
HAL Id: inria-00477949
https://hal.inria.fr/inria-00477949

Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Estimates for Quadratic Field Based
Cryptosystems

Jean-François Biasse, Jacobson Michael, Silverster Alan

To cite this version:
Jean-François Biasse, Jacobson Michael, Silverster Alan. Security Estimates for Quadratic Field Based
Cryptosystems. Lecture Notes in Computer Science, Springer, 2010. �inria-00477949�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50091327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00477949
https://hal.archives-ouvertes.fr

Security Estimates for Quadratic Field Based

Cryptosystems

Jean-François Biasse1, Michael J. Jacobson, Jr.2⋆, and Alan K. Silvester3

1 École Polytechnique, 91128 Palaiseau, France
biasse@lix.polytechnique.fr

2 Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

jacobs@cpsc.ucalgary.ca
3 Department of Mathematics and Statistics, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

aksilves@math.ucalgary.ca

Abstract. We describe implementations for solving the discrete loga-
rithm problem in the class group of an imaginary quadratic field and
in the infrastructure of a real quadratic field. The algorithms used in-
corporate improvements over previously-used algorithms, and extensive
numerical results are presented demonstrating their efficiency. This data
is used as the basis for extrapolations, used to provide recommendations
for parameter sizes providing approximately the same level of security
as block ciphers with 80, 112, 128, 192, and 256-bit symmetric keys.

1 Introduction

Quadratic fields were proposed as a setting for public-key cryptosystems in the
late 1980s by Buchmann and Williams [7, 8]. There are two types of quadratic
fields, imaginary and real. In the imaginary case, cryptosystems are based on
arithmetic in the ideal class group (a finite abelian group), and the discrete
logarithm problem is the computational problem on which the security is based.
In the real case, the so-called infrastructure is used instead, and the security
is based on the analogue of the discrete logarithm problem in this structure,
namely the principal ideal problem.

Although neither of these problems is resistant to quantum computers, cryp-
tography in quadratic fields is nevertheless an interesting alternative to more
widely-used settings. Both discrete logarithm problems can be solved in subex-
ponential time using index calculus algorithms, but with asymptotically slower
complexity than the state-of-the art algorithms for integer factorization and
computing discrete logarithms in finite fields. In addition, the only known rela-
tionship to the quadratic field discrete logarithm problems from other compu-
tational problems used in cryptography is that integer factorization reduces to
both of the quadratic field problems. Thus, both of these are at least as hard as

⋆ The second author is supported in part by NSERC of Canada.

factoring, and the lack of known relationships to other computational problems
implies that the breaking of other cryptosystems, such as those based on elliptic
or hyperelliptic curves, will not necessarily break those set in quadratic fields.
Examining the security of quadratic field based cryptosystems is therefore of
interest.

The fastest algorithms for solving discrete logarithm problem in quadratic
fields are based on an improved version of Buchmann’s index-calculus algorithm
due to Jacobson [17]. The algorithms include a number of practical enhancements
to the original algorithm of Buchmann [5], including the use of self-initialized
sieving to generate relations, a single large prime variant, and practice-oriented
algorithms for the required linear algebra. These algorithms enabled the compu-
tation of a discrete logarithm in the class group of an imaginary quadratic field
with 90 decimal digit discriminant [15], and the solution of the principal ideal
problem for a real quadratic field with 65 decimal digit discriminant [18].

Since this work, a number of further improvements have been proposed. Bi-
asse [3] presented practical improvements to the corresponding algorithm for
imaginary quadratic fields, including a double large prime variant and improved
algorithms for the required linear algebra. The resulting algorithm was indeed
faster then the previous state-of-the-art and enabled the computation of the ideal
class group of an imaginary quadratic field with 110 decimal digit discriminant.
These improvements were adapted to the case of real quadratic fields by Biasse
and Jacobson [4], along with the incorporation of a batch smoothness test of
Bernstein [2], resulting in similar speed-ups in that case.

In this paper, we adapt the improvements of Biasse and Jacobson to the
computation of discrete logarithms in the class group of an imaginary quadratic
field and the principal ideal problem in the infrastructure of a real quadratic field.
We use versions of the algorithms that rely on easier linear algebra problems than
those described in [17]. In the imaginary case, this idea is due to Vollmer [26]; our
work represents the first implementation of his method. Our data obtained shows
that our algorithms are indeed faster than previous methods. We use our data
to estimate parameter sizes for quadratic field cryptosystems that offer security
equivalent to NIST’s five recommended security levels [25]. In the imaginary case,
these recommendations update previous results of Hamdy and Möller [14], and
in the real case this is the first time such recommendations have been provided.

The paper is organized as follows. In the next section, we briefly recall the
required background of ideal arithmetic in quadratic fields, and give an overview
of the index-calculus algorithms for solving the two discrete logarithms in Sec-
tion 3. Our numerical results are described in Section 4, followed by the security
parameter estimates in Section 5.

2 Arithmetic in Quadratic Fields

We begin with a brief overview of arithmetic in quadratic fields. For more details
on the theory, algorithms, and cryptographic applications of quadratic fields, see
[20].

