958 research outputs found

    Design and Development of an Inspection Robotic System for Indoor Applications

    Get PDF
    The inspection and monitoring of industrial sites, structures, and infrastructure are important issues for their sustainability and further maintenance. Although these tasks are repetitive and time consuming, and some of these environments may be characterized by dust, humidity, or absence of natural light, classical approach relies on large human activities. Automatic or robotic solutions can be considered useful tools for inspection because they can be effective in exploring dangerous or inaccessible sites, at relatively low-cost and reducing the time required for the relief. The development of a paradigmatic system called Inspection Robotic System (IRS) is the main objective of this paper to demonstrate the feasibility of mechatronic solutions for inspection of industrial sites. The development of such systems will be exploited in the form of a tool kit to be flexible and installed on a mobile system, in order to be used for inspection and monitoring, possibly introducing high efficiency, quality and repetitiveness in the related sector. The interoperability of sensors with wireless communication may form a smart sensors tool kit and a smart sensor network with powerful functions to be effectively used for inspection purposes. Moreover, it may constitute a solution for a broad range of scenarios spacing from industrial sites, brownfields, historical sites or sites dangerous or difficult to access by operators. First experimental tests are reported to show the engineering feasibility of the system and interoperability of the mobile hybrid robot equipped with sensors that allow real-time multiple acquisition and storage

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Control System Development and Technological Investigation for a Climbing Robot in Offshore platforms

    Get PDF
    Denne oppgaven går gjennom forskjellige type teknologier for å utvikle en mobil offshore klatre robot

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Development of a Chain Climbing Robot and an Automated Ultrasound Inspection System for Mooring Chain Integrity Assessment

    Get PDF
    Mooring chains used to stabilise offshore floating platforms are often subjected to harsh environmental conditions on a daily basis, i.e. high tidal waves, storms etc. Chain breakage can lead to vessel drift and serious damage such as riser rupture, production shutdown and hydrocarbon release. Therefore, integrity assessment of chain links is vital, and regular inspection is mandatory for offshore structures. Currently, structural health monitoring of chain links is conducted using either remotely operated vehicles (ROVs), which are associated with high costs, or by manual means, which increases the risk to human operators. The development of climbing robots for mooring chain applications is still in its infancy due to the operational complexity and geometrical features of the chain. This thesis presents a Cartesian legged magnetic adhesion tracked-wheel crawler robot developed for mooring chain inspection. The crawler robot presented in this study is suitable for mooring chain climbing in air and the technique can be adapted for underwater use. The proposed robot addresses straight mooring chain climbing and a misaligned scenario that is commonly evident in in-situ conditions. The robot can be used as a platform to convey equipment, i.e. tools for non-destructive testing/evaluation applications. The application of ultrasound for in-service mooring chain inspection is still in the early stages due to lack of accessibility, in-field operational complexity and the geometrical features of mooring systems. With the advancement of robotic/automated systems (i.e. chain-climbing robotic mechanisms), interest in in-situ ultrasound inspection has increased. Currently, ultrasound inspection is confined to the weld area of the chain links. However, according to recent studies on fatigue and residual stresses, ultrasound inspection of the chain crown should be further investigated. A new automated application for ultrasonic phased-array full-matrix capture is discussed in this thesis for investigation of the chain crown. The concept of the chain-climbing robot and the inspection technique are validated with laboratory-based climbing experiments and presented in this thesis

    United States Department of Energy Integrated Manufacturing & Processing Predoctoral Fellowships. Final Report

    Full text link

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated
    • …
    corecore