8 research outputs found

    Minkowski sum of HV-polytopes in Rn

    Full text link
    Minkowski sums cover a wide range of applications in many different fields like algebra, morphing, robotics, mechanical CAD/CAM systems ... This paper deals with sums of polytopes in a n dimensional space provided that both H-representation and V-representation are available i.e. the polytopes are described by both their half-spaces and vertices. The first method uses the polytope normal fans and relies on the ability to intersect dual polyhedral cones. Then we introduce another way of considering Minkowski sums of polytopes based on the primal polyhedral cones attached to each vertex.Comment: 4th Annual International Conference on Computational Mathematics, Computational Geometry and Statistics, Jan 2015, Singapore, Singapor

    Tolerance Analysis by Polytopes

    Full text link
    To determine the relative position of any two surfaces in a system, one approach is to useoperations (Minkowski sum and intersection) on sets of constraints. These constraints aremade compliant with half-spaces of R^n where each set of half-spaces defines an operandpolyhedron. These operands are generally unbounded due to the inclusion of degrees ofinvariance for surfaces and degrees of freedom for joints defining theoretically unlimiteddisplacements. To solve operations on operands, Minkowski sums in particular, "cap" halfspacesare added to each polyhedron to make it compliant with a polytope which is bydefinition a bounded polyhedron. The difficulty of this method lies in controlling the influenceof these additional half-spaces on the topology of polytopes calculated by sum or intersection.This is necessary to validate the geometric tolerances that ensure the compliance of amechanical system in terms of functional requirements

    Influence des défauts de forme sur le comportement des liaisons (étude expérimentale et théorique)

    Get PDF
    L objectif de l étude est d identifier le comportement des liaisons d un mécanisme du point de vue des déplacements en fonction des défauts de forme et des jeux. Le sujet est abordé selon une approche théorique et une approche expérimentale.La partie théorique montre la dualité entre les deux concepts utilisés : le domaine jeu et la surface convexe des différences. Elle montre également la typologie des domaines et l influence des incertitudes de forme sur ces domaines.En parallèle, un dispositif expérimental est développé. Il permet, non seulement, de réaliser la mesure des déplacements dans la liaison avec l exactitude nécessaire, mais aussi, de valider les résultats par une simulation de l assemblage à partir de la mesure 3D des surfaces en contact. L expérimentation porte sur plusieurs couples de surfaces comportant des défauts de forme de différents types. L'influence d'un chargement mécanique est étudiée afin de quantifier les déformations locales de surfaces de contact et l'évolution des écarts de position entre les pièces.The aim of the study is to identify, in terms of displacements, the joint behavior of a mechanism in function of form defects and gaps. Two approaches are proposed : a theoretical approach and an experimental one.The theoretical part presents the duality between the two concepts used in the experimental approach : gap hull and convex difference surface. It outlines also the typology of gap hulls and the influence of the form uncertainties on gap hulls.In parallel, an experimental device is developed. It allows, not only, to carry out the measure of displacements in the joint with the necessary accuracy, but also, to validate the results by an assembly simulation from the 3D measurement of the surfaces in contact. The experimentation involves several pairs of surfaces with different types of form defects. The influence of mechanical loads is studied in order to quantify the local deformation of the surfaces in contact and the evolution of location deviations between these surfaces.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Contribution à l'analyse des tolérances géométriques d'un système mécanique par des polytopes