Let K = Q(
√
∆) be the quadratic field of discriminant ∆, where ∆ is a non-

zero integer congruent to 0 or 1 modulo 4 with∆ or∆/4 square-free. The integral
closure of Z in K, called the maximal order, is denoted by O∆. The ideals of
O∆ are the main objects of interest in terms of cryptographic applications. An
ideal can be represented by the two dimensional Z-module

a = s

[

aZ+
b +

√
∆

2
Z

]

,

where a, b, s ∈ Z and 4a | b2 − ∆. The integers a and s are unique, and b is
defined modulo 2a. The ideal a is said to be primitive if s = 1. The norm of a is
given by N (a) = as2.

Ideals can be multiplied using Gauss’ composition formulas for integral binary
quadratic forms. Ideal norm respects this operation. The prime ideals ofO∆ have
the form pZ+(bp+

√
∆)/2Z where p is a prime that is split or ramified in K, i.e.,

the Kronecker symbol (∆/p) 6= −1. As O∆ is a Dedekind domain, every ideal
can be factored uniquely as a product of prime ideals. To factor a, it suffices
to factor N (a) and, for each prime p dividing the norm, determine whether the
prime ideal p or p−1 divides a according to whether b is congruent to bp or −bp
modulo 2p.

Two ideals a, b are said to be equivalent, denoted by a ∼ b, if there exist
α, β ∈ O∆ such that (α)a = (β)b, where (α) denotes the principal ideal generated
by α. This is in fact an equivalence relation, and the set of equivalence classes
forms a finite abelian group called the class group, denoted by Cl∆. Its order is
called the class number, and is denoted by h∆.

Arithmetic in the class group is performed on reduced ideal representatives
of the equivalence classes. An ideal a is reduced if it is primitive and N (a) is
a minimum in a. Reduced ideals have the property that a, b <

√

|∆|, yielding
reasonably small representatives of each group element. The group operation
then consists of multiplying two reduced ideals and computing a reduced ideal
equivalent to the product. This operation is efficient and can be performed in
O(log2 |∆|) bit operations.

In the case of imaginary quadratic fields, we have h∆ ≈
√

|∆|, and that
every element in Cl∆ contains exactly one reduced ideal. Thus, the ideal class
group can be used as the basis of most public-key cryptosystems that require
arithmetic in a finite abelian group. The only wrinkle is that computing the class
number h∆ seems to be as hard as solving the discrete logarithm problem, so
only cryptosystems for which the group order is not known can be used.

In real quadratic fields, the class group tends to be small; in fact, a conjecture
of Gauss predicts that h∆ = 1 infinitely often, and the Cohen-Lenstra heuristics
[11] predict that this happens about 75% of the time for prime discriminants.
Thus, the discrete logarithm problem in the class group is not in general suitable
for cryptographic use.

Another consequence of small class groups in the real case is that there are
no longer unique reduced ideal representatives in each equivalence class. Instead,
we have that h∆R∆ ≈

√
∆, where the regulator R∆ roughly approximates how

many reduced ideals are in each equivalence class. Thus, since h∆ is frequently
small, there are roughly

√
∆ equivalent reduced ideals in each equivalence class.

The infrastructure, namely the set of reduced principal ideals, is used for cryp-
tographic purposes instead of the class group. Although this structure is not a
finite abelian group, the analogue of exponentiation (computing a reduced prin-
cipal ideal (α) with logα as close to a given number as possible) is efficient and
can be used as a one-way problem suitable for public-key cryptography. The
inverse of this problem, computing an approximation of the unknown logα from
a reduced principal ideal given in Z-basis representation, is called the principal
ideal problem or infrastructure discrete logarithm problem, and is believed to be
of similar difficulty to the discrete logarithm problem in the class group of an
imaginary quadratic field.

3 Solving The Discrete Logarithm Problems

The fastest algorithms in practice for computing discrete logarithms in the class
group and infrastructure use the index-calculus framework. Like other index-
calculus algorithms, these algorithms rely on finding certain smooth quantities,
those whose prime divisors are all small in some sense. In the case of quadratic
fields, one searches for smooth principal ideals for which all prime ideal divisors
have norm less than a given bound B. The set of prime ideals p1, . . . , pn with
N (pi) ≤ B is called the factor base, denoted by B.

A principal ideal (α) = pe11 · · · penn with α ∈ K that factors completely over
the factor base yields the relation (e1, . . . , en, log |α|). In the imaginary case, the
log |α| coefficients are not required and are ignored. The key to the index-calculus
approach is the fact, proved by Buchmann [5], that the set of all relations forms
a sublattice Λ ⊂ Zn × R of determinant h∆R∆ as long as the prime ideals in
the factor base generate Cl∆. This follows, in part, due to the fact that L, the
integer component of Λ, is the kernel of the homomorphism φ : Zn 7→ Cl∆ given
by pe11 · · · penn for (e1, . . . , en) ∈ Zn. The homomorphism theorem then implies
that Zn/L ∼= Cl∆. In the imaginary case, where the log |α| terms are omitted, the
relation lattice consists only of the integer part, and the corresponding results
were proved by Hafner and McCurley [12].

The main idea behind the algorithms described in [17] for solving the class
group and infrastructure discrete logarithm problems is to find random relations
until they generate the entire relation lattice Λ. Suppose A is a matrix whose
rows contain the integer coordinates of the relations, and v is a vector containing
the real parts. To check whether the relations generate Λ, we begin by computing
the Hermite normal form of A and then calculating its determinant, giving us a
multiple h of the class number h∆. We also compute a multiple of the regulator
R∆. Using the analytic class number formula and Bach’s L(1, χ)-approximation
method [1], we construct bounds such that h∆R∆ itself is the only integer mul-
tiple of the product of the class number and regulator satisfying h∗ < h∆ < 2h∗;
if hR satisfies these bounds, then h and R are the correct class number and
regulator and the set of relations given in A generates Λ.

A multiple R of the regulator R∆ can be computed either from a basis of the
kernel of the row-space of A (as in [17]) or by randomly sampling from the kernel
as described by Vollmer [27]. Every kernel vector x corresponds to a multiple of
the regulator via x ·v = mR∆. Given v and a set of kernel vectors, an algorithm
of Maurer [24, Sec 12.1] is used to compute the “real GCD” of the regulator
multiples with guaranteed numerical accuracy, where the real GCD of m1R∆

and m2R∆ is defined to be gcd(m1,m2)R∆.
To solve the discrete logarithm problem in Cl∆, we compute the structure

of Cl∆, i.e., integers m1, . . . ,mk with mi+1 | mi for i = 1, . . . , k − 1 such that
Cl∆ ∼= Z/m1Z×· · ·×Z/mkZ, and an explicit isomorphism from Zn to Z/m1Z×
· · · × Z/mk. Then, to compute x such that gx ∼ a, we find ideals equivalent
to g and a that factor over the factor base and maps these vectors in Zn to
Z/m1Z×· · ·×Z/mk, where the discrete logarithm problem can be solved easily.

To solve the infrastructure discrete logarithm problem for a, we find an ideal
equivalent to a that factors over the factor base. Suppose the factorization is
given by v ∈ Zn. Then, since L is the kernel of φ, if a is principal, v must be
a linear combination of the elements of L. This can be determined by solving
xA = v, where as before the rows of A are the vectors in L. Furthermore, we
have logα = x · v (mod R∆) is a solution to the infrastructure discrete loga-
rithm problem. The approximation of logα is computed to guaranteed numerical
accuracy using another algorithm of Maurer [24, Sec 5.5].

If it is necessary to verify the solvability of the problem instance, then one
must verify that the relations generate all of Λ, for example, as described above.
The best methods for this certification are conditional on the Generalized Rie-
mann Hypothesis, both for their expected running time and their correctness.
However, in a cryptographic application, it can safely be assumed that the prob-
lem instance does have a solution (for example, if it comes from the Diffie-
Hellman key exchange protocol), and simplifications are possible. In particular,
the correctness of the computed solution can be determined without certifying
that the relations generate Λ, for example, by verifying that gx = a. As a result,
the relatively expensive linear algebra required (computing Hermite normal form
and kernel of the row space) can be replaced by linear system solving.

In the imaginary case, if the discrete logarithm is known to exist, one can use
an algorithm due to Vollmer [26, 28]. Instead of computing the structure of Cl∆,
one finds ideals equivalent to g and a that factor over the factor base. Then,
combining these factorizations with the rest of the relations and solving a linear
system yields a solution of the discrete logarithm problem. If the linear system
cannot be solved, then the relations do not generate Λ, and the process is simply
repeated after generating some additional relations. The expected asymptotic
complexity of this method, under reasonable assumptions about the generation
of relations, is O(L|∆|[1/2, 3

√
2/4 + o(1)]) [28, 6], where

LN [e, c] = exp
(

c (logN)e(log logN)1−e
)

for e, c constants and 0 ≤ e ≤ 1. In practice, all the improvements to relation gen-
eration and simplifying the relation matrix described in [3] can be applied. When

using practical versions for generating relations, such as sieving as described in
[17], it is conjectured that the algorithm has complexity O(L|∆|[1/2, 1 + o(1)]).

In the real case, we also do not need to compute the Hermite normal form,
as only a multiple of R∆ suffices. The consequence of not certifying that we have
the true regulator is that the solutions obtained for the infrastructure discrete
logarithm problem may not be minimal. However, for cryptographic purposes
this is sufficient, as these values can still be used to break the corresponding
protocols in the same way that a non-minimal solution to the discrete loga-
rithm problem suffices to break group-based protocols. Thus, we use Vollmer’s
approach [27] based on randomly sampling from the kernel of A. This method
computes a multiple that is with high probability equal to the regulator in time
O(L|∆|[1/2, 3

√
2/4+ o(1)]) by computing the multiple corresponding to random

elements in the kernel of the row space of A. These random elements can also be
found by linear system solving. The resulting algorithm has the same complexity
as that in the imaginary case. In practice, all the improvements described in [4]
can be applied. When these are used, including sieving as described in [17], we
also conjecture that the algorithm has complexity O(L|∆|[1/2, 1 + o(1)]).

4 Implementation and Numerical Results

Our implementation takes advantage of the latest practical improvements in
ideal class group computation and regulator computation for quadratic number
fields, described in detail in [3, 4]. In the following, we give a brief outline of the
methods we used for the experiments described in this paper.

To speed up the relation collection phase, we combined the double large prime
variation with the self-initialized quadratic sieve strategy of [17], as descried in
[3]. This results in a considerable speed-up in the time required for finding a
relation, at the cost of a growth of the dimensions of the relation matrix. We
also used Bernstein’s batch smoothness test [2] to enhance the relation collection
phase as described in [4], by simultaneously testing residues produced by the
sieve for smoothness.

The algorithms involved in the linear algebra phase are highly sensitive to the
dimensions of the relation matrix. As the double large prime variation induces
significant growth in the dimensions of the relation matrix, one needs to perform
Gaussian elimination to reduce the number of columns in order to make the
linear algebra phase feasible. We used a graph-based elimination strategy first
described by Cavallar [9] for factorization, and then adapted by Biasse [3] to the
context of quadratic fields. At the end of the process, we test if the resulting
matrix Ared has full rank by reducing it modulo a word-sized prime. If not, we
collect more relation and repeat the algorithm.

For solving the discrete logarithm problem in the imaginary case, we imple-
mented the algorithm due to Vollmer [26, 28] . Given two ideals a and g such
that gx ∼ a for some integer x, we find two extra relations (e1, . . . , en, 1, 0) and

(f1, . . . , fn, 0, 1) such that pe11 · · · penn g ∼ (1) and p
f1
1 · · · pfnn a−1 ∼ (1) over the

extended factor base B ∪
{

g, a−1
}

. The extra relations are obtained by multi-
plying a−1 and g by random power products of primes in B and sieving with
the resulting ideal to find an equivalent ideal that is smooth over B. Once these
relations have been found, we construct the matrix

A′ :=















A (0)

e1 . . . en

f1 . . . fn

1 0

0 1















,

and solve the system xA′ = (0, . . . , 0, 1). The last coordinate of x necessar-
ily equals the discrete logarithm x. We used certSolveRedLong from the IML
library [10] to solve these linear systems.

As the impact of Vollmer’s and Bernstein’s algorithms on the overall time
for class group and discrete logarithm computation in the imaginary case had
not been studied, we provide numerical data in Table 1 for discriminants of size
between 140 and 220 bits. The timings, given in seconds, are averages of three
different random prime discriminants, obtained with 2.4 GHz Opterons with
8GB or memory. We denote by “DL” the discrete logarithm computation using
Vollmer’s method and by “CL” the class group computation. “CL Batch” and
“DL Batch” denote the times obtained when also using Bernstein’s algorithm.
We list the optimal factor base size for each algorithm and discriminant size
(obtained via additional numerical experiments), the time for each of the main
parts of the algorithm, and the total time. In all cases we allowed two large primes
and took enough relations to ensure that Ared have full rank. Our results show
that enhancing relation generation with Bernstein’s algorithm is beneficial in all
cases. In addition, using Vollmer’s algorithm for computing discrete logarithms
is faster than the approach of [17] that also requires the class group.

To solve the infrastructure discrete logarithm problem, we first need to com-
pute an approximation of the regulator. For this purpose, we used an improved
version of Vollmer’s system solving based algorithm [27] described by Biasse
and Jacobson [4]. In order to find elements of the kernel, the algorithm creates
extra relations ri, 0 ≤ i ≤ k for some small integer k (in our experiments, we
always have k ≤ 10). Then, we solve the k linear systems XiA = ri using the
function certSolveRedLong from the IML library [10]. We augment the matrix
A by adding the ri as extra rows, and augment the vectors Xi with k − 1 zero
coefficients and a −1 coefficient at index n+ i, yielding

A′ :=





A

ri



 , X ′
i :=

(

Xi 0 . . . 0 −1 0 . . . 0
)

.

The X ′
i are kernel vectors of A′, which can be used along with the vector v

containing the real parts of the relations, to compute a multiple of the regulator
with Maurer’s algorithm [24, Sec 12.1]. As shown in Vollmer [27], this multiple is

Table 1. Comparison between class group computation and Vollmer Algorithm

Size Strategy |B| Sieving Elimination Linear algebra Total

140

CL 200 2.66 0.63 1.79 5.08

CL Batch 200 1.93 0.65 1.78 4.36

DL 200 2.57 0.44 0.8 3.81

DL batch 200 1.92 0.41 0.76 3.09

160

CL 300 11.77 1.04 8.20 21.01

CL Batch 300 9.91 0.87 8.19 18.97

DL 350 10.17 0.73 2.75 13.65

DL batch 400 6.80 0.96 3.05 10.81

180

CL 400 17.47 0.98 12.83 31.28

CL Batch 400 14.56 0.97 12.9 28.43

DL 500 15.00 1.40 4.93 21.33

DL batch 500 11.35 1.34 4.46 17.15

200

CL 800 158.27 7.82 81.84 247.93

CL Batch 800 133.78 7.82 81.58 223.18

DL 1000 126.61 9.9 21.45 157.96

DL batch 1100 85.00 11.21 26.85 123.06

220

CL 1500 619.99 20.99 457.45 1098.43

CL Batch 1500 529.59 19.56 447.29 996.44

DL 1700 567.56 27.77 86.38 681.71

DL batch 1600 540.37 24.23 73.76 638.36

equal to the regulator with high probability. In [4], it is shown that this method is
faster than the one requiring a kernel basis because it only requires the solution
to a few linear systems, and it can be adapted in such a way that the linear
system involves Ared.

