenne die Habilitationsordnung der Fakultät für Mathematik und Natur-

wissenschaften der Technischen Universität Dresden vom 12. Dezember 2010,

in der geänderten Fassung mit Gültigkeit vom 19. Februar 2014, an.

Dresden, den 2. Juni 2015