    Get PDF
    L'analyse des tolérances géométriques d'un système mécanique consiste à simuler la vérification de la conformité d'un système mécanique au regard des exigences fonctionnelles caractérisant le fonctionnement attendu du système. Cette vérification impose de prendre en compte les spécifications géométriques des pièces constitutives et les spécifications entre les pièces potentiellement en contact.Je me suis plus particulièrement focalisé sur la simulation de l'analyse des tolérances géométriques par une approche variationnelle (collaboration laboratoire MAP5, Université Paris Descartes). Une approche variationnelle consiste à ne manipuler que des contraintes caractérisant les variations géométriques entre des surfaces d'une même pièce et entre des surfaces de pièces potentiellement en contact. Cela permet de modéliser la variabilité des défauts géométriques inhérents à tout procédé de fabrication de pièces, inhérents à tout procédé d’assemblage et aussi inhérent au comportement d’un système mécanique, par exemple son comportement thermomécanique (thèse Laurent Pierre). La conformité d'un système mécanique doit être assurée pour plusieurs exigences fonctionnelles. D'autre part, une démarche d'analyse de tolérances réalisées à un stade très avancé du cycle de conception peut constater des non conformités sans pour autant influencer les différents choix d'architectures d'un système, ainsi que les formes et dimensions des pièces constitutives. Ce problème est souvent la cause de l'augmentation des délais et des coûts de développement d'un produit.Cela m'a conduit à m'orienter vers la structuration des données pour le tolérancement dans un modèle produit pour identifier les données manipulées en analyse de tolérances (thèse Jérôme Dufaure). La formalisation d'une activité de transfert de spécifications géométriques a mis en évidence la nécessité d'assurer la traçabilité des spécifications géométriques pour : couvrir le cycle de conception (aspect multi niveaux du cycle de conception d'un produit) partager les données manipulées avec d'autres expertises métiers (aspect multi vues du cycle de conception d'un produit). Le transfert d'une exigence fonctionnelle doit donc être réalisé à travers différents niveaux de détails du produit (transfert interniveaux) et également entre différentes expertises métiers liés à la fabrication, l'assemblage et la métrologie (transfert intervues). Une tentative d'extension des concepts de transfert de spécifications techniques liées au produit sur des spécifications organisationnelles inhérentes à l'entreprise assurant la conception du produit a été réalisée (thèse manuel Gonçalves). Enfin, une opportunité industrielle fortement stimulée par le contexte aquitain incitant les acteurs du pôle Aerospace Valley à développer des compétences liées aux matériaux composites, m'a conduit à aborder la problématique d'analyse de tolérances pour la fabrication liée au procédé Resin Transfer Molding (RTM) (thèse Serge Mouton). Dans un procédé impliquant des phénomènes physiques extrêmement complexes, les spécifications fonctionnelles d'une pièce de structure aéronautique ont été corrélés à des spécifications de fabrication (spécifications d'outillages, spécifications de pression d'injection et de température ...). Dans ce type travail, il n'est plus possible de travailler avec des modèles de solides infiniment rigides comme souvent en tolérancement de fabrication restreint aux procédés d'usinage. Mon activité de recherche peut donc se résumer par le développement d'une approche variationnelle de l'analyse des tolérances géométriques de systèmes de solides infiniment rigides et de systèmes dont les variations d'origine thermomécanique sont prises en comptes.Cette approche variationnelle m'a amené à considérer la problématique de structuration des données pour le tolérancement en se focalisant sur la traçabilité des spécifications d'un point de vue interniveaux et intervues. Enfin, le transfert de spécifications fonctionnelles d'une pièce élaborée par le procédé RTM a été considéré pour aborder la corrélation de spécifications fonctionnelles avec les spécifications inhérentes au procédé RTM

    Stratégies de mise en oeuvre des polytopes en analyse de tolérance

    Get PDF
    In geometric tolerancing analysis area, a classical approach consists in handling polyhedrons coming from sets of linear constraints. The relative position between any two surfaces of a mechanism is determined by operations (Minkowski sum and intersection) on these polyhedrons. The polyhedrons are generally unbounded due to the inclusion of degrees of invariance for surfaces and degrees of freedom for joints defining theoretically unlimited displacements.In a first part are introduced the cap half-spaces to limit these displacements in order to transform the polyhedron into polytopes. This method requires controlling the influence of these additional half-spaces on the topology of calculated polytopes. This is necessary to ensure the traceability of these half-spaces through the tolerancing analysis process.A second part provides an inventory of the issues related to the numerical implementation of polytopes. One of them depends on the choice of a computation configuration (expression point and base, homogenization coefficients) to define a polytope. After proving that the modification of a computation configuration is an affine transformation, several simulation strategies are listed in order to understand the problems of numerical precision and computation time.En analyse de tolérances géométriques, une approche consiste à manipuler des polyèdres de R' issus d’ensembles de contraintes linéaires. La position relative entre deux surfaces quelconques d'un mécanisme est déterminée par des opérations (somme de Minkowski et intersection) sur ces polyèdres. Ces polyèdres ne sont pas bornés selon les déplacements illimités dus aux degrés d’invariance des surfaces et aux degrés de liberté des liaisons.Dans une première partie sont introduits des demi-espaces "bouchons" destinés à limiter ces déplacements afin de transformer les polyèdres en polytopes. Cette méthode implique de maîtriser l’influence des demi-espaces bouchons sur la topologie des polytopes résultants. Ceci est primordial pour garantir la traçabilité de ces demi-espaces dans le processus d’analyse de tolérances.Une seconde partie dresse un inventaire des problématiques de mise en oeuvre numérique des polytopes. L’une d’entre elles repose sur le choix d’une configuration de calcul (point et base d’expression, coefficients d’homogénéisation) pour définir un polytope. Après avoir montré que le changement de configuration de calcul est une transformation affine, plusieurs stratégies de simulations sont déclinées afin d’appréhender les problèmes de précision numérique et de temps de calculs