Our algorithm to solve the infrastructure discrete logarithm problem also
makes use of the system solving algorithm. The input ideal a is first decomposed
over the factor base, as in the imaginary case, yielding the factorization a =
(γ)p1

e1 · · · pnen . Then, we solve the system xA = (e1, . . . , en) and compute a
numerical approximation to guaranteed precision of log |α| modulo our regulator
multiple using Maurer’s algorithm [24, Sec 5.5] from γ, the coefficients of x, and
the real parts of the relation stored in v.

The results of our experiments for the imaginary case are given in Table 2,
and for the real case in Table 3. They were obtained on 2.4 GHz Xeon with
2GB of memory. For each bit length of ∆, denoted by “size(∆),” we list the
average time in seconds required to solve an instance of the appropriate discrete
logarithm problem (t∆) and standard deviation (std). In the imaginary case, for
each discriminant size less than 220 bits, 14 instances of the discrete logarithm
problem were solved. For size 230 and 256 we solved 10, and for size 280 and 300
we solved 5 examples. In the real case, 10 instances were solved for each size up
to 256, 6 for size 280, and 4 for size 300.

Table 2. Average run times for the discrete logarithm problem in Cl∆, ∆ < 0

size(∆) t∆ (sec) std L|∆|[1/2,
√
2]/t∆ L|∆|[1/2, 1]/t∆

140 7.89 2.33 6.44 × 108 1.79 × 108

142 8.80 1.90 7.01 × 108 1.93 × 108

144 9.91 3.13 7.55 × 108 2.06 × 108

146 10.23 1.69 8.86 × 108 2.39 × 108

148 11.80 3.45 9.29 × 108 2.48 × 108

150 12.88 2.66 10.28 × 108 2.71 × 108

152 14.42 3.38 11.09 × 108 2.89 × 108

154 17.64 5.61 10.93 × 108 2.82 × 108

156 22.06 5.57 10.53 × 108 2.69 × 108

158 28.74 12.11 9.73 × 108 2.46 × 108

160 27.12 8.77 12.39 × 108 3.10 × 108

162 32.72 15.49 12.34 × 108 3.05 × 108

164 31.08 6.85 15.58 × 108 3.82 × 108

166 41.93 14.65 13.85 × 108 3.36 × 108

168 51.92 16.51 13.39 × 108 3.21 × 108

170 59.77 15.42 13.92 × 108 3.30 × 108

172 68.39 17.79 14.54 × 108 3.42 × 108

174 99.20 62.61 11.97 × 108 2.78 × 108

176 124.86 80.29 11.35 × 108 2.61 × 108

178 140.50 55.41 12.03 × 108 2.74 × 108

180 202.42 145.98 9.94 × 108 2.24 × 108

182 166.33 63.91 14.40 × 108 3.22 × 108

184 150.76 58.37 18.90 × 108 4.18 × 108

186 198.72 63.23 17.04 × 108 3.73 × 108

188 225.90 94.94 17.79 × 108 3.86 × 108

190 277.67 234.93 17.17 × 108 3.69 × 108

192 348.88 134.36 16.20 × 108 3.45 × 108

194 395.54 192.26 16.93 × 108 3.57 × 108

196 547.33 272.83 14.48 × 108 3.02 × 108

198 525.94 153.63 17.83 × 108 3.68 × 108

200 565.43 182.75 1.96 × 109 4.01 × 108

202 561.36 202.80 2.33 × 109 4.73 × 108

204 535.29 205.68 2.89 × 109 5.80 × 108

206 776.64 243.35 2.35 × 109 4.67 × 108

208 677.43 200.08 3.17 × 109 6.25 × 108

210 1050.64 501.31 2.41 × 109 4.70 × 108

212 1189.71 410.98 2.50 × 109 4.84 × 108

214 1104.83 308.57 3.17 × 109 6.07 × 108

216 1417.64 352.27 2.90 × 109 5.51 × 108

218 2185.80 798.95 2.21 × 109 4.16 × 108

220 2559.79 1255.94 2.22 × 109 4.13 × 108

230 3424.40 1255.94 3.66 × 109 6.52 × 108

256 22992.70 13062.14 4.00 × 109 6.36 × 108

280 88031.08 34148.54 6.09 × 109 8.76 × 108

300 702142.20 334566.51 3.16 × 109 4.19 × 108

Table 3. Average run times for the infrastructure discrete logarithm problem.

size(∆) t∆ (sec) std L|∆|[1/2,
√
2]/t∆ L|∆|[1/2, 1]/t∆

140 11.95 3.13 4.25 × 108 1.18 × 108

142 12.47 2.06 4.95 × 108 1.36 × 108

144 15.95 5.79 4.69 × 108 1.28 × 108

146 14.61 2.94 6.20 × 108 1.67 × 108

148 17.05 3.46 6.43 × 108 1.71 × 108

150 21.65 4.55 6.12 × 108 1.61 × 108

152 25.65 7.15 6.23 × 108 1.63 × 108

154 29.01 6.97 6.65 × 108 1.72 × 108

156 27.52 4.79 8.44 × 108 2.16 × 108

158 33.59 8.80 8.32 × 108 2.10 × 108

160 36.27 12.28 9.27 × 108 2.32 × 108

162 43.55 10.73 9.27 × 108 2.29 × 108

164 49.37 11.76 9.81 × 108 2.40 × 108

166 59.73 17.18 9.72 × 108 2.36 × 108

168 73.66 18.56 9.44 × 108 2.26 × 108

170 75.50 19.80 1.10 × 109 2.62 × 108

172 101.00 20.84 9.85 × 108 2.31 × 108

174 94.80 38.87 1.25 × 109 2.91 × 108

176 106.30 23.77 1.33 × 109 3.07 × 108

178 149.70 44.04 1.13 × 109 2.57 × 108

180 132.70 30.25 1.52 × 109 3.42 × 108

182 178.80 25.67 1.34 × 109 2.99 × 108

184 211.40 52.14 1.35 × 109 2.98 × 108

186 258.20 110.95 1.31 × 109 2.87 × 108

188 352.70 94.50 1.14 × 109 2.47 × 108

190 290.90 46.57 1.64 × 109 3.52 × 108

192 316.80 51.75 1.78 × 109 3.80 × 108

194 412.90 71.90 1.62 × 109 3.42 × 108

196 395.40 94.71 2.00 × 109 4.18 × 108

198 492.30 156.69 1.90 × 109 3.94 × 108

200 598.90 187.19 1.85 × 109 3.79 × 108

202 791.40 285.74 1.65 × 109 3.35 × 108

204 888.10 396.85 1.74 × 109 3.49 × 108

206 928.40 311.37 1.96 × 109 3.90 × 108

208 1036.10 260.82 2.07 × 109 4.08 × 108

210 1262.30 415.32 2.00 × 109 3.91 × 108

212 1582.30 377.22 1.88 × 109 3.64 × 108

214 1545.10 432.42 2.27 × 109 4.34 × 108

216 1450.80 453.85 2.84 × 109 5.39 × 108

218 2105.00 650.64 2.30 × 109 4.32 × 108

220 2435.70 802.57 2.33 × 109 4.34 × 108

230 5680.90 1379.94 2.21 × 109 3.93 × 108

256 29394.01 7824.15 3.13 × 109 4.98 × 108

280 80962.80 27721.01 6.62 × 109 9.52 × 108

300 442409.00 237989.12 5.01 × 109 6.64 × 108

For the extrapolations in the next section, we need to have a good estimate
of the asymptotic running time of the algorithm. As described in the previous
section, the best proven run time is O(L|∆|[1/2, 3

√
2/4 + o(1)], but as we use

sieving to generate relations, this can likely be reduced to O(L|∆|[1/2, 1+o(1)]).
To test which running time is most likely to hold for the algorithm we imple-
mented, we list L|∆|[1/2, 3

√
2/4]/t∆ and L|∆|[1/2, 1]/t∆ in Table 2 and Table 3.

In both cases, our data supports the hypothesis that the run time of our al-
gorithm is indeed closer to O(L|∆|[1/2, 1 + o(1)]), with the exception of a few
outliers corresponding to instances where only a few instances of the discrete
logarithm were computed for that size,

5 Security Estimates

General purpose recommendations for securely choosing discriminants for use in
quadratic field cryptography can be found in [14] for the imaginary case and [18]
for the real case. In both cases, it usually suffices to use prime discriminants,
as this forces the class number h∆ to be odd. In the imaginary case, one then
relies on the Cohen-Lenstra heuristics [11] to guarantee that the class number is
not smooth with high probability. In the real case, one uses the Cohen-Lenstra
heuristics to guarantee that the class number is very small (and that the infras-
tructure is therefore large) with high probability.

Our goal is to estimate what bit lengths of appropriately-chosen discrimi-
nants, in both the imaginary and real cases, are required to provide approxi-
mately the same level of security as the RSA moduli recommended by NIST
[25]. The five security levels recommended by NIST correspond to using secure
block ciphers with keys of 80, 112, 128, 192, and 256 bits. The estimates used
by NIST indicate that RSA moduli of size 1024, 2048, 3072, 7680, and 15360
should be used.

To estimate the required sizes of discriminants, we follow the approach of
Hamdy and Möller [14], who provided such estimates for the imaginary case. Our
results update these in the sense that our estimates are based on our improved
algorithms for solving the discrete logarithms in quadratic fields, as well as the
latest data available for factoring large RSA moduli. Our estimates for real
quadratic fields are the first such estimates produced.

Following, Hamdy and Möller, suppose that an algorithm with asymptotic
running time LN [e, c] runs in time t1 on input N1. Then, the running time t2 of
the algorithm on input N2 can be estimated using the equation

LN1
[e, c]

LN2
[e, c]

=
t1
t2

. (1)

We can also use the equation to estimate an input N2 that will cause the algo-
rithm to have running time t2, again given the time t1 for input N1.

The first step is to estimate the time required to factor the RSA numbers
of the sizes recommended by NIST. The best algorithm for factoring large inte-
gers is the generalized number field sieve [22], whose asymptotic running time

is heuristically LN [1/3, 3

√

64/9 + o(1)]. To date, the largest RSA number fac-
tored is RSA-768, a 768 bit integer [21]. It is estimated in [21] that the total
computation required 2000 2.2 GHz AMD Opteron years. As our computations
were performed on a different architecture, we follow Hamdy and Möller and use
the MIPS-year measurement to provide an architecture-neutral measurement.
In this case, assuming that a 2.2 GHz AMD Opteron runs at 4400 MIPS, we
estimate that this computation took 8.8× 106 MIPS-years. Using this estimate
in conjunction with (1) yields the estimated running times to factor RSA moduli
of the sizes recommended by NIST given in Table 4. When using this method,
we use N1 = 2768 and N2 = 2b, where b is the bit length of the RSA moduli for
which we compute a run time estimate.

The second step is to estimate the discriminant sizes for which the discrete
logarithm problems require approximately the same running time. The results
in Table 2 and Table 3 suggest that LN [1/2, 1 + o(1)] is a good estimate of the
asymptotic running time for both algorithms. Thus, we use LN [1/2, 1] in (1), as
ignoring the o(1) results in a conservative under-estimate of the actual running
time. For N1 and t1, we take the largest discriminant size in each table for
which at least 10 instances of the discrete logarithm problem were run and the
corresponding running time (in MIPS-years); thus we used 256 in the imaginary
case and 230 in the real case. We take for t2 the target running time in MIPS-
years. To convert the times in seconds from Table 2 and Table 3 to MIPS-years,
we assume that the 2.4 GHz Intel Xeon machine runs at 4800 MIPS. To find the
corresponding discriminant size, we simply find the smallest integer b for which
L2b [1/2, 1] > LN1

[1/2, 1]t2/t1.
Our results are listed in Table 4. We list the size in bits of RSA moduli

(denoted by “RSA”), discriminants of imaginary quadratic fields (denoted by
“∆ (imaginary)”), and real quadratic fields (denoted by “∆ (real”) for which
factoring and the quadratic field discrete logarithm problems all have the same
estimated running time. For comparison purposes, we also list the discriminant
sizes recommended in [14], denoted by “∆ (imaginary, old).” Note that these
estimates were based on different equivalent MIPS-years running times, as the
largest factoring effort at the time was RSA-512. In addition, they are based on
an implementation of the imaginary quadratic field discrete logarithm algorithm
from [17], which is slower than the improved version from this paper. Conse-
quently, our security parameter estimates are slightly larger than those from
[14]. We note also that the recommended discriminant sizes are slightly smaller
in the real case, as the infrastructure discrete logarithm problem requires more
time to solve on average than the discrete logarithm in the imaginary case.

6 Conclusions

It is possible to produce more accurate security parameter estimates by taking
more factors into account as is done, for example, by Lenstra and Verheul [23], as
well as using a more accurate performance measure than MIPS-year. However,
our results nevertheless provide a good rough guideline on the required discrim-

Table 4. Security Parameter Estimates

RSA ∆ (imaginary, old) ∆ (imaginary) ∆ (real) Est. run time (MIPS-years)

768 540 640 634 8.80× 106

1024 687 798 792 1.07 × 1010

2048 1208 1348 1341 1.25 × 1019

3072 1665 1827 1818 4.74 × 1025

7680 0 3598 3586 1.06 × 1045

15360 0 5971 5957 1.01 × 1065

inant sizes that is likely sufficiently accurate in the inexact science of predicting
security levels.

It would also be of interest to conduct a new comparison of the efficiency of
RSA as compared to the cryptosystems based on quadratic fields. Due to the dif-
ferences in the asymptotic complexities of integer factorization and the discrete
logarithm problems in quadratic fields, it is clear that there is a point where
the cryptosystems based on quadratic fields will be faster than RSA. However,
ideal arithmetic is somewhat more complicated than the simple integer arith-
metic required for RSA, and in fact Hamdy’s conclusion [13] was that even with
smaller parameters, cryptography using quadratic fields was not competitive at
the security levels of interest. There have been a number of recent advances in
ideal arithmetic in both the imaginary and real cases (see, for example, [16] and
[19]) that warrant revisiting this issue.

References

1. E. Bach, Explicit bounds for primality testing and related problems, Math. Comp.
55 (1990), no. 191, 355–380.

2. D. Bernstein, How to find smooth parts of integers, submitted to Mathematics of
Computation.

3. J.-F. Biasse, Improvements in the computation of ideal class groups of imaginary
quadratic number fields, To appear in Advances in Mathematics of Communi-
cations, see http://www.lix.polytechnique.fr/~biasse/papers/biasseCHILE.

pdf.

4. J.-F. Biasse and M. J. Jacobson, Jr., Practical improvements to class group and
regulator computation of real quadratic fields, 2010, To appear in ANTS 9.

5. J. Buchmann, A subexponential algorithm for the determination of class groups and
regulators of algebraic number fields, Séminaire de Théorie des Nombres (Paris),
1988–89, pp. 27–41.

6. J. Buchmann and U. Vollmer, Binary quadratic forms: An algorithmic approach,
Algorithms and Computation in Mathematics, vol. 20, Springer-Verlag, Berlin,
2007.

7. J. Buchmann and H. C. Williams, A key-exchange system based on imaginary
quadratic fields, Journal of Cryptology 1 (1988), 107–118.

8. , A key-exchange system based on real quadratic fields, CRYPTO ’89, Lec-
ture Notes in Computer Science, vol. 435, 1989, pp. 335–343.

9. S. Cavallar, Strategies in filtering in the number field sieve, ANTS-IV: Proceedings
of the 4th International Symposium on Algorithmic Number Theory, Lecture Notes
in Computer Science, vol. 1838, Springer-Verlag, 2000, pp. 209–232.

10. Z. Chen, A. Storjohann, and C. Fletcher, IML: Integer Matrix Library, available
at http://www.cs.uwaterloo.ca/~z4chen/iml.html, 2007.

11. H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields,
Number Theory, Lecture Notes in Math., vol. 1068, Springer-Verlag, New York,
1983, pp. 33–62.

12. J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm for compu-
tation of class groups, J. Amer. Math. Soc. 2 (1989), 837–850.

13. S. Hamdy, Über die Sicherheit und Effizienz kryptografischer Verfahren mit Klas-
sengruppen imaginär-quadratischer Zahlkörper, Ph.D. thesis, Technische Univer-
sität Darmstadt, Darmstadt, Germany, 2002.

14. S. Hamdy and B. Möller, Security of cryptosystems based on class groups of imagi-
nary quadratic orders, Advances in Cryptology - ASIACRYPT 2000, Lecture Notes
in Computer Science, vol. 1976, 2000, pp. 234–247.

15. D. Hühnlein, M. J. Jacobson, Jr., and D. Weber, Towards practical non-interactive
public-key cryptosystems using non-maximal imaginary quadratic orders, Designs,
Codes and Cryptography 30 (2003), no. 3, 281–299.

16. L. Imbert, M. J. Jacobson, Jr., and A. Schmidt, Fast ideal cubing in imaginary
quadratic number and function fields, To appear in to Advances in Mathematics of
Communication, 2010.

17. M. J. Jacobson, Jr., Computing discrete logarithms in quadratic orders, Journal of
Cryptology 13 (2000), 473–492.

18. M. J. Jacobson, Jr., R. Scheidler, and H. C. Williams, The efficiency and security
of a real quadratic field based key exchange protocol, Public-Key Cryptography and
Computational Number Theory (Warsaw, Poland), de Gruyter, 2001, pp. 89–112.

19. , An improved real quadratic field based key exchange procedure, Journal of
Cryptology 19 (2006), 211–239.

20. M. J. Jacobson, Jr. and H. C. Williams, Solving the Pell equation, CMS Books in
Mathematics, Springer-Verlag, 2009, ISBN 978-0-387-84922-5.

21. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zim-
merman, Factorization of a 768-bit RSA modulus, Eprint archive no. 2010/006,
2010.

22. A. K. Lenstra and H. W. Lenstra, Jr., The development of the number field sieve,
Lecture Notes in Mathematics, vol. 1554, Springer-Verlag, Berlin, 1993.

23. A. K. Lenstra and E. Verheul, Selecting cryptographic key sizes, Proceedings of
Public Key Cryptography 2000, Lecture Notes in Computer Science, vol. 1751,
2000, pp. 446–465.

24. M. Maurer, Regulator approximation and fundamental unit computation for real-
quadratic orders, Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Ger-
many, 2000.

25. National Institute of Standards and Technology (NIST), Recommendation for
Key Management — Part 1: General (Revised), NIST Special Publication 800-
57, March, 2007, see: http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1_3-8-07.pdf.

26. U. Vollmer, Asymptotically fast discrete logarithms in quadratic number fields, Al-
gorithmic Number Theory — ANTS-IV, Lecture Notes in Computer Science, vol.
1838, 2000, pp. 581–594.

27. , An accelerated Buchmann algorithm for regulator computation in real
quadratic fields, Algorithmic Number Theory — ANTS-V, Lecture Notes in Com-
puter Science, vol. 2369, 2002, pp. 148–162.

28. , Rigorously analyzed algorithms for the discrete logarithm problem in
quadratic number fields, Ph.D. thesis, Technische Universität Darmstadt, 2003.