    Aide au tolérancement tridimensionnel (modèle des domaines)

    Get PDF
    Face à la demande de plus en plus exigeante en terme de qualité et de coût de fabrication des produits manufacturés, la qualification et quantification optimal des défauts acceptables est primordial. Le tolérancement est le moyen de communication permettant de définir les variations géométriques autorisé entre les différents corps de métier intervenant au cours du cycle de fabrication du produit. Un tolérancement optimal est le juste compromis entre coût de fabrication et qualité du produit final. Le tolérancement repose sur 3 problématiques majeures: la spécification (normalisation d'un langage complet et univoque), la synthèse et l'analyse de tolérances. Nous proposons dans ce document de nouvelles méthodes d'analyse et de synthèse du tolérancement tridimensionnel. Ces méthodes se basent sur une modélisation de la géométrie à l'aide de l'outil domaine jeux et écarts développé au laboratoire. La première étape consiste à déterminer les différentes topologies composant un mécanisme tridimensionnel. Pour chacune de ces topologies est définie une méthode de résolution des problématiques de tolérancement. Au pire des cas, les conditions de respect des exigences fonctionnelles se traduisent par des conditions d'existence et d'inclusions sur les domaines. Ces équations de domaines peuvent ensuite être traduites sous forme de système d'inéquations scalaires. L'analyse statistique s'appuie sur des tirages de type Monte-Carlo. Les variables aléatoires sont les composantes de petits déplacements des torseur écarts défini à l'intérieur de leur zone de tolérance (modélisée par un domaine écarts) et les dimensions géométriques fixant l'étendue des jeux (taille du domaine jeux associé). A l'issue des simulations statistiques, il est possible d'estimer le risque de non-qualité et les jeux résiduels en fonction du tolérancement défini. Le développement d'une nouvelle représentation des domaines jeux et écarts plus adapté, permet de simplifier les calculs relatifs aux problématiques de tolérancement. Le traitement local de chaque topologie élémentaire de mécanisme permet d'effectuer le traitement global des mécanismes tridimensionnels complexes avec prise en compte des jeux.As far as the demand in quality and cost of manufacturing increase, the optimal qualification and quantification of acceptable defects is essential. Tolerancing is the means of communication between all actors of manufacturing. An optimal tolerancing is the right compromise between manufacturing cost and quality of the final product. Tolerancing is based on three major issues: The specification (standardization of a complete and unequivocal language), synthesis and analysis of the tolerancing. We suggest in this thesis some new analysis and synthesis of the three-dimensional tolerancing. These methods are based on a geometric model define by the deviations and clearances domains developed on the laboratory. The first step consists in determining the elementary topology that composes a three-dimensional mechanism. For each kind of these topologies one resolution method is defined. In worst case, the condition of functional requirement respect is traduced by existence and inclusions conditions on the domains. Then these domains equations can be translated in inequalities system of scalar. The statistical analysis uses the Monte-Carlo simulation. The random variables are the small displacements components of the deviation torsor which is defined inside its tolerance area (model by a deviations domain) and the geometrics dimensions which set the extent of clearance (size of the clearance domain). Thanks to statistical simulation, it is possible to estimate the non-quality rate in regards to the defined tolerancing. The development of a new representation of clearances and deviations domains most suitable, allows us to simplify the calculation for tolerancing problems. The local treatment of elementary topology makes enables the global treatment of complex three-dimensional mechanisms with take into account of clearances.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore