
UNIVERSITY OF OSLO
Department of Informatics

Control System
Development and
Technological
Investigation for a
Climbing Robot in
Offshore platforms

Master Thesis

Akbar Faghihi
Moghaddam
(Shahab)

February 2012

Acknowledgment

To my parents & family . . .

I want to first of all thank my parents and family whose sacrifices allowed
me to be here and finish this work. I also want to specially thank my girlfriend,
Yao Wang, who supported and helped me during the whole process of this
work. In addition I would like to thank my supervisors and all those friends and
classmates, whose fruitful discussions inspired me through my work. My dear
classmates and close friends such as Magnus Lange, Mohammad Bagher (Puya)
Afsharian, Aryan Esfandiari and Ashkan Mardanpour. At the end I would like
to end this acknowledgment by mentioning my regards to Robotica Osloensis
robotics student community whose members and resources were always to my
help and inspiration.

Akbar Faghihi Moghaddam (Shahab), February 2011

i

Abstract

To improve human safety and environmental concerns, oil and gas industry is
interested in using remote and autonomous robots instead of human workers
on offshore platforms. This will also increase their revenue and allow oper-
ations in places where it is too difficult to operate in. This project is further
development of a custom climbing robot called Walloid at University of Oslo,
currently under development. Walloid is a 4 arm climbing robot with arms
and grippers designed for possible later usage in offshore platforms. Through
this project, as a contribution to the Walloid project, an end effector with grip-
ping functionality and three climbing gaits with focus on optimization of speed
were developed. Thereafter, the focus was on developing a control hardware
capable of handling 12 motors and 24 encoders simultaneously. To achieve
this a distributed embedded system consists of five micro-controllers (Arduino
boards with Atmega AVR 8 bit) was designed and implemented with two inter-
connection protocols (ZigBee and RS-232). Based on the hardware design, a
distributed control algorithm was designed to implement the earlier developed
climbing gaits. This distributed navigation program supported remote control-
ling, semi-autonomy, repeating taught (logged) tasks, and power optimization
algorithms to put idle parts into sleep mode. Due to absence of the physical
robot, the evaluation of the work was done by self-developed simulation tools.

The power optimization algorithm, together with optimized climbing gaits
reduced the power consumption of the system significantly.

iii

Short Contents

Acknowledgment i

Abstract iii

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Summary . 3

2 Background 5
2.1 Previous Work . 5
2.2 Climbing Robots . 7
2.3 Automation and Smart Agents . 9
2.4 Offshore Platforms, Challenges and Opportunities 15
2.5 Summary . 25

3 Walloid Robot 27
3.1 Ongoing Project . 28
3.2 Walloid Hardware Components . 28
3.3 Calculated Kinematics and Workspace 30
3.4 Review and Tech Upgrade of Walloid Robot 35
3.5 Summary . 39

4 Top Level Perspective 41
4.1 Top Down Objectives . 41
4.2 Analysis of offshore platforms as an area of application 42
4.3 Climbing Operation . 42
4.4 Control Hardware, a Distributed Embedded System (DES) 43
4.5 Control Algorithm, a Distributed Navigation Program (DNP) . . 43
4.6 Summary . 44

v

5 Development Process 47
5.1 Climbing Strategy and Design . 47
5.2 Control Hardware, the Distributed Embedded System 58
5.3 Distributed Embedded System Design 66
5.4 Control Algorithm . 75
5.5 Distributed Navigation Program (DNP) and Features 84
5.6 Simulation and conformability of data 92
5.7 Summary . 96

6 Implemented Control Systems and Results 99
6.1 Offshore Industry Point Of View 99
6.2 Climbing Operation Results . 100
6.3 Control Systems . 103
6.4 Simulation . 107
6.5 Summary . 108

7 Robustness Issues 111
7.1 List of Issues . 111
7.2 Blocked Paths . 112
7.3 Positioning after Improper Shutdowns 113
7.4 Passive Joint Control . 115
7.5 Power Interruption . 116
7.6 Instability / Current Orientation 118
7.7 Offline Modus, Network-less Operation 119
7.8 Security Concerns . 121
7.9 Summary . 122

8 Conclusion 123
8.1 Conclusion . 123
8.2 My Contribution . 124
8.3 Further Works . 125

A Interviews 126
A.1 Anders Røyrøy . 126

B Visual Reports 128
B.1 3D Designs . 128

C Remainings 133
C.1 Climbing Operation . 133
C.2 Hardware Issues . 138
C.3 Software Issues . 139

vi

D Source Code 144
D.1 Control program, Java . 144
D.2 Control algorithm, Arduino C . 173
D.3 Simulation, Processing . 192
D.4 Matlab, Workspace . 203

List of Figures 217

Bibliography 225

vii

Contents

Acknowledgment i

Abstract iii

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Summary . 3

2 Background 5
2.1 Previous Work . 5
2.2 Climbing Robots . 7
2.3 Automation and Smart Agents . 9

2.3.1 Autonomous Robots . 9
2.3.2 Artificial Intelligence Methods 11
2.3.3 Embedded Systems . 13

2.4 Offshore Platforms, Challenges and Opportunities 15
2.4.1 Motivations . 15
2.4.2 Automation Opportunities in Offshore Platforms 20
2.4.3 Challenges in Automation of Offshore Platforms 22

2.5 Summary . 25

3 Walloid Robot 27
3.1 Ongoing Project . 28
3.2 Walloid Hardware Components . 28

3.2.1 Encoder . 29
3.3 Calculated Kinematics and Workspace 30

3.3.1 One Arm, Three Prismatic Joints 31
3.3.2 Calculations . 31
3.3.3 Workspace . 34

3.4 Review and Tech Upgrade of Walloid Robot 35

viii

3.4.1 Adjoining Surface Climbing 36
3.4.2 Speed Issues . 36
3.4.3 Design, Material and Methods of Production 37

3.5 Summary . 39

4 Top Level Perspective 41
4.1 Top Down Objectives . 41
4.2 Analysis of offshore platforms as an area of application 42
4.3 Climbing Operation . 42
4.4 Control Hardware, a Distributed Embedded System (DES) 43
4.5 Control Algorithm, a Distributed Navigation Program (DNP) . . 43
4.6 Summary . 44

5 Development Process 47
5.1 Climbing Strategy and Design . 47

5.1.1 End Effectors . 47
5.1.2 Climbing Gaits . 50

5.2 Control Hardware, the Distributed Embedded System 58
5.2.1 On-board Motherboard . 58
5.2.2 Micro-controllers, the embedded system 60
5.2.3 Centralized vs. Distributed Embedded Systems 61
5.2.4 Arduino Boards, the chosen embedded system 63
5.2.5 Alternatives . 65

5.3 Distributed Embedded System Design 66
5.3.1 Cable Based Distribution 66
5.3.2 Wireless Distribution . 70

5.4 Control Algorithm . 75
5.4.1 Robot-Server-Client (RSC) Architecture and Development

Tools . 75
5.4.2 Hardware - Software Interaction 79
5.4.3 Development Process . 80

5.5 Distributed Navigation Program (DNP) and Features 84
5.5.1 DNP Positioning Logics . 84
5.5.2 Reading Sensor Data . 84
5.5.3 Power Optimizer Feature 85
5.5.4 Remote Control System . 87
5.5.5 Logging System . 88
5.5.6 Semi-Autonomous System 91

5.6 Simulation and conformability of data 92
5.6.1 Implemented Simulations 92
5.6.2 Conceptual Simulations . 95

ix

5.7 Summary . 96

6 Implemented Control Systems and Results 99
6.1 Offshore Industry Point Of View 99
6.2 Climbing Operation Results . 100
6.3 Control Systems . 103

6.3.1 Distributed Embedded System 103
6.3.2 Distributed Navigation Program 106

6.4 Simulation . 107
6.5 Summary . 108

7 Robustness Issues 111
7.1 List of Issues . 111
7.2 Blocked Paths . 112
7.3 Positioning after Improper Shutdowns 113

7.3.1 Zero Positioning . 113
7.3.2 Current Positioning, the software oriented approach . . . 114

7.4 Passive Joint Control . 115
7.5 Power Interruption . 116
7.6 Instability / Current Orientation 118
7.7 Offline Modus, Network-less Operation 119
7.8 Security Concerns . 121
7.9 Summary . 122

8 Conclusion 123
8.1 Conclusion . 123
8.2 My Contribution . 124
8.3 Further Works . 125

A Interviews 126
A.1 Anders Røyrøy . 126

B Visual Reports 128
B.1 3D Designs . 128

C Remainings 133
C.1 Climbing Operation . 133
C.2 Hardware Issues . 138
C.3 Software Issues . 139

x

D Source Code 144
D.1 Control program, Java . 144
D.2 Control algorithm, Arduino C . 173
D.3 Simulation, Processing . 192
D.4 Matlab, Workspace . 203

List of Figures 217

Bibliography 225

xi

Chapter 1

Introduction

A journey of a thousand miles begins with a single step.
Lao-tzu, The Way of Lao-tzu, a Chinese philosopher (604 BC - 531 BC)

1.1 Introduction

No one could set a price on human life, neither health, nor being away from
loved ones. Those who work in remote harsh working environments, endan-
ger their lives, risk their health and spend most of their time away from their
loved ones. Offshore platforms are one type of such working environment that
endanger lives (61 deaths in 2 last incidents) [1, 2]. This leads to an important
question:

how could this danger be eliminated?
On the other hand, in 2006, Norwegian Oil Industry Association (OLF), pub-

lished a report warning the offshore industry to start the process of Integrated
Operation, where the main goal was to move staff to onshore. The report stated
that in case of implementing this concept, they would face an increased revenue
by 41.4 billion dollars, or by keeping today’s trend face losing 10 billion dollars
from their potential income in Norwegian shelf [3].

Tail IO was a reply to such demands and 4 out of 6 sub-projects were about
robotics and ICT infrastructures in platforms (base for remote operation) [4].
This trend is not a local trend in Norwegian shelf as similar projects have started
all around the world (E.g. Smart Field (Shell), Field of future (British Petroleum),
i-field (Chevron) [5]. Robotic automation would be the key concept in such ap-
proaches as it could replace human workers onboard, allowing them to remote
control the process through fixed or mobile robots. Tail IO has created a unique
situation which today one could join extraction of petroleum in the North Sea,
while having plans for dinner with friends at home after work [6]. However,

1

this is only the start and this new trend of automation on topside requires new
technologies to be developed. [7]. Robotic automation with combination of re-
mote control and autonomous robots, if implemented correctly, could be the
right answer to the aforementioned question.

This work could be considered as an attempt in the same direction. Here
an attempt is made to contribute in further development of an ongoing cus-
tom robot project at University of Oslo called Walloid [8]. Walloid is a 4 arms
prototype climbing robot concept for offshore platforms. (figure 1.1). The nec-
essary remaining parts of this climbing robot project were developed. This was
done with regards to offshore platforms requirements and specifications gath-
ered from literature. The following points present features and areas of interest
in this work.

• Offshore automation, challenges and opportunities for robotic automa-
tion (section 2.4)

• Optimized climbing strategies for Walloid robot (section 4.3)

• Distributed Control Systems (DES) to navigate Walloid on vertical sur-
faces (sections 4.4 and 4.5)

1.2 Motivation

Personally I like creating new systems. Robotics combines different expertise in
order to make new systems and solve real world problems. In addition, robotics
saves lives by replacing humans in harsh environments. It also creates new op-
portunities by operating in areas that are not suitable for humans. Therefore, I
am highly motivated to study robotics and work on related projects. I also had a
weblog called Walloid during development of this project where I posted about
my activities and my experiences with differetn technologies. Project timeline,
animations of different climbing gaits, figures and web-based simulations can
be found on this weblog (http://walloid.blogspot.com) [9].

Moreover, oil and gas companies have become interested in developing new
technologies for platform’s topside automation [7]. As mentioned earlier, this
is due to the new demands in the industry. The final aim of such attempts
is to develop solid technologies, capable of automating processes in offshore
platforms (A.1) [4, 10, 11]. Motivations of the industry for such interests could
be categorized in following way:

• Cost and production efficiency of automation / integrated operation (2.4.1)

2

Figure 1.1: Walloid Robot, an ongoing project at ROBIN group, University of Oslo

• Better Health, Safety and Environment (HSE) (2.4.1)

• Future platforms could not be built without newer technologies 2.4.1

1.3 Summary

This work is divided into eight chapters. These chapters give an introduction
and top-down perspective to what is done during the whole process. Later de-
tailed development process and result are presented. Chapter 2, named Back-
ground, goes through technologies used in this work, where different aspects of
these technologies are discussed. Topics such as climbing robots, automation,
artificial intelligence (AI) issues, and embedded system design are discussed
during this chapter. This chapter also contains an analysis of offshore platform
challenges and possibilities for automation purposes. This is done by study-

3

ing the current literature around the subject (articles, previous academic works,
governmental and industrial reports) (section 2.4). Chapter 3 is where a full
status of Walloid project, the unit under test and the framework of this work,
is presented and remaining topics are discussed. E.g. workspace and kine-
matics calculation are calculated. Chapter 4 presents a Top Level Perspective
of the practical work. This is an attempt to create a top-down view to give a
better overview of the later work. This plan is based on missing parts in Wal-
loid project and the focus areas are climbing operation and control systems. In
addition, it is decided to have an analysis of offshore platforms to have a bet-
ter perspective toward this area of application (already presented in chapter
2). Chapter 5, called Development Process, is the most challenging and longest
chapter of this report as it goes into details of all development processes (devel-
opment of climbing strategies, control hardware and algorithm) through this
work. Climbing gaits, design of end effector, Distributed Embedded System
(hardware) and Distributed Navigation Program are topics of this work. Finally
the topic of simulation is discussed, which tests system functionality and is the
virtual presentation of the work done. Chapter 6, Implemented Control System
and features, focuses on results achieved based on project objectives defined in
chapter 4. This time the content is presented from a bottom-up perspective by
going into details of results and charts and measurements around them. Chap-
ter 7, Robustness issues, simply tries to have a risk analysis of developed parts.
The concerns for improving the system robustness with solutions are presented
in this chapter.

This work is finalized in Chapter 8, which presents the conclusion and con-
tributions.

4

Chapter 2

Background

what is past is prologue.
William Shakespeare

Robots with that work, working in extreme and impossible conditions, cre-
ate new possibilities. The high production rate, high yield, relatively inexpen-
sive maintenance of robots and better HSE conditions are pushing industries
towards robot workers and automation of their production lines [12] [13] [14].
This trend has already started in many industries, and is expanding every-
day [12] [14]. The trend of robotizing daily lives does not stop there and lately
is has even reached homes by autonomous vacuum cleaner robots produced by
international scale companies, conquering the market (e.g. iRobot, Samsung,
LG, Electrolux, etc). This promises a bright future for customers robot market
and robotics technology as such companies invest money in developing new
solutions and technologies to do their tasks better. [15].

2.1 Previous Work

Many climbing robots are developed for different purposes in academia and
industry and several papers are dedicated to various types of efficient climbing
strategies and gait planning. The main focus in developing climbing robots is to
reduce the energy usage and balance the distribution of forces among the whole
robot chassis [16]. Areas of applications of climbing robots can vary from case to
case, but generally are categorized in inspection, verification and other services
functions (tasks such as cleaning, welding, painting, etc).

Although there are numerous works about climbing robots, very few are
specialized for offshore platforms. The offshore platforms are divided into two
main parts, topside and subsea. Due to the limitations of operating in deep

5

waters, since the 1950’s new subsea technologies and methods were developed
and have now reached a very stable level [17]. This was not done on topside
as changing the old routines were not necessary (automation) and lack of tech-
nology for operation in this section was never felt [18]. Based on earlier topics
in introduction and similar studies in this field [18], the interest in automation
in the industry is growing. Automation process for offshore platforms con-
tains its own properties, limitations and challenges. Such challenges include
extreme weather condition, vibration, and salt water, local banned radio spec-
trum, etc [11, 18].

Similar studies show a wide variation of opportunities for robotics automa-
tion (mobile and fixed) in offshore platforms [11, 18]. Same studies also under-
line that, looking closely at everyday work-plan of platform operators, most of
their time is used on walking around the platform, transportation, regular in-
spection, maintenance assignments and other repetitive jobs that could be taken
over by robots [11, 18]. Such works could have been done by inspection, mon-
itoring and detection robots equipped with proper sensors. It is important to
mention that the complexity arises when one moves from inspection robots to-
wards manipulator robots, especially mobile ones without a fixed origin. Such
approaches taken by industry could increase the revenue and HSE level of work
environment [3, 11, 18].

Many works and surveys have been done by governments and companies,
in order to implement a new organizational chart called Integrated Operation
[3]. The integrated operation tries to migrate the work force from offshore to
onshore, and get the work done by minimum onboard staff [6, 19] with helps
from remote operation, robotics and automation on the platforms [4, 19]. Based
on such studies, there are projects that are trying to implement these ideas. E.g.
TAIL Integrated Operation (TAIL IO), an ABB-led consortium attempting to de-
velop new technologies and work processes for StatoilHydro. The aim of this
consortium was to develop methods that could lead into an increase in pro-
duction rate, while decreasing the costs of production and maintenance, hu-
man safety and environment issues and finally prolonging the life time of plat-
forms [5]. However TAIL IO was not a direct attempt to automate the operation
on platforms, but an attempt to migrate the workforce from offshore facilities to
onshore, brining real time remote controlling to the platforms. To this, ICT in-
frastructures were implemented that can be easily used as the base of real time
controlling and automation in future (ICT infrastructure, Robotics on platforms,
live streaming of sensors data to the experts, etc) [5]. This was a strategic step
toward an automated future in oil and gas industry.

6

2.2 Climbing Robots

Climbing robots are a type of man-made intelligent machine with the ability to
climb vertical surfaces [20]. The maturity and stability of climbing technologies
have resulted in increasing numbers of climbing robots in industrial applica-
tions that help human workers in areas which is impossible, dangerous or too
difficult for them to operate. Such operations are done either by remote con-
trol or automated methods. It is very challenging to develop fully autonomous
robots for sensitive and complex tasks (too many unplanned events), but re-
motely controlled systems could have been much more reliable. There is also
a middle solution called a semi-autonomous approach where tasks are auto-
mated, but very complex and sensitive operations are dependent on the opera-
tor [21].

Figure 2.1:
left to right Max V a chain-driven climber using vacuum cups, developed at Univer-
sity of Aalen - Rest six legged welding robot using magnetic force, Developed at CSIC
Madrid - Roma grasping robot, specialized for inspection in steel bridge, developed at
University of Madrid

The Climbing operation in nature is done mainly in two different methods:

• Quasistatic: Using slow static motion in locomotion to climb.

• Dynamic: Using fast dynamic motion in locomotion to climb.

Most of climbing animals (e.g. chimpanzee) and human use dynamic climb-
ing method to climb. There are also animals that naturally use quasistatic slow
climbing method (e.g. sloth). Dynamic climbers are fast and can overcome most

7

obstacles. On the other hand, most of climbing robots are quasistatic (also Wal-
loid) due to the high complexity of design and control [A Minimalist Dynamic
Climbing Robot: Modeling, Analysis and Experiment, A Spring Assisted One
Degree of Freedom Climbing Model(book)]. No matter what methods of climb-
ing is used, based on Locomotive abilities, climbing robots could be divided
into three main classes: wheeled / tracked locomotion, legged locomotion and
arms with grippers locomotion [20]. Different examples of such robots can be
seen in figure 2.1. Usually robots developed with arms and grippers or legged
locomotion, fits best in more complex surfaces (e.g. oil and gas platform with
various surfaces), while the wheeled/tracked locomotion fits best even terrain
like glass, concrete, brick , steal walls [20,22]. For these locomotion types, differ-
ent types of adhesion forces could be used to keep the robot from falling off the
wall. These adhesion forces can be categorized in following classifications [20].

1. Magnetic force (permanent and electrical)

2. Negative Pressure - Vacuum

3. Grasping

4. Pressing to the inner wall

5. Van der Wals force - Gecko

Moreover, it is now time to name some of the general critical requirements
in the development of any climbing robot. Such requirements can be stability,
flexibility (ability to handle a variety of terrains), surface contacts issues, power
consumption, force distribution, overheating of motors, and climbing between
adjoining surfaces [22, 23]. These requirements plus the additional specifica-
tions / local issues for each area of application are challenges that every project
faces during development phase. However, it is difficult to satisfy all these re-
quirements by only choosing one type of adhesion force. Therefore to reach the
highest reliability, stability, flexibility and HSE concerns, a combination of loco-
motion and several types of adhesion forces should be used at the same time.

Table C.1 (had to move to Appendix due to size) shows a number of ac-
tive industrial climbing robots which use a combination of different methods
to robustly perform their tasks on vertical surfaces. As this table shows, avail-
able climbing industrial robots in the market focused on a very specific problem
such as inspection or a specific service. This focus in addition to the fact that all
of them are controlled by remote controls, underlines once again the complexity
of building a versatile autonomous system that can result in reduction in relia-
bility and redundancy in industrial automation process which is not acceptable
by the industry.

8

Figure 2.2: Operator works side by side with a climbing welding robot (on-site user).

2.3 Automation and Smart Agents

2.3.1 Autonomous Robots

Autonomy is applied to a system, being able to operate and behave on its own,
without external control power for an extended period of time [24]. Such sys-
tems are able to operate in dynamic environments, also adapt and respond to
the changes forced to them and their environments [24]. Bringing this concept
to man-made systems, it would be machines capable of reasoning and control-
ling their actions in their workspace (environment) with capability to perform
specific assignments.

Such systems to some extents exist today. Fully automated machines can
perform their assignments without any help from the operators. However,
quality control monitoring is unavoidable based on complexity of the task. To-
day’s technology in artificial intelligence (AI), data flow speed in both networks
and internal buses and the high sensitivity of the sensors, combined together
are capable enough to shape systems that can perform the expected tasks au-
tomatically. These fully automated systems are usually a combination of in-
terconnected smaller systems. These systems, with their few capabilities, when

9

mounted and connected together, could work as a whole that is capable of much
more(e.g. compare functionality of four arms getting together to shape a climb-
ing system). Such systems are addressed later in this chapter under embedded
systems (2.3.3).

Figure 2.3: Autonomous cleaning climbing robot for glass and solar panels.

Today’s robotics technology is almost on the edge to present reliable au-
tonomous products to the market to perform specific tasks. The extremely com-
petitive market of smart vacuum cleaner robots is the beginning of a new era.
The era of autonomous machines working instead of human, fully automated,
but this time not only in harsh industrial environment, but also at homes. It’s
clear that expanding the limited tasks done by an autonomous robot, the com-
plexity of task planning would rise. This complexity would also result in more
issues in handling all upcoming situations, planned or unplanned, during oper-
ation. One solution to handle sensitive and complex tasks was to go for a mid-
dle approach, called Semi-Autonomy, where things mostly are automated while
some few sensitive and complicated tasks are tagged to be remotely controlled.
Beside the extra control over system, stability and reliability, such solutions do
not need many operators as their presence is requested only in case of reaching
the sensitive levels of the work or in case of emergency. No matter which ap-
proach or complexity level is chosen, AI is the part in charge of receiving the
input, reasoning and decision making accordingly. This would be the topic of
the next section of this sub-chapter.

10

2.3.2 Artificial Intelligence Methods

An autonomous system should be capable of deciding on its own and acting
based on the decision making process. This means there is a need for intelli-
gence in machine level which can receive the input data, reason based on it and
act accordingly. This is the topic of artificial intelligence. Different philosophi-
cal definitions of AI can be given based on similarity in thinking and behaving
like a human, or a system that thinks and acts rationally [25].

The second approach fits our purpose in discussing industrial automation
best and therefore is preferred. According to this point of view, AI is the study
and design of rational agents that can perceive, reason and act [25]. Agents are
beings that can precepts the environment around it by their sensors and acting
through their actuators, while the rationality means selecting the choice that
maximizes the performance based on earlier precepts of the environment [25].

Figure 2.4: Artificial intelligence and smart agents.

The nature of environment is one of the key elements in developing a ratio-
nal agent. The environment varies a lot and the complexity rises as a rational
agent is supposed to perform in several environment. The characteristics of
environment can be categorized in different sub topics (Table 2.1) [25].

Regardless of the environment types, the agent type defines the way they
process the input data from sensors (perception of the environment). This dif-
ference in analysis of the data later affects the decision making process by choos-
ing the feedback through actuators upon the environment. Table 2.2 tries to give
a brief categorization of such agents differs by their processing methods. The
complexity of methods rises from top to the bottom of the table [25].

The decision making method, combined with challenges and limitations of
the working environment are gathered in a logical decision making of the nav-

11

Table 2.1: Environmental characteristics
Environmental Characteristic Offshore Platform Environment
Single agent / Multi-agent Single (later could be developed to several)
Fully observable / partially ob-
servable
Deterministic / Stochastic Deterministic as level of automation would be

re-doing an already done task (blind copy with
sensors monitoring)

Episodic / Sequential Agent’s experience categorized in episodes
Static / Dynamic Dynamic
Discrete / Continuous Distinct percepts and action
Known / Unknown Known, but could be unknown due to dynamic

environment

Table 2.2: Agent and the type of automation
Task Area of Application

Table driven Set of rules which guides the system after an implicit
goal, usually a set of if structure,
state <= INTERPRET(percept)
rule <= RULE(state, rules)
action <= rule.ACTION

Model-based Reflex Set of rules which guides the system after an implicit
goal, ...
state <= UPDATE-STATE(state, action, percept, model)
rule <= RULE-MATCH(state, rules)
action <= rule.ACTIO

Goal-based Rational agents choose actions based on contribution
to an explicit goal

Utility-based Alternative ways to reach a goal usually have different
coast for the system

Learning Learning is the key to achieve autonomy and improve
of performance over time

12

igation program. Meaning the navigation program receives the perception of
the environment from the sensors. These would be sent along to the AI unit
(logical decision making unit). At AI unit, based on inputs, environmental con-
straints and the type of agent one feedback is chosen and is performed through
actuators. In case of having a system which is a combination of interconnected
smaller systems, these AI units can be divided into smaller units at each lower
level system, to ease the decision making process and to distribute the process-
ing power needed for it between different CPU’s. This division of tasks between
smaller independent units is the topic of our next section called Embedded Sys-
tems.

2.3.3 Embedded Systems

What is an embedded system and why is it important to mention it here? An
embedded system is a computer system (hidden), which its task is to perform
one or a set of limited dedicated tasks [26]. Simply this means breaking assign-
ment of the whole system into smaller one which are simpler. Each embedded
system would be only in charge of one or few simple task. E.g. control unit
of one arm could be called an embedded system and a part of a bigger whole
(climbing robot).

Embedded systems are usually real time and can either be a single inde-
pendent unit or like the above example a part of a larger system (the above
example). The processing unit of these systems can be microprocessors, micro
controllers or Field-Programmable Gate Array (FPGA) and they have limited
computing hardware resources such as memory, keyboard, screen, etc. Each
embedded systems consists of the following three main components [27]:

1. Embedded hardware, with its special specifications (figure 2.5)

2. Main application software which may perform a series of tasks or multi-
tasking at the same time.

3. Real time OS (RTOS).

Here in this project, the focus is more on Small Scale Embedded Systems
(SSES) that have a small 8-16 bit micro-controller, are battery supported and
can be programmed by a variation of C language family. SSES family have lim-
ited memory and CPU resources and in case of continuous running it is critical
to keep track of memory usage, CPU usage and power consumption and limit
the dissipation [27]. The application level of the embedded system in this fam-
ily is programmed in C and is supposed to monitor and perform the expected
tasks based on specifications and real time constraints. There are also more

13

complicated embedded systems such as Medium Scale Embedded Systems and
Sophisticated Embedded Systems which have higher complexity in terms of
software and hardware which is not the case here.

Figure 2.5: The components of an embedded system [27]

RTOS is a type of operating system (OS) that adds determinism to the sys-
tem. Real Time here does not mean really fast, but means the ability to be able to
determine when a section of code would run. RTOS can be divided into two cat-
egories of Hard Real Time systems such as flight control systems which are very
restrict about the responses to happen in deadlines and Soft Real Time system
such as Data acquisition systems (DAQ) that allow some response deadlines to
be missed (slow degradation in system work, but not total failure) [26]. This is
totally in contrast with general purpose OS (e.g. Windows) which operates on
a fairness basis. Regardless of priority of applications in such systems, the CPU
resources are fairly distributed between all running tasks. Meaning the anti-
virus routine check could stop / delay a critical process. General purpose OS
could also preempt processes based on their priorities, but there is no guarantee
that processes end in the specified time [26].

Embedded system is an important definition and will be used frequently
later. One embedded system is responsible only for one or a limited number
of tasks and is supposed to perform it correctly and on time. The real time
characteristic brings determinism to the system that one knows in each time
what part of our code is being run on the system. Next part is the analysis of

14

offshore platforms where results from different articles, medical and industrial
reports are gathered, to define opportunities and challenges in this field.

2.4 Offshore Platforms, Challenges and Opportuni-

ties

2.4.1 Motivations

Automation wave in industries with different types of robots has already begun
for years with fixed industrial manipulators and is continuing in different fields
with new types of mobile robots, for example cleaning, welding, painting and
etc. Petroleum industry is not an exception in this trend and has already been
benefited from underwater robots (ROV’s) in the past and is planning to use
mobile robots in future on their platforms A.1 [11, 18]. This new wave has led
into new policies which prefer to shift from manual to automated production
due to different reasons. Such reasons can vary from reducing production cost,
higher production rate, steady quality, easier production planning, less human
resources issues and last but not least safety reasons [6, 11, 18, 19]. Offshore
applications are one of the earliest industries that started using mobile robots
(ROV’s) and also are among those who invested most on robotics technologies.
However, a deeper investigation in the numbers and exact areas of investment
shows that these attempts were focused on areas where human workers could
not operate and the industry had no choice but to use submersibles, such as Re-
mote Operated Vehicle (ROV) and recently Autonomous Underwater Vehicles
(AUV) [18]. These investments and researches ended up in today’s ROV tech-
nology which is mature and very stable [18]. Today ROV’s are used all around
the world both in building operations, under water studies and also for search
and rescue operation in crisis time [28].

At the same time on the topside human operators were doing things in the
traditional way and it just worked well enough. This is a very good example
to show that the industries do not change out functional systems easily. Re-
dundancy is an important factor in industrial application. As long as there is no
better redundant solution which improves the situation, the problem does not
exist! Until recently everything worked fine as although the alternatives did
not match the reliable good work that human operators were doing. This was
changed after the huge rises in oil price which made previous remote and non-
economical projects (Shtockman, Sakhalin and etc) in the middle of Arctic and
Alaska economical. This change in the market plus lack of new resources near
shores has made the industry to reconsider investing in future platforms which

15

are placed even further in the sea (North Pole, deep sea, etc). The history is now
repeating in offshore industry and these demands are now calling once again
for new investments in bringing automation to oil and gas platforms, but this
time to the topside [4, 18, 29]. Projects like Integrated Operation (StatoilHydro),
e-Operation (Hydro), Smart Field (Shell), Field of future (British Petroleum),
i-field (Chevron) [5] are some of these attempts. Later in this sub-chapter an
overview of the demands for automation in offshore platforms and the chal-
lenges in implementing such ideas is given. Some of the motivations for such
activities can be: [5, 11, 18]

1. Cost and production efficiency of automation / integrated operation

2. Better Health, Safety and Environment (HSE)

3. Future platforms could not be built without newer technologies

Cost and Production Efficiency

Working on offshore platform contains high wages, meaning tighter budget for
projects and needs for higher investments. Less profit for investors could result
in projects being stamped as non-profitable and closed. The robotics-automation
can help in reducing cost in offshore production. The financial benefits of au-
tomation with robots involved can be described in following three points [10,
11, 18]:

1. Due to the reduction in robotic automation prices, robots are now becom-
ing a better alternatives than manual work and transportation of experts.
The sudden investment in the automation can also be paid back as the
production cost reduces overtime.

2. Robots work 24/7, are more precise and make less mistakes, meaning
higher production quality, efficiency and flexibility. On the other hand,
human workers, with high wages, are subject to stress and hard working
conditions and their mistakes can result in accidents with big financial and
environmental consequences.

3. Reliability and stability followed with robots rather than human operators
reduces the possibility of un-planned shutdowns which is most costly for
oil industry. Unplanned shutdowns occur due to bad weather conditions,
lack of human resources at a time on site due to sickness, etc.

4. Reduce labor turn overs and the problems followed by recruiting new
workers and training them.

16

5. Such solutions result in fewer work forces on site, which again results in
saving accommodation space needed for housing workers.

6. Help senior workers to keep up with the junior inexperienced workers
when doing heavy works.

All in all, involving robots in automation or semi-automation (remotely con-
trolled robots by human from onshore) of the offshore work environment is the
golden key for oil industry to increase their revenue, production rate and easier
Human Resources (HR) procedures. Governmental economic reports state that
in case of ignoring such solutions the industry faces reduction in revenue and
other consequences in their organizational structure [3].

Health, Safety and Environment

Oil companies in general emphasize health, safety and environment (HSE) as
an important issue due to heavy financial consequences of incidents caused by
the lack of HSE concerns. The latest incident in Gulf of Mexico had catastrophic
consequences as killed 11 workers and resulted in a huge economic and envi-
ronmental catastrophe along the U.S. gulf coast [2]. The British Petroleum also
lost billions of dollars due to this incident. Table 2.3 shows a timeline over the
major offshore incidents in the history of oil and gas industry [30].

There is a lesson in such incidents which is to replace human workers with
robots in harsh environments as much as possible. Offshore platforms are one
of the most extreme work environments for human workers due to the harsh
weather, unstructured environment and high concentration of dangerous and
deadly gases (H2S) [18].The robotic automation might be costly to begin with,
but would pay back in preventing such incidents and also with earlier benefits
mentioned.

Beside all these incidents that can cost billions of dollars for oil and gas com-
panies (visible coasts), there are some HSE concerns which also results in in-
visible costs that the robotics-automation can help reducing them. The heavy
nature of working on platform can result in injuries during operation (muscle
injuries, etc) and tier out workers out during years of work, resulting in early re-
tirements [31]. Robots do not suffer from such problems and their maintenance
would cost much less than all sick leaves and early retirements that would af-
fect both national and companies’ financial statement. Figure 2.6 shows the
number of incidents occurred during 2006 - 2010 at United Kingdom. These
numbers clearly shows that due to the usage of ROV’s for under water oper-
ation, diving incidents are very low, while on the other hand the number of
incidents on the topside is very high. Based on all these it is obvious that HSE

17

Table 2.3: Major offshore accidents in the global oil industry [30]
Year Damages Area Company Causes

1969 Up to 100,000 bar-
rels of crude oil
leaked

The California
coastline

Platform A offshore
near Santa Barbara

Blowout

1979 Spewing 3 million
barrel of crude oil

Campeche Bay of
Mexico

The Pemex-
operated Ixtoc I
offshore well

Blowout

1980 123 death The North Sea Alexander Kjelland Capsizal
1982 84 death The coast of New-

foundland, Canada
The Ocean Ranger
semi-submersible
drilling rig

Huge storm

1984 Death of dozens of
workers

the Campos Basin Brazilian State oil
company Petrobras

Blowout

1988 167 death In the North Sea Occidental
Petroleum

Explosion

1989 More than 90 death The gulf of Thailand U.S. drilling Ship
Seacrest

Typhoons

1995 13 death, many in-
jured

The coast of Nigeria Mobil oil rig off explosion

2001 11death, sank off
the coast of Rio
De Janeiro, around
10,000 barrels of fuel

The Atlantic Brazilian State Oil
company Petrobras

Explosion

2005 12 death, and re-
duce the country’s
domestic output
(15%)

The India’s West
Coast

ONGC Fire

2007 21death, and fuel
leaks

The coast of Mexico The State Oil firm
Pemex

Stormy
weather

2009 Oil leaking, sank of
drilling

The East Timor Sea
near Australia

The West Atlas Fire

2010
(April
20th)

11 death The U.S. Gulf Coast Transocean Ltd. Fire and ex-
plosion

2011 49 missing Coast of Siberia Russian oil and gas Collision
and col-
lapse

18

concerns are very important in oil and gas industry and should be considered
carefully while developing any system for offshore platforms. Such concerns
sometimes create challenges and might even prevent developers to build ma-
chines capable of automating risky tasks in offshore (Welding robots, spark and
NORSOK qualifications).

Figure 2.6: Number of incidents in UK offshore from 2006 - 2010 [32]

Future Platforms

Beside the financial benefits and HSE concerns in automation of oil platforms,
there are other concerns that leaves oil and gas industry with no other option
but to automate the process of oil production on the platforms. Future plat-
forms are different from current ones, not in building technology but in term
of characteristics. Combination of rising oil price in the international market
and lack of available resources near the shores, takes the oil companies even
further in the middle of the sea in search for oil [18]. It is obvious that frequent
transportation of experts and supplies would become even more difficult and
costly than now. These challenges leave the industry with no choice, but to de-
velop new operation methods to make working in those remote areas possible
(e.g. automation of the process, manual steering from onshore, etc). Ever ris-
ing oil price guarantees the revenue for such projects and the new technology
that needs to be developed to reach that level of automation in near future [18].
Examples of such remote fields with extreme weather conditions are Shtock-
man and Sakhalin in Arctic or Alaska. Shtockman is located in the Barents
Sea about 600 kilometers north of the Kola Peninsula and experience extreme

19

weather condition. This situation makes transportation of experts and supplies
very difficult during six months of the year [18].

Oil companies are already investing in automation of their platforms. They
are already planning for a day that there would be a minimum of workforce
on their platforms and therefore trying to start by small models of such visions.
Kristin platform of StatoilHydro is an example of such projects where the num-
ber of human workers on-board the platform was kept to minimum level of 27
people and the results were satisfying [6, 29]. The goal of almost zero work-
force vision can only come true with robotics-automation. Integrate operation
is a very good start to build the fundamental of such automation in the near fu-
ture. However, the IO operations are just the beginning of making these dreams
come true and the last step in such long term projects is to bring autonomous
machinery to the picture. Machines that do their job independent of external
control, and operators only need to interfere in case of emergency.

2.4.2 Automation Opportunities in Offshore Platforms

Robotics automation is already helping oil and gas industry in some areas ap-
plications. E.g. pipe inspection, submersibles and drilling [33] which are all
impossible for human workers to operate. Studies done in categorizing the off-
shore oil and gas production fields into 5 different categories [11]:

1. Shallow water: Platforms in waters with maximum 200m depth, mostly
two jackets (3-5 decks) connected with bridge.

2. Deep water: Platforms in waters with beyond 200m depth, with only one
jacket with more than 5 decks.

3. Floating: Almost like a ship than platform and very flexible in changing
locations.

4. Unmanned: There are several wells in big fields. These platforms are usu-
ally maintained every 2 weeks with a crew of 2 - 4 operators.

5. Subsea: Wells and installation which are mounted under the sea. These
platforms are fully automated with use of ROV.

For a climbing robot, beside subsea platforms, other platforms could be a
potential area of application. Such platforms are usually large facilities with
equipment located all around and monitoring such vast ground would be time
consuming.Therefore, mobile robots, and specially inspection climbing robots

20

Figure 2.7: A:Bad weather condition | B:Shallow water platform

would be very useful in such areas. This becomes even more important in un-
manned platforms, as it could make the monitoring process live (24/7) and pre-
vents long ship trips by the crew. On the other hand, for developing an inspec-
tion / monitoring robot for such areas, one should discover the expectations
from the inspection operation in such environment. There are reports and ar-
ticles which tried to identify such operations that were frequent enough to be
automated. Such activities can be [11, 18]:

• Live video feed of environment

• Gauge readings

• Valve and lever position readings

• Monitoring gas level

• Acoustic anomalies

• Surface condition

• Check for intruders

• Gas leakage

• Fire detection and locating

One can see that all these operations are easily performable by an equipped
climbing inspection robot. A robot equipped with proper set of sensors, all these
tasks could be automated as most of them have a digital nature and are based on
reading values from sensors (gas leakage, fire detection, etc), streaming of video
and image processing of received pictures (valve positions, reading numbers,
surface condition, etc) [11, 18, 34].

21

2.4.3 Challenges in Automation of Offshore Platforms

The challenges that one project might have in offshore platforms are addressed
here. Beside these issues, one might wonder if HSE requirements are also a part
of these challenges. Due to the fact that HSE was discussed enough before it
was decided to look away from that.

Extreme weather conditions

Almost all offshore platforms do suffer from extreme weather conditions. The
word extreme can vary from the freezing temperatures of Artic area in North
Pole, ever shining sun of Persian Gulf. This challenge gets even worse when it
comes to the future platforms as these are even placed in more remote locations.
When developing a robot to perform for this area of application, such natural
phenomena like very low and high temperatures, ice, direct sun light, fog, alga
and moss, and last but not least the salt water from the sea must be considered
as a normal environmental issue that the robot should deal with daily.

E.g. direct sunshine and fog interrupts Rfeed signals. There is also a good
chance that very low and high temperatures effects senders and receivers of ra-
dio signals. In case of using grippers ice (20mm ice is considered during design
of platforms), alger and moss can make grippers job in grasping the bolts very
difficult (slippery). Salt water, humidity and the rust are also other three de-
structive natural phenomena in offshore platforms. These points are discussed
more in the following sections and are addressed and discussed in details later
in following chapters where such concerns are considered while choosing dif-
ferent components / technologies.

Salt Water

Salt water can have destructive effects on the equipment over time. Therefore
structures and machines are being washed by high pressure water regularly and
this work is an essential part of maintenance work on platforms. A functional
machine for offshore application is supposed to be designed to stand such con-
dition. The salt water destructive effects should be considered both in design of
the chassis and also in choice of electronics parts on board the robot.

The task of washing machines is one of the repetitive jobs on a platform that
can be done by robots, but this task needs to be done by robots that are stable
enough and could stand such load.

22

Figure 2.8:
After being submerged in concentrated salt water for 5,000 hours, the unprotected iron
T-Bolt on the left is totally corroded and unusable.

Figure 2.9: Washing salt off equipment with high pressure water

Rust

Rust is another destructive factor in the offshore platforms that needs close at-
tention in designing process and also in choice of electronics devices used in the
embedded system. Rust is permeable to air and water and even interior parts
of a design can be exposed. Stainless steel creates a passivation layer made

23

of Cr2O3 (Chromium three oxide) [35]. Similar protection can be achieved by
magnesium, titanium, zinc, zinc oxides, aluminum, polyaniline and etc.

Offshore Standards

Existing standards and test methods in the offshore environment almost cover
all discussed challenges with proper testing methods. Each equipment before
being able to start their operation on platforms needs to be qualified by such
standards (different national and regional requirements). The tests either qual-
ify or deny a product to start operation on offshore applications. One of the
most important and initial tests for such equipment as a mobile robots is explo-
sion test. Here a list of different relevant standards with a short description is
presented.

Norsok is a standard, developed by Norwegian petroleum industry, is a
standard that contains a series of different standards that applies to both off-
shore and onshore installations.

DNV SfC 2.4 - Environmental test specification for instrumentation and au-
tomation equipment.

This document specifies the environmental test specification applica-
ble to all instrumentation and automation equipment such as: hydraulic,
pneumatic, electrical, electromechanical and electronic equipment, includ-
ing computers and peripherals that are to be installed on Ships, MOUs and
HSLC with DNV Class. DNV SfC 2.4 document

IEC 60945 - Maritime navigation and radio communication equipment and
systems general requirements)

Prepare standards for maritime navigation and radio communication
equipment and systems, making use of electro-technical, electronic, elec-
troacoustic, electro-optical and data processing techniques for use on ships
and where appropriate on shore. IEC 60945 document

US military spec MIL-STD-810 [36] - Department of Defense Test Method
Standard for Environmental Engineering Considerations and Laboratory Tests

This test method standard is approved for use by all Departments and
Agencies of the Department of Defense (DoD). Although prepared specif-
ically for DoD applications, this standard may be tailored for commercial
applications as well - The primary emphases are still the same – tailoring
a materiel item’s environmental design and test limits to the conditions
that the specific materiel will experience throughout its service life, and es-
tablishing chamber test methods that replicate the effects of environments

24

on materiel rather than imitating the environments themselves. However,
the "F" revision has been expanded significantly up front to explain how
to implement the environmental tailoring process throughout the materiel
acquisition cycle. MIL-STD-810

2.5 Summary

During chapter two, Background, an attempt was made to form a backbone
for later practical work. Chapter two started with previous works and later
tried to give clear definitions about different important concepts in this project.
These concepts were climbing robots, automation, smart agents, and embed-
ded systems. Later an analysis of benefits and challenges of automation in
offshore platforms are discussed. Finally opportunities for robotics automa-
tion and practical challenges that one would face in the development of a semi-
autonomous robot for offshore platforms were discussed and addressed.

25

Table 2.4: summary of chapter2
Concept Description

Climbing Robots Manmade machines capable of climbing vertical surfaces.
Autonomous
Robots

Robots capable of reasoning and controlling their actions in
their workspace (environment) with capability to perform
some tasks.

Artificial Intelli-
gence

An autonomous system is capable of deciding on its own and
acting based on the decision making process. The decision
making process in called an artificial intelligence.

Embedded Systems A hidden computer system, which goal is to perform one or a
set of limited dedicated functions.

Robotic Automa-
tion in Platforms

Using remote controlled or semi-autonomous robots to be
able to automate the process in offshore platforms.

Benefits of Robotic
Automation in Plat-
forms

Robotic automation benefits both investors and workers by
reducing the costs of projects, better production rate, im-
proved HSE standards and last but not least allowing for op-
eration in areas with extreme environmental conditions (diffi-
cult or impossible for human workers to operate).

Challenges Faced
in Offshore Plat-
forms

Such challenges are mostly environmental conditions im-
posed by the geographical location of the platform. Such
problems are extreme weather condition (rain, snow, thun-
ders, ice, alger, etc), salt water, rust and vibration. There are
also many regulations that should be respected while trying
to develop a robot for offshore platforms.

26

Chapter 3

Walloid Robot

The original plan in this project was to use a developed prototype at ROBIN
group, called X2 [8] (figure 3.1, last picture on the right). However, this proto-
type was not precise or cost efficient enough. Therefore, the development of a
new prototype, called Walloid, was started. This prototype was designed to be
more cost efficient for production and also more precise than earlier X2 model.

Walloid project contained:

• 4 arms climbing robot

• 3 prismatic joints on each arm.

• Robin developed encoder solution with light fork sensors and a rotary
joint that connect the motor shaft to the prismatic joint (section 3.2.1).

• Very precise movement of prismatic joints (0.25 mm per encoder read-
ing) which make the movement of the end effector very precise (section
3.3.1).

• The prototype contained only primitive hardware components design,
which needed further development to support a functional climbing robot
(development process in section 5.2).

On the other hand, Walloid projectdid not contain the following points- An
attempt was made to develop them in the mentioned parts of the work.

• Adhesion method was missing in the initial design.

• End effector (section 5.1.1).

• Kinematics calculations and workspace (section 3.3).

• Control Hardware (section 5.2).

27

Figure 3.1:
From left to right: Walloid robot received part, Walloid 3D design, in-house developed
encoder (rotor and sensors), the implemented version of in-house designed version of
the encoder, prototype

• Navigation Program (section 5.4.3).

3.1 Ongoing Project

Walloid project is still an ongoing project at University of Oslo and has not yet
been finished due to practical problems (figure 3.1, A). The first prototype that
was received during this project was only a single prismatic joint. The initial
work was started on this prismatic joint and later a total arm was received with
three prismatic joints (one arm). The received arm was printed by a 3D printer at
Robin group at University of Oslo (figure 3.2). This part eventually broke down
due to poor material quality and some design issues (discussed in 3.4.3). To
reach project deadline, the process of fixing the arm was ceased and therefore,
simulating Walloid robot was based on earlier experiments with the arm. This
resulted in the simulation becoming the test bench of the control software and
hardware and the only way to present the climbing gaits (5.6).

3.2 Walloid Hardware Components

Each arm consists of three prismatic joints, which each of them includes one DC
motor, one motor driver and one encoder (figure 3.2). The telescopic motion of
the prismatic joint and the joint speed are controlled by the micro-controller

28

Figure 3.2: Left to right: 1: Control system hardware | 2: Walloid arm

Table 3.1: Primitive components of the received arm of Walloid robot
No. Name Manufacturer Quantity
1 Micro controller, Atmega 328 (Arudino

Duemilanove), 8bit
AVR 1

2 DC motors, 12 V Elfa 3
3 Motor drivers, 15 Amp high-power mo-

tor driver
Pololu 3

4 Encoders, in house developed encoder
consist of 2 light fork sensors-Optek
Tech., Opto switch, Logic output

ROBIN 3

through motor driver (Enable/Disable signals, PWM values). The screw shaft
opens and closes the joint. This movement would result in rotor to follow the
rotation, interrupting the light sensors of the encoder. These interruptions gen-
erate hardware signals that were read by the navigation program and based
on them the direction and speed of the movement was detected. These sensor
readings were processed elsewhere in the navigation program into information
like speed, position, RPM and etc.

3.2.1 Encoder

Encoders are a measuring tool for detecting the angle of motion with a 3-bit
binary system [37]. One of the special characteristics of the robot used here is
the encoder that was developed at Robin group at University of Oslo (figure
3.3). The idea with this encoder was to have a built-in system capable of doing
two things at a time. 1,to be able to forward the motion from the motor shaft to
the axel. and 2, to monitor the motion of the motor shaft (by light forks) (figure

29

3.3). This was done by designing a small connector with connective joints on
both sides and a rotor for the encoder. The rotor part of this connector had a
half circle edge whose task was to interrupt the two light fork sensors that were
placed around the joint body (figure 3.3). The idea here is brilliant, but there
are some design problems here that resulted into a series of problems while
testing on received parts of Walloid robot. These challenges will be mentioned,
discussed and finally a solution is presented in about the weakness section in
3.4.

Figure 3.3:
In-house built encoder, the rotor and the Sensors (A and B), together both read the
rotation of the rotor and transfer motion to the motor axel

3.3 Calculated Kinematics and Workspace

It was explained earlier that the Walloid robot had four arms. The structure of
each arm is made of three different prismatic joints that provide the robot arm
with a linear telescopic motion in three directions which gave the robot high
flexibility in moving around in the workspace with high precision , 0.25mm
in each joint direction (figure 3.6). As stated, Walloid project did not contain
any workspace or kinematic calculations; therefore, one had to calculate the
kinematics of this robot to know the range of workspace and also to develop
logic to reach one point in the workspace. This is presented in this section.

30

3.3.1 One Arm, Three Prismatic Joints

Walloid might be slow, but it is very accurate. As all prismatic joints, the joints
of this prototype can move back and forth in a linear motion along the joint
(figure 3.6). Each prismatic joint is 175 mm and when opening the maximum
length becomes 229.4 mm. This means our variable distance is around 54.4 mm.
It was discovered later in this project that it was possible to measure this dis-
tance in 217 countable steps (counter variable in control program). This means
that the accuracy level would be around 0.25 mm (figure 3.6). Navigation and
positioning of Walloid is discussed in section 5.5). In addition, each prismatic
joint consists of one DC motor, in-house developed encoder (light fork sensors), motor
jacket, rotor (the interrupter of light sensors) and a screw shaft (figure 3.5). Hardware
components would be discussed in details in next chapter (section 3.2).

3.3.2 Calculations

Kinematic calculations were one of the most time consuming parts of this project.
Although the geometrical concept of the Walloid arms was discovered right
away as an irregular tetrahedron, to find the best solution to reach the kine-
matic calculations became time consuming. Factors like frustration, tiredness,
wrong measurement of the dimensions, small mathematical mistakes in for-
mulas and lack of accurate tools made this process even harder. The lessons
learned from this process were to first of all to have clear questions that clarify
the problem, and try to remember them during the process of solving the prob-
lem (question-guided approach). Moreover, right and precise tools, training to use
the tools, documented facts of the problem and assumptions are vital in order to solve
the problem in an easier way. As mentioned in introduction, this project’s process
was documented in a weblog. This weblog was updated through the process.
This was very useful as one could easily read through old posts to see why and
when one approach was chosen. This was used several times during kinematic

Figure 3.4: Walloid Prismatic joint

31

Figure 3.5: Walloid robot arm | 2: Motor-rotor-encoder design

calculations.

Figure 3.6:
Left to right: Arrow model of Walloid arm | Prismatic joint of the robotic arm

For calculating the kinematics of the three prismatic joints that are mounted
together at a single point, it need to be looked as a geometrical shape (irreg-
ular tetrahedron). The early attempts were focused on solving the problem
not through an irregular tetrahedron, which was complicated, but by breaking
it into smaller simple geometrical parts (2D), which turned out to be useless.
Later the irregular tetrahedron approach was taken. This approach became too
complicated as well and still was not the easily computable logic that could be
implemented in micro-controller level C.

The final approach in solving the problem was discovered accidentally by

32

reading through an article about Global Positioning System (GPS) which has
exact similarity with Walloid arm design. GPS system needs one GPS unit to
have contact with at least 3 satellites. Here it is assumed that starting point
of each joint is the center points for a sphere around satellite (figure 3.7). The
radius of this sphere is equal with the length of the prismatic joint (equivalent
to distance to the GPS unit). First starts with two spheres (empty spheres). The
intersections between them is a perfect circle. In case of knowing the radius of
the third sphere (which is known in the robot), it would be possible to limit the
intersected area to just two points. Finally GPS uses earth as the forth sphere,
defining that only one of the two points can be on the surface of the earth, while
here the orientation of origin and X,Y vectors can distinguish the right point, as
the wrong one would fall into robot chassis (figure 3.7).

Figure 3.7: GPS positioning system

To solve this equation, it is necessary to set three sphere equations equal with
the square of the length (L2̂) of the prismatic joints. As expected solving these
3 quadratic equations results in two points, which one is not acceptable as the
answer falls into the robot chassis (not physically reachable). This is solved by
Matlab and the code is presented in Appendix. Later this approach was used to
produce the workspace in 3.3.3 as shown in figure (figure 3.7). If R1, R2 and R3
are respectively the length of prismatic joints, and [X1,Y1,Z1], [X2,Y2,Z2] and
[X3,Y3,Z3] are respectively starting point of each prismatic joint, then:

R12̂ = (X-X1)2̂ + (Y-Y1)2̂ + (Z-Z1)2̂
R12̂ = (X-X2)2̂ + (Y-Y2)2̂ + (Z-Z2)2̂
R12̂ = (X-X3)2̂ + (Y-Y3)2̂ + (Z-Z3)2̂

33

3.3.3 Workspace

To calculate the workspace, the length of each joint (equivalent to distance of
satellite and GPS unit) is required. It was explained in Walloid specifications
that the length of one prismatic joint (L) is the initial length (L0) of it plus the
value of the encoder data (counter, here shown by n) multiply by 0.25 mm (each
step in the counter is equal with 0.25 mm movement) 3.3.1. Experiments done
during this project proved the range of counter (n) to be [0-217], meaning maxi-
mum variable length to be 54.4 mm. The equation to calculate the length of one
joint is shown in equation that follows:

L = L0 + (n * l)

Based on calculations done in section 3.3.2, with the help of previous equa-
tion calculating the length of one joint, the workspace was produced in Matlab.
Figure 3.8 shows the workspace for the whole robot. This was implemented in
Matlab.

Figure 3.8:
Robot workspace caluclated in Matlab by the logic discovered and developed here

The workspace of the robot is the area that the end effector can reach. How-
ever, the joints motion calculations were critical in calculating the workspace,
while the fact of having an end effector connected to the mounting point was
very important as well (different tool center point). Industrial manipulators
solve this problem by having several convertible origin points [38, 39]. Impor-
tant origins in calculating the workspace are world origin, mounting point and

34

finally one origin at the center of the end effector (tool) which is called Tool
Center Point (TCP). The whole workspace can be calculated based on world
and mounting point origins and later expand the calculation based on different
types of end effectors (tools) used. Figure 3.9 shows the way these origins are
chosen based on Walloid settings (world, mounting and TCP).

Figure 3.9:
A: Walloid arm | B: Top view of Walloid chassis with one arm(as the received part was)

At the end, it is important to mention that one can limit the workspace even
more by setting limitations for the height of Walloid robot from ground (figure
3.10, left). When the length of arms are maximized, the robot has least height
from the surface and maximum workspace and vice versa. Climbing, while
using the maximum length of the arms, can reduce the chance to avoid and
skip obstacles on the way (figure 3.10, left).

3.4 Review and Tech Upgrade of Walloid Robot

This section is dedicated to the review of the Walloid prototype. This sec-
tion goes through the discovered weaknesses and tries to discuss the upgrades
(based on experiences gained during testing received parts) that can help this on-
going project to become a better system. The weaknesses of Walloid prototype
can be categorized in four different categories:

1. Crossing over adjoining surfaces

35

Figure 3.10:
The longer the feet extends, the lower the height of the robot gets (A) and this means
less place for overcoming obstacles | B: Maximum height of Walloid

2. Materials and methods of production

3. Design weaknesses

4. Speed issues

3.4.1 Adjoining Surface Climbing

Climbing between adjoining surfaces (figure 3.11) is almost the biggest chal-
lenge that each climbing robot could face during the development phase. This
problem is complex enough to be the subject of an independent work and there-
fore was only pointed out as a dilemma that should be considered as a further
works point. The current design of the Walloid prototype might be able to climb
some adjoining surfaces, but not all types.

3.4.2 Speed Issues

Although the Walloid was designed to be very accurate, it is too slow for an
inspection / monitoring robot. Currently the speed is around 0.9 mm/s in pris-
matic joints direction and this is too slow for an inspection robot. This could
be improved by changing out the screw shaft with a hydraulic or air pump. To
be able to achieve this improvement, the encoder system should be re-designed
from an angle measurement tool to a horizontal motion detector.

36

Figure 3.11:
Adjoining surfaces is a challenge and possibility can be a candidate for future works

3.4.3 Design, Material and Methods of Production

As mentioned before, the last received part of Walloid project was an arm. This
part worked pretty well under tests, until the disadvantages of 3D printing pro-
duction showed up once again. This was not the first time that quality of pro-
duction would make problems during the project. The 3D printer that was used
to produce these parts was a Connex500 model. This printer uses the polyjet
technology which build up the model by adding layers of photopolymer on top
of each other and use UV lamps to instantly cure them [40,41]. Lack of strength
in 3D printer’s products is a fact that needs to be considered in development
process. Difficulties with 3D printers products have been reported in several
occasions in academic reports from ROBIN students [37, 42]. Some of these
weaknesses in produced parts were not only due to the production method, but
design problems (figure 3.12). The weak points in construction of the parts re-
sulted in parts breaking exactly from the same spot in different occasions (figure
3.5).

Due to time constraints, and the time consuming process of re-designing,
printing and fixing the prototype, it was decided to continue the work based on
the assumption and experiences with the prototype in simulations (5.6).

Discussing these issues, one would wonder how these problems with the
design could be avoided. The whole prismatic joint was placed in a jacket. The
design of this jacket was very neat and small, but this fancy design led into
some problems.1. The available room inside the jacket and the air circulation
inside it were too small for such purposes. 2. This lack of space and room for
air circulation left almost no place for the produced heat by the motor to be
exchanged, neither for the expansion of overheated parts (Figure 2.4). The other

37

Figure 3.12:
Left to right: 1: Part-1 is thinner than part-2 which imposes a weak point to the con-
struction | 2: Weak points of rotor in ROBIN developed encoder | 3: Motor overheat-
ing and breakage results

design problem was in the rotor, where differences in thicknesses, resulted it
to be another exact weakness point on rotor (figure 3.12) which broke several
times during the process (including once during installation). It is believed that
the jacket design can be perfected by some small design changes to remove
the discovered weakness points.

Weakness spots (3.12) do not necessarily need to be there as it is imposed
from the shape of the jacket that covers motor, rotor, encoder and the screw
shaft. As changing the size of the jacket will not bring any restrictions, nor dis-
advantage to the current design, it is strongly recommended to re-design the
jacket to prevent all the earlier mentioned problems. In the following 3D design
one could see the changes in the jacket and then the rotor which is supposed to
result in better construction strength (figure 3.13).

Table 3.2: Table of improvements and critical problems in Walloid robot design
Improvements Critical problems
Removing the sharp edges as much as
possible to reach better strength in robot
structure

Bigger dimensions in the motor jacket to
prevent overheatingand weak spots

Screw shaft can be replaced by hydraulic
or air pumps for speed improvement

simplifying the design of the rotor to
reach more strength in design

38

Figure 3.13:
Left to right: 1: Better construction as new rotor design with thicker walls, based on
new jacket design | 2: The redesigned jacket giving more space

3.5 Summary

This chapter made an attempt in clarifying the status of the Walloid project in
details. Different topics are discussed and already developed features such as
”arms” and ”grippers”. After general specifications and configurations, the
topic of calculating kinematics and workspace was addressed and was calcu-
lated during this project. These calculations were not a part of the features in-
cluded with Walloid. During the process of calculation, the similarity between
the robot arm shape and the GPS system was discovered (3.3). This benefited
in shaping a logic in order to be used in control algorithm (section 5.5.1). The
following table shows a summary of specifications of Walloid reviewed in this
chapter.

39

Table 3.3: Summary of Walloid climbing robot configuration and specifications
Specification
Name

Type

Robot Type Climbing Robot
Locomotive
Power

4xArms

Adhesion
Solution

Grasping Arms

Micro-
Contr0oller

Arduino Duemilanove

Motors 3 x DC motors
Encoder In-house developed encoder (by Robin, University of Oslo)
Kinematics *Missing. This was calculated during current chapter.

*Robot arms positioning in the workspace was similar to GPS
system

End Effector To be developed
Climbing
Gaits

To be developed

40

Chapter 4

Top Level Perspective

Questions provide the key to unlocking our unlimited potential.
- Anthony Robbins

4.1 Top Down Objectives

It’s important to have clear questions before starting a process of solving a
dilemma. Answers to these questions should clearly cover the solutions or at
least the approach toward the solution. Applying this idea to further develop
the Walloid robot project as an academic prototype for offshore platforms, one
might wonder about a critical initial issue.

• What does Walloid project contain and what does it miss to be a semi-
autonomous academic prototype for Offshore Platforms?

Chapter 3 tried to answer this initial and important question by naming de-
tailed contained and missing features. Moreover one can categorize missing
parts in following points:

1. Offshore Industry Point Of View

2. Climbing Strategy

3. End Effectors

4. Control System

Therefore an attempt began to cover missing parts to turn Walloid from a
robot chassis to a climbing robot. However, as mentioned in 3.1, when the re-
ceived parts broke down (3.4), the actual robot was not ready and the results

41

were only tested by self-developed simulations (5.6). The work which is done
during this project can be categorized in three main categories, such as:

• Analysis of offshore platforms as an area of application

• Climbing Operation

• Control Hardware

• Control Algorithm

4.2 Analysis of offshore platforms as an area of ap-

plication

This part was implemented by going through articles, master and PhD thesis’s,
industrial and governmental reports and standards. This application analysis
goes through motivations for robotic automation in offshore platforms involv-
ing challenges and possibilities. This is presented in 2.4. The point of view
obtained from this analysis makes one aware of robustness issues that were re-
flected in a separate chapter concerning robustness issues in development in
chapter 7).

4.3 Climbing Operation

Simply a climbing robot would need four things to climb a vertical surface:

• Locomotive Power (already developed in Walloid)

• Adhesion Force (already decided in Walloid)

• End Effector, implementing the adhesion force (missing).

• Kinematics and Workspace (missing)

• Climbing Gait (missing)

Based on the list of points presented above, climbing operation work-plan
was designed (5.1). Grasping arm according to above specifications was the
base of the climbing process. Therefore, a series of attempts were taken to de-
velop an end effector (gripper) and bolts. Before reaching the final step of climb-
ing, calculations of workspace range and kinematics were required. These were
calculated through this project and addressed in 3.3. Finally with regards to
adhesion force and kinematics calculation, four climbing gaits were developed.

42

4.4 Control Hardware, a Distributed Embedded Sys-

tem (DES)

To have control hardware capable of controlling the Walloid with 4 arms, 12
motors and 12 encoders and in addition a number of sensors, further develop-
ment of initial hardware component was necessary. Development process of
this phase of the work is explained in 5.2. To achieve this a distributed em-
bedded system approach was designed (figure 6.1), where one micro-controller
was used as a master and four smaller micro-controllers were used as slaves, to
control each arm (5.3). The distributed embedded design was implemented by
using Serial communication (RxTx), I2C and ZigBee technology 5.3.

Figure 4.1: Top-Down view of DES, designed for Control Hardware System

4.5 Control Algorithm, a Distributed Navigation Pro-

gram (DNP)

The top level design of the system presented in this project was changed during
the whole process and landed finally on the server - client architecture (mature
technology), which consists of three main nodes ensuring automation, remote
control, monitoring and high performance.

• Robot

43

• Server

• Client

Regarding the DES designed in control hardware, a distributed Navigation
Program (DNP) was developed 5.5 and divided between distributed between
different embedded systems (micro-controllers) in the robot control hardware
(figure 4.3).

Figure 4.2: Top-Down view of DNP designed, for Control algorithm

To support both manual override and automation, DNP was planned to
have three modes, Manual (Remotely Controlled), Auto (running automati-
cally) and Teach (robot’s learning mode). Walloid is supposed to be a semi-
autonomous system. The level of autonomy in this project is simple and stable.
Navigation’s program machine learning process was designed under a very
easy concept. If one steer Walloid through one process, Walloid, if in Teach
mode, would be able to remember (store) all the positions it has been jogged to
(steer to). Thereafter the robot, if in Auto mode, could read all stored positions
in the order and jog again to those exact spots and consequently repeat the exact
same operation (5.5.6).

4.6 Summary

The main purpose of this chapter was to give a top-down view towards the
work which is about to be presented in following chapters. Due to the com-

44

Figure 4.3: Top-Down view of autonomy level of developed DNP

plicated relations between different developed parts, this chapter was added to
give a brief overview of the whole project. The descriptions and figures were
presented without detailed information. Detailed information about the solu-
tions are addressed during the development process. The following table tries
to show a brief summary of the process in this chapter:

45

Table 4.1: Summary of top-down perspective to practical work done in project
Specification
Name

Type

Analysis
of area of
application

Analysis of offshore platform was done by going through
available academic literature and governmental/industrial
reports aboutthe subject.

Climbing Op-
eration

The Walloid project misses end effector design and climbing
gaits for the already ordered specification of arms and grip-
pers.

Control Hard-
ware

A Distributed Embedded System is designed and imple-
mented which contains 5 micro-controllers and distributes the
tasks between different micro-controllers, trying to shape a
semi real-time system.

Control Algo-
rithm

Based on specifications of the DES, a Distributed Navigation
Program was designed and implemented in RSC architecture.
In addition, self-developed simulation programs for graphical
representation and testing purposes were planned due to the
absence of a physical robot.

46

Chapter 5

Development Process

Make things as simple as possible, but not simpler.
- Albert Einstein

This chapter is dedicated to the development processes of earlier mentioned
missing areas of Walloid project in 4.1. Development process here consists of go-
ing through ideas in early stages, maturity process and the reasons around de-
nials, changes and approving usage of technologies. This section is divided into
four main parts, regarding Climbing Operation (section 5.1), Control Hardware
(sections 5.2, 5.3), Control Algorithm (sections 5.4, 5.5) and Simulations(section
5.6).

5.1 Climbing Strategy and Design

It was discussed in 4.1 that adhesion force and locomotive power, grasping
arms, were already decided by Walloid project. Therefore no development was
done in this area. The points for this development phase were decided to be
end effectors that would be able to grasp and hang on bolts and a strategy for
climbing (climbing gait).

5.1.1 End Effectors

The process of developing an end effector relies on the type of adhesion force
(grippers in Walloid) and the manipulators that the end effector is going to be
mounted on (arms in Walloid). This could easily be shown in a way the design
of the end effector has evolved during the progress of this project (figure 5.2).
The first six designs, belong to the X2 robot (initial robot for this project, figure
5.2), and the last two were designed for Walloid robot. None of these designs

47

Figure 5.1:
Assembly of the designed end effector with the rest of Walloid chassis design in Solid-
works

were tested in practice and were only designed in Solidworks (used CAD de-
sign tool). The final design (last end effector on the right) was assembled with
the rest of Walloid design in Solidworks (figure 5.1). Specifications that were
expected from an end effector for Walloid is presented in following list:

• Flexibility

• Eliminate the fear for fall in case of power interruption (redundancy)

• Tolerance against limited errors in positioning - Offset angle (redundancy)

• Auto charge in docking area

In addition to the end effector, the bolts have to be designed in a way that
together they would satisfy the specifications. Figure 5.3 shows bolt types and
also the corresponding end effector for such gripper solution.

This design was an interesting model, but failed in some key factors. Ac-
cording to figure 5.3 and 5.4, the design did satisfy the power independence re-
quirement for staying on the wall (still hangs on the bolt without motors having
power). However, it failed to be robust enough to tolerate errors in positioning
(offset angle).

48

Figure 5.2:
Left to right: 1-6: Early designs for X2 prototype | 7-8: Walloid end effector designs

Figure 5.3:
Left to right: 1-2: semi-final End Effector design | 3-4: semi-final bolt design

Possible vibrations (especially in floating platforms) and lack of precision in
the system can always lead into errors in positioning of the end effector on the
bolt. However, if the bolt and end effector were designed in a way to give some
tolerance for error in positioning, less precision was required. This error tol-
erance feature increases the success chance in positioning and could save time
and extra power usage and need for manual positioning in case of too many
errors (figure 5.4). The error tolerance feature gave the robot a room to have an
offset angle (figure 5.4). The final end effector design was also equipped with
a spherical wrist right on the top. This added design redundancy to correct
errors in positioning during grasping. The spherical wrist would bend accord-
ing to the resistance from the surface of the bolt. It’s much easier to correct
such errors with smarter mechanical designs, rather than having several sen-

49

Figure 5.4: Left to right: 1-2: Final end effector design | 3-4: Final bolt design

sors gathering around the end effector and try to position the motors to reach
100% precision. The spherical wrist could be surrounded with rubber materials
to be able to come back to the zero position of the end effector in case of absence
of resistance from other materials (elastic properties of rubber). Such solution is
easy to implement and very easy to maintain.

5.1.2 Climbing Gaits

Further development of Walloid to be an inspection / monitoring climbing
robot would contain 2 main challenges:

• Redundancy and safety

• Speed

Climbing robots should be designed redundant. Fall of climbing robots from
height could be fatal for both the robot and human workers in the environment.
Therefore, to reach maximum redundancy, it was decided to develop simple
and robust pro-programmed climbing gaits to reduce any chance of acciden-
tal behaviors (unplanned) from the robot. On the other hand low speed was
an issue for Walloid robot (3.4.2) and inspection robots do need to move fast
as they want to cover as much ground as possible and report discovered prob-
lems. Therefore increasing the climbing speed would be another area of focus
here. This section represents four different climbing gaits, which three of them
were functional and stable enough for implementation. However, due to the
lack of physical presence of Walloid robot (and broken received parts), these
gaits could not be tested in reality but only in a self-developed representation
application (simulation). The presentation of these climbing gaits are discussed
in 5.6.1. Later this virtual illustration of climbing process was connected to the
control system to confirm reliability and functionality of the system.

50

Rotational Climbing Gait

One of the early ideas was a 3-phase climbing gait by adding the ability of ro-
tating 180 degrees around one end effector (figure 5.5). This solution requires
a powerful enough motor, in order to be able to rotate the whole robot chas-
sis from 0-180 degrees around a single point. This would allow fast climbing
speed and also the flexibility in choosing direction of moving (0-180, done 2
times would cover 360 degrees, meaning all directions).

Torque = (m.g).l
Although this gait enjoyed fast speed, it contained serious problems. Ro-

tational movement around a single point had its own issues. The first problem
was the variable point of gravity which made torque force and inertia against this move-
ment. The length of the object is also important here and the shorter the length
is, the less energy is required for rotation (Length is shown by L in figure 5.5).
The force needed to rotate the robot chassis against these forces should be more
than the sum of both inertia and resistance torque.

Rotating Force: F > Torque + inertia
Such large force produced only by a single motor, could result in overheat,

extra power usage and exhaustion of the sprocket wheels and other mechan-
ical parts involved in rotation process. These four extra motors would also
impose extra weight on the chassis which was not desired. However, all these

Figure 5.5:
Phase 1: Initial position | Phase 2: Rotated 90 degrees from initial position | Phase 3:
Rotated 180 degrees from initial position (final phase)

51

challenges could be solved by choosing the right components and building ma-
terials. Themajor issue that made this solution unacceptable was the problem
of having three out of four arms to stay loose (not locked to the surface) during
the whole rotation process. It means less stability and redundancy which could
even result in instability in case of wind and storm which are usual on offshore
platforms. Such big risk with all other maintenance and power consumption issues,
in front of the only advantage of extra speed, show clearly that this solution could
not be approved.

Simple Pull-Up Climbing Gait

This easy climbing model consists of 5 phases. The cycle is completed after the
fifth phase and the robot is completely climbed one step and is ready to iterate
this operation again for further climbing.

• Phase #1: Left front arm releases, extends and grasps the next bolt on the
line and locks.

• Phase #2: Right front arm releases, extends and grasps the next bolt on the
line and locks.

• Phase #3: All 4 arms together would withdraw/extend while locked. Front
arms would withdraw and rear arms would extend.

• Phase #4: Left rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

• Phase #5: Right rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

One of the advantages of this simple climbing pattern was that it would con-
quer the gravity only in one direction (opposite to the rotational climbing). It
also enjoyed very good stability with having the minimum number of 3 arms
locked at a time in the whole process. The load is also distributed equally be-
tween three fastened arms which prevented overheating of motors and extra
load on one part of chassis. In addition, extra stability was reached in lifting
operation by division of the needed force to lift up the whole chassis weight
between all 4 motors on-board (4 arms). This would result in perfect balance
and would prevent overheating.The only advantage of this climbing gait is the
low speed and time consuming climbing operation. In following calculation,
the time that each extend / withdraw operation takes is shown by Td and the
time that each grasp consumes is shown by Tg. Then the whole simple pull-up
operation stride time would be:

52

T(total) = 8Td + 4Tg
Assuming Td = Tg, then:

T(total) = 8Td + 4Tg = 12Td

Optimized Pull-Up Climbing Gait

This simple vertical motion can be modeled partly to two different natural hu-
man motions. People doing pull-up training at gym, use their arms to lift their
body up (figure 5.6), and the same does the robot in phase 3. However, regarded
rear arms (feet in human training), things become different and the same mo-
tion could not be the source anymore. Pull-up training’s aim is not climbing,
but rather lifting the body up (the aim in phase 3). Therefore, one would not
need to fasten the feet anywhere, but this is critical for the robot to maintain
stability. On the other hand in rock climbing (dynamic climbing), feet are crit-
ical in holding stability (supportive feet / rear arms carrying the load). Both
rock climber feet and robot rear arms are moved up one by one to join the rest
of the body in climbing and lifting operation. One should bear in mind that
due to joint limitations, the goal here is static climbing, while rock climbing is
a dynamic climbing method. One might wonder why bother finding similari-
ties and modeling an already developed pattern to nature. The answer would
be that such modeling and discovering similarities could be inspiring and lead
into lessons from natural evolution which has happened over many years.

Through modeling and re-thinking about the process, finally a new type of
5 phase climbing gait was developed, shown in figure 5.8. Based on different

Figure 5.6: Slow climbing and its similarity with pull-up exercise

53

Figure 5.7: Optimized slow climbing

diagonal climbing models (rock climbing, ladder climbing, etc), having joint
limitations in mind, a new gait was developed, trying to save one extend op-
eration by lifting up the robot one step earlier than previous pattern (phase 2
instead of 3) and accordingly skipping one extend operation by the right front
arm. This climbing gait saved one grasp and hold operation at each cycle, which
for a robot with the speed issues was a big improvement. This gait is called for
optimized pull-up gait due to this fact. Here all phases in figure 5.8 are listed in
5 steps:

• Phase #1: Left front arm releases, extends and grasps the next bolt on the
line and fasten.

• Phase #2: Right front arm releases, and right after it all other three arms
would start withdrawing (right front) and extending (both rear arms)

• Phase #3: Right front arm which was already released from phase 2, would
extend and skip the next bolt, grasping the second bolt in the line.

• Phase #4: Left rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

• Phase #5: Right rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

The cycles here were different from previous pull-up model and at the end
of the cycle, one stride (as previous one) was taken, but hopped over one bolt.
For comparing the speed optimized climbing compared with simple climbing,
the same distance should have been passed. Therefore it is assumed that phase
number three does not belong to this cycle, but to the next cycle (so the exact
same distance climbed as simple pull-up would be taken). Showing stretch /
withdraw time by Td and grasping by Tg. Then it would be:

54

T(total) = 6Td + 4Tg
Assuming Td = Tg we have:
T(total) = 6Td + 4Td = 10Td

Compared to simple pull-up algorithm, one could have a speed of 16.66% =
17% faster and still stable (3 arms are fastened to the surface at a time).

This climbing gait, as the previous one is conquering the gravity in one
direction (easiest), stable with 3 arms fastened to the surface at a time. The
only drawback of this gait compared to previous gate (simple pull-up) could
be reducing the number of fastened arms during the lift operation from 4
to 3 which reduces force distribution affectivity and puts more pressure on
remaining motors and make it less stable than simple pull-up. This is not
a major problem as three arms (12 motors) should still be enough for such
operation.

Dragging Climbing Gait

The last climbing gait discussed in this section is another method of climbing
vertical surfaces. This pattern of climbing is not as fast as the rotating model, but
faster than the other two pull-up methods. The robot initial configuration was
different on the wall (figure 5.9) and during each stride in this model only two
arms were involved and the other two arms were only for supporting purposes.
Based on calculations done down here, this strategy would speed up climbing
time by 33% during each stride.

Through modeling and re-thinking about the process, finally a new type of
5 phase climbing gait was developed, shown in figure 5.8. Based on different
diagonal climbing models (rock climbing, ladder climbing, etc), having joint
limitations in mind, a new gait was developed, trying to save one extend op-
eration by lifting up the robot one step earlier than previous pattern (phase 2

Figure 5.8: Optimized slow climbing

55

instead of 3) and accordingly skipping one extend operation by the right front
arm. This climbing gait saved one grasp and hold operation at each cycle, which
for a robot with the speed issues was a big improvement. This gait is called for
optimized pull-up gait due to this fact. Here all phases in figure 5.8 are listed in
5 steps:

• Phase #1: Left front arm releases, extends and grasps the next bolt on the
line and fasten.

• Phase #2: Right front arm releases, and right after it all other three arms
would start withdrawing (right front) and extending (both rear arms)

• Phase #3: Right front arm which was already released from phase 2, would
extend and skip the next bolt, grasping the second bolt in the line.

• Phase #4: Left rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

• Phase #5: Right rear arm releases, withdraws and grasps the next bolt on
the line and fasten.

The cycles here were different from previous pull-up model and at the end
of the cycle, one stride (as previous one) was taken, but hopped over one bolt.
For comparing the speed optimized climbing compared with simple climbing,
the same distance should have been passed. Therefore it is assumed that phase
number three does not belong to this cycle, but to the next cycle (so the exact
same distance climbed as simple pull-up would be taken). Showing stretch /
withdraw time by Td and grasping by Tg. Then it would be:

T(total) = 6Td + 4Tg
Assuming Td = Tg we have:
T(total) = 6Td + 4Td = 10Td

Compared to simple pull-up algorithm, one could have a speed of 16.66% =
17% faster and still stable (3 arms are fastened to the surface at a time).

This climbing gait, as the previous one is conquering the gravity in one
direction (easiest), stable with 3 arms fastened to the surface at a time. The
only drawback of this gait compared to previous gate (simple pull-up) could
be reducing the number of fastened arms during the lift operation from 4
to 3 which reduces force distribution affectivity and puts more pressure on
remaining motors and make it less stable than simple pull-up. This is not
a major problem as three arms (12 motors) should still be enough for such
operation.

56

Figure 5.9: Faster variation of climbing gait

Dragging Climbing Gait

The last climbing gait discussed in this section is another method of climbing
vertical surfaces. This pattern of climbing is not as fast as the rotating model, but
faster than the other two pull-up methods. The robot initial configuration was
different on the wall (figure 5.9) and during each stride in this model only two
arms were involved and the other two arms were only for supporting purposes.
Based on calculations done down here, this strategy would speed up climbing
time by 33% during each stride.

• Phase #1: Front arm releases, extends and grasps the next bolt on the line
and fasten.

• Phase #2: Both side arms release.

• Phase #3: Rear arm start extending and front arm starts withdrawing. This
ends with side arms fastening to the bolts.

• Phase #4: Rear arm releases, withdraws and grasps the next bolt on the
line and fasten.

Theadvantage of this gait is the fast speed, but at the same time it reduces
redundancy by having only 2 arms fastened to the surface during lift-up. More-
over another important issue about this type of climbing model was the fact of
having a tail which increases the stability and prevents the body from pitching
back [43, 44]. Previous pull-up models did not enjoy such characteristics. The
importance of the tail in stability of climbing is an issue that was discovered
by engineers and later was confirmed by biologists in animals like gecko [44].
Showing extend / withdraw time by Td and grasping by Tg, one could write:

T(total) = 4Td + 4Tg
Assuming Td = Tg so that:
T(total) = 4Td + 4Tg = 8Td

57

Figure 5.10:
Speed and Stability have opposite relation to eachother. The factor of stability is based
on minimum number of locked arms to the wall during opeartion

Compared to simple pull-up algorithm, dragging gait is 33.34% = 33% faster,
but less stable than previous pull-up gaits regarding the number of the locked
arms, but one should not forget the issue of tail support. Finally it is impor-
tant to mention that charts, virtual representations and analysis of the theory
here, are presented at 6.2. Beside saving time and accordingly better speed, the
optimized gaits save some motor actuation which results in lowering power
consumption (figure 6.3).

5.2 Control Hardware, the Distributed Embedded Sys-

tem

5.2.1 On-board Motherboard

The year of 2010 was booming time for notebook pc also known as Eee PC’s.Having
a notebook on-board the robot would have huge advantages on processing
power, so the idea of a robot that includes a striped notebook (just mother-
board and a Solid State Disk) sounded very tempting. These machines have ex-
ceptionally low power consumption (7- 10 hours, depends on the battery) and
weight usually under 1 kg (including chassis, screen and etc) [45]. Removing all
the extra parts would increase battery life and reduce the weight. Alternatively

58

Table 5.1: Advantages and disadvantages of using a notebook motherboard in
a climbing robot

Advantages Disadvantages

Higher processing power Not Embedded / Real-Time System
Extra Processing Applications (Matlab,
etc)

Heavier than alternative micro-
processors

Light battery with low power consump-
tion

Less computation power than servers
(direct connection by micro-controllers)

USB host providing power for other parts Extra battery usage because of unused
extra components that cannot be re-
moved

Built-in networking components Tolerance issues as these components are
not built for frequent shock loads and vi-
bration

Light weight Not designed for extreme weather condi-
tion / salt
Not designed for operating in high hu-
midity
Redundancy issues in case of system fail-
ure (SW and HW issues)

one could also think of using an extra ordinary alternative computer developed
lately. The brand new Linux based, key ring sized Raspberry Pi laptops with
ARM11 processor (700MHz) and 1W power consumption [46]. This inexpensive
machine costs around 25-35$ per today and are being developed for providing
IT infrastructure for undeveloped countries. Table 5.1 shows the advantages
and disadvantages around usage of such hardware as a control system.

In comparison with only micro-controller driven systems, systems with such
offline computational power on board are very valuable choices. However the
concerns about redundancy, non-deterministic (unreliable) basis of notebook
OS (fair basis policy in running codes) and tolerance issues drive one to set aside
such solutions. Finally it should be mentioned that this solution, if developed
exclusively for offshore with required specifications, can increase the local pro-
cessing power (however, severs are far more powerful) and result in smarter
systems that could operate perfectly offline. Figure 5.11 shows the photos of
the notebook motherboard, Raspberry Pi motherboard and the idea of setting
up the system with such motherboards.

59

5.2.2 Micro-controllers, the embedded system

On the other hand, the alternative solution for the initial notebook motherboard
idea, was to focus on using micro-controllers as an embedded system and wire-
lessly forwarding the raw data stream for further processing (if necessary) to
servers with high processing power (figure 5.12). The main advantage of such
system is deterministic properties of an embedded system (the chance to know
which code and when it is running). Table 5.2 shows the advantages and dis-
advantages of this choice. As the systems was divided into smaller parts with
standard input and output, the complexity of the development work dropped
and trouble shooting of the system became much easier. E.g. each embedded
system could have been tested separately. However this approach made the sys-
tem dependent on server connection and resulted in lower processing power.
Regarding such disadvantages, it was decided to increase the number of micro-
controllers onboard the system to increase computing power. The issues around

Figure 5.11: Left - Asus Eee 900 - Right, Raspberry Pi motherboard

60

Table 5.2: Advantages and disadvantages of using micro-controllers connected
to server as the control hardware [26, 27]

Advantages Disadvantages
Low power consumption Lower local processing power than alter-

natives
Determinism Dependency on server connection
Light and small Networking Components, not built-in
Easier Development
Easier Troubleshooting
Higher processing power combined with
servers
Easier proofing due to dimensions

Inexpensive variant

this and inter-communication between different micro-controllers in the robot
is addressed later in 5.2.3. The issue of offline performance is also taken up in
7.7. One might wonder why it was not decided to have a more powerful micro-
controller instead of going for a multi-micro-controller approach. The answer
to this question is the availability of components in the lab and the potentials
that lie inside the multi-microcontroller approach 5.2.3. The best available Ar-
duino board, Mega, did not have enough ports for all motors and encoders on
robot. Twelve motors would need four ports for their motor driver, two ports
for each motor’s encoder and in addition the sensors would come. The next
section is dedicated to justifying the decision made here to move towards a
multi-processing node system.

5.2.3 Centralized vs. Distributed Embedded Systems

A single embedded system, assumed having enough processing power, in charge
of the whole system would have its own advantages and disadvantages. Cen-
tralized processing enjoys having all data gathered in one place, while in dis-
tributed systems; the raw data is always being exchanged between nodes, which
require transaction time and processing power. On the other hand, planned dis-
tribution and division of tasks among inter-connected embedded systems could
reduce the required necessary processing power on each node. Table 5.3 tries to
show these points.

The long polling and interrupt queues could affect the system functional-

61

ity dramatically. This was the case in Walloid as number of encoder readings
during lift operation was between 18 - 24 continuous simultaneous readings
(depends on the chosen gait). This number only belongs to the mechanical oper-
ation and extra necessary sensors are not included. Such issues would decrease
the determinism of the system, as the system would start being pressed from
too many readings, while some of these could stop other processes and would
run first (interrupts) [47]. Interrupts are valuable features on micro-controllers,
but in case of frequent occurrence could make the system very slow.

Moreover, redundancy in DES is a very sensitive point. In a centralized sys-
tem, everything relies on one single component which could break down. In
such cases the whole system would be totally unreachable. However, in case of
having multiple processing units on-board in a distributed system, even in case
of one component failure, other processors (at least) could transmit the location
to the service personnel, or even localize the error. This would result in less
time used for recovering the robot and more efficient system design.

Due to all these above, the solutions of choosing multi-embedded system
was preferred and chosen. However as table 5.3 shows, there are some chal-
lenges in distributed system design which should be closely looked into. Solu-
tions are presented during the work to these disadvantages to make their effect

Figure 5.12: Embedded system / Server communication

62

Table 5.3: Centralized vs. Distributed Embedded System
Type Advantages Disadvantages

Centralized
Processing

+Simpler Electronic scheme
+Simpler programming issues
+Centralized decision making

*Long interrupt traffic
*Long polling traffic
*Less redundancy (everything re-
lies on one component)

Distributed
Processing

*Increased Processing Power
*Short interrupt traffic
*Short polling traffic
*Redundancy (several processing
units on-board)

*Continuous need for exchange of
data
*Higher Design Complexity
*Inter-Connection Challenges
*Higher Power Consumption

Figure 5.13:
A: Arduino Mega with AVR Atmega 1280 B: Arduino Fio with AVR Atmega 328P

as small as possible. Section 5.3 is dedicated to the choice of inter-connection
medium and an attempt was made there to simplify the design as much as
possible. The amount of exchanged data was also tried to be minimized by de-
veloping a communication protocol (section 5.5.5). Finally higher processing
power issue was tried to be solved by utilizing sleep policies in navigation pro-
gram (section 5.5.3). After deciding about a distributed design, it is now time
to choose what kind of components would be proper on each node. The next
section of this report would go through the choice of used micro-controller in
the distributed embedded system design (DES).

5.2.4 Arduino Boards, the chosen embedded system

Micro-controllers can be divided into two categories, Complex Instruction Set
Computer (CISC) and Reduced Instruction Set Computer (RISC). The focus here
is mostly on RISC models which benefits simple design, low power consump-
tion and small dimensions. CISC models are more powerful, specialized and
MACRO-like in their programming concept which is out of thefocus area [26].

63

Having micro-controllers as the logical decision making units, it is useful
to take a look at internal parts of a micro controller. One micro-controller usu-
ally consists of CPU, RAM (Random Access Memory), ROM (Read Only Mem-
ory), I/O ports, Serial and parallel ports timers, analog to Digital (AD) / Digi-
tal to Analog (DA) converters and nonvolatile memories(like EEPOROM) [27].
Components such as serial ports (section 5.3) and EEPROM (section C.3 in Ap-
pendix) were directly used during implementation of the control hardware and
software. There are many micro-controllers and platforms for micro-controlling
in the market. Arduino, Parallax Basic Stamp, Netmedia’s BX-24, Phidgets,
MIT’s Handyboard, and many other alternatives that do the same job [48].
Among all these choices Arduino was chosen as it is the right choice for pro-
totyping purposes and contains the features that are important in the process of
prototyping a solution [48]. Arduino boards with AVR micro-controllers enjoy
following features [49]:

• Fair and reliable performance for prototyping

• Simplicity (HW designs and programming)

• Availability (in terms of SW, HW and learning materials such as a helpful
community, tutorials, forums and local experiences at ROBIN group)

• Cross-Platform (Ability to run on Linux, Windows, Mac support without
any modification)

• Open-Source (in terms of SW, HW. The chance for re-design and re-use in
industrial applications. All plans for the modules are published under a
Creative Commons license)

• Inexpensive HW

Due to all these points Arudino boards with AVR micro-controllers are the
final choice for implementation of the distributed embedded design shown in
figure 5.12. Going into details of choices made here, Arduino Mega (with AVR
Atmega 1280) was used as the central brain (master controller) of the control
hardware, while Arduino Fio (with AVR Atmega 328P) was used as the slave
micro-controllers in the design. As the time did not allow to enter all details, it
was assumed that connecting to higher level wireless networks could be easily
done using an extra WiFi modem (WiFly shield) for Arduino boards [50]. On
the other hand, the issue of inter-connecting several micro-controllers is crit-
ical in building the control hardware in the distributed embedded design in
practice. This critical issue is explored in details in 5.3 and the top level plan
(figure 5.12) is implemented with mentioned Arduino boards and proper inter-
communication technologies.

64

5.2.5 Alternatives

Arduino has its own limitations as well. Here is a list of limitations using
Arudino would impose to a project.

1. Arduino cannot be a USB host, meaning you cannot connect and power
up USB devices to it.

2. Single serial port on standard Arduino boards, makes it possible to be
connected to one device at a time (only Arduino Mega has 4 serial ports)

3. Arduino is designed for prototyping and educational purposes.

4. Arduino does not fit industrial applications directly, as Arduino requires
5V voltage, but mainly industrial projects require 24V.

5. Lack of Controller Area Network (CAN) support which this need is lately
answered by a CAN shield for Arduino boards [51]

Regarding to alternative solutions, as discussed earlier, a notebook moth-
erboard with local DAQ cards is a suitable choice (5.2.1) but for mobile sys-
tems such as Walloid robot, Field Programmable Gate Array (FPGA) or Digital
Signal Processors (Specialized microprocessor with optimized architecture re-
garding mathematical operations) could also be considered. When discussing
the specifications for the industrial vision, FPGA is a very tempting choice as it
benefits all the following features.

• High reliability

• High determinism

• High performance

• True parallelism

• Reconfigurable

FPGA’s are fast and reliable processing units and benefits from directly pro-
grammable logic gates. They are mainly used for high speed control systems,
intelligent DAQ, digital communication protocols, sensor simulation and co-
processing. The properties and area of application can easily show that FPGA
could be one of the right alternatives for further development of a smart climb-
ing robot.

65

5.3 Distributed Embedded System Design

Choice of inter-connection of Arduino boards is the topic of this section.
As showed before in figure 6.1, a DES is designed to contain five micro-

controllers. The master micro-controller, Arduino Mega with ATmega 2560
AVR (called master controller here after). Master controller is the central logic
of the system and the master algorithm of navigation program would run on
it. This unit is connected to four other slave micro-controllers (slave-controllers
here after). Each slave-controller is just in charge of one and only one arm and
the slave algorithm (positioning) would run on it. These limited intelligent con-
trollers are in charge of three prismatic joints and the sensors around them (e.g.
passive control sensor). In another word, the master controller is in charge of
strategy planning and the slave controllers are responsible for positioning the
arms.

The DES design allowed the master controller to be in direct contact with
the server (figure 6.1) and also specified direct communication between all em-
bedded systems (micro-controllers) in the design. One can name several cable-
based and wireless solutions for the inter-communication of micro-controllers.
The next two sections would try to evaluate such solutions, finding the right
protocol or standard to implement this system.

5.3.1 Cable Based Distribution

Inter-Integrated Circuit, I2C

I2C or Inter-Integrated Circuit is a communication protocol to connect an em-
bedded system (micro-controller) to other devices (E2PROM memory). The
communication technology in this protocol is based on two bidirectional lines
that are pulled up with resistors [52].

1. SDA: Serial Data Line

2. SCL: Serial Clock

I2C is a multi-master serial bus, which only allows one master at a time. The
practical distance of communication is limited to few meters and the longer the
cables are, the lower the speed would get (3.4 Mbit/s at high-speed mode, but
100 Kbit/s is common) [26, 52]. The advantage of using I2C is the simplicity of
connection design and its availability on Atmega AVR micro-controllers (ana-
log pin 4 is SDA, analog pin5 SCL) [53]. Referring to the disadvantages, one can
mention the one master at a time properties and the practical problem of writ-
ing back to master at any time faced during implementation. The second issue

66

Figure 5.14: I2C schematic for inter-connection of Arduino boards

was discovered while implementing this inter-connection method (figure 5.14)
and no solution was found around it. I2C works quite well, when it writes to a
device and then expecting a feedback. This resulted in slave micro-controllers
not being able to write to the master at any time (in case of emergency) and this
was not acceptable for the design. What DES design needed was a chat (2 way
communication) connection so the master and slaves could interact in a fast and
stable way. Based on the experiment done with I2C in this project, it could not
be qualified for this type of connection.

Ethernet, IEEE 802.3

Utilizing Ethernet technology is another approach in building a network of
inter-connected embedded systems. Ethernet is a family of networking tech-
nologies (standardized under IEEE 802.3) for shaping Local Area Networks
(LAN) [54, 55]. Ethernet is mature, stable, fast and in addition the most pop-
ular method of transmitting data in large scales [55]. The idea here is to pro-
totype a LAN consisting of several micro-controllers with additional Ethernet
adapter [56]. Ethernet star model is an interesting implementation for DES de-
sign. It consists a router (central node) in the middle and all the other surround-
ing nodes which are connected to it and at the same time two specific nodes can

67

Figure 5.15:
Implementation of I2C connection of micro-controllers | 2: Program results of testing
the I2C connection

communicate directly together (static IP). This reduces unnecessary flow of in-
formation.

The main disadvantage of this method is high energy consumption for pow-
ering the central router compared to other cable based method (sections 5.3.1,
5.3.1). Therefore, this major disadvantage imposed to a mobile robot (depen-
dent on battery) was not acceptable and Ethernet was set aside. Ethernet is used
in some of the tests during this project and showed very useful (5.5.4). Regarded
discussions here and other applications that Ethernet is vastly used in, it can be
concluded that Ethernet is more suitable for fixed robots (e.g. industrial manip-
ulators) than mobile robots due to unlimited access to power consumption and
their fixed place allowing Ethernet cables to be mounted.

UART/USART, Serial Communication

UART/USART (universal synchronous/asynchronous receiver/transmitter) is
an integrated circuit allowing serial communication between different devices
[26, 57]. This circuit equips the board with a receiver (Rx) and Transmit (Tx)
ports which would be the physical layer for communications standards (RS-
232 at Atmega 1280). Differences between this method and I2C is the lack of
common clock which makes the whole system dependent on starting bit (inter-
nal clocks sampling Rx) [57]. Therefore it’s very critical that transmission bit
rate agrees on both sides (easily forgettable when changing the value on one

68

Figure 5.16: Arduino star network

side, but not the other). Setting up this kind of communication between two
micro-controllers is extremely simple. The only thing had to be done was to
connect the Rx pin of the first micro-controller to the Tx pin of the other one
and vice versa. Together RxTx ports allow the micro-controllers to commu-
nicate together exactly in the same way that they communicate with the PC
through a USB cable (Serial Communication). After connecting the cables, it
is easy to setup and manage the connection by using existing Serial interrupts
and protocol on AVR micro-controllers. This interrupt can even be used in
waking-up the micro-controller from sleep mode (waking the sleeping nodes if
necessary to talk to them). This feature is used in power optimizer algorithm,
discussed later in section 5.5.3. Another useful feature of Serial communication
on AVR micro-controllers is the availability of 4 different Serial channels on
Arudino Mega boards (Atmega 1280) [47]. Current DES design only needs five
micro-controllers inter-connected and this is enough. Another very practical
and important properties of Serial communication in Arduino Mega (discov-
ered through implementation), was that it would allow communication with
each slave micro-controller to go through a separate dedicated channel. This
means sending unnecessary data would decrease by around 75% and accord-
ingly bandwidth and processing power needed for handling unnecessary data
would be spared.

Due to availability, simplicity, reduction in exchanged data rate and the
stability of this type of connection (based on experimenting in implementa-

69

Figure 5.17: Implementation plan for RxTx system configuration

tion), Serial connection was chosen as the ideal choice for cable based inter-
connection of micro-controllers. This approach was implemented and the re-
sults were very satisfying due to all properties mentioned earlier which were
fully implemented and used. Nex section covers possibilities of wireless inter-
communication between different units.

5.3.2 Wireless Distribution

Althoughcable connection is a very secure connection (much easier to sniff
wireless signals), due to flexibility provided by wireless design, easier main-
tenance, troubleshooting, simpler assembly design and easier proofing issues
(water, rust, salt, etc), wireless communication was a very tempting alternative.
The technologies that could be used here are classified in four main aspects:

1. Infrared

2. WiFi

3. Bluetooth

4. ZigBee

Next sections would go into details of such technologies and evaluate their
gains and losses when using them as implementing the DES final design.

70

Figure 5.18:
Connecting three Arduino boards with Atemga AVR micro-controllers together with
RxTx ports

Infrared

Some of the infrared properties such as very low power usage, safe due to short
range (hard to sniff) and inexpensive [59,60]. On the other hand, there are some
other properties that make it totally an unacceptable choice. E.g. transmission
at eye sight (any obstacle can interrupt the whole connection) and instability

Figure 5.19:
Left: Power consumption for Bluetooth(BT), Ultra-wideband(UWB), ZigBee and WiFi
|Right: Normalized energy consumption for each method [58]

71

under harsh weather condition [60]. Offshore project usually suffers from harsh
weather condition and instability in harsh weather (sunlight, rain, pollution,
etc) was a major disadvantage that crossed off Infrared from the list of available
choices.

WiFi, IEEE 802.11

Ethernet discussions more or less apply here, except the fact that every slave-
controller here must have a WiFi adapter instead of an Ethernet adapter and a
wireless router in center. The WiFi adapters are connected to a wireless LAN
and moreover to a higher level system (platform network). Due to vast im-
plementation, stability and maturity of WiFi technology, using such technol-
ogy in the design can simplify the design process. However it may also arise
some disadvantages, such as high power consumption [58] (Figure 5.19), fear
of signal drop outs, signal interference, jamming and intrusion. All in all WiFi
doesn’t seem to be the right choice for internal communication between micro-
controllers (especially due to high power usage), but right choice for the con-
nection between robot and the network providing access to the server.

Bluetooth

High power consumption is a concern in designing mobile systems and there-
fore Bluetooth is an interesting case to discuss due to low power usage [58] (Fig-
ure 5.19). Bluetooth or Zigbee can be a very suitable candidates as both have
very little power consumption [58]. Figure 5.19 clearly illustrates the differences
in power consumption between different wireless protocols.

Earlier experiences with Bluetooth technology at ROBIN group did not turn
out to be very satisfying (lack of stability, sudden drops outs, short range of
support), but latest upgrades in this technology turned it to be an unavoidable
choice. The early versions of Bluetooth (1.0 and 1.0b) were unstable. Problems
with interoperability caused difficulties in connecting devices from different
manufacturers. Later versions (1.1 and 1.2) have resolved many of these prob-
lems [61]. Stable communications between cellphones, car kits and hand frees,
and the ability to support connection between several (up to 8 in active mode)
devices at the same time and its short range in comparison with WiFi (harder
sniffing) are advantages of this protocol. Planning to implement a network’s
several nodes together, Bluetooth Personal Area Network (Bluetooth PAN) can
be used to make a network between all communicating nodes.

Disadvantages such as slow device discovery (extra time and energy used to
discover a new device), higher power consumption to keep a connection open

72

compared to other protocols, limitation on number of active devices (8) for fur-
ther development of the system [62, 63] plus unavailability of the hardware
components in the lab, price compared to other choices (79$ Bluetooth board in-
stead of 25$ ZigBee boards) crossed Bluetooth off the list as well. This resulted
in ZigBee to be the last choice on wireless based EDS list of protocols. Next
section would be covering the topic of ZigBee in DES design.

ZigBee, IEEE 802.15.4

ZigBee is a communication protocol based on IEEE 802 standards for Personal
Area Networks (PAN). ZigBee(Figure 5.20) intends to be the protocol with in-
expensive, low power consuming [58, 64] standard for wireless mesh networks
in compare with competing protocols such as Bluetooth [64, 65]. They are ac-
tive in various radio band fields such as industry, scientific and medical (2.4
GHz is most jurisdictions worldwide) [64, 66]. Figure 5.20 shows some prod-
ucts built based on ZigBee technology by Digi called XBee. Series one of XBee
components does not support mesh networking. Implementation of XBee inter-
communication in this project was done by XBee series 2.

Figure 5.20:
A: Xbee connecting with Serial protocol to Arduino board [67] | B: Xbee pins [68]

Due to the potentials of this protocol and attempts to lower the power con-
sumption even more, this technology sounds promising to use as the inter-
connection method between micro-controllers in the DES design. In addition
it is interesting to mention that some of the current components in the market
allow remote wireless re-programming of micro-controllers (navigation pro-
gram). This allows remote upgrading of navigation program, easier support,
maintenance and troubleshooting. However, upgrading the navigation pro-
gram in the middle of operation (could be sensitive), or in the field, is strongly

73

not advised. This also brings up some challenges in case of security compromise
(being hacked). Meaning the machines could be re-programed by intruders to
work against their initial goals. Such threats are addressed in the docking sta-
tion topic in Appendix (section C.1).

At the end one might wonder if the low data throughput illustrated in fig-
ure 5.20, right side [58, 64], can be a major disadvantage for this technology.
This is true that WiFi and UWB have far more data throughput than ZigBee
and Bluetooth, but the question is where it is needed to have such high data
throughput and what is the price to be paid for it (very high power consump-
tion) Robot-Server-Client design sends all communication through the master
controller and forwarding of commands to slave controllers is filtered. This
justifies the choice of having WiFi as a communication protocol between the
server and master controller, but due to low traffic on slave controllers the
same reason does not apply for the slave controllers (exchanged data is sup-
posed to be filtered and only sent to destination, the same way discussed in
5.3.1). Slave controllers have much less traffic and therefore could do their job
with a component that has lower data throughput and much less power con-
sumption, meaning ZigBee.

Figure 5.21: Implementation plan of ZigBee network

For testing this connection method, 1 Arduino Mega and 4 Arduino Fio and
5 XBee were used (figure 5.21). Arduino Fio is designed to directly dock XBee
components, but one should use XBee shield to connect XBee to Arduino Mega.
The connection between XBee components and Arduino board happens over

74

RxTx ports (UART/USART) 5.3.1. Bit rate of all serial communications (UART)
were set to 19200. For simplifying the test and only focusing on XBee communi-
cation, the information during this test was sent through serial cable to master
controller (Arduino Mega) through serial port (USB cable) and then distributed
to the salve controllers (Arudino Fio) later. Something which is possible, but
was not implemented in practice during this project was filtering of data only
to the specified slave controller as it was done in 5.3.1. In theory it is possible
to contact each single XBee at a time, but this means re-programming the mas-
ter controller to only go into pair mode with only that specific XBee node on
that specific slave controller. This is time (re-programming time and network
search time) and power consuming (searching for new network) and not the
most stable way to implement a navigation program with. Therefore a ring net-
work with 5 XBee components were designed and implemented, where XBee
on the master controller was the coordinator (one network, must have only one
coordinator) and the XBee components on slave controllers were routers. The
information flow went very smoothly through the whole connection and the
implementation of ZigBee method was a success. The information from the co-
ordinator (Arduino Mega) was on broadcast mode, but routers (Arduino Fio)
sent only the feedbacks back to the coordinator (Arudino Mega).

5.4 Control Algorithm

This part is dedicated to the prototyping phase of the navigation program. The
text in this part covers development process of the control algorithm and de-
cision making center for implementing already planned climbing operation,
with regards to the DES, in Walloid robot. Later details of prototyping a dis-
tributed navigation algorithm with power optimization, remote controlling and semi-
autonomous features are addressed. Finally this trend would finish with present-
ing self-developed simulation application which are used for presentation and
testing (system functionality) purposes.

5.4.1 Robot-Server-Client (RSC) Architecture and Development

Tools

Earlier in 4.5, it was defined that the control algorithm would be developed in
three layers such as Robot, Server and Client. An important issue about these
modules is about the server part. Server in this project is an abstract issue and
was not implemented, but a simple workstation was used instead and the con-
nection to the hardware was either RS-232 by USB or Ethernet. It was assumed

75

that the robot in an ideal case would be in contact with the robot with wireless
connection. On the other hand, it is assumed that in an already developed in-
dustrial ICT designs, servers already exist. Therefore, the controller algorithms
were developed in a way to be able to work with different systems, as long as the server
is compatible with the input standard of the robot and the server is compatible with
the output standard from the robot. This is done by choosing development tools
(e.g. Java, Processing, Arduino) that are cross-platform compatible with differ-
ent platforms (Linux, Windows, Mac, etc).

To start shaping a system, we do need to have an overview of the system,
especially the key controllers and indicators involved in that system. Figure
5.22 tries to define these key concepts and implement ”divide and conquer”
strategy in practice. This figure also tries to show possible stakeholders of the
system (operators, task developers and simple clients).

Figure 5.22:
Robot-Server-Client System Specifications | Green boxes were implemented, while pur-
ple boxes are abstract definitions

Moreover development tools should be chosen. As stability, redundancy,
integration and further development potentials are key concepts in this project,

76

it is critical to choose right set of tools Therefore, Java Standard Edition (SE)
was chosen as the main development tool on the server (workstation) side. Java
is stable, mature, cross-platform, rich in number of libraries, redundant and
with free development tools (e.g. Eclipse and Netbeans) [69]. In addition, Java
Enterprise Edition (Java EE) as the industrial version of Java SE could be used
for further development of the project [70]. Java might not be the fastest tool as
C is, but it is stable, redundant and safe (Banks usually implement their system
using Java) [69].

On the micro-controller side, by choosing Arduino in 5.2.2, the choice of
programming language is limited to Arduino C and AVR C. Arduino C is a
simplified micro-controller level C which is suitable for prototyping purposes,
as it allows the developer to use their time on actually implementing their idea
and not on complicated programming issues. Arduino C and its Integrated
Development Environment (IDE) are easy to use, cross-platform, free and licensed
under Creative Commons Attribution-Share Alike 3.0 License and the code samples are
published in public domain [49].

Figure 5.23: Simulation

77

Processing programming language was another tool used during this project.
Processing is an Open-Source development tool suitable for simple interaction
and visual arts [71]. Since the start in 2001 up to now, tens of thousands of
students, artists, designers, researchers, and hobbyists enjoy using Processing
in a diverse range of projects [72]. Processing can also cooperate closely with
Java and can be integrated directly in Java classes and on web pages (as a Java
applet) and even on mobile platforms. This specially helped in simulation and
interface design as Java has its own difficulties in graphical environments.

Figure 5.24: The industrial vision of a Robot - Server - Client

Figures 5.22 and 5.24,5.25, all together underline stakeholders of RSC sys-
tem. This would need a little bit more clear definition. This separation of stake-
holders was mostly done to give each layer authenticated access to the robot
(Run mode, Teach mode and Monitoring mode). Following list would describe
each stakeholder and their access level better.

The system stakeholders defined in figure 5.22 were:

1. Robot Operators steer robot manually from onshore facilities (Auto and
Mannual Mode).

2. Task Developers develops new functionalities on robot system and teaches
robots new tasks (Auto, Manual and Teach mode).

3. Offshore Experts / Simple Clients, are those experts whose experience is
needed in different cases. Such experts are not in control of the robot, but
only monitor the sensor readings and processed raw data from the robot
on their screens (no control mode access).

78

Figure 5.25:
Combination of several network DAQ in rapid prototyping 0 | 2: Combination of Sev-
eral Local DAQ in rapid prototyping 1 | 3: The industrial vision

Each of these stakeholders needs their own control panel (CP) to have access
to the robot. To this some imaginary web based control panels were designed
and were implemented later during the development phase (5.5.4).

Figure 5.26:
Early stage hand drawn GUI design for different stakeholders in a RSC model

5.4.2 Hardware - Software Interaction

To reach the goal in robotic systems, it is vital to provide stable interaction
between the hardware components and the software running on them. Some-
times parts of the control software could be running on a totally different plat-

79

form (server) far away from the robot. In such occasions the commands are
sent to the robot through different types of communication protocols. These
sequences of commands could be as simple as motor moves on a remotely con-
trolled robot, or more complex AI decision making commands. No matter how
simple or complex these commands would be, everything would be sent as
simple characters in a predefined protocol (Figure 5.37).

As assumed earlier in section 4.4, the external connection medium was Wi-
Fi (access to server) and RS232 / XBee for inter communication of micro-controllers.
As both XBee and RS-232 use RxTx ports on the Arduino board, it would not
matter in coding phase which approach would be the final choice of implemen-
tation on DES. Built-in Serial library in Arduino C and external RxTx library
on Java side [73] had to be imported to establish the serial communication. On
both sides, reading of transmitted information was done using serial interrupt
functions. Later this received information was sent to other functions (later
other Arduino boards) in the navigation program to be processed.

5.4.3 Development Process

The first prototype developed during the process of this project was a simple
connection between a control panel (CP) application on the workstation side
(developed in Java SE) and the Arduino C code on a centralized micro-controller
(single) of the Walloid arm. This is a stage that a centralized embedded system
was being tested. Development in this step was a very good exercise, under-
standing the concept of serial communication and reaching a stable connec-
tion. The CP developed in Java SE was a single thread program that used the
RxTx library [73] to communicate with the serial port with the micro-controller.
Through this serial communication commands were sent to the micro-controller
and feedbacks were received.

During this early stage a manual navigation program, ability to connect to
the serial port on different frequencies, logging system and a basic simulation
was developed (figure 5.27).

Receiving stream of data, processing it, logging it and simulating the pro-
cess in Processing was too much for a single thread code to handle. Therefore,
information loss was experienced from time to time. To solve this problem, two
different threads were created that were run simultaneously, one reading and
writing information to and from control hardware and the other would take
care of logging and simulation (developed in next phase). Threads communica-
tion was done through having a shared FIFO queue, where received data were
stored to. This data was read by the second thread and processed afterwards
into logging system and simulation part. This solution had a very good effect

80

Figure 5.27: A: Walloid arm | B: Walloid Java based standalone control panel

on program reaction time. Threads communication was done through having a
shared FIFO queue, where received data were stored to. This data was read by
the second thread and processed afterwards into logging system and simulation
part. This solution had a very good effect on program reaction time.

Java graphic difficulties made it hard to develop better simulation with Java
SE. Therefore, it was decided to add a new development tools called Processing
programming language to the project later. Processing is fully compatible with
Java and can be totally integrated. This allowed continuing using the early
developed CP and integrating the simulations developed in Processing with
it. The result of this stage of development was a simulation of the arm in 3D
space that would follow the physical arm, based on feedbacks from control al-
gorithm on arm control hardware. The simulation would warn the user while
reaching boundaries of the workspace (chance for the shaft to drop out). It is in-
teresting to mention that problems of passive joint control occurred during this
stage, where due to situation explained in 7.4, the arm stopped moving while
the encoder kept sending readings to the CP and based on these feedbacks, the
simulation were also showing a moving arm (whole system malfunctioning).
However, in reality only the motor was rotating, but the faulty joint was not
under control of the CP at all as the connection was broken. This was an in-
teresting incident as through studying literature it was discovered that this is a
major issue to handle in robots [18].

The issue of simulation became very important as the Walloid received arm
broke down (3.4.3) after a while and everything could only be tested on sim-
ulations. Early simulations were basic presentation of the single arm (figure
5.29) which was based on the received Walloid arm. However, this changed
totally later as simulation was the only tool for testing the results of the work.

81

Figure 5.28: Multi thread programming, FIFO list

Therefore more focus was put on simulations and better functionality and re-
sults were achieved. The detailed process of simulation process is discussed in
5.6.

The development process of the navigation program continued and it was
soon discovered that using a single Arduino card was not enough 5.2.2. There-
fore, a decision was made to move from a centralized embedded system (sin-
gle micro-controller) toward a distributed embedded system including 5 micro-
controllers (section 5.2, 5.3). This affected the whole controller algorithm on the
micro-controller side. According to the new situation on the hardware side, the
code should be divided in two parts (figure 5.30):

1. Master controller: This part of the code is the main brain of the robot and
all the communication to the outside world and strategic decisions are
made in this unit (Arduino Mega).

2. Slave Controllers: These micro-controllers that are only in charge of one
arm would run an identical program. This program is in direct contact
with the master controller and follows commands accordingly.

82

Figure 5.29: Control panel, simulated data flow, logging and simulation

This radical change in architecture resulted in new types of inter-communication
methods to be tested and lots of experience in ring and mesh networking with
ZigBee components was gained. The distributed system was implemented with
three different methods, such as I2C, Serial RxTx and ZigBee (5.3). Libraries
used for implementing these protocols were Serial library (for both Serial RxTx
and ZigBee) and Wire library (for I2C) [53].

Figure 5.30: Master & Slave Micro-Controller tasks

83

5.5 Distributed Navigation Program (DNP) and Fea-

tures

DNP Algorithm

Previous section 5.4.3 covered the development process and how it has affected
the programming phase of control system. Based on the algorithm designed for
DES, an Arudino C code was developed and was divided between all Arduino
Boards. According to figure 5.31, the main controller (Arduino Mega) receives
the commands from server and then distributes it further to slave controllers
(Arduino Fio). These commands are coded in a communication protocol to min-
imize the bandwidth usage (read 5.5.5 for detailed information). Based on this
protocol, the master control would know which part of the system should re-
ceive this message (number 0 represent masters, and 1-4 represent each slave).
The conditions here for master controller is to either act as the command orders
(the commands is for master controller), or redirects the message to the right
slave controller. Navigation program on the master controller operates in three
mode, Auto, Manual and Teach mode which were described earlier in section
5.4.1. The algorithm shown in figure 5.31 clearly shows that with regards to
different modes the DNP would have, different action would be taken. E.g.
teach mode results in all movements to be logged. This part is continued by the
positioning logic in DNP in next section.

5.5.1 DNP Positioning Logics

The process in 3.3 shows how the kinematics calculation was simplified to one
single rule saying that for reaching one point, the variable distance of all three
prismatic joints in one arm are needed. This variable distance has a direct con-
nection with encoder readings (section 3.3). Assuming there is one counter for
each prismatic joint, then each encoder readings, stating forward movement
would increment the counter value by one and each reading stating backward
move would decrement the counter value. Based on Walloid received arm spec-
ification each prismatic joints counter could vary between 0 - 217. This was
equal with 54.4 mm, meaning each counter unit was equal with almost 0.25
mm (figure 3.6).

5.5.2 Reading Sensor Data

Reading sensor data is done by polling as there is not enough ports with inter-
rupt features on AVR micro-controllers on Arduino boards (2 on most of Ar-

84

Figure 5.31: Distributed Navigation Program Flowchart

duino boards and 4 on Arduino Mega). Such ports should be used in moni-
toring the very sensitive sensor readings. However, one should be aware that
hooking signals with continuous updates to interrupt ports can be more time
consuming than polling. Therefore, in DNP design, encoders values, which are
frequently updated are read by polling method and interrupt ports are reserved
for critical issues such as wake-up interrupts, collision detectors or passive joint
control sensors 7.4, etc. Other issues such as encoder readings and storing sen-
sor data are discussed in details in Appendix and therefore, are ignored here
C.3.

5.5.3 Power Optimizer Feature

Advantages and disadvantages of such system was discussed in sections 5.3
and 5.2.2. This strategy contains advantages that one cannot look away, but
also imposes extra challenges, such as delays (5.3) and high power consump-
tion (5 micro-controllers use more power than one). Back to the discussion in
climbing gaits, an arm hanging on a bolt according to dynamic physic rules
does not use any energy for only hanging there. This means no electric energy
from batteries is used at all. On the other hand each arm has one embedded

85

system dedicated to control only that arm. Another fact is that only one arm is
not fastened to the bolt at a time, doing the grasp operation and the rest are in
idle mode (beside lift mode).

Doubt questions might then be raised that as long as only one arm moves
at a time and the operation speed of the arms are slow (3.4.2) and therefore
time gaps between operations can be long, then why not having a sleep mode
policy for such idle embedded systems ? To solve this challenge a power opti-
mizer algorithm was developed which tries to manage and optimize the system
power consumption from master control and save energy as much as possible
by putting the whole idle arm’s embedded system (control hardware and motors) to
sleep mode. These embedded systems would be woken up later, when they are
needed in operation.

Figure 5.32:
Simple pull-up climbing gait Power consumption before and after implementation of
Power Optimizer Algorithm (40% difference)

Practically this is implemented by using AVR sleep routines which allows
one to put the micro-controller to sleep mode and turn off parts that are not
in use. To this we have used AVR microcontroller features and AVR C directly
[74] [75] and not Arduino C. Here one of the very useful features of Arduino was
used which allowed direct usage of AVR C in Arduino C code. For this avr/power
and avr/sleep of AVR libraries were imported and used. The idea here is based on
sending sleep or wake-up command from master controller to slave controllers.
The wake-up operation is based on interruptions (USART interrupt) and the
micro-controller will continue running the code from where it went to sleep
mode. One can also use other interrupt ports to wake-up the micro-controller
(in case of having sensors, monitoring sensitive readings).

This strategy reduced the battery consumption up to 40% in a simple pull-up
climbing gate (figure 5.6). Calculations in figure 5.33 shows the mathematical
proof around this topic (the amount of energy in sleep mode is very low and

86

can be ignored). Figure 5.32 shows different climbing gaits power consumption
before and after implementation of Power Optimizer Algorithm. The source
code is available in Appnedix.

Figure 5.33:
Optimized Algorithm can reduce power consumption in one robot stride by 40%. Ts:
Arms stride time, Tg: Grasp time, Pa: Arm Power Consumption, Pm: Motor Power
Consumption, Pc: Master Controller (Core Micro-controller) Power Consumption

5.5.4 Remote Control System

Today AI with presenting commercial products (autonomous cleaning robots)
to the market has shown new potentials. This proves that the AI technology has
reached the level of mass production in general scale. However, the chance for
human mistakes always exists (developers) and this also applies to AI systems
created by mankind. This means that based on the sensitivity of issue, such au-
tonomous solutions cannot be fully trusted without a backup plan A.1. That’s
why it is critically important that any autonomous systems that are in charge of
sensitive tasks, such as those in petroleum industry, are equipped with overrid-
ing methods (remote control).

On the other hand, it is sometimes hard to define job scenarios as the prob-
lem is just too complicated for a robot to handle A.1. Another challenge in
making job scenarios for robots in offshore platforms is the big number of un-
planned situations that can occur during daily operation on a platformA.1.
Such limitations and difficulties in task planning make remote controlling and
its surrounding technologies popular for robotic automation in offshore plat-
formsA.1.

We had several types of remote controlling methods implemented during
this project. The first remote controlling prototype was the initial CP developed
in Java which was developed on early stages of the work. This application was a

87

Figure 5.34: Web based Remote Control Panel, A:Developer |B:Operator |C:Expert

stand-alone application on a workstation which was connected to the robot through
a USB cable (Serial RxTx). Here simply the arm could be controlled by keyboard
arrow keys or buttons (figure 6.7) (5.4.3). Later this was also achieved over the
Ethernet and ZigBee connection in the distributed embedded system design and
the system manual mode was developed into a Teach mode where all actions
were logged for automating the recording process (more about Teach mode in
5.5.5). The development type changed as it was decided to go for a RSC ap-
proach which brought servers into picture. Therefore it was much more redun-
dant, flexible and safer to have the control and modeling part of this program
on the server side, while having the view on the client side 5.4.1.

To this, web based control panels were designed and implemented(figure
6.7), which could send commands to the robot through network. This was im-
plemented and tested with Ethernet shield due to availability issue (only net-
working component in the lab). During these tests, the control hardware was
connected to a router where it could receive commands from the server and act
accordingly.

5.5.5 Logging System

Logging is one of the most important operations (for later autonomy) in the nav-
igation program both on micro-controller side and on server / workstation side.

88

Figure 5.35: Ethernet shield used in web based CP test

The logging issue contains storing all controlling events happening on the robot.
Logs here could be used for troubleshooting, maintenance and automation pur-
poses. As the automation level of Walloid robot is to repeat the already taught
tasks again and again, the more detailed logging is, the more precise it would
be to re-create a task. Logs are supposed to be stored on both server / work-
station (task-planning and automation purpose) and micro-controller (offline
automation, 7.7) side, using external memory such as SD card (figure 5.37). The
limited resources did not allow this was done only in theory on micro-controller
side. However, this was completely implemented on server / workstation side.
It is important to mention that the code to write the logs to SD cards on the
micro-controller was also implemented on DNP program, but was never tested
with an SD card connected to Arduino board.

On the other hand, logging information requires both processing power and
bandwidth. This means there should be a balance between ”what”, ”how de-
tailed” and ”how often” things should be logged. The way the logging system
is designed is important as well. E.g. one can use short unique combinations
of letters and numbers (communication protocol), which are machine-friendly,
instead of human-friendly long sentences (figure). Such sentences can be trans-
ferred back to the fully human friendly sentences when they are being stored
on the server (with higher processing power). This solution and similar ap-
proaches can reduce the amount of exchanged data and processing power re-
quired to send them.

Finally before moving to the topic of semi-autonomy, it should be mentioned
that for better autonomy it was decided to add the feature of tagging logs (com-
bining paths and tasks for creating dynamic work-plans). This resulted in the
developers in teach mode would be able to tag an operation with a specific

89

Figure 5.36: Logging flowchart on server side and robot side

Figure 5.37:
Communication protocol example between Server and Robot in RSC model

name, e.g. reading gas valve position.

90

Table 5.4: Examples of protocol nodes
Communication
Protocol Node

Tag Description

m#s###f / m#s###b tag_taskTest1 Motor # is driving with
mm/s speed for-
ward/backward

m#c### tag_taskReadGasValve Motor #’s counter value is
###

m#ON / m#OF tag_pathE10 Motor # ON / OFF

5.5.6 Semi-Autonomous System

The level of autonomous in DNP is as simple as re-doing an already ran oper-
ation. As mentioned in 5.5.5, this is simply done by logging everything during
the operation in Teach mode and storing it on the knowledge database (a file
on SD card here) and simply re-doing each single operation from logs database
afterwards. This is the easiest and safest way to implement automation. The
knowledge database could be a SD disk on the robot and a database on Server
side. The process of teaching a robot should be done by a task developer who is
familiar with the robot limitations and the task. Technically a ”task” only con-
tains a series of certain operations (arm positions, paths, lift, grasp and release),
which if done in correct order would re-create the initial operation.

Through development process when the Walloid arm broke down and sim-
ulation process started, new horizons were seen in simulation world. One of
these possibilities was to auto-create data needed for climbing a path and com-
bining with already developed tasks by robot developers to create work-plans.
Having the path plan with necessary bolts dimensions plus the initial position
of the robot, a code could easily calculate the necessary information for the
robot to climb and hang on the bolts on the path. Moreover, in case of having a
database of tasks, this information combined with already developed tasks (e.g.
how to move the camera to detect the gas valve position) would make a route
that the robot climbs all the paths to the monitoring spots, performs the task
and returns back to the docking station. This could even be optimized more
by using the salesman algorithm for finding the shortest way to go through all
the spots. This would mean shortest way from docking station, visiting all the
monitoring spots, and then come back again to docking station. The initial
idea for this code was done, but was not implemented fully. Based on these
discussions learning processes can be done in 2 different ways:

1. Manual way : The easy and safe method is to manually steer the robot

91

through the whole process in teach mode, while everything logs and is
getting stored in knowledge base. Redoing these logs exactly repeats the
same task.

2. Automated way: An autonomous task and route generator prototype pro-
gram could be developed which by having initial position of the robot
and location of monitoring spots in the field could generate the work-
plan of the robot accordingly (using traveling salesman algorithm to find
shortest way). It is assumed that the path necessary information (e.g. bolt
positions and dimensions) and initial starting point of the robot (e.g. in
docking station) would be already provided for the task and route gener-
ator program (future works).

The disadvantage of such automated methods compared to the manual way
could be the bugs and mistakes that such programs could contain and differ-
ences between a real-world and virtual simulation. These kind of errors could
be solved by monitoring the process by task developers. Such approaches are
also used in industry in similar system. E.g. ABB RobotStudio tries to semi-
automate programming of industrial manipulators (partly automated, mostly
manual). This programming tool allows the program to run a simulation the
offline program developed in virtual 3D environment to be approved by the
programmer before running on the real world robot [38]. It is obvious that the
simulations and offline programming of dynamic environments such as oil and
gas platforms are much more challenging than a fixed industrial manipulator.

5.6 Simulation and conformability of data

Simulation is to imitate a real phenomenon or object by using something else
(e.g. learning to get on a horse on a wooden horse). From engineers point of
view, this means recreating the behavior and characteristics of a real system in a
computer model [76]. Simulations can vary from a total text based program that
generate and evaluate data, to the simulated object in a 2D or 3D system, trying
to present a full understanding (or verifying) of the system behavior in real
world. Simulation for development and verifying system behavior is popular
for industrial manipulators (e.g. ABB RobotStudio, MotoSim, Delfoi, etc) [38,
39, 77].

5.6.1 Implemented Simulations

As the previous table defines four simulations that were implemented during
this project, where one of them lacks GUI (text based) and the other two are im-

92

Table 5.5: List of implemented and conceptual simulations developed
Implemented
Simulations

*Data Flow Generation
*2D/3D Simulation of climbing gaits

Conceptual
Simulations

*Training Tool (Training new operators)
*Simulation of robot working environment in 3D world (based on
sensor readings)

plemented in 2D and 3D environment using Processing. The results and logics
from text-based simulations were used later in graphical simulations for con-
necting to the control hardware and represent the climbing operation based on
feedbacks from the robot hardware.

Data Flow Simulation

The data flow generator did not have any graphical output, but was designed
to test the system functionality. This was based on generating real-time data
flow to test different parts of the system.

The simulation here tried to generate commands on the server and micro-
controller side to test the flow of commands in the whole DES hardware com-
ponents and server. On the micro-controller side, re-creation of reality was im-
plemented by waiting (delay function) as long as the real arm would take to do
that operation (based on experiences from Walloid arm). Afterwards feedback
is generated and sent to the server.

Climbing Gait Simulation

This program was started from a small workspace presentation which was a
simple simulation trying to exactly follow the robot movements in reality based
on control hardware feedbacks and represents the arm situation in the virtual
environment. This was developed in Processing, was a more advanced version
of earlier joints presentations in Java with basic graphics. The experience gained
from updating simulations based on hardware feedbacks was later used in a
more advanced simulation representing robot climbing operation.

The climbing gait presentation was developed in Processing and later com-
bined with Java. This 2D environment goal was to represent the different climb-
ing gaits graphically (only time factor was implemented in simulation). This
was a need that was felt after the Walloid arm broke down as lack of physi-
cal representation of the developed work was observed. This code includes a
two dimensional illustrations of the climbing robot on the wall (figure 5.40).
The simulation at this stage could illustrate the amount of time being saved

93

Figure 5.38: Workspace simulation with the Java CP and the arm

Figure 5.39: Different climbing gaits simulation

between different climbing gaits. Later this simulation was equipped with the
logic developed in data flow generator and workspace simulator to connect to
control hardware and to be able to show the real time position of the robot
based on feedbacks from the robot. Therefore, this simulation can be called as a
next version of the development that was started in 5.6.1 and later continued in

94

the workspace presentation.

Figure 5.40: Optimized pull-up gait vs. simple pull-up gait

5.6.2 Conceptual Simulations

The 3D technology and virtual reality has developed rapidly in last decade and
relevant products are all over the market. In the last few years a big raise in
number of online games has happened which consist servers and millions of
real users controlling virtual characters in these 3D worlds (World of War craft,
Counterstrike and etc). The fact that these games have been performing so well
on networks under such press (millions of users) is a proof for stability of such
technologies. This is an opportunity for the industry to step in and use this
valuable experiences and expertise developed (processing power, networking
and 3D modeling) in gaming field to shape a system to let all active automated
nodes on a platform to work together. Some industrial applications, such as
ABB RobotStudio, use these experiences in 3D modeling and simulation for
offline programming of their industrial manipulators [38]. As already imple-
mented in many other applications (military, plane industry and etc), simula-
tions can also be used for other purposes such as training new operators [78–80].
This results in better trained operators and developers when it comes to task
planning and robot control in sensitive operations. The closer the simulation is
to reality the better the results of such trainings are.

The simulation is helping today in integrated operations at StatoilHydro
with building a virtual reality based on real time sensors readings received from

95

Figure 5.41:
StatoilHydro experts looking at a virtual reality based on sensor readings from bottom
of the sea

sensors under the water [19,29]. The same solution could be applied to the top-
side automation. Monitoring and service robots carry cameras and can send
back live feeds of their environment to the control room. From time to time due
to practical problems the use of camera might not be possible. Problems such
as camera failures, slow connection links and environmental issues like smoke
and fog. Such incidents in hostile environments like platforms are inevitable
and a well-designed industrial robot is supposed to be prepared for such inci-
dents. Especially if they are assigned to sensitive / complex tasks that can put
the safety of the platform and in worst case the whole region in jeopardy. Here
the simulation can come to aid by re-construction of the environment from sen-
sor readings and earlier simulation of the whole environment (NASA working
on same issue for pilots [81]). This ability can help the robot operator to guide
the robot through these situations on the platform to a safe place, or continue
the operation and help in catastrophic situations where human workers must
evacuate the area and cannot get near to the problem area.

5.7 Summary

This was the longest and most challenging chapter of the report. The aim here
was to cover almost all practical work. As planned in the previous chapter,
the process started with climbing operation. The kinematics and workspace
needed for such operation was already developed in 3.3. During this chapter,
the work was continued by designing a series of candidates and a final end

96

effector design was presented at the end (5.1.1). The climbing operation is final-
ized by developing four pre-programmed climbing gaits, where three of them
were functional (5.1.2). The graphical presentation of these gaits was presented
in a self-developed simulation program.

• Simple pull-up - (figure 5.6)

• Optimized pull-up (17% faster than 1) - (figure 5.8)

• Dragging (33% faster than 1) - figure 5.9

Phase two was devoted to the development of control hardware (sections 5.2,
5.3). Here the process was described from an early stage (using an Eee moth-
erboard) to a final mature design. Different approaches for developing a hard-
ware controller in this part were discussed, compared and the final choice was
made. Fruit of discussions and practical work in this section was a distributed
embedded system consisting of 5 inter-connected micro-controllers (Arudino
boards). The master node was an Arduino Mega board and four other Arduino
Fio slave nodes. The boards were inter-connected in two manners (cable and
wireless), using RS-232 and ZigBee (sections 5.3.1, 5.3.2). The third phase of the
development process (5.4) included developing a control algorithm for Walloid
robot in a Robot-Server-Client model. Again the process was described in de-
tail and the result, a Distributed Navigation Program, was presented (5.5). The
DNP consists a master and slave algorithm which would be running on master
and slave boards in DES design. The DNP has following features:

• Remote Control - Remote control through web based control panels
(5.5.4).

• Semi-Autonomous - Ability to recreate operations which are logged in
knowledge database (5.5.6).

• Optimized Power Consumption - done by master algorithm utilizing AVR
sleep policy (5.5.3).

Finally simulations as a tool for the presentation of climbing operation, was pre-
sented. This could test the systems functionality by connecting to control hard-
ware and software. This was followed by some conceptual simulation ideas
which can be used if Walloid or similar projects are implemented in industrial
scale.

Table 5.7summarizes the activities done in this chapter.

97

Specification
Name

Type

Robot Type Inspection Climbing Robot
Locomotive
Power

4xArms

Adhesion
Solution

Grasping Arms

End effector 4 End Effectors capable of grasping bolts (figure 5.4).
Climbing
Gaits

3 climbing gaits
1 - Simple pull-up
2 - Optimized pull-up
3 - Dragging

Micro-
controller

Arduino boards with AVR Atmega 8bit chipset family (Ar-
duino Mega for master and Arduino Fio for slave)

Distributed
Embedded
Systems

Network of 5 inter-connected Arduino boards were con-
nected together by using RS-232 / ZigBee technology (Ar-
duino Mega, Arduino Fio)

HW - SW in-
terfacing

RS-232 (cable) / XBee (wireless), both connected through Se-
rial port

Navigation
System

Distributed Navigation Program with autonomy, remote con-
trol and power optimization features

Semi-
Autonomy

+ Able to re-run pre-defined tasks

Remote Con-
trol

+ Remote Controlled through web-based CP and standalone
Java SE application

Simulation + Data Flow Generator
+ Taks and Route Generator
+ Climbing Gaits Graphical Representation
+ Graphical Programming / Task Planning Tool
+ etc

High Level
Programming
Language

Java SE, Processing, HTML and Matlab

Low Level
Programming
Language

Arduino C, AVR C

98

Chapter 6

Implemented Control Systems and
Results

Make things as simple as possible, but not simpler Albert Einstein
In a top level perspective of the system(chapter 4), some missing parts in

Walloid project was defined and a work-plan was presented to develop these
needed parts. The results of development process in chapter 5 is presented here.
For easier understanding, these missing parts are presented again, in detail.

• Offshore Industry Point Of View

• End Effectors

• Climbing Gaits

• Control Hardware

• Control Algorithm

• Simulation

6.1 Offshore Industry Point Of View

Due to deadly incidents(HSE concerns), high wages (finanical benefits) and
difficult (and costly) transportation of experts to current and future platforms
(section 2.4.1), offshore industry is interested in robotics automation (section
A.1) [5, 11, 18]. Therefore it is important to discover potentials in this vast
wealthy market of robotics automation. Section 2.4 in chapter 2 presented an
analysis of offshore environment, possibilities and challenges for robotic projects

99

to enter that area of application. This was done with going through the aca-
demic literature, governmental and industrial reports about this field. Through
this it was concluded that mobile robots have a good potential area of appli-
cation. Such application could be unmanned, shallow water, deep water and
floating platforms. Specially unmanned platforms with 2 weeks interval main-
tenance could be a tempting market [11]. Possible potential assignments for a
mobile robot (such as Walloid) in offshore environment could be [11]:

• Monitoring overall situation

• Live video feed of environment

• Gauge readings

• Valve and lever position readings

• Monitoring gas level

• Acoustic anomalies

• Surface condition

• Gas leakage

• Fire detection and locating

Finally the analysis ends with presenting challenges such as harsh condition
of offshore platforms are addressed. Conditions such as humidity, salt, rust,
standards, cultural factors and last but not least HSE requirements (high redun-
dancy).

6.2 Climbing Operation Results

Attempts in developing climbing process started by calculating kinematics and
workspace of Walloid in 3.3 (figure 6.1). This was continued in the areas of
focus and resulted in developing a final solution for end effector and hanging
bolts (details in 5.1.1) and three functional climbing gaits (details in table table
C.2 and 5.1.2).

Figure 6.2 shows the final end effector, assembled with the rest of the robot
parts from Walloid project. This figure shows the robot assembly with the final
end effector, hanging on the specially designed bolts. Regarding to develop-
ment process of end effector, the bolts and the end effector were designed in a

100

Figure 6.1: Walloid robot workspace with 5mm precision.

Figure 6.2:
Final end effector design (blue) assembled with the rest of Walloid robot parts.

way to reduce necessary precision in grasping operation and increase the error
tolerance feature of the system.

101

Table 6.1: Table of climbing gaits features
Gait Name Speed Min No of Fastened

Arms

1 Simple Pull-Up V 3
2 Optimized Pull-Up V + (21/100)V (17% faster) 3
3 Dragging V + (33/100)V (33% faster) 2

Next phase contained the development of climbing gaits, where 4 pre-programmed
gaits were developed. The rotational gait which also was the fastest developed
gait turned out to be too unstable and was set aside. The other three developed
strategies were:

All these three gaits enjoyed acceptable stability (minimum 2 arms gripping
the bolts), but they were different in speed. Figure 5.32 (left) shows how in-
creasing speed by skipping some phases, reduces power consumption (section
5.1.2). The same figure on the right, tries to show the opposite relation between
speed (distance / time) and stability in Walloid design. The figure obviously
shows that as the stability grows, the speed reduces. The factor of stability in
this graph is the minimum number of locked arms to the wall during operation.

Figure 6.3:
Red line stands for simple pull-up(assumed as base of consumption), blue for optimized
pull-up and black for dragging. Optimized climbing and dragging save steps (motor
actuation), therefore beside time and consequently speed they would be saving power as
well.

An application (simulation) was developed to represent these climbing gaits
based on Time delays assumptions made in 5.1.2 (gravity and other factors were

102

not included). The interesting point about this virtual representation was to get
a virtual illustration of the fact that how fast each of these gaits were compared
to the others (figure 6.4). This application was made in Processing and was later
further developed and connected to the DES and DNP to illustrate the gaits with
feedbacks from the control system. Therefore it also could confirm the system
functionality (2.4).

Figure 6.4: Virtual presentation of climbing Gaits differences of speed

6.3 Control Systems

The control system development process was divided into two parts, the con-
trol hardware and algorithm. The hardware controller was set of electronics
components that were necessary to control the robot arms in operation, while
the control algorithm is the software which is run on the hardware and takes
care of logic at the system.

6.3.1 Distributed Embedded System

Beside experiments with different components during this project, the fruit of
all practical work with hardware components was the Distributed Embedded
System design. This system was implemented by using 5 Arduino boards (1
Mega and 4 Fio). This inter-connection of boards was implemented by using

103

I2C, RS-232(Serial) and ZigBee (wireless). The implementation of I2C proto-
col was stopped in the middle due to serious real time communication issues
between master and slave node (in details in 5.3.1). The second implemented
protocol was the serial connection using UART in hardware layer and RS-232
standard 5.3.1. This type of communication proved itself to be simple to install
(cross connection of Rx and Tx), reliable and fast under the implementation and
later tests (table C.3 in appendix). Serial communication based on RS-232 is
highly recommended due to the experiments in this project **** 2.4 and discus-
sion in 5.3.1).

On the other hand, if industrial circumstances would prefer wireless con-
nection, then one could benefit ZigBee technology. XBee components figure
5.20 which were used in the wireless implementation of this project proved
to be trustable under small tests done with data flow generator 5.6.1. Beside
some time delays due to unknown reasons (possibly configuration issues), all
the messages under test reached their destinations (Arduino Fio) and feedbacks
were received on the other side (Arudino Mega). Using ZigBee in the design
brings flexibility to the system and simplifies the whole maintenance and re-
pairing process. This means in assembly and repair process, the technicians do
not need to care about wiring between different nodes (Arduino boards here) in
the system (almost plug and play concept) as all the communications were done
wirelessly by already configured XBee components (right networking configu-
rations). In addition, XBee components allow automatic upgrade of navigation
program wirelessly. Cable based system does not have such advantages but
benefits from being fast, secure and more redundant. It is up to the developer
team and strategy makers of the project to choose in such cases based on exist-
ing circumstances.

Figure 6.5: A: I2C - B: RS-232 - C:ZigBee

104

One of the most important issues that distinguished RS-232 (Serial) between
all implemented models, was the fact that due to availability of the 4 RxTx ports
on Arduino Mega, it was possible to filter the data traffic only to the interested
destinations, specified in that message. E.g. a message to move right front arm,
would not be sent to all other three arms but only to the right front arm. Such
approach was difficult to apply in XBee and would cause time delays. Figure
6.6 shows the implementation of the DES with XBee components. The RxTx
figure was decided to move to Appendix due to lack of space.

Figure 6.6:
Distributed Embedded System implemented by using ZigBee and servo motors

105

6.3.2 Distributed Navigation Program

The control algorithm is in charge of moving mechanical parts, with the help of
control hardware, to implement the climbing gaits. This is done here through
a distributed algorithm which is divided between different Arduino boards in
D.E.S. design. This Distributed Navigation Program (DNP) developed had fol-
lowing features:

• Manual Remote Control

• Semi-Autonomy

• Optimized Power Consumption of Electronic Components

Manual remote control and overriding of the robot is one of the key specifi-
cations that must have been implemented in the concept due to HSE and safety
issues. To this, three web-based remote control web pages, for developers, oper-
ators and offshore experts, were designed in a way that could be used as a portal
to the robot system. (Figure 6.7) shows these control panels which are used for
different purposes (steering, teaching the robot and monitoring received sig-
nals).

Figure 6.7: Web based Remote Control Panel, A:Developer |B:Operator |C:Expert

Manual steering was only the beginning of the development phase, although
very critical. Walloid equipped with current DNP, developed through this project,

106

would become a semi-autonomy robot that can be taught doing tasks. The
learning / teaching process is a simple approach and it is just to log whatever
that happens under manual steering and re-create exact same behaviors later.

One of the disadvantage of DES design was extra power consumption. This
is a serious disadvantage. Therefore a sleeping policy was added by using
AVR sleeping policy. This means with benefiting AVR sleep mode, master
controller (Arudio Mega) orders the idle slave controllers to enter sleep mode
and later wakes them up by a serial interrupt. Based to discussions in section
5.5.3, this policy resulted in 40% reduction in power usage by micro-controllers
while climbing by simple pull-up climbing gait. One might reason that com-
pared to motor consumptions (current small motors are almost equal with Ar-
duino boards), the Arduino boards would consume very little power. How-
ever, this power consumption in addition to the savings made during climbing
gaits (faster gaits by skipping actuations), table C.2, development would have
enough effect for the system and this could be continued in future.

Figure 6.8:
Simple pull-up climbing gait Power consumption before and after implementation of
Power Optimizer Algorithm (40% difference)

6.4 Simulation

The self-developed simulations were used during the process, since the Walloid
arm broke down. Then self-developed simulations became the only way to have
a physical presentation of the work done in virtual reality.

• Data Flow Generator: This was used for testing purposes in absence of a
physical robot, motors, encoders and etc.

107

• Climbing Presentation and Confirmability Center: This simulation was
developed by Processing and its aim at the beginning was only to illustrate
climbing gaits in 3D / 2D environment, but later this was connected to the
control hardware and worked as a confirmation tool for what the DNP and
DES together were trying to achieve (climbing in right direction).

Figure 6.9:
Processing simulations and Java CP were cooperting to connect to the hardware.

6.5 Summary

This section was dedicated to go through implemented systems and results ob-
tained from such attempts. The chapter starts by mentioning the initial plan in
top-down view (chapter 4) and present the detailed results accordingly. Analy-
sis of area of application (offshore platforms) was already addressed in chapter
2 and was therefore ignored.

Climbing Operation:

108

• Workspace calculations from Matlab (figure 6.1)

• Assembly of end effector final design with the rest of Walloid parts in
Solidworks (figure 6.2)

• Three developed pre-programmed climbing gaits with graphical presen-
tation of their speed were presented. The effects of these gaits on power
consumption are also presented.

Control Hardware, the Distributed Embedded System:

• Implementation of DES with RS-232 and ZigBee is discussed and shown
with figures (figure 6.6, 6.5)

• Time delays in using different technologies is measured and presented
(table 6.5)

Control Algorithm, the Distributed Navigation Program:

• Web based control panels (figure 6.7)

• Semi-autonomous work-plan generator results are presented (2.4)

• Power Optimizer Algorithms effect on different climbing patterns were
shown in charts (figure 5.32)

109

Specification
Name

Type

Robot Type Climbing Robot
Locomotive
Power

4xArms

Adhesion
Solution

Grasping Arms

End effector 4 End Effectors capable of grasping bolts with error tolerance
in positioning (figures 5.4, 6.2).

Climbing
Gaits

3 climbing gaits
1 - Simple pull-up (Figure 5.6)
2 - Optimized pull-up (Figure 5.8)
3 - Dragging Figure 5.9

Remote Acces-
sible Robots

WiFi accssesed units

Micro-
controller

Arduino boards with AVR Atmega 8bit chipset family (Ar-
duino Mega for master and Arduino Fio for slave)

Distributed
Embedded
Systems

Network of 5 inter-connected Arduino boards connected to-
gether using RS-232 / ZigBee technology (Arduino Mega, Ar-
duino Fio)

HW - SW in-
terfacing

RS-232 (cable) / XBee (wireless), both connected through Se-
rial port

Navigation
System

Distributed Navigation Program with autonomy, remote con-
trol and power optimization features

Semi-
Autonomy

+ Able to re-run pre-defined tasks

Remote Con-
trol

+ Remote Controlled through web-based CP and stand-alone
Java SE application

High Level
Programming
Language

Java SE, Processing and Matlab

Low Level
Programming
Language

Arduino C, AVR C

Simulation +Data Flow Generator
+Climbing Gaits Presentation

110

Chapter 7

Robustness Issues

7.1 List of Issues

Robustness or error handling is the ability of the whole system to cope with the
errors that occur during the operation. Errors could happen in any embedded
systems. Therefore, the error handling should be expanded to monitor them
in different processes, in all layers. Thereafter, the system should try to handle
the situation and recover from the critical state to the normal state. The issue of
recovery is very important, as it is almost impossible to fully stop errors from
happening. The main areas of concern about error occurrences in a climbing
robot are categorized down here at Table 7.1. The marked solution orientation
defines which chapter includes the discussion of those challenges.

Table 7.1: Robustness issues and robot design, hardware and software oriented
solutions

Robustness issue Design
Oriented

Hardware
Oriented

Software
Oriented

Passive joint control X X
Loss of contact of end effectors X X X
Instability / Current angle of the system X X
Positioning Issues X X X
Loss of vision during manual steering X X
Path blocking by broken robots X X
Power Loss X
Offline Modus, Network-less Operation X

111

7.2 Blocked Paths

The design of Walloid has made it path dependent. This means that the robot
should always have a free path to be able to climb on and inspect and mon-
itor the environment. What would happen if a robot due to some technical
problems gets stuck? E.g. a passive joint that does not respond, loss of power
without the reserve battery to be able to come online, faulty bolts, etc. In these
cases the other robots need to know that the path is blocked. The first and
easiest solution to this would be allowing the server to know about this issue
and broadcasting it to all active robots in the field. The other approach could
be having critical situation signals on the robot that in case of troubles would
trigger and broadcast ”blocked path signal”. This would both let other robots
to know the path is blocked and also let the technicians to be able to locate an
unresponsive robot.

Table 7.2: Risk analysis of blocked paths
Name Description

Risk Name Blocked Path

Reasons

*Passive Joint
*Permanent power loss
*Faulty bolts

Consequences

*Blocked paths which would prevent other robots to
continue their work

Solutions

*Informing the server about situation to broadcast it to
others
*Broadcast local signals

Another approach which best fits offline robots is broadcasting a critical sig-
nal with current position to both warn the robots nearby to avoid this path and
ask for help from the operators. Having the current position contained in the
critical signal let the robots on the other paths to know about which path to
avoid and re_calculate their way to the target and also lets the operators to be
able to locate and fix the robot which is sending the emergency signal.

112

7.3 Positioning after Improper Shutdowns

The positioning issues are discussed already in kinematics and workspace sec-
tions (3.3). This section would try to address, discuss and solve the criteria of
positioning in a robust control system in abnormal situations. Situations like
sudden loss of power, unscheduled / improper shutdowns, etc. To be able to
continue operation in such cases, it is critical to be aware of the current situation
of the arms and the task that the robot was performing right before the sudden
or improper shutdowns.

Table 7.3: Risk analysis positioning after improper shutdowns
Name Description

Risk Name Positioning after improper shutdowns

Reasons

*Sudden loss of power
*Power interruption and restart

Consequences

*Loosing the overview over location of joints

Solutions

*Having zero position sensors
*Storing current position into a non-volatile memory

7.3.1 Zero Positioning

Zero positioning and the ability to save the current position in case of losing
power are very important features of a control system. This could be achieved
in different ways:

• Hardware Oriented

• Software Oriented

The hardware oriented solution usually consists of one or several physical
sensors which could detect either the current position of the actuators in the
environment, or being in the zero position. The ability to detect both the zero
position and the current position of the actuator depends on the number of
sensors, their types and the design of the system. E.g. RepRap Darwin, an

113

Table 7.4: Advantages and disadvantages of using current position system
Pros Cons

More control over Robot joints Limited lifespan for E2PROM
Monitoring both zero and current posi-
tions

I/O operations are slow

Logging and troubleshooting opportu-
nity

Interrupts/Polling requires CPU power

Open Source 3D printer uses beam light forks sensors in order to know if the
printer actuator is in zero position.

However, this approach was not preferred for Walloid, as for a mobile robot
being aware of current position is critical (not only the zero position). The next
solution for this challenge would be the software oriented approach and the
focus would be on current position of the joints. This information could be
reached by keeping track of the information that was received from the en-
coders. This approach is discussed in detail in next section.

7.3.2 Current Positioning, the software oriented approach

The location of joint (variable length of the joint) and the direction of the move-
ment are already known through reading encoders. To have this stored some-
where for abnormal situation (power loss), one could easily save this already
computed resource to a non-volatile memory. This information could be used
when the robot is restarted, turned off and last but not least in case of sudden
loss of power.

In order to implement this idea, this information should be saved for every
joint move on a non-volatile memory (E2PROM memory available on the micro-
controller or an external SD card). This solution was implemented and turned
out very well. Atmega micro-controllers benefits from E2PROM memory (built-
in) which is non-volatile and is usually used to store small amount of data.
This fits the needs as each prismatic joint requires one single integer number (a
counter). This solution had several advantages in comparison with the previous
hardware oriented approach for only zero positioning. The constant update of
current position on non-volatile memory gave the opportunity to keep track of
not only the zero position, but the current position of the robot arm. In addition
to precise arm positioning, this feature can give the navigation program a very
useful logging and troubleshooting opportunity.

114

7.4 Passive Joint Control

Passive joint means a joint which fails to function. As the motors would not be
in control of the joint any more, it would follow natural rules like gravity and
inertia and could even collapse [18]. Focusing on offshore platforms where HSE
concern would be important, this issue could become very serious. Passive joint
/ joint failure can result in robot joints not to follow the received instructions.
A Robust system would be able to detect this problem and warn the decision
making center / robot operator, but lack of this ability could result in navigation
system to believe everything works fine, while it is not. Back to Walloid robot,
one could think of this as an arm that did not grasp the bolt due to joint failure
and this could result in robot fall as the second arm would start the unlocking
phase.

Table 7.5: Risk analysis of passive joint control
Name Description
Risk Name Passive Joint Control

Reasons

*Joint Failure
*Broken Parts
*,etc.

Consequences

*Losing control of the joint
*Fear for crash / collapse

Solutions

*General: Design joints in a way to discover joint prob-
lems and warn the technicians
*Walloid: Distance meter sensor should be placed in
each joint jacket

During testing the received arm, broken rotor (figure 7.1) resulted in the
motor shaft to turn the rotor around, while due to the half broken part, the force
was not transferred to the screwing shaft. This error generated a very unique
situation where the encoder was misleading the micro-controller about the joint
working well, while the prismatic joint actually did not move at all. In such
cases on-site human observer could easily find out this problem (as it was done
under the test), but a navigation system or in case of remote controlling from
onshore, it would not always be very easy to discover such errors. Therefor it is
very critical to consider such possible problems before designing a robotic joint.
Some of these situations can only be discovered during testing or from previous
experiences with passive joint challenges (like in this case for Walloid robot).

115

Figure 7.1:
The rotor on the right (black) was broken in a way that still could forward the motor
rotation to the rotary part, but no to the screw shaft

The passive joint problem could be fixed by adding one sensor to each joint.
This sensor could be of various types and should be placed either inside the
prismatic joint jacket or on the end effector. This sensor measures the distance
of the end effector to the surface of the wall and its various values confirms the
movement of the end effector, which itself would be the result of movement of
all three prismatic joints of an arm. The advantage of this solution is the few
numbers of necessary sensors (only four sensors for all 12 joints). However,
this solution would not be able to detect which joint suffers from passive joint
control issue and would only confirm if one arm was in motion or not.

One might think this is enough for discovering arm fault, but it is impor-
tant to pay attention that the values would still change (indicating no problem)
even if one of the joints would be working fine. Therefore, one should go for the
second choice which was placing sensors in each joint jacket to measure the dis-
tance from screw shaft to the sensors location (figure 7.2). To prevent extra load
on the system this could be done in very low frequencies (beginning, middle
and end of the move).

7.5 Power Interruption

Power interruption issue is the situation when the system loses the power and
gets it back again. In case of sudden power loss, there are choices like back-up
batteries to continue the operation. Such solutions are critical for a robust sys-
tem due to the importance of reliability for industrial applications. Imagining a
powerless hanging robot on a platform wall in the middle of the sea can illus-

116

Figure 7.2:
Polou Digital Distance Sensor - 2: Prismatic joint with distance meter sensor - 3:
Sensor - Micro-controller schematic

Table 7.6: Risk analysis of power interruption
Name Description

Risk Name Power Interruption

Reasons

*Battery Failure
*Bad contacts
*,etc.

Consequences

*Losing power in the middle of operation

Solutions

*Off the shelf product called Automatic Battery Back-
Up Switch (ICL7673) equipped with a proper capacita-
tor

trate the importance of such solutions. Therefore, the priority is to develop a
way to let the system come back on after sudden power interruption. One can
place a backup battery onboard the robot to allow the system to recover power
loss. In order to make this happen automatically, one need to design a logical
circuit that can discover the loss of power from the main source and bring the
reserved source online. (Figure 7.3)shows such system.

First the plan was to design a circuit which could take care of the power
loss issues, but later products were found which were being produced in indus-
trial scale for such purposes. This off the shelf inexpensive IC (Automatic Bat-
tery Back-Up Switch) called ICL7673 [82] (around 5$) was used to discover the
power interruption and automatically bring the backup battery online. How-
ever, this does not eliminate the shock imposed to the system. Moreover to
prevent the restart of the system, the circuit can be modified (Figure 7.3) by

117

Figure 7.3:
Left schematic, switching to spare battery with power loss - Right schematic, switching
to spare battery without power loss

adding one proper capacitor to feed the system with stored power, during the
time it takes to bring the backup battery online (feeding the system with power
from the back-up battery again).

7.6 Instability / Current Orientation

The awareness of the control system over the current angle (orientation) of the
system is useful information for navigation program. Current angle of the sys-
tem refers to the angle that the robot makes with horizon (figure 7.4). This angle
would be zero when the robot is walking on the floor or 90 degrees on a straight
wall. The orientation angle would be varying during strides and over adjoining
surfaces. One might ask how this angle might help in tackling the instability
problem. The idea here is to let the control system be aware of the current angle
and use this in decision making and safety protocol. One could also think about
using this input as an indication about successful grasping. E.g. sudden vary-
ing values, after the grasping operation is finished successfully according to the
control software, could indicate possible problems in grasping operation.

The easiest way to find out the current orientation of the robot chassis is to
mount a Gyro sensor (gyroscope) [83] on-board the robot to monitor current
angle. It is possible to detect the rotations in x-y-z orientations (figure 7.4)due
to the lastest upgrades in gyroscope hardware. Another important issue is to

118

Table 7.7: Risk analysis of instability
Name Description

Risk Name Instability

Reasons

*Bad contacts to the surface
*Vibtrations
*,etc.

Consequences

*Loosing balance and possible fall

Solutions

*Adding a Gyroscope to the robot to find out the cur-
rent orientation

Figure 7.4:
Left to right: zero and ninety degrees angle with horizontal line | 2: Gyro sensor [83]

ignore the small changes as these can be possible noises due to the vibration
from the surface. This approach was not implemented due to lack of availability
of the sensor.

7.7 Offline Modus, Network-less Operation

The assumptions have been always based on being connected to the server and
enjoy the high processing power from the server side, but there are occasions
that the robot might fail to go online. The reasons for such a problem could
be various failures from environmental issues to hardware problems or server
being down. Table 7.8 tries to do a risk analysis based on loosing connection in
the system which results in the robot to go to offline modus.

Table 7.8 goes through the possible risks that results in system going offline.

119

Table 7.8: Risk analysis of offline robots
Name Description

Risk Name Offline Robot

Reasons

Hardware failure
Environmental interruption
Server being down
Miscommunication between server and HMI

Consequences

Considerable loss of processing possibilities (process-
ing power and external application processing on
server side)
Loss of server guided decision making
Loss of communication with other robots in the field
Logging gap
Gap between received information which results in er-
rors in the system (motor counter is 30 and suddenly
after connection established again it is 70). This is dis-
cussed in details in next section.
Possible loss of video streaming (independent hard-
ware in sending streaming data, can happen if the
problem is on network stations or server down)

Solutions

Alternative connections (3G, 4G, GRSM Satellite net-
work connections)
Preparing for an offline modus for processing and
decision making
Local knowledge and goal database
Redundant server configuration (several backup
servers to switch to)
Enough local sensors to be able to avoid crashing into
obstacles and other robot with offline processing
On-site communication between robots (Xbee)
Local buffers and queues on the robot (SD card) to
store information in offline modus
The system should be able to cope with loosing
connection and recovering the system failures after
reestablishment of the connection

Consequences and solutions to such risks are also presented. This table also
shows how paying enough attention to redundancy can affect the whole sys-
tem. E.g. special attentions in independent video streaming from micro-controllers

120

operation allows the video report to continue, although the connection of the robot sys-
tem with the servers is interrupted. System malfunction and wireless adapter are
situations that this independent video system still allows the technicians to eval-
uate robot situation based on visual report and call for right actions (critical or
normal recovery plan by operators).

As the first solution in the table 7.8 specifies, an alternative backup network
connection for both embedded systems and camera can be provided. Such al-
ternatives can be mobile broadband with 3G or 4G technology.

7.8 Security Concerns

Table 7.9: Risk analysis of security concerns
Name Description

Risk Name Security Concerns

Reasons
*Hacks
*Sabotages
*Sniffing

Consequences *System out of control

Solutions
*More security in all levels
*Filtered Network

The wireless networked operation on platforms not only reduces the imple-
mentation and maintenance prices A.1, but also brings up security concerns.
These concerns can be sniffing, hacks, sabotages and etc. Due to these threats, it
is best that wireless networks shape an isolated and protected Intranet for only
internal communication between users, servers and the robots in that union.
Another approach can be filtering the users with their physical MAC addresses
(white list). However this does not fully protect the network, but increases the
security level. Due to the fact that the already existing network infrastructure
ought to be used from the Internet (for the users to be able to connect to the
system and work with it), this network cannot be fully isolated, but the data
exchange should be limited in jointing nodes and specially pay attention to se-
curity in all levels (VPN, firewalls, anti-virus programs, anti-sniffing programs,
etc).

For the Robot-Server side, one might suggest encryption of the exchanged
messages. This is a great idea, which has its own downsides. Based on the
complexity of the encryption keys, such operations would slow down the pro-
cess of data exchange between the robot and the servers would not be real time

121

anymore. This is a very important issue that the security is a vital part of this
design, but at the same time should respect the real-time data communication.

7.9 Summary

Robustness chapter tried to cover the abnormal situations that could occur for
Walloid and presented solutions to recover the system and bring it back to nor-
mal mode. Table 7.9 shows such abnormal situations.

Issue Name Solution

Blocked Paths Informing Server / Broadcasting emergency signal
Positioning af-
ter Shutdown

Storing current position on non-volatile memories like EEP-
ROM / SD card

Passive Joint
Control

Adding a distance meter sensor inside joint jacket

Power Inter-
ruption

Automatic Battery Back-Up Switch(ICL7673) equipped with a
proper capacitator

Instability Adding a gyroscope sensor could help in monitoring the ori-
entation

Offline Mode *Alternative connections (3G, 4G, GRSM Satellite network
connections)
*Preparing for an offline modus for processing and decision
making
*Local knowledge and goal database
*Redundant server configuration (several backup servers to
switch to)
Enough local sensors to be able to avoid crashing into obsta-
cles and other robot with offline processing
On-site communication between robots (Xbee)
Local buffers and queues on the robot (SD card) to store infor-
mation in offline modus
The system should be able to cope with losing connection and
recovering from the system failures after reestablishing the
connection

Security Con-
cerns

Balance between tight security and not interrupting or slow-
ing the real-time communication

122

Chapter 8

Conclusion

Questions provide the key to unlocking our unlimited potential.
- Anthony Robbins

8.1 Conclusion

This project was an attempt in further development of an ongoing project at
University of Oslo, called Walloid robot. Walloid is a prototype climbing robot
for offshore platforms. Offshore issues, climbing operation and control sys-
tems were topics of interest in this work. As Walloid robot is not finished yet
due to practical challenges, the work here was evaluated by simulation results
(self-developed simulation applications).

With regards to the remaining parts of Walloid project (chapter 3) and the
analysis of offshore platforms as the area of application (section 2.4), practical
work was started and driven in three directions:

• Climbing Operation

• Control Hardware

• Control Algorithm

Climbing Operation:
The climbing gaits were developed with focus on speed issue. In these

climbing gaits, names were simple pull-up, optimized pull-up and dragging
gait, which the second and third gait were respectively 17% and 33% faster than
the initial simple pull-up. However, increasing the speed resulted in less sta-
bility (minimum number of locked arms), but still acceptable. These gaits also
resulted in reduction in power consumption as they improved the speed by
skipping some operations (section 5.1.2).

123

Control Hardware
:

During development of hardware controller, a distributed approach was
chosen due to need for increased processing power, real-time responses and
availability (lack of enough number of ports on the boards and absence of more
powerful processors in the lab). The Distributed Embedded System was im-
plemented by 5 Arduino boards (one master and four slave boards) and the
inter-connection was made possible by both cabled (RS-232, UART) and wire-
less (ZigBee) method.

Control Algorithm
:

The control algorithm consisted of a master algorithm and a slave algorithm
running respectively on DES master board and slave boards. Due to the slow
speed of climbing phases, by utilizing AVR sleep policy, 40

At the end, the work done during the project was evaluated by self-developed
simulation application. These simulations were developed for testing, presen-
tation and later automation purposes.

8.2 My Contribution

Despite the extensive amount of topics to attend to during this project, I have
tried to stay focused and looked at key concepts which are critical in the concept
of turning Walloid into an inspection climbing robot. Among all contributions
I’ve had in this project, three following points are highlighted:

• Three pre-programmed climbing gaits were developed, with focusing
on optimizing the speed. Second gait was 17% and third gait was 33%
faster than first one.

• Distributed Embedded System was designed with 5 Arduino boards
and two approaches of it with RS-232(UART) and ZigBee was imple-
mented.

• Distributed Navigation Program developed based on hardware specifi-
cations (DES), with remote control (web-based), semi-autonomy (recre-
ating already stored/logged job in knowledge database) and power op-
timizing (40% reduction in processors power consumption) features.

124

8.3 Further Works

As in any other academic project, no project is ever finished and there is always
room for improvements. Following concepts are recommended if one would
like to further develop Walloid project or my contributions to it.

• Building the actual robot as it is currently on hold

• Testing and verifying the current project with actual robot

• Expand the kinematics calculation of the robot to satisfy different types
of movements, corresponding to those found in industrial manipula-
tors, linear movement (MoveL) and Joint movement (MoveJ)

• Further development of distributed embedded system for other pur-
poses and applications

• Further development of distributed navigation system to a fully auto-
mated navigation system that could use the idle extra processing power
to compute overloaded information

• Working on Walloid design for being able to move between adjoining
surfaces

• Further development of the simulation programs with gravity force and
other important factors.

• Finishing the started process of Route and Task Generator program and
expand it to accept several active robots in the field with number of
tasks which should be done in the field and get optimized work-plans
for each robot.

• Working on speed issues by changing the motors to faster motors (e.g.
hydraulic motors instead of screw shaft)

125

Appendix A

Interviews

A.1 Anders Røyrøy

Principal Researcher Efficient Production
TPD RD New Development Solutions
Statoil ASA

Q: Is there any offshore requirements exactly pointing at robotic automation
in offshore application?
A: No. Per today there are just general requirements for offshore application
that applies to robotic automation of oil and gas platforms. Safety is the main
requirement in such cases and one of the main concerns is the chance of starting
a spark which could kindle a fire or explosion.
Q: Per today what kind of robots are active on platforms?
A: Right now there are different kinds of robots such as industrial manipula-
tors active on the platforms. This also applies to wheeled mobile robots, but
up to now we do not have any climbing, nor flying robot on our platforms and
this is because of our special attention for the safety protocols and lack of stable
AI technologies in this field. We think this would change in near future as per
today there are AI algorithms that can control a plane with passengers automat-
ically and offshore requirements are not higher than aerospace industry.
Q: what kind of field of research are you doing for offshore?
A: Inspection, maintenance, semi-automatic and manually guided tasks are ar-
eas which robots are active per today. Mostly we use robots to check, inform
or confirm some special tasks. We do not see for ourselves the chance to get
welding robots approved for usage in north sea at least because of NORSOK
requirements for such tasks are very high. This that a robot can make sparks
and therefore starts a fire on the platform is a very sensitive issue.

126

Q: What does semi-automatic tasks mean?
A: By semi-automatic I mean tasks that are planned by us for the robot, and
later the robot can do the work automatically based on the input scenario (work
plan) form us. It’s important that we do have control access on robots as not
all the tasks can easily be planned for a robot and most important thing is that
we do not know all the aspects of occurrences on a platform and therefore the
need for manual steering can suddenly be required. Another limitation is the
physical shape of the platforms that are not designed for operational robots.
Q: Do future platform designs consider a robot friendly environment design?
A: Yes. The future platforms design do consider the need for robotic automa-
tion in future.
Q: After TAIL IO, is there any new robotic automation projects ongoing at Sta-
toilHydro ?
A: Yes, but I am afraid I can not name the projects, nor the activities. I can only
say they cover maintenance and repair tasks.

127

Appendix B

Visual Reports

B.1 3D Designs

Figure B.1: Walloid robot designs

128

Figure B.2: Bolt Design

129

Figure B.3: End effector design

130

Figure B.4: Spherical wrist design

131

Figure B.5:
Proteus simulation of the DES, which wasn’t so successful due to the complexity of the
simulation process in Proteus

132

Appendix C

Remainings

C.1 Climbing Operation

Adhesion Solutions
Climbing robots use different adhesion methods as an anti-gravity force.

Climbing operation can be divided into two main parts. First, the adhesions
to the surfaces of the walls which keeps the robot from falling and second the
locomotive power that actually moves the robot forward on the wall [20]. It was
discussed in ?? that adhesion force and locomotive power, grasping arms, was
already decided by Walloid project. Therefore no development was done in this
area, but this type of force is compared with other alternatives C.2.

Docking Station
Docking station means somewhere like a nest for the robots to charge the

batteries, getting fixed and even being cleaned up. Developing a robot spe-
cialized for a platform in the middle of the sea, a docking station needs to be
somewhere safe from all the extreme conditions. Somewhere safe for the hard
shell of a robot that is water proof, salt proof or any other super characteristic, to
be opened up and fixed. The specifications of such shelter are presented down
here.

• Re_charging spot

• Salt / Water / humidity / ice proof

• Washing spot for robots with high pressure water

• Repair spot

• Software upgrade spot

133

Table C.1: Industrial climbing robots active in different fields [84–90]
Task Area of Ap-

plication
Name ClimbingControl

System
Cons Pros

Cleaning /
Inspection

Ships / Un-
derwater

Hull
Bugg
[84]

Wheels,
Negative
Pres-
sure

Auto / RC Fits only
even sur-
faces

Autonomous,
does what it
supposed to
do perfectly

Inspection Oil / Water
Tanks

[85] Tracked
/
Mag-
net

RC Only metal
surfaces,
Operator
should be
present

Stable, fully
controlled
by OP

Welding Welding
on metal
platforms

MRWS
/
MRWS
mini
[91]

Tracked
/
Mag-
net

RC / Only
on magnetic
surfaces,
Operator
should be
on site

Stable, fully
controlled
by operator

Glass clean-
ing / In-
spection and
Skyscrapers
/ Buildings

GEKKO Ju-
nior G1 [86]

Tracked
/ Suc-
tion
cup

Auto
/ RC

Fits only
smooth
surfaces

Stable,
Auto,
remote
control
option

Solar panel
cleaning /
Solar power
plans

GEKKO Ju-
nior G3 [87]

Tracked
/ Suc-
tion
cup

Auto
/ RC

Fits only
smooth
surfaces

Stable,
Auto,
remote
control
option

Abrasive
Blast clean-
ing /
Ships/Oil
tanks/Nu-
clear plants

UA [88] Wheels
/ Suc-
tion
cup

RC - -

Cleaning /
Polishing /
Inspection

Ships/Oil
tanks/Nu-
clear plants

UD
[89]

Tracked
/ Suc-
tion
cup

RC - -

134

Table C.2: Adhesion techniques advantages and disadvantages
Solution Pros Cons Examples
Grip, Ring Bolt *Low coast (path)

*Extra Stable
*Redundant

*Path needed
*High precision required

Monkey, Hu-
man, Apes

Van der Waals force
*Path free
*Flexible in terrains
*Relatively stable

*High cost of producing the
material
*Not Redundant (Would
fall in case of loss of power)
* Not good for rough sur-
faces
*Question of good func-
tionality in extreme cold
and wet conditions and
also on rough terrains

Gecko,
Lizard

Lock(IKEA type) it-
self to the wall

*Relatively Low
coast(path)
*Extra stable
*Redundant

*Path needed
*Very high precision re-
quired

-

Suction cup *Easy implementation
*Path free
*Stable on smooth surfaces

*Clear/Smooth terrain re-
quired

-

Magnet *Very stable
*Path independent (on
metal walls)

*Path dependent (on non-
metal walls)
*Extra power for electric
magnets required
*Unstable under special
conditions (thick ice cover-
age)
*Not Redundant

-

Pressing to the in-
ner surface

*Stable
*Redundant

* Destructive for the terrain Cats, Koalas,
Goanna

135

One of the early specifications of our climbing robot design was the ability to
charge itself while climbing the path. The contact between the end effector and
the bolt which is on the wall can be a perfect way to conduct electricity to the
battery charger. We know that in each move, there are at least two and mostly
three end effectors fastened to the surface (discussed in climbing gaits). This
means there is always at least one contact with the bolt and in case of having
bolts that conduct electricity, we can charge our batteries and never have the
problem of shortage of energy. Such specification could be even turned into a
safety protocol which simply checks if the contact is made and the electricity
stream is flowing through the arm toward the battery. This is done by a simple
voltage detector. Such properties could also be used to detect the location of the
robot in the platform.

Although this idea sounds very ideal, but in implementation of this idea,
there are challenging issues. To have electricity on the bolts without any pro-
tection, even with low voltage, is definitely not advised, especially when this
system is supposed to be implemented in the middle of the sea. High level of
humidity, rain, ice and the usual metal surface of the platform walls are most
common things that can conduct out electricity from the bolts. This in best case
can cause short circuits when the robot is trying to grab the bolts, or in worst
case can be dangerous for human operators in the environment (although there
is a low voltage). Therefor it is not advised to implement such specification
on the whole path, but just inside the docking station. This station should be
a shelter with low humidity, far from ice, rain and sea water. A place where
robots can dock there while they are done with their daily tasks, get re-charged,
washed up with high pressure water (probably by another robot), and even
fixed by human operators (??).

One can choose to implement such specification, low voltage electricity for
charging batteries on bolts, either on the whole path inside the docking area, or
only on the exact 4 bolts where the robot hangs on and rests / gets maintained
and repaired. Another issue which ties to the topic of docking area is the issue
of upgrading the navigation software. Having a connection to the server, being
able to receive packages wirelessly, gives us the chance to upgrade the naviga-
tion program automatically. However this might not sound that wise, regarding
incidents such as hacking and taking over the control of one of the U.S. military
drones [?, drone]hich means such machines can be re-programmed and used
for other purposes. This security issue can be solved by letting upgrades of the
navigation program to happen if and only if the robot is located inside the dock-
ing area. This means optimized usage of maintaining time (e.g. upgrading the
navigation program while the robot is being washed with high pressure water).

Vibration Mechanical oscillations about an equilibrium point are called vi-

136

Figure C.1:
Robots moving in docking station to their place, being charged, maintained and software
upgraded

bration. Vibration could be either periodic (pendulum) or random (a tire on
an uneven road). Back to our topic, on-board engines and electronic devices
encounter mechanical vibration and shock loads in most marine vessels includ-
ing oil and gas platforms. The waves force which crashes to the structure in an
irregular pattern from all sides, form a type of vibration that could affect the
operation on the platform. It’s obvious that these shock loads are more consid-
erable when there is a storm which would result in more powerful waves that
rspectively results in higher rates of vibration in the structure. This vibration
rate also depends on the type of platform which can be fixed, floating, Spar, etc.
Floating platforms vibrates almost like a ship and the vibration effect is high on
them.

Beside structural concerns, vibrations could damage a robot which is a ma-
chine made of both electronics and mechanical parts. Mechanically everything
that vibrates will eventually fail. This would differ from case to case based on

137

the vibration rate and the type of mechanical activity. E.g. a non-mobile robot
that is mounted on the wall or to the ground with screws could get unstable
over time due to the worn out screws. The same could also happen to a mobile
robot which does have parts which are in close contact with each other. Vibra-
tions makes their contact even more and adds to the friction which results in
worn out edges that would need frequent maintenance part changes (e.g. screw
shafts).

The problem of vibration and the electromagnetic devices can be divided in
two categories. The physical problems at joining points of different components
and the problem of the components with piezoelectric characteristics. The first
problem would be local as shocks and vibrations would affect soldering joints,
socketed parts, non-locking connectors and hanging heavy components over-
time. Disconnection or bad connection can be a typical problem that might rise
up for machines that operate in such conditions. On the other hand the sec-
ond problem would create trouble for other devices that are sensitive to noise.
Components that exhibit piezoelectric characteristics (ceramic capacitors, usu-
ally based on barium titanate), when vibrating, give out electrical noise or un-
desired signals on undesired bandwidth (REFRENCE???). These bandwidths
could have been reserved for special operations on platforms which can result
into critical situations in case of interfering with important signals such as con-
trol room signals.

Solutions for tackling these challenges should be focused on reducing trans-
mitted shock loads to sensitive equipment or using equipment that are built to
use in such environments (e.g. CompactPCI than PCI cards). There are several
suppliers that specializes their products and services to tackle this specific prob-
lem [?, gmtg] Such products usually are more expensive and are certificated un-
der standards that test vibration and shock resistance capabilities. Standards
like US military spec, MIL-STD-810 [36] or other offshore equivalents. Also so-
lutions such as mounting electronics on rubber bushes or even gel (flash memo-
ries of black box in planes) may be considered (REFRENCE). It’s recommended
to test the target environment with an average vibration rate over a period of
time. This would show if there is any need for such concerns, before choos-
ing any of the earlier mentioned solutions. Field test with an accelerometer
with logging abilities in a long enough period of time can give us a very good
overview over amount of vibration on site.

C.2 Hardware Issues

Connection Delay Tests, ZigBee vs. RS-232 :
The test were done under equal conditions, where the code was kept equal

138

Table C.3: Test resutls from Distributed Embedded System implemented for
Walloid robot

Protocol FrequencyAccuracyAverage
Time

Max
Time

Max
Delay

No. of tests No. of sam-
ple pr. tests

RS-232 (Se-
rial)

19200Hz 100% 1.12s 1.00s ***Slowest-
Avg***

1 30,000

ZigBee (Zig-
Bee)

19200Hz 99.9% 196.00s 210.75s ***Slowest-
Avg***

1 716

(except for I2C, where the reading port was not Serial). ZigBee and RS-232 both
use 19200 hz data rate and the test was repeated to reach stable results (average
values) and would not be misguided by small changes. It was expected that
ZigBee results would take more at time, as XBee components that was used in
this test used RxTx ports (RS-232) to send data from XBee component to the
micro-controller. However the numbers recorded showed that same communi-
cation with same code, ran on the same hardware, would take around 210 times
more time to be sendt, recieved on the other side and then recieve the feedback.

C.3 Software Issues

Remote - Server - Client
Robot : The robot specifications and hardware design is discussed in de-

tails in previous chapters. The navigation program in control of the climbing
robot was developed through a development process (5.4.3) and ended with a
distributed navigation program written in Arduino C and AVR C??, divided
between different inter-connected micro-controllers. The navigation system is
implemented to operate in three modes, Auto, RC (Remotely Controlled) and
Teach (??,). As defined in 5.2.2 and 5.3, the robot is supposed to be connected to
WiFi network and through that to server.

Server :As stated before as an assumption, in previous chapter 5.2.2, the
robots are online with help of WiFi technology and therefore could be easily
connected to server computers. servers are powerful machines capable of high
speed data processing with additional processing software / libraries (e.g. Mat-
lab, Java EE, OpenCV, Control Program with several parallel threads, data log-
ging, etc). The server could also be in control the multicasting/broadcasting of
streamed video from the climbing robot to the clients. Future video process-
ing and advanced decision making for automatic steering can easily be imple-
mented on server-side. An attempt for automating climbing operation, task
planning and work-plan production for several robots on-board the platform

139

is presented in 5.5.6.
Clients : Although the control system developed during this work, once

taught something, can work independently, having a teaching tool, redundancy
and HSE concerns call for manual overrides and control. Robot operator could
steer the robot remotely through CP in the RC mode. In this case the operator
could be anywhere and the only requirement is a stable network connection.
On the other hand concept of client in an offshore climbing robot is not only
the operator. As figure 5.22 showed, the possible stakeholders of such system
could be task developers and experts observing sensor readings (continued in
??). During this work both a standalone CP (developed in Java SE) and web
based CP’s were developed (5.5.4).

Flexibility 5.5.4, redundancy, stability ??, easier development and troubleshoot-
ing (signle problem at a time) in later phases are the result of this approach. It
is critical to have standard input - output model designed in advance to ensure
success in later integration. During this work manual remote control5.5.4, of-
fline and server side automation 2.4 are implemented and at the same time for
extra safety manual overrides are always possible during whole process.

Another issue about these modules is about the server and HMI. It is as-
sumed that in an already developed industrial ICT designs, these parts will be
replaced by already existing systems. Therefore the controller algorithms are de-
signed to be able to work with different systems, as long as the server is compatible with
the input standard of the robot and the server is compatible with the output standard
from the robot.This is done by choosing development tools (e.g. Java, Processing,
Arduino) that are compatibilite with different platforms (Linux, Windows, Mac,
etc) ??.

stakeholder5 The user case diagram in figure 5.22 clearly stated three kinds
of stakeholders for a RSC system. The separation of stakeholders was done to
assign different authorizations to each group. The authorizations could limit
specific group from running robot in one special mode (Auto, RC, Teach). E.g.
experts have no control authorizations at all, while operators can run the robot
in Auto and RC mode. Finally task developers have access to all levels of the
navigation system and can take the robot to Teach mode and teach the robot
new tasks.

1. Robot Operator : This user could either be onshore or in the control room
on the platform running robot in RC or Auto mode. The CP for this stake-
holder can read commands from the control column and send it to the
server for forwarding along to the climbing robot (Figure ??, 1).

2. Robot Developer / Task Planer CP : Control Panel for the task planer to
take the robot to the Teach mode and either teach the robot by running

140

it manually and recording the moves, or by loading new tasks and paths
to robot memory (developed in simulator environment). The limitation
for Teach mode results in more security and stability as only authorized
experts could change the configurations on the robot (Figure 5.26, 2).

3. Simple Clients : Simple clients are those users who do not have any au-
thorization to control the robot, but only receive the information streamed
out from the robot environment, e.g. sensor data, video, etc. Such users
could be the experts onshore trying to monitor and help a robot operator
/ offshore staff in sensitive tasks (Figure 5.26, 3).

————– Current Positioning Reading sensor readings The sensors from
the encoder are connected to the micro-controller pins. Based on which pins
they are connected to we would have the luxury of choosing between two meth-
ods of reading data from these pins, interrupts and polling. Different AVR At-
mega micro-controllers have various numbers of pins with ability to run inter-
rupt codes based on external hardware signals. Number of these pins can vary
from two to four on different types of micro-controllers. The problem arises
when discussing three DC motors; each encoder monitoring the motor shaft
requires 2 pins; on each arm, which means anyway we would have too few
pins to work on. This limitation in further works could be resolved by using
more advanced processing units with higher capabilities. The interrupts save
the CPU resources. When an interrupt signal is generated by the hardware, ev-
erything would halt and the CPU would run the feedback code for that specific
interrupt. Afterwards the CPU would continue the normal execution of tasks
once again. Such approach guarantees running the feedback code, but in case
of simultaneous interrupts would act based on a priority table in AVR Atmega
datasheets [47].

The other approach to read the input data is polling, which simply means
periodically reading the status of pins to determine whether received signal
should be read. From programming point of view the functions in charge of
polling are simple function that are placed in the infinitive loop of micro-controller.
This is opposite of interrupts functions that are marked by the specific interrupt
code. Although interrupts are slow, but they are accurate (determinism). In case
of CPU being too busy on other functions, we might risk losing reading some
input data. The algorithm for implementation of reading input data by both
interrupts and polling is archived under Appendix.

———————- Storing sensor readings In order to program the discussed
solution about current positioning in practice, there are needs for nonvolatile
memories combined in an embedded system. The first and easiest choice for
this kind of technology is EEPROM (E2PROM). EEPROM stands for Electrically

141

Figure C.2:
In case of continuous receiving signals polling can be faster, halting, running interrupt
functions, and retrieving system to the previous mode is time consuming [92]

Erasable Programmable Read-Only Memory. This type of memory is usually
used for saving small amounts of information that needs to be saved safely in
case of losing power/switching off the device. One of the most known usage of
EEPROM is in Personal Computers (PC) BIOS system which stores the startup
configuration of your PC. The advantage of EEPROM technology is their avail-
ability on AVR Atmega micro-controllers. They are already there and can easily
be used.

The only advantages of using currently available EEPROM technology are
the limitations that follow this technology. Although these problem are mostly
fixed in modern EEPROMS (slow single byte operation which is now changed
to multi-byte page operations), but the limited lifespan is the biggest challenge
in using this technology. Limited lifespan means that the EEPROM memory is
not usable after a certain number of erase/write cycles. You can see the detailed
number of these limitations for different Arduino boards / micro-controllers in
table C.4.

As our goal is for offshore platforms environment, it’s important to mention
that according to some experiments the number of these cycles in room tem-
perature can go up to more than 12 times bigger than the guaranteed number
from Atmel [93]. It is also important to bear in mind that the datasheet value
applies to all operating temperature varying from -55ºC to +125ºC and this is
over our functioning range. It would be nice to see same test results for one and
other extreme temperatures (Offshore environment can get extremley cold and
windy).

If EEPROM is frequently re-written the lifespan can be an important de-

142

Table C.4: EEPROM memories limiataions
Processor Arduino board Write/Earase EEPROM

Memory

Atmel ATmega168 *LilypadOld
*Nano
*Diecimila

100,000 512 Bytes

Atmel ATmega328 *Duemilanove
*Fio
*Uno
*SMD Lilypad

100,000 1 Kilobyte

Atmel ATmega1280
or 2560

Mega series 100,000 4 Kilobyte

sign consideration, as end of EEPROM lifespan also means the end of micro-
controller life. Using external EEPROM memories(C.3) could fix this problem
and can be an easy maintenance choice. The disadvantage of not using the in-
ternal memory is losing some pins which are occupied by the external memory.
The current positioning system with EEPROM is implemented and the code can
be found in Appnedix.

Considering the problem of lifespan in EEPROM memories, one might think
of other solutions for storing current position. The other solutions could be con-
necting an external microSD card shield, or any type of nonvolatile memory that
does not have the short lifespan problem (Flash memory and etc). The disad-
vantage of these solutions is also losing extra pins which would be occupied by
the microSD card shield or similar solutions (figure C.3).

Figure C.3:
Left to right : 1:Extrenal EEPROM memory |2: MicroSD shield for Arduino boards|
3: microSD card

—————————-

143

Appendix D

Source Code

D.1 Control program, Java

/ / * Java

package wpnStart ;

import viewPack . * ;
/*

* To change t h i s template , choose Tools | Templates

* and open the template in the e d i t o r .

*/

/**
*
* @author shahabfm_adm

*/
publ ic c l a s s WPNStarter {

//Var iab le
WPNGuiStarter startView ;

publ ic WPNStarter () {
startView = new WPNGuiStarter () ;

}
/**

* @param args the command l i n e arguments

*/

publ ic s t a t i c void main (S t r i n g [] args) {
// TODO code a p p l i c a t i o n l o g i c here
new WPNStarter () ;

}

}

package con t ro lPack ;

/*

144

* To change t h i s template , choose Tools | Templates

* and open the template in the e d i t o r .

*/

/**
*
* @author Shahab F .

*/
//This c l a s s :
// − S t a r t s up the communication with the Arduino .
// − Reads the data coming in from the Arduino and
// con v ert s t h a t data in to a use fu l form .
// − Closes communication with the Arduino .

//Load L i b r a r i e s
import j av a . io . * ;
import j av a . u t i l . TooManyListenersException ;
//Load RXTX Library
import gnu . io . * ;
import j av a . awt . Color ;
import j av a . awt . TextArea ;
import j av a . awt . event . ActionEvent ;
import j av a . awt . event . A ct ion L is t en er ;
import j av a . t e x t . SimpleDateFormat ;
import j av a . u t i l . Calendar ;
import j av ax . swing . JL abe l ;
import j av a . u t i l . Enumeration ;
import j av ax . swing . JProgressB ar ;
import j av ax . swing . Timer ;

/ / * * * * * * * * * * * * * * * WALLOIDARDUINO *
publ ic c l a s s WPNArduino implements Runnable , S e r i a l P o r t E v e n t L i s t e n er , A ct ion L is t en er {

//Used to in the process of convert ing the read in ch aract ers −
//− f i r s t in to a s t r i n g and then i n t o a number .

S t r i n g rawStr = " " ;
S t r i n g tempStr = " " ;

//Declare s e r i a l port v a r i a b l e
S e r i a l P o r t mySerialPort ;
p r i v a t e JL abe l [] motorLabels ;
p r i v a t e JL abe l [] simLabels ;
p r i v a t e JProgressB ar [] progressBar ;
p r i v a t e JL abe l errorL abe l ;
p r i v a t e TextArea logText ;
p r i v a t e boolean problemsWhileConnecting = f a l s e ;

//time & date f o r logging purpose
Calendar c a l = Calendar . g e t I n s t a n c e () ;
SimpleDateFormat sdf = new SimpleDateFormat () ;
p r i v a t e boolean stop = f a l s e ;

//Declare input steam
InputStream in ;
OutputStream out ;

//Motor S t a t u s
p r i v a t e i n t mStatFromArduino [] = new i n t [3] ;
p r i v a t e i n t m0stat = −1, m1stat = −1, m2stat = −1; // −1 = stopped motors | 0 = forward | 1 = backward

//Simulator S t a t u s
p r i v a t e i n t sim0Counter = 0 , sim1Counter = 0 , sim2Counter = 0 ;

Timer t imer ;

publ ic WPNArduino(JL abe l [] importedLabels , JL abe l [] simL , JProgressB ar [] progBar , JL abe l errorL , TextArea

145

motorLabels = importedLabels ;
simLabels = simL ;
progressBar = progBar ;
e rrorL abe l = errorL ;
logText = logT ;
problemsWhileConnecting = f a l s e ;
f o r (i n t i =0; i <3; i ++)

mStatFromArduino [i] = 0 ;

/* MOVE THIS TO RUN METHOD
timer = new Timer (3 4 7 , t h i s) ;
t imer . s e t I n i t i a l D e l a y (0) ;
t imer . s t a r t () ;

logThis (" Walloid C1S0 O. S . s t a r t e d ! ") ;

*/
}

// necessary method f o r Runnable c l a s s e s
publ ic void run () {

t imer = new Timer (3 4 7 , t h i s) ;
t imer . s e t I n i t i a l D e l a y (0) ;
t imer . s t a r t () ;

logThis (" Walloid C1S0 O. S . s t a r t e d ! ") ;
}

//Reading a l l the a c t i v e s e r i a l port s on PC and adding them to one
//jCombo box at the GUI
publ ic S t r i n g [] r e a d A l l S e r i a l P o r t s () {

i n t counter = 0 ;
S t r i n g [] tempStr = new S t r i n g [1 0] ;
t r y
{
//Finds and opens the port
Enumeration p o r t I d L i s t = CommPortIdentifier . g e t P o r t I d e n t i f i e r s () ;
while (p o r t I d L i s t . hasMoreElements ()) {

CommPortIdentifier cp i = (CommPortIdentifier) p o r t I d L i s t . nextElement () ;
i f (cp i . getPortType () == CommPortIdentifier . PORT_SERIAL) {

tempStr [counter] = cpi . getName () ;
counter ++;

}
}//end of while

}//end of t r y
cat ch (Except ion e)
{

System . out . p r i n t l n (" Port in Use : "+ e) ;
logThis (" Port in Use : " + e) ;
problemsWhileConnecting = t rue ;

}
S t r i n g [] r e t u r n S t r = new S t r i n g [counter + 1] ;
f o r (i n t i =0; i <counter ; i ++){

r e t u r n S t r [i] = tempStr [i] ;
}//end of f o r
//re t urn in g an array of S t r i n g s
re t urn r e t u r n S t r ;

}//end of r e a d A l l S e r i a l P o r t s

//This open ’ s the communcations port with the arduino

146

publ ic void s t a r t (S t r i n g portName , i n t baudRate)
{

stop = f a l s e ;
t r y
{

//Finds and opens the port
CommPortIdentifier port Id = CommPortIdentifier . g e t P o r t I d e n t i f i e r (portName) ;
mySerialPort = (S e r i a l P o r t) port Id . open (" m y_j av a_ser ia l " + portName , 2 0 0 0) ;
//2000 i s the timeout value t h a t i s given to the system to r e l e a s e the port (2000 ms = 2 seconds) , Rx
i f (mySerialPort != n ul l) {

System . out . p r i n t l n (" S e r i a l port found and opened ") ;
logThis (" S e r i a l port found and opened ") ;

}
//con f igure the port
t r y
{

mySerialPort . se t Ser ia lPort Para m s (baudRate ,
mySerialPort . DATABITS_8 ,
mySerialPort . STOPBITS_1 ,
mySerialPort . PARITY_NONE) ;
System . out . p r i n t l n (" S e r i a l port params s e t : "+ baudRate) ;
logThis (" S e r i a l port params s e t : " + baudRate) ;

}
ca t ch (UnsupportedCommOperationException e)
{

System . out . p r i n t l n (" Probably an unsupported Speed ") ;
logThis (" Probably unsupported speed ! ! ! ") ;
problemsWhileConnecting = t rue ;

}

// e s t a b l i s h stream f o r reading from the port
t r y
{

in = mySerialPort . get InputStream () ;
out = mySerialPort . getOutputStream () ;

}
ca t ch (IOException e)
{

System . out . p r i n t l n (" couldn ’ t get streams ") ;
logThis (" Couldn ’ t get streams . ") ;
problemsWhileConnecting = t rue ;

}

// we could read from " in " in a separat e thread , but the API g iv es us events
t r y
{

mySerialPort . addEventListener (t h i s) ;
mySerialPort . not ifyOnDataAvailable (t rue) ;
System . out . p r i n t l n (" Event l i s t e n e r added ") ;
logThis (" Event l i s t e n e r added . ") ;

}
ca t ch (TooManyListenersException e)
{

System . out . p r i n t l n (" couldn ’ t add l i s t e n e r ") ;
logThis (" Couldn ’ t add l i s t e n e r ") ;

}
}
ca t ch (Except ion e)
{

System . out . p r i n t l n (" Port in Use : " + e) ;

147

logThis (" Port in use : " + e) ;
problemsWhileConnecting = t rue ;

}
}

//Used to c l o s e the s e r i a l port
publ ic i n t c l o s e S e r i a l P o r t () {

t r y {
in . c l o s e () ;
stop=t rue ;
mySerialPort . c l o s e () ;
System . out . p r i n t l n (" S e r i a l port c losed ") ;
logThis (" \ n " + " S e r i a l port c losed . ") ;
re t urn 0 ;

}
ca t ch (Except ion e) {

System . out . p r i n t l n (e) ;
logThis (" Except ion occured c l o s i n g port : " + e) ;
re t urn −1;

}
}//end of c l o s S e r i a l P o r t ()

//Method sends a c h a r a c t e r
publ ic i n t sendData (S t r i n g chArray)
{

t r y {
//System . out . p r i n t (" \ n * * * Sending command ") ;

logThis (" Sending to Arduino : " + chArray + " . ") ;
f o r (i n t i =0; i <chArray . length () ; i ++){

out . write (chArray . charAt (i)) ;
//System . out . p r i n t (" " + chArray . charAt (i) + " ") ;

}
System . out . p r i n t l n (" ") ;
re t urn 0 ;
// f o r (i n t i =0; i <3; i ++)

//out . write (t e l o r a n c e . charAt (i)) ;
//System . out . p r i n t l n (" * * * Sent Data ") ;

}
ca t ch (Except ion e)
{

System . out . p r i n t l n (e) ;
logThis (" Except ion occured in sending data (" + chArray + ") − " + e) ;
re t urn −1;

}
}

//HANDSHAKE METHOD
publ ic boolean handshakeChecker () {

i n t handshakeCounter = 0 ;

//System . out . p r i n t l n (" Sending Ack ") ;
t r y {

//out . write (’ h ’) ;
char handShakeChar ;
while (t rue) {

out . write (’ h ’) ;
handShakeChar = (char) in . read () ;
i f (handShakeChar == ’h ’) {

//System . out . p r i n t l n (" * * * ACK rece iv ed from Arduino * * * ") ;
logThis ("ACK rece iv ed from Arduino " + handshakeCounter) ;
re t urn t rue ;

}

148

i f (handshakeCounter > 3) {
logThis (" * * * Error , HANDSHAKE prot ocol was not rece iv ed * * * ") ;
re t urn f a l s e ;

}
}

} ca t ch (Except ion e) {
System . out . p r i n t l n (e) ;
logThis (" Except ion occured in HANDSHAKE prot ocol " + e) ;
problemsWhileConnecting = t rue ;
re t urn f a l s e ;

}
}//end of handshakeChecker

publ ic boolean problemWhileConnecting () {
re t urn problemsWhileConnecting ;

}

publ ic i n t rese t A l lMot ors () {
t r y

{
//System . out . p r i n t l n (" * * * Trying to RESET * * * ") ;
out . write (’ R ’) ;

}
ca t ch (Except ion e)
{

System . out . p r i n t l n (e) ;
logThis (" Except ion occured in RESETING a l l motors " + e) ;
re t urn −1;

}
re t urn 0 ;

}//end of rese t A l lMot ors

/*
This method reads the c h a r a c t e r s sen t by the arduino
The Arduino output looks l i k e t h i s :

128 . 43 A153 . 2 5 B0 . 8 4 C242 . 6 2D0 . 6 3 E128 . 4 3 A153 . 2 5 B0 . 8 4 C242 . 6 2D0. 6 3 E128 . 4 3 A153 . 2 5 B0 . 8 4 C242 . 6 2D0 . 6 3 E

The method below d iv id es t h i s continuous stream of c h a r a c t e r s send by the Arduino i n t o values
The l e t t e r a f t e r the numbers plus decimal point i d e n t i f i e s the numbers and decimal point t h a t
preceded i t .

So :

128 . 43A: value = 128 . 43 with i d e n t i f i e r A (A in t h i s case i s r e a l power)

Lets go through t h i s in f u r t h e r d e t a i l :

Program r e c i e v e s c h a r a c t e r s one a f t e r the other l i k e t h i s :
ch = 1 − i s D i g i t (ch) = t rue and so i t i s added to the s t r i n g rawStr
ch = 2 − i s D i g i t (ch) = t rue and so i t i s added to the s t r i n g rawStr
ch = 8 − i s D i g i t (ch) = t rue and so i t i s added to the s t r i n g rawStr
ch = . − i s D i g i t (ch) = f a l s e but we check i f ch = ’ . ’ and i f so i t i s added to the s t r i n g rawStr
ch = 4 − i s D i g i t (ch) = t rue and so i t i s added to the s t r i n g rawStr
ch = 3 − i s D i g i t (ch) = t rue and so i t i s added to the s t r i n g rawStr
ch = A − i s D i g i t (ch) = f a l s e but − i s L e t t e r (ch) = t rue and so we then convert the rawStr t h a t i s now " 1 2 8 .

double with double value = Double . parseDouble (rawStr) ;
Now we have a value with an i d e n t i f i e r and we then p r i n t the value to t erm in al but we could j u s t as well
i f (ch ==’A’) realPower = value ;

149

The l a s t thing we do i s r e s e t rawStr =" " and then the above process i s repeated .

*/
publ ic void s e r i a l E v e n t (S e r i a l P o r t E v e n t event)
{

//Reads in data while data i s a v a i l a b l e
while (event . getEventType ()== S e r i a l P o r t E v e n t .DATA_AVAILABLE) {

//System . out . p r i n t l n (" beginning of while : " + tempStr) ;
//System . out . p r i n t (" data a v a i l a b l e : ") ;

t r y
{

//−−
//Read in the a v a i l a b l e c h a r a c t e r

//System . out . p r i n t l n (" In s id e S e r i a l P o r t E v e t n ") ;
char tempC ;
char ch = (char) in . read () ;
//tempStr += ch ;
//System . out . p r i n t (ch) ;
i f (sa feToPr in t (ch)) {

tempStr = tempStr + ch ;
//System . out . p r i n t (ch) ;

}
/* The prot ocol f o r r e c i e v i n g data from Arduino :

* h : Handshake prot ocol

*
* C#*## : C f o r Counter , F i r s t # stands f o r motor number , * a seperat in g sign

* and the l a s t two d i g i t s stands f o r counter number from Arduino card

*
* E### : Error code ###

*
* IF the b u f f e r lenght i s more than 5 , then a c r i t i c a l e r r o r in reading has happend

*/
/* i f (tempStr . equals (" h ")) {

System . out . p r i n t (" Handshake rec iev ed ") ;
logThis (" * * * Handshake rec iev ed from Arduino * * * ") ;
tempStr = " " ;

}

*/
i f ((tempStr . length () == 6) && (tempStr . charAt (0) == ’C’)) {

updateMotorStatLabels (tempStr) ;
//System . out . p r i n t l n (" tempStr i s now : " + tempStr) ;
tempStr = " " ;

} e l s e i f ((tempStr . length () == 3) && (tempStr . charAt (0) == ’E ’)) {
//t ran s la t eE rrorMsg (tempStr) ;
logThis (" Error code " + tempStr . charAt (1) + tempStr . charAt (2) + t ran s la t eE rrorMsg (tempStr)) ;
//System . out . p r i n t l n (" tempStr i s now : " + tempStr) ;
tempStr = " " ;

} e l s e i f ((tempStr . length () == 1) && (tempStr . charAt (0) == ’R ’)) {
logThis (" * * * RESETING * * * ") ;
//System . out . p r i n t l n (" tempStr i s now : " + tempStr) ;
tempStr = " " ;

} e l s e i f ((tempStr . length () == 6) && (tempStr . charAt (0) == ’P ’)) {
s e t C u r r e n t P o s i t i o n (tempStr) ;
//System . out . p r i n t l n (" tempStr i s now : " + tempStr) ;
tempStr = " " ;

} e l s e i f (tempStr . length () > 6) {
logThis (" Too many c h a r a c t e r s in S e r i a l Buffer , Emptying the b u f f e r now . Current c h a r a c t e r s e t
System . out . p r i n t l n ("LOGGED bigger than 6 char : " + tempStr . length () + " −" + tempStr + " | ") ;
tempStr = " " ;

}
e l s e {

;// System . out . p r i n t l n (" ELSE : " + tempStr) ;

150

}
//making sure NULL c h a r a c t e r s are not pr in t ed
//tempStr = " " + ch ;

/* i f (ch == ’C ’) {
switch ((char) in . read ()) {

case ’ 0 ’ :
//add to 0 t h a t i t i s moving and c y c l e number
tempC = (char) in . read () ;
i f (sa feToPr in t (tempC))

System . out . p r i n t (tempC) ;
i f (sa feToPr in t (tempC))

motorLabels [0] . s e t T e x t (" # " + tempC) ;
break ;

case ’ 1 ’ :
//add to 1 t h a t i t i s moving and c y c l e number
tempC = (char) in . read () ;
i f (sa feToPr in t (tempC))

System . out . p r i n t (tempC) ;
i f (sa feToPr in t (tempC))

motorLabels [1] . s e t T e x t (" # " + tempC) ;
break ;

case ’ 2 ’ :
//add to 2 t h a t i t i s moving and c y c l e number
tempC = (char) in . read () ;
i f (sa feToPr in t (tempC))

System . out . p r i n t (tempC) ;
i f (sa feToPr in t (tempC))

motorLabels [2] . s e t T e x t (" # " + tempC) ;
break ;

}//end of switch
ch = (char) in . read () ;
tempStr += ch ;
System . out . p r i n t (ch) ;
ch = (char) in . read () ;
tempStr += ch ;
System . out . p r i n t (ch) ;
//sensorLabel . s e t T e x t (tempStr) ;
// s i g n a l I n t e r r u p t (tempStr) ;
//System . out . p r i n t l n (" strTemp i s : " + tempStr) ;

} e l s e i f (sa feToPr in t (ch)) {
System . out . p r i n t (ch) ;

}//end of e lse− i f

//break ;

*
*/

}
cat ch (IOException e)
{

logThis (" IOException occured " + e) ;
}
//System . out . p r i n t l n (" End of while : " + tempStr) ;

}//end of while
}//end of s e r i a l E v e n t ()

p r i v a t e void printOutSafe (char ch) {
i f (ch >= 1 && ch <= 126)

System . out . p r i n t (ch) ;
}//end of printOutSafe

p r i v a t e boolean safeToPr in t (char ch) {

151

i f (ch >= 32 && ch <= 126)
re t urn t rue ;

e l s e
re t urn f a l s e ;

}//end of safeToPr in t ()

p r i v a t e i n t logThis (S t r i n g logMsg) {
i f (logText != n ul l) {

logText . s e t T e x t (logText . ge t Text () + "−>" + sdf . format (c a l . getTime ()) + " : " + logMsg + " . \n ") ;
re t urn 0 ;

}//end of i f
e l s e {

re t urn −1;
}

}//end of logThis
p r i v a t e i n t updateSimStatLabels (S t r i n g s im St at) {

i n t tmpNum = 0 ;
//System . out . p r i n t l n (" IN UPDATE MOTOR" + motorStat) ;
i f (s im St at == n ul l || s im St at . length () != 6) {

re t urn −1;
}
e l s e {

switch (s im St at . charAt (1)) {
case ’ 0 ’ :

//add to 0 t h a t i t i s moving and c y c l e number
tmpNum = (s im St at . charAt (3) −48)*100 + (s im St at . charAt (4) −48)*10 + (s im St at . charAt (5) −48) ;
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
//sim0Counter = (i n t) (tmpNum * (1 0 0 / 2 1 3)) ;
sim0Counter = tmpNum;
simLabels [0] . s e t T e x t (" Sim #0 : " + sim0Counter) ;
logThis (" Motor " + s im St at . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + s im St at) ;
break ;

case ’ 1 ’ :
//add to 1 t h a t i t i s moving and c y c l e number
tmpNum = (s im St at . charAt (3) −48)*100 + (s im St at . charAt (4) −48)*10 + (s im St at . charAt (5) −48) ;
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
// f l o a t flTemp = (100/213) * (f l o a t)tmpNum;
//sim1Counter = (i n t) (tmpNum * (1 0 0 / 2 1 3)) ;
sim1Counter = tmpNum;
//System . out . p r i n t l n (" mSfromArduino i s : " + flTemp) ;
simLabels [1] . s e t T e x t (" Sim #1 : " + sim1Counter) ;
logThis (" Motor " + s im St at . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + s im St at) ;
break ;

case ’ 2 ’ :
//add to 2 t h a t i t i s moving and c y c l e number
tmpNum = (s im St at . charAt (3) −48)*100 + (s im St at . charAt (4) −48)*10 + (s im St at . charAt (5) −48) ;
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
//sim2Counter = (i n t) (tmpNum * (1 0 0 / 2 1 3)) ;
sim2Counter = tmpNum;
simLabels [2] . s e t T e x t (" Sim #2 : " + sim2Counter) ;
logThis (" Motor " + s im St at . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + s im St at) ;
break ;

}//end of switch
re t urn 0 ;

}
}

p r i v a t e i n t updateMotorStatLabels (S t r i n g motorStat) {
i n t tmpNum = 0 ;

152

//System . out . p r i n t l n (" IN UPDATE MOTOR" + motorStat) ;
i f (motorStat == n ul l || motorStat . length () != 6) {

re t urn −1;
}
e l s e {

switch (motorStat . charAt (1)) {
case ’ 0 ’ :

//add to 0 t h a t i t i s moving and c y c l e number
tmpNum = (motorStat . charAt (3) −48)*100 + (motorStat . charAt (4) −48)*10 + (motorStat . charAt (5) −
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
mStatFromArduino [0] = tmpNum;
motorLabels [0] . s e t T e x t (" Motor #0 : " + mStatFromArduino [0]) ;
logThis (" Motor " + motorStat . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + motorStat) ;
break ;

case ’ 1 ’ :
//add to 1 t h a t i t i s moving and c y c l e number
tmpNum = (motorStat . charAt (3) −48)*100 + (motorStat . charAt (4) −48)*10 + (motorStat . charAt (5) −
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
mStatFromArduino [1] = tmpNum;
//System . out . p r i n t l n (" mSfromArduino i s : " + mStatFromArduino [1]) ;
motorLabels [1] . s e t T e x t (" Motor #1 : " + mStatFromArduino [1]) ;
logThis (" Motor " + motorStat . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + motorStat) ;
break ;

case ’ 2 ’ :
//add to 2 t h a t i t i s moving and c y c l e number
tmpNum = (motorStat . charAt (3) −48)*100 + (motorStat . charAt (4) −48)*10 + (motorStat . charAt (5) −
//System . out . p r i n t l n ("tmpNum i s : " + tmpNum) ;
mStatFromArduino [2] = tmpNum;
motorLabels [2] . s e t T e x t (" Motor #2 : " + mStatFromArduino [2]) ;
logThis (" Motor " + motorStat . charAt (1) + " i s a t "

+ tmpNum + " counter l e v e l | Prot ocol : " + motorStat) ;
break ;

}//end of switch
re t urn 0 ;

}

}//end of logThis ()

p r i v a t e S t r i n g t ran s la t eE rrorMsg (S t r i n g temp) {
i n t tempInt = I n t e g e r . p a r s e I n t (" " + temp . charAt (1) + temp . charAt (2)) ;
e rrorL abe l . setForeground (Color . red) ;
e rrorL abe l . s e t T e x t (" Check logs f o r the ERRORS : − (") ;
switch (tempInt) {

case 0 :
re t urn " * * * General ERROR * * * " ;

case 1 :
re t urn " * * * ERROR reading from ENCODER * * * " ;

case 2 :
re t urn " * * * FATAL ERROR, CRASH POSSIBLE , STOPPING MOTOR * * * " ;

case 3 :
re t urn " * * * FATAL ERROR, ROBOT ARM MIGHT GO LOOSE, STOPPING MOTOR * * * " ;

d e f a u l t :
re t urn " * * * Unknow ERROR * * * " ;

}//end of switch
}//end of t ran s la t eE rrorMsg ()

publ ic void read Curren t Pos i t ion () {
t r y {

out . write (’ P ’) ;
} ca t ch (Except ion e) {

153

System . out . p r i n t l n (e) ;
logThis (" Except ion occured in reading Current P o s i t i o n prot ocol " + e) ;
problemsWhileConnecting = t rue ;

}
}//end of s e t C u r r e n t P o s i t i o n ()

//SIMULATION UPDATE DOESNT WORK !
pub l ic void s e t C u r r e n t P o s i t i o n (S t r i n g temp) {

logThis (" I n i t i a l s t a t of motor " + temp . charAt (1) + " i s a t "
+ temp . charAt (3) + temp . charAt (4) + temp . charAt (5)
+ " counter l e v e l | Prot ocol : " + temp) ;

updateMotorStatLabels (temp) ;
updateSimStatLabels (temp) ;
//simCnt [temp . charAt (1) −48] = (temp . charAt (3) −48)*100 + (temp . charAt (4) −48)*10 + (temp . charAt (5) −48) ;
//System . out . p r i n t l n (" simCnt i s : " + simCnt [temp . charAt (1) −48] + " |" + ((temp . charAt (3) −48)*10 + (temp

}//end of s e t C u r r e n t P o s i t i o n ()

publ ic void act ionPerformed (ActionEvent e) {
i f (m0stat == 0) {

i f ((sim0Counter + 1) <= 1 0 0) {
sim0Counter ++;
progressBar [0] . setValue (sim0Counter) ;
simLabels [0] . s e t T e x t (" Sim #0 : "+ sim0Counter) ;

} e l s e {
// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 0 has reached MAX values ") ;
logThis (" Simulat ion of Motor 0 has reached MAX values ") ;
m0stat = −1;

}
}

e l s e i f (m0stat == 1) {
i f ((sim0Counter − 1) > 0) {

sim0Counter−−;
progressBar [0] . setValue (sim0Counter) ;
simLabels [0] . s e t T e x t (" Sim #0 : "+ sim0Counter) ;

}
e l s e {

// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 0 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 0 has reached n egat iv e values ") ;
m0stat = −1;

}
}

i f (m1stat == 0) {
i f ((sim1Counter + 1) <= 1 0 0) {

sim1Counter ++;
progressBar [1] . setValue (sim1Counter) ;
simLabels [1] . s e t T e x t (" Sim #1 : "+ sim1Counter) ;

} e l s e {
// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor #1 has reached MAX values ") ;
logThis (" Simulat ion of Motor #1 has reached MAX values ") ;
m1stat = −1;

}
}

e l s e i f (m1stat == 1) {
i f (sim1Counter − 1 > 0) {

sim1Counter−−;
progressBar [1] . setValue (sim1Counter) ;
simLabels [1] . s e t T e x t (" Sim #1 : "+ sim1Counter) ;

}
e l s e {

// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 1 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 1 has reached n egat iv e values ") ;

154

m1stat = −1;
}

}
i f (m2stat == 0) {

i f ((sim2Counter + 1) <= 1 0 0) {
sim2Counter ++;
progressBar [2] . setValue (sim2Counter) ;
simLabels [2] . s e t T e x t (" Sim #2 : "+ sim2Counter) ;

} e l s e {
// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor #2 has reached MAX values ") ;
logThis (" Simulat ion of Motor #2 has reached MAX values ") ;
m0stat = −1;

}
}

e l s e i f (m2stat == 1) {
i f (sim2Counter − 1 > 0) {

sim2Counter−−;
progressBar [2] . setValue (sim2Counter) ;
simLabels [2] . s e t T e x t (" Sim #2 : " + sim2Counter) ;

}
e l s e {

// n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 2 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 2 has reached n egat iv e values ") ;
m2stat = −1;

}
}

}

publ ic i n t getM0stat () {
re t urn m0stat ;

}

publ ic void se t M0st at (i n t m0stat) {
t h i s . m0stat = m0stat ;

}

publ ic i n t getM1stat () {
re t urn m1stat ;

}

publ ic void se t M1st at (i n t m1stat) {
t h i s . m1stat = m1stat ;

}

publ ic i n t getM2stat () {
re t urn m2stat ;

}

publ ic void se t M2st at (i n t m2stat) {
t h i s . m2stat = m2stat ;

}

}//end of walloidArduino CLASS

package viewPack ;

/*
* To change t h i s template , choose Tools | Templates

* and open the template in the e d i t o r .

*/

155

/*
* walloidGUI . j av a

*
* Created on 0 6 . j an . 2 0 1 1 , 1 9 : 2 3 : 1 9

*/
import con t ro lPack . * ; / / Arduino Communication
import j av a . awt . event . * ;
import j av ax . swing . JL abe l ;
import j av ax . swing . JOptionPane ;
import j av a . awt . * ;
import j av a . awt . geom . Line2D ;
import j av a . net .URL;
import j av a . t e x t . SimpleDateFormat ;
import j av a . u t i l . Calendar ;
//import j av ax . swing . Timer ;
import j av ax . swing . JProgressB ar ;
import j av ax . swing . UIManager ;
import processingGuiPack . * ;

/**
*
* @author shahabfm_adm

*/
publ ic c l a s s WNPGui extends j av ax . swing . JFrame implements KeyListener {

//Var iab les
WPNArduino arduino ;
S t r i n g [] COMList ;
boolean connectedToArduino ;
// i n t sim0Counter = 0 , sim1Counter = 0 , sim2Counter = 0 ;
// i n t m0stat = −1, m1stat = −1, m2stat = −1; // −1 = stopped motors | 0 = forward | 1 = backward
//Timer t imer ;
Line2D l i n ;
URL url ;
//time & date f o r logging purpose
Calendar c a l = Calendar . g e t I n s t a n c e () ;
SimpleDateFormat sdf = new SimpleDateFormat () ;

/** Creates new form walloidGUI */
publ ic WNPGui () {

super (" Walloid Control Panel − Java | System S t a t u s : Connected ") ;
initComponents () ;
t h i s . se t L ocat ion (2 0 0 , 2 0 0) ;
s e t V i s i b l e (t rue) ;
i f (t h i s . i sFocusab le () == f a l s e) {

t h i s . se t Focusab le (t rue) ;
}
e l s e {

System . out . p r i n t l n (" Could not s e t JFrame Focusable ") ;
}
smartyTabbedPanel . addKeyListener (t h i s) ;
JL abe l [] motorLabels = { motor0StatusLabel , motor1StatusLabel , motor2StatusLabel } ;
JL abe l [] simLabels = { sim0StatusLabel , s im1StatusLabel , s im2StatusLabel } ;
JProgressB ar [] progressBar = { progressBar0 , progressBar1 , progressBar2 } ;
arduino = new WPNArduino(motorLabels , simLabels , progressBar , e rrorL abe l , logText) ;
COMList = arduino . r e a d A l l S e r i a l P o r t s () ;
f o r (i n t i =0; i <COMList . length ; i ++){

comComboBox . in ser t I t em A t (COMList [i] , i) ;
}
i n t tempNum = comComboBox . getItemCount () ;
//System . out . p r i n t l n (tempNum) ;

156

comComboBox . s e t S e l e c t e d I n d e x (tempNum−2);// s e l e c t i n g the l a s t COM
arduinoAckLabel . setForeground (Color . red) ;
arduinoAckLabel . s e t T e x t ("NOT Connected to Arduino ") ;
setupHelpPage () ;
connectedToArduino = f a l s e ;
//t imer = new Timer (3 4 7 , t h i s) ;
//t imer . s e t I n i t i a l D e l a y (0) ;
//t imer . s t a r t () ;
n o t i f i c a t i o n L a b e l . setForeground (Color . red) ;
//Construct ing HelpPane

}//end of c o n s t r u c t o r

/** This method i s c a l l e d from within the c o n s t r u c t o r to

* i n i t i a l i z e the form .

* WARNING: Do NOT modify t h i s code . The con t en t of t h i s method i s

* always regenerated by the Form E d it or .

*/
@SuppressWarnings (" unchecked ")
// <ed i t or−fo ld d e f a u l t s t a t e =" col lapsed " desc =" Generated Code">//GEN−BEGIN : initComponents
p r i v a t e void initComponents () {

smartyTabbedPanel = new j av ax . swing . JTabbedPane () ;
motorStatTabbedPanel = new j av ax . swing . JPan e l () ;
motor0StatusLabel = new j av ax . swing . JL abe l () ;
motor1StatusLabel = new j av ax . swing . JL abe l () ;
motor2StatusLabel = new j av ax . swing . JL abe l () ;
e x i t B t n = new j av ax . swing . JButton () ;
s t a r t B t n = new j av ax . swing . JButton () ;
motor0Label1 = new j av ax . swing . JL abe l () ;
le f tBtnForward = new j av ax . swing . JButton () ;
forwardBtn = new j av ax . swing . JButton () ;
backBtn = new j av ax . swing . JButton () ;
rightBtnForward = new j av ax . swing . JButton () ;
r e s e t B t n = new j av ax . swing . JButton () ;
arduinoAckLabel = new j av ax . swing . JL abe l () ;
progressBar0 = new j av ax . swing . JProgressB ar () ;
progressBar1 = new j av ax . swing . JProgressB ar () ;
progressBar2 = new j av ax . swing . JProgressB ar () ;
l e f t B t n B a c k = new j av ax . swing . JButton () ;
r ightBtnBack = new j av ax . swing . JButton () ;
n o t i f i c a t i o n L a b e l = new j av a . awt . Label () ;
s im0StatusLabel = new j av ax . swing . JL abe l () ;
s im1StatusLabel = new j av ax . swing . JL abe l () ;
s im2StatusLabel = new j av ax . swing . JL abe l () ;
e rrorL abe l = new j av ax . swing . JL abe l () ;
optionsTabbedPanel = new j av ax . swing . JPan e l () ;
comComboBox = new j av ax . swing . JComboBox () ;
comLabel = new j av ax . swing . JL abe l () ;
baudrateLabel = new j av ax . swing . JL abe l () ;
baudrateComboBox = new j av ax . swing . JComboBox () ;
logTabbedPanel = new j av ax . swing . JPan e l () ;
logText = new j av a . awt . TextArea () ;
helpTabbedPanel = new j av ax . swing . JPan e l () ;
j S c r o l l P a n e 1 = new j av ax . swing . J S c r o l l P a n e () ;
htmlDisplayer = new j av ax . swing . JEditorPane () ;

se t Defaul t CloseOperat ion (j av ax . swing . WindowConstants . EXIT_ON_CLOSE) ;
addKeyListener (new j av a . awt . event . KeyAdapter () {

publ ic void keyPressed (j av a . awt . event . KeyEvent evt) {
formKeyPressed (evt) ;

}

157

}) ;

motorStatTabbedPanel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 1)) ; // NOI18N

motor0StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
motor0StatusLabel . setForeground (new j av a . awt . Color (0 , 153 , 2 5 5)) ;
motor0StatusLabel . s e t T e x t (" Motor #0 : 0 0 ") ;

motor1StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
motor1StatusLabel . setForeground (new j av a . awt . Color (0 , 153 , 2 5 5)) ;
motor1StatusLabel . s e t T e x t (" Motor #1 : 0 0 ") ;

motor2StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
motor2StatusLabel . setForeground (new j av a . awt . Color (0 , 153 , 2 5 5)) ;
motor2StatusLabel . s e t T e x t (" Motor #2 : 0 0 ") ;

e x i t B t n . s e t T e x t (" E x i t ") ;
e x i t B t n . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
exitBtnAct ionPerformed (evt) ;

}
}) ;

s t a r t B t n . s e t T e x t (" Connect to Arduino ") ;
s t a r t B t n . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
startBtnAct ionPerformed (evt) ;

}
}) ;

motor0Label1 . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
motor0Label1 . s e t T e x t ("− Motor & Simulat ion Cycle S t a t u s ") ;

lef tBtnForward . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
leftBtnForward . s e t T e x t (" Lf ") ;
lef tBtnForward . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
leftBtnForwardActionPerformed (evt) ;

}
}) ;

forwardBtn . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
forwardBtn . s e t T e x t (" F ") ;
forwardBtn . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
forwardBtnActionPerformed (evt) ;

}
}) ;

backBtn . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
backBtn . s e t T e x t (" B ") ;
backBtn . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
backBtnActionPerformed (evt) ;

}
}) ;

rightBtnForward . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
rightBtnForward . s e t T e x t (" Rf ") ;
rightBtnForward . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
rightBtnForwardActionPerformed (evt) ;

158

}
}) ;

r e s e t B t n . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
r e s e t B t n . s e t T e x t (" RESET ") ;
r e s e t B t n . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
resetBtnAct ionPerformed (evt) ;

}
}) ;

arduinoAckLabel . setForeground (new j av a . awt . Color (0 , 153 , 0)) ;

l e f t B t n B a c k . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
l e f t B t n B a c k . s e t T e x t (" Lb ") ;
l e f t B t n B a c k . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
leftBtnBackAct ionPerformed (evt) ;

}
}) ;

r ightBtnBack . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
rightBtnBack . s e t T e x t (" Rb ") ;
r ightBtnBack . addAct ionListener (new j av a . awt . event . A ct ion L is t en er () {

publ ic void act ionPerformed (j av a . awt . event . ActionEvent evt) {
rightBtnBackActionPerformed (evt) ;

}
}) ;

n o t i f i c a t i o n L a b e l . s e t T e x t (" . . . ") ;

s im0StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
sim0StatusLabel . setForeground (new j av a . awt . Color (1 0 2 , 102 , 2 5 5)) ;
s im0StatusLabel . s e t T e x t (" Sim #0 : 0 0 ") ;

s im1StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
sim1StatusLabel . setForeground (new j av a . awt . Color (1 0 2 , 102 , 2 5 5)) ;
s im1StatusLabel . s e t T e x t (" Sim #1 : 0 0 ") ;

s im2StatusLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
sim2StatusLabel . setForeground (new j av a . awt . Color (1 0 2 , 102 , 2 5 5)) ;
s im2StatusLabel . s e t T e x t (" Sim #2 : 0 0 ") ;

e rrorL abe l . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ; // NOI18N
errorL abe l . setForeground (new j av a . awt . Color (0 , 153 , 0)) ;
e rrorL abe l . s e t T e x t ("No Error up to now : −) ") ;

j av ax . swing . GroupLayout motorStatTabbedPanelLayout = new j av ax . swing . GroupLayout (motorStatTabbedPanel)
motorStatTabbedPanel . setLayout (motorStatTabbedPanelLayout) ;
motorStatTabbedPanelLayout . setHorizontalGroup (

motorStatTabbedPanelLayout . creat ePara l le l G ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addComponent (arduinoAckLabel)

. addContainerGap (4 6 7 , Short .MAX_VALUE))
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEA
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addGap(1 1 7 , 117 , 117)

. addComponent (backBtn)

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .UNRELATED)

. addComponent (l e f t B t n B a c k)

159

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .UNRELATED)

. addComponent (rightBtnBack))
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addGap (2 7 , 27 , 27)

. addComponent (r e s e t B t n)

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .UNRELATED)

. addComponent (forwardBtn , j av ax . swing . GroupLayout . PREFERRED_SIZE , 49 , j av ax . swing . Grou

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement . RELATED)

. addComponent (leftBtnForward , j av ax . swing . GroupLayout . PREFERRED_SIZE , 50 , j av ax . swing .

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .UNRELATED)

. addComponent (rightBtnForward)))
. addContainerGap (1 9 7 , Short .MAX_VALUE))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addComponent (s t a r t B t n , j av ax . swing . GroupLayout . DEFAULT_SIZE , 397 , Short .MAX_VALUE)
. addGap(4 7 7 , 477 , 4 7 7))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addComponent (ex i t B t n , j av ax . swing . GroupLayout . DEFAULT_SIZE , 397 , Short .MAX_VALUE)
. addGap(4 7 7 , 477 , 4 7 7))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addComponent (progressBar0 , j av ax . swing . GroupLayout . DEFAULT_SIZE , 397 , Short .MAX_VALUE)
. addGap(4 7 7 , 477 , 4 7 7))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addComponent (progressBar1 , j av ax . swing . GroupLayout . DEFAULT_SIZE , 397 , Short .MAX_VALUE)
. addGap(4 7 7 , 477 , 4 7 7))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addComponent (progressBar2 , j av ax . swing . GroupLayout . DEFAULT_SIZE , 397 , Short .MAX_VALUE)
. addGap(4 7 7 , 477 , 4 7 7))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addContainerGap ()
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEA

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addGap (1 0 , 10 , 10)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r ou p (j av ax . swing . GroupLayout . Align

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addGroup (motorStatTabbedPanelLayout . creat ePara l le l G r ou p (j av ax . swing . GroupLayo

. addComponent (motor2StatusLabel , j av ax . swing . GroupLayout . DEFAULT_SIZE , j av

. addComponent (motor0StatusLabel , j av ax . swing . GroupLayout . DEFAULT_SIZE , j av

. addComponent (motor1StatusLabel , j av ax . swing . GroupLayout . PREFERRED_SIZE , 1
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement . RELATED)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le l G r ou p (j av ax . swing . GroupLayo

. addComponent (sim0StatusLabel , j av ax . swing . GroupLayout . DEFAULT_SIZE , j av ax

. addComponent (sim1StatusLabel , j av ax . swing . GroupLayout . DEFAULT_SIZE , 128 ,

. addComponent (sim2StatusLabel)))
. addComponent (errorL abe l)))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addComponent (motor0Label1)
. addGap(1 3 8 , 138 , 1 3 8)))

. addGap(3 2 2 , 322 , 3 2 2))
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addComponent (n o t i f i c a t i o n L a b e l , j av ax . swing . GroupLayout . PREFERRED_SIZE , 363 , j av ax . swing . Grou

. addContainerGap (1 0 4 , Short .MAX_VALUE))
) ;
motorStatTabbedPanelLayout . se t Vert ica lG roup (

motorStatTabbedPanelLayout . creat ePara l le l G ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEA

160

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addGap (2 7 , 27 , 27)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r ou p (j av ax . swing . GroupLayout . Align

. addComponent (forwardBtn , j av ax . swing . GroupLayout . PREFERRED_SIZE , 41 , j av ax . swing .

. addComponent (leftBtnForward , j av ax . swing . GroupLayout . PREFERRED_SIZE , 40 , j av ax . sw

. addComponent (rightBtnForward , j av ax . swing . GroupLayout . PREFERRED_SIZE , 38 , j av ax . s
. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()

. addGap (5 2 , 52 , 52)

. addComponent (rese t B t n , j av ax . swing . GroupLayout . PREFERRED_SIZE , 36 , j av ax . swing . GroupL
. addGap (9 , 9 , 9)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment . BAS

. addComponent (backBtn , j av ax . swing . GroupLayout . PREFERRED_SIZE , 41 , j av ax . swing . GroupLayout

. addComponent (le f t B t n B ack , j av ax . swing . GroupLayout . PREFERRED_SIZE , 40 , j av ax . swing . GroupLa

. addComponent (rightBtnBack , j av ax . swing . GroupLayout . PREFERRED_SIZE , 44 , j av ax . swing . GroupL
. addGap (1 8 , 18 , 18)
. addComponent (s t a r t B t n)
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addComponent (e x i t B t n)
. addGap (1 8 , 18 , 18)
. addComponent (progressBar0 , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . GroupLayout . DE
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addComponent (progressBar1 , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . GroupLayout . DE
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addComponent (progressBar2 , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . GroupLayout . DE
. addGap (1 8 , 18 , 18)
. addComponent (motor0Label1)
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment . BAS

. addComponent (motor0StatusLabel , j av ax . swing . GroupLayout . PREFERRED_SIZE , 17 , j av ax . swing . G

. addComponent (sim0StatusLabel , j av ax . swing . GroupLayout . PREFERRED_SIZE , 17 , j av ax . swing . Gro
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment . BAS

. addComponent (motor1StatusLabel , j av ax . swing . GroupLayout . PREFERRED_SIZE , 17 , j av ax . swing . G

. addComponent (sim1StatusLabel , j av ax . swing . GroupLayout . PREFERRED_SIZE , 17 , j av ax . swing . Gro
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment . BAS

. addComponent (motor2StatusLabel)

. addComponent (sim2StatusLabel))
. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)
. addGroup (motorStatTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEA

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addGap (5 4 , 54 , 54)
. addComponent (arduinoAckLabel , j av ax . swing . GroupLayout . DEFAULT_SIZE , 29 , Short .MAX_VAL
. addGap (3 2 , 32 , 3 2))

. addGroup (motorStatTabbedPanelLayout . createSequent ialGroup ()
. addComponent (errorL abe l)
. addGap (6 8 , 68 , 68)
. addComponent (n o t i f i c a t i o n L a b e l , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . G
. addContainerGap ())))

) ;

smartyTabbedPanel . addTab (" Motors S t a t u s " , motorStatTabbedPanel) ;

comLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ;
comLabel . s e t T e x t ("COM Port s : ") ;

baudrateLabel . se t Fon t (new j av a . awt . Font (" Tahoma" , 1 , 1 4)) ;
baudrateLabel . s e t T e x t (" Baud Rate ") ;

baudrateComboBox . setModel (new j av ax . swing . DefaultComboBoxModel (new S t r i n g [] { " 4 8 0 0 " , " 9 6 0 0 " , " 1 4 4 0 0 " ,
baudrateComboBox . s e t S e l e c t e d I n d ex (7) ;

161

j av ax . swing . GroupLayout optionsTabbedPanelLayout = new j av ax . swing . GroupLayout (optionsTabbedPanel) ;
optionsTabbedPanel . setLayout (optionsTabbedPanelLayout) ;
optionsTabbedPanelLayout . setHorizontalGroup (

optionsTabbedPanelLayout . creat ePara l le l G ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (optionsTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addGroup (optionsTabbedPanelLayout . creat ePara l le l G ro up (j av ax . swing . GroupLayout . Alignment .LEADIN
. addComponent (comComboBox , j av ax . swing . GroupLayout . PREFERRED_SIZE , 155 , j av ax . swing . GroupL
. addComponent (comLabel)
. addComponent (baudrateLabel)
. addComponent (baudrateComboBox , j av ax . swing . GroupLayout . PREFERRED_SIZE , 155 , j av ax . swing . G

. addContainerGap (3 1 2 , Short .MAX_VALUE))
) ;
optionsTabbedPanelLayout . se t Vert ica lG roup (

optionsTabbedPanelLayout . creat ePara l le l G ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (optionsTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addComponent (comLabel)

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)

. addComponent (comComboBox , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . GroupLayout . DEF

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)

. addComponent (baudrateLabel)

. addPreferredGap (j av ax . swing . LayoutStyle . ComponentPlacement .RELATED)

. addComponent (baudrateComboBox , j av ax . swing . GroupLayout . PREFERRED_SIZE , j av ax . swing . GroupLayou

. addContainerGap (4 0 5 , Short .MAX_VALUE))
) ;

smartyTabbedPanel . addTab (" Options " , optionsTabbedPanel) ;

j av ax . swing . GroupLayout logTabbedPanelLayout = new j av ax . swing . GroupLayout (logTabbedPanel) ;
logTabbedPanel . setLayout (logTabbedPanelLayout) ;
logTabbedPanelLayout . setHorizontalGroup (

logTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addComponent (logText , j av ax . swing . GroupLayout . DEFAULT_SIZE , 477 , Short .MAX_VALUE)

) ;
logTabbedPanelLayout . se t Vert ica lG roup (

logTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addComponent (logText , j av ax . swing . GroupLayout . Alignment . TRAILING , j av ax . swing . GroupLayout . DEFAUL

) ;

smartyTabbedPanel . addTab (" log " , logTabbedPanel) ;

j S c r o l l P a n e 1 . setViewportView (htmlDisplayer) ;

j av ax . swing . GroupLayout helpTabbedPanelLayout = new j av ax . swing . GroupLayout (helpTabbedPanel) ;
helpTabbedPanel . setLayout (helpTabbedPanelLayout) ;
helpTabbedPanelLayout . setHorizontalGroup (

helpTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (helpTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addComponent (j S c r o l l P a n e 1 , j av ax . swing . GroupLayout . DEFAULT_SIZE , 457 , Short .MAX_VALUE)

. addContainerGap ())
) ;
helpTabbedPanelLayout . se t Vert ica lG roup (

helpTabbedPanelLayout . creat ePara l le lG r o up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addGroup (helpTabbedPanelLayout . createSequent ialGroup ()

. addContainerGap ()

. addComponent (j S c r o l l P a n e 1 , j av ax . swing . GroupLayout . DEFAULT_SIZE , 486 , Short .MAX_VALUE)

. addContainerGap ())
) ;

smartyTabbedPanel . addTab (" Help " , helpTabbedPanel) ;

162

j av ax . swing . GroupLayout layout = new j av ax . swing . GroupLayout (getContentPane ()) ;
getContentPane () . setLayout (layout) ;
layout . setHorizontalGroup (

layout . creat ePara l le lG ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addComponent (smartyTabbedPanel , j av ax . swing . GroupLayout . DEFAULT_SIZE , 482 , Short .MAX_VALUE)

) ;
layout . se t Vert ica lG roup (

layout . creat ePara l le lG ro up (j av ax . swing . GroupLayout . Alignment .LEADING)
. addComponent (smartyTabbedPanel)

) ;

pack () ;
}// </ed i t or−fold >//GEN−END: initComponents

p r i v a t e void exitBtnAct ionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_exitBtnAct ionPerform
// TODO add your handling code here :
System . e x i t (0) ;

}//GEN−LAST : event_exitBtnAct ionPerformed

p r i v a t e void startBtnAct ionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_startBtnAct ionPerfo
// TODO add your handling code here :
i f (connectedToArduino != t rue) {

arduino . s t a r t (comComboBox . ge t Se lect ed I t em () . t o S t r i n g () ,
I n t e g e r . p a r s e I n t (baudrateComboBox . ge t Se lect ed I t em () . t o S t r i n g ())) ;

//arduino . handshakeChecker () ;
i f (! arduino . problemWhileConnecting ()) {

arduinoAckLabel . setForeground (Color . green) ;
arduinoAckLabel . s e t T e x t (" Connected Succes fu ly to Arduino ") ;
connectedToArduino = t rue ;
s t a r t B t n . s e t T e x t (" Disconnect from Arduino ") ;

}
e l s e {

arduinoAckLabel . setForeground (Color . red) ;
arduinoAckLabel . s e t T e x t (" Problem connect ing to Arduino ") ;

}
arduino . handshakeChecker () ;
arduino . read Curren t Pos i t ion () ;
/* i f (arduino . handshakeChecker ()) {

//System . out . p r i n t l n (" Ack rece iv ed ") ;
arduinoAckLabel . setForeground (Color . green) ;
arduinoAckLabel . s e t T e x t (" Connected Succes fu ly to Arduino ") ;
connectedToArduino = t rue ;
s t a r t B t n . s e t T e x t (" Disconnect from Arduino ") ;

} */
}//end of i f connected
e l s e {

//d iscon n ect from Arduino
i f (arduino . c l o s e S e r i a l P o r t () == 0) {

s t a r t B t n . s e t T e x t (" Connect to Arduino ") ;
} e l s e {

JOptionPane . showMessageDialog (null , " Could not d iscon n ect from Arduino " , " Input Error " , JOptio
}//end of e l s e c l o s e S e r i a l P o r t

}//end of e l s e
}//GEN−LAST : event_startBtnAct ionPerformed

@Override
publ ic void pain t (Graphics g) {

//g . se t Color (Color . black) ;
//g . drawLine (1 0 , 500 , 100 , 4 7 0) ;
super . paintComponents (g) ;

163

Graphics2D g2 = (Graphics2D) g ;
l i n = new Line2D . F l o a t (0 , 0 , 0 , 0) ;
g2 . draw (l i n) ;

}

p r i v a t e void forwardBtnActionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_forwardBtnAction
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 0 f ") ;
arduino . se t M0st at (0) ;
//ProcSimGui . moveMotorIndx (0) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}
l i n = new Line2D . F l o a t (0 , 0 , 100 , 1 0 0) ;
r e p a i n t () ;

}//GEN−LAST : event_forwardBtnActionPerformed

p r i v a t e void backBtnActionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_backBtnActionPerform
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 0 b ") ;
arduino . se t M0st at (1) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}

}//GEN−LAST : event_backBtnActionPerformed

p r i v a t e void leftBtnForwardAct ionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_leftBtnForwa
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 1 f ") ;
arduino . se t M1st at (0) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}

}//GEN−LAST : event_leftBtnForwardActionPerformed

p r i v a t e void rightBtnForwardActionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_rightBtnForw
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 2 f ") ;
arduino . se t M2st at (0) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}

}//GEN−LAST : event_rightBtnForwardActionPerformed

p r i v a t e void resetBtnAct ionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_resetBtnAct ionPerfo
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . rese t A l lMot ors () ;
arduino . se t M0st at (−1) ;
arduino . se t M1st at (−1) ;

164

arduino . se t M2st at (−1) ;
}
e l s e

JOptionPane . showMessageDialog (null , " Not connected to Arduino card to be ab le to r e s e t the data " ,
}//GEN−LAST : event_resetBtnAct ionPerformed

p r i v a t e void formKeyPressed (j av a . awt . event . KeyEvent evt) {//GEN−FIRST : event_formKeyPressed
// TODO add your handling code here :

}//GEN−LAST : event_formKeyPressed

p r i v a t e void leftBtnBackAct ionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_leftBtnBackAct io
// TODO add your handling code here :

// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 1 b ") ;
arduino . se t M1st at (1) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}

}//GEN−LAST : event_leftBtnBackAct ionPerformed

p r i v a t e void rightBtnBackActionPerformed (j av a . awt . event . ActionEvent evt) {//GEN−FIRST : event_rightBtnBackAc
// TODO add your handling code here :
i f (connectedToArduino) {

arduino . sendData (" 2 b ") ;
arduino . se t M2st at (1) ;

}
e l s e {

JOptionPane . showMessageDialog (null , "You need to f i r s t connect to the Arduino card " , " Input Error "
}

}//GEN−LAST : event_rightBtnBackActionPerformed

// K e y l i s t e n e r implementat iton
publ ic void keyTyped(KeyEvent e) {

//d isp layIn fo (e , " Key Typed ") ;
}

publ ic void keyPressed (KeyEvent e) {
switch (e . getKeyCode ()) {

case (3 8) : / /UP
System . out . p r i n t l n ("KEY PRESSED : " + e . getKeyText (e . getKeyCode ()) + " and key code i s : " + e
//arduino . sendData (’ 0 ’ , ’ f ’) ;
break ;

case (3 7) : / /RIGHT
//arduino . sendData (’ 2 ’ , ’ f ’) ;
System . out . p r i n t l n ("KEY PRESSED : " + e . getKeyText (e . getKeyCode ()) + " and key code i s : " + e
break ;

case (3 9) : / / LEFT
//arduino . sendData (’ 1 ’ , ’ f ’) ;
System . out . p r i n t l n ("KEY PRESSED : " + e . getKeyText (e . getKeyCode ()) + " and key code i s : " + e
break ;

case (4 0) : / /DOWN
//arduino . sendData (’ 0 ’ , ’ b ’) ;
System . out . p r i n t l n ("KEY PRESSED : " + e . getKeyText (e . getKeyCode ()) + " and key code i s : " + e
break ;

}//end of switch
//d isp layIn fo (e , " Key Pressed ") ;

}

publ ic void keyReleased (KeyEvent e) {
//d isp layIn fo (e , " Key Released ") ;

165

}

p r i v a t e void d isp layIn fo (KeyEvent e , S t r i n g keyStatus) {

//You should only r e l y on the key char i f the event
// i s a key typed event .
i n t id = e . getID () ;
S t r i n g keySt r in g ;
i f (id == KeyEvent . KEY_TYPED) {

char c = e . getKeyChar () ;
keySt r in g = " key c h a r a c t e r = ’ " + c + " ’ " ;

} e l s e {
i n t keyCode = e . getKeyCode () ;
keySt r in g = " key code = " + keyCode

+ " ("
+ KeyEvent . getKeyText (keyCode)
+ ") " ;

}
i n t modif iersEx = e . getModif iersEx () ;

S t r i n g modString = " extended m od if ie rs = " + modif iersEx ;
S t r i n g tmpString = KeyEvent . getModif iersExText (modif iersEx) ;
i f (tmpString . length () > 0) {

modString += " (" + tmpString + ") " ;
} e l s e {

modString += " (no extended m od if ie rs) " ;
}

S t r i n g a c t i o n S t r i n g = " a c t i o n key ? " ;
i f (e . isActionKey ()) {

a c t i o n S t r i n g += "YES " ;
} e l s e {

a c t i o n S t r i n g += "NO" ;
}

S t r i n g l o c a t i o n S t r i n g = " key l o c a t i o n : " ;
i n t l o c a t i o n = e . getKeyLocation () ;
i f (l o c a t i o n == KeyEvent .KEY_LOCATION_STANDARD) {

l o c a t i o n S t r i n g += " standard " ;
} e l s e i f (l o c a t i o n == KeyEvent . KEY_LOCATION_LEFT) {

l o c a t i o n S t r i n g += " l e f t " ;
} e l s e i f (l o c a t i o n == KeyEvent . KEY_LOCATION_RIGHT) {

l o c a t i o n S t r i n g += " r i g h t " ;
} e l s e i f (l o c a t i o n == KeyEvent .KEY_LOCATION_NUMPAD) {

l o c a t i o n S t r i n g += "numpad " ;
} e l s e { // (l o c a t i o n == KeyEvent .KEY_LOCATION_UNKNOWN)

l o c a t i o n S t r i n g += "unknown " ;
}

//Display information about the KeyEvent . . .
}

/**
* @param args the command l i n e arguments

*/
publ ic s t a t i c void main (S t r i n g args []) {

new WNPGui () . s e t V i s i b l e (t rue) ;
}

// Var iab les d e c l a r a t i o n − do not modify//GEN−BEGIN : v a r i a b l e s
p r i v a t e j av ax . swing . JL abe l arduinoAckLabel ;

166

p r i v a t e j av ax . swing . JButton backBtn ;
p r i v a t e j av ax . swing . JComboBox baudrateComboBox ;
p r i v a t e j av ax . swing . JL abe l baudrateLabel ;
p r i v a t e j av ax . swing . JComboBox comComboBox ;
p r i v a t e j av ax . swing . JL abe l comLabel ;
p r i v a t e j av ax . swing . JL abe l errorL abe l ;
p r i v a t e j av ax . swing . JButton e x i t B t n ;
p r i v a t e j av ax . swing . JButton forwardBtn ;
p r i v a t e j av ax . swing . JPan e l helpTabbedPanel ;
p r i v a t e j av ax . swing . JEditorPane htmlDisplayer ;
p r i v a t e j av ax . swing . J S c r o l l P a n e j S c r o l l P a n e 1 ;
p r i v a t e j av ax . swing . JButton l e f t B t n B a c k ;
p r i v a t e j av ax . swing . JButton leftBtnForward ;
p r i v a t e j av ax . swing . JPan e l logTabbedPanel ;
p r i v a t e j av a . awt . TextArea logText ;
p r i v a t e j av ax . swing . JL abe l motor0Label1 ;
p r i v a t e j av ax . swing . JL abe l motor0StatusLabel ;
p r i v a t e j av ax . swing . JL abe l motor1StatusLabel ;
p r i v a t e j av ax . swing . JL abe l motor2StatusLabel ;
p r i v a t e j av ax . swing . JPan e l motorStatTabbedPanel ;
p r i v a t e j av a . awt . Label n o t i f i c a t i o n L a b e l ;
p r i v a t e j av ax . swing . JPan e l optionsTabbedPanel ;
p r i v a t e j av ax . swing . JProgressB ar progressBar0 ;
p r i v a t e j av ax . swing . JProgressB ar progressBar1 ;
p r i v a t e j av ax . swing . JProgressB ar progressBar2 ;
p r i v a t e j av ax . swing . JButton r e s e t B t n ;
p r i v a t e j av ax . swing . JButton rightBtnBack ;
p r i v a t e j av ax . swing . JButton rightBtnForward ;
p r i v a t e j av ax . swing . JL abe l sim0StatusLabel ;
p r i v a t e j av ax . swing . JL abe l sim1StatusLabel ;
p r i v a t e j av ax . swing . JL abe l sim2StatusLabel ;
p r i v a t e j av ax . swing . JTabbedPane smartyTabbedPanel ;
p r i v a t e j av ax . swing . JButton s t a r t B t n ;
// End of v a r i a b l e s d e c l a r a t i o n //GEN−END: v a r i a b l e s

//Timer based e v e n t l i s t e n e r which t akes care of the s im ulat ion at 347 nSecond
/* publ ic void act ionPerformed (ActionEvent e) {

i f (m0stat == 0) {
i f ((sim0Counter + 1) <= 1 0 0) {

sim0Counter ++;
progressBar0 . setValue (sim0Counter) ;
s im0StatusLabel . s e t T e x t (" Sim #0 : "+ sim0Counter) ;

} e l s e {
n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 0 has reached MAX values ") ;
logThis (" Simulat ion of Motor 0 has reached MAX values ") ;
m0stat = −1;

}
}

e l s e i f (m0stat == 1) {
i f ((sim0Counter − 1) > 0) {

sim0Counter−−;
progressBar0 . setValue (sim0Counter) ;
s im0StatusLabel . s e t T e x t (" Sim #0 : "+ sim0Counter) ;

}
e l s e {

n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 0 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 0 has reached n egat iv e values ") ;
m0stat = −1;

}
}

i f (m1stat == 0) {
i f ((sim1Counter + 1) <= 1 0 0) {

167

sim1Counter ++;
progressBar1 . setValue (sim1Counter) ;
s im1StatusLabel . s e t T e x t (" Sim #1 : "+ sim1Counter) ;

} e l s e {
n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor #1 has reached MAX values ") ;
logThis (" Simulat ion of Motor #1 has reached MAX values ") ;
m1stat = −1;

}
}

e l s e i f (m1stat == 1) {
i f (sim1Counter − 1 > 0) {

sim1Counter−−;
progressBar1 . setValue (sim1Counter) ;
s im1StatusLabel . s e t T e x t (" Sim #1 : "+ sim1Counter) ;

}
e l s e {

n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 1 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 1 has reached n egat iv e values ") ;
m1stat = −1;

}
}

i f (m2stat == 0) {
i f ((sim2Counter + 1) <= 1 0 0) {

sim2Counter ++;
progressBar2 . setValue (sim2Counter) ;
s im2StatusLabel . s e t T e x t (" Sim #2 : "+ sim2Counter) ;

} e l s e {
n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor #2 has reached MAX values ") ;
logThis (" Simulat ion of Motor #2 has reached MAX values ") ;
m0stat = −1;

}
}

e l s e i f (m2stat == 1) {
i f (sim2Counter − 1 > 0) {

sim2Counter−−;
progressBar2 . setValue (sim2Counter) ;
s im2StatusLabel . s e t T e x t (" Sim #2 : " + sim2Counter) ;

}
e l s e {

n o t i f i c a t i o n L a b e l . s e t T e x t (" Simulat ion of Motor 2 has reached n egat iv e values ") ;
logThis (" Simulat ion of Motor 2 has reached n egat iv e values ") ;
m2stat = −1;

}
}

} */

p r i v a t e i n t logThis (S t r i n g logMsg) {
i f (logText != n ul l) {

logText . s e t T e x t (logText . ge t Text () + "−>" + sdf . format (c a l . getTime ()) + " : " + logMsg + " . \n ") ;
re t urn 0 ;

}//end of i f
e l s e {

re t urn −1;
}

}

p r i v a t e i n t setupHelpPage () {
t r y {

UIManager . setLookAndFeel (UIManager . getCrossPlatformLookAndFeelClassName ()) ;
ur l = new URL(" h t t p :// walloid . blogspot . com/p/about−walloid . html ") ;
htmlDisplayer . s e t E d i t a b l e (f a l s e) ;
htmlDisplayer . setPage (ur l) ;

168

re t urn 0 ;
}
ca t ch (Except ion e) {

logThis (" Except ion at UIManager . getCrossPlatformLookAndFeelClassName ") ;
JOptionPane . showMessageDialog (null , " Except ion at UIManager . getCrossPlatformLookAndFeelClassName " ,
re t urn −1;

}
}

}//end of walloidGUI

package viewPack ;

import process in g . core . PApplet ;
import processingGuiPack . * ;
//import processingGuiPack . processingGui ;

publ ic c l a s s WPNGuiStarter extends PApplet {

WNPGui view ;
ProcSimGui prGUI ;

publ ic WPNGuiStarter () {
view = new WNPGui () ;
prGUI = new ProcSimGui (t h i s) ;
// TODO Auto−generated c o n s t r u c t o r stub

}

publ ic void setup () {
background (1 2 2) ;
s i z e (8 0 0 , 600 , P3D) ;
prGUI . i n i t i a l i z e () ;

}

publ ic void draw () {
prGUI . d isp lay () ;
i f (! (prGUI . moveMotorIndx (0)))

System . out . p r i n t l n ("CANT MOVE MOTOR # 0 ") ;
e l s e

System . out . p r i n t l n ("CAN MOVE MOTOR # 0 ") ;
}

}//end of WPNGuiStarter

package processingGuiPack ;

import process in g . core . PApplet ;

publ ic c l a s s ProcSimGui {

PApplet prSimApplet ;
f l o a t d1 , d2 , d3 ;
f l o a t mXVal = 3 1 0 ;
f l o a t mYVal = 1 0 0 ;
f l o a t [] [] basePos = {

{ 206 , 0 , 0 } ,
{ 0 , 0 , 192 } ,
{ 0 , 206 , 0 }

} ;
f l o a t [] [] pPos = {

{ 0 , 0 , 0 } ,

169

{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 }

} ;
f l o a t [] destPos = { 250 , 250 , 250 } ;

publ ic ProcSimGui (PApplet p) {
prSimApplet = p ;

}//end of c o n s t r u c t o r

i n t motorIndex = 0 ;

publ ic void i n i t i a l i z e () {
// prApplet . s t roke (2 5 5 , 0 , 0) ;
// prApplet . l i n e (basePos [0] [0] , basePos [0] [1] , basePos [0] [2] , destPos [0] , destPos [1] , destPos [2])
// prApplet . s t roke (0 , 255 , 0) ;
// prApplet . l i n e (basePos [1] [0] , basePos [1] [1] , basePos [1] [2] , destPos [0] , destPos [1] , destPos [2])
// prApplet . s t roke (0 , 0 , 2 5 5) ;
// prApplet . l i n e (basePos [2] [0] , basePos [2] [1] , basePos [2] [2] , destPos [0] , destPos [1] , destPos [2])
// prApplet . f i l l (2 5 5 , 0 , 0) ;
// prApplet . e l l i p s e (2 5 0 , 2 5 0 , 15 , 1 5) ;

drawLines () ;
d1 = prSimApplet . d i s t (basePos [0] [0] , basePos [0] [1] , basePos [0] [2] , destPos [0] , destPos [1] , des
d2 = prSimApplet . d i s t (basePos [1] [0] , basePos [1] [1] , basePos [1] [2] , destPos [0] , destPos [1] , des
d3 = prSimApplet . d i s t (basePos [2] [0] , basePos [2] [1] , basePos [2] [2] , destPos [0] , destPos [1] , des
System . out . p r i n t l n (" d1 = " + d1) ;
System . out . p r i n t l n (" d2 = " + d2) ;
System . out . p r i n t l n (" d3 = " + d3) ;
//System . out . p r i n t l n (" d3 = " + prSimApplet . d i s t (basePos [2] [0] , basePos [2] [1] , basePos [2] [2] , 3
f l o a t [] temp = { 2 5 5 , 2 5 0 , 2 6 0 } ;
//prApplet . e l l i p s e (1 5 0 , 30 , 150 , 10 , 1 0) ;
drawMotors () ;

}//end of i n i t i a l i z e

publ ic void d isp lay () {
drawMotors () ;

}//end of d isp lay

publ ic i n t s i m u l a t e J o i n t s () {

re t urn 0 ;
}//end of s i m u l a t e J o i n t s

p r i v a t e void drawMotors () {
//MOTOR 0

prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / Yellow
prSimApplet . s t roke (1) ;
prSimApplet . e l l i p s e (mXVal , mYVal , 20 , 2 0) ;
prSimApplet . f i l l (1 0 0 , 2 0 0 , 1 0 0) ; / / Green
prSimApplet . r e c t (mXVal , mYVal−25, 100 , 5 0) ;
prSimApplet . f i l l (1 0 0 , 2 0 0 , 1 0 0) ; / / Green
prSimApplet . r e c t (mXVal+100 , mYVal−10, 50 , 2 0) ;

/ / * * * * * * * * * * * * * * * * * * *
//Here comes the pr ism at ic j o i n t

prSimApplet . f i l l (2 5 5 , 2 3 0 , 0) ; //Strong YELLOW
prSimApplet . r e c t (mXVal+150 , mYVal−3, motorIndex , 8) ;

/ / * * * * * * * * * * * * * * * * * * *
prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / Yellow
prSimApplet . e l l i p s e (mXVal+200 , mYVal , 20 , 2 0) ;
prSimApplet . f i l l (1 0 0 , 2 0 0 , 1 0 0) ; / / Green
prSimApplet . r e c t (mXVal+150 , mYVal−15, 40 , 3 0) ;

//MOTOR 1
prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / Yellow

170

prSimApplet . s t roke (1) ;
prSimApplet . e l l i p s e (mXVal , mYVal + 100 , 20 , 2 0) ;
prSimApplet . f i l l (4 4 , 6 7 , 1 2 9) ; / / Dark Blue
prSimApplet . r e c t (mXVal , mYVal+75 , 100 , 5 0) ;
prSimApplet . f i l l (4 4 , 6 7 , 1 2 9) ; / / Dark Blue
prSimApplet . r e c t (mXVal+100 , mYVal+90 , 50 , 2 0) ;

/ / * * * * * * * * * * * * * * * * * * *
//Here comes the pr ism at ic j o i n t

prSimApplet . f i l l (2 5 5 , 2 3 0 , 0) ; //Strong YELLOW
prSimApplet . r e c t (mXVal+150 , mYVal+97 , motorIndex , 8) ;

/ / * * * * * * * * * * * * * * * * * * *
prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / Yellow
prSimApplet . e l l i p s e (mXVal+200 , 2*mYVal , 20 , 2 0) ;
prSimApplet . f i l l (4 4 , 6 7 , 1 2 9) ; / / Dark Blue
prSimApplet . r e c t (mXVal+150 , mYVal+85 , 40 , 3 0) ;

//MOTOR 2
prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / Yellow
prSimApplet . s t roke (1) ;
prSimApplet . e l l i p s e (mXVal , mYVal+200 , 20 , 2 0) ;
prSimApplet . f i l l (2 0 6 , 4 1 , 0) ; / /RED
prSimApplet . r e c t (mXVal , mYVal+175 , 100 , 5 0) ;
prSimApplet . f i l l (2 0 6 , 4 1 , 0) ; / /RED
prSimApplet . r e c t (mXVal+100 , mYVal+190 , 50 , 2 0) ;

/ / * * * * * * * * * * * * * * * * * * *
//Here comes the pr ism at ic j o i n t

prSimApplet . f i l l (2 5 5 , 2 3 0 , 0) ; //Strong YELLOW
prSimApplet . r e c t (2 6 0 , 297 , motorIndex , 8) ;

/ / * * * * * * * * * * * * * * * * * * *
prSimApplet . f i l l (2 5 0 , 2 5 0 , 1 5 0) ; / / l i g h t Yellow
prSimApplet . e l l i p s e (mXVal+200 , mYVal+200 , 20 , 2 0) ;
prSimApplet . f i l l (2 0 6 , 4 1 , 0) ; / /RED
prSimApplet . r e c t (mXVal+150 , mYVal+185 , 40 , 3 0) ;

}//end of drawMotors

p r i v a t e void drawLines () {
prSimApplet . background (0) ;
prSimApplet . s t roke (2 5 5 , 0 , 1 5 0) ;
f o r (i n t i = 0 ; i < 3 ; i ++){

prSimApplet . l i n e (basePos [i] [0] , basePos [i] [1] , basePos [i] [2] , destPos [0] , destPos [1] ,
}

}//end of drawLines

p r i v a t e void changeTargetPoint (f l o a t [] t a r g e t) {
destPos = t a r g e t ;

}

publ ic boolean moveMotorIndx (i n t i) {
f l o a t tempDist = prSimApplet . d i s t (basePos [i] [0] , basePos [i] [1] , basePos [i] [2] , destPos [0] + 1 , d
i f ((tempDist > 350) && (tempDist < 540)) {

prSimApplet . l i n e (basePos [i] [0] , basePos [i] [1] , basePos [i] [2] , ++destPos [0] , ++
re t urn t rue ;

}
re t urn f a l s e ;

}//end of movetoXYZ

/* p r i v a t e i n t ifOkayToMove (f l o a t [] t a r g e t) {
f l o a t [] d i s t = { 0 , 0 , 0 } ;
d i s t [0] = prSimApplet . d i s t (basePos [0] [0] , basePos [0] [1] , basePos [0] [2] , t a r g e t [0] , t a r g e t [1] ,
d i s t [1] = prSimApplet . d i s t (basePos [1] [0] , basePos [1] [1] , basePos [1] [2] , t a r g e t [0] , t a r g e t [1] ,
d i s t [2] = prSimApplet . d i s t (basePos [2] [0] , basePos [2] [1] , basePos [2] [2] , t a r g e t [0] , t a r g e t [1] ,
f o r (i n t i =0; i < 3 ; i ++){

i f ((d i s t [i] > 350) && (d i s t [i] < 540)) {

171

changeTargetPoint (t a r g e t) ;
drawLines () ;
re t urn 0 ;

}
}
re t urn −1;

}//end of ifOkayToMove

publ ic boolean moveToXYZ (f l o a t [] t a r g e t) {
i f (ifOkayToMove (t a r g e t) == 0) {

re t urn t rue ;
} e l s e {

re t urn f a l s e ;
}

}//end of movetoXYZ

publ ic boolean moveMotorIndx (i n t i) {
f l o a t tempDist = prSimApplet . d i s t (basePos [i] [0] , basePos [i] [1] , basePos [i] [2] , destPos [0] + 1 , d
i f ((tempDist > 350) && (tempDist < 540)) {

f l o a t tempTarget [] = { destPos [0] + 1 , destPos [1] + 1 , destPos [2] + 1 } ;
changeTargetPoint (tempTarget) ;
drawLines () ;
re t urn t rue ;
}

re t urn f a l s e ;
}//end of movetoXYZ

*/
}//end of c l a s s ProcSimGui

package processingGuiPack ;

import process in g . core . PApplet ;

publ ic c l a s s ProcMonGui extends PApplet {

//Var iab les
//PApplet prMonApplet ;

publ ic ProcMonGui () {
//prMonApplet = p ;
//PApplet . main (new S t r i n g [] { "−−presen t " , " MyProcessingSketch " }) ;
System . out . p r i n t l n ("HELLOOOOOO PROCESSING ") ;
t h i s . setup () ;

}//end of c o n s t r u c t o r

publ ic void setup () {
t h i s . s i z e (1 0 0 , 1 0 0) ;
t h i s . background (0) ;

}

}

172

D.2 Control algorithm, Arduino C

//*** //***
//*** //***
//*** //***
//*** //******************* ARDUINO

//*** * Master C o n t r o l l e r
include <EEPROM. h>
include <MATH. h>
include <avr/power . h>
include <avr/s leep . h>
include <SD . h>

//Var iab les
boolean enORdis ;
i n t readValue = 0 ;
S t r i n g readValueTemp = " " ;
boolean manual ;
boolean auto_ ;
boolean teach ;
boolean f in d Curren t Pos i t ion = f a l s e ;
boolean s l e e p P o l i c y = f a l s e ;
boolean feedbackRecieved = t rue ;
F i l e l o g F i l e , r e s t o r e F i l e ;
S t r i n g automationFromRestoreLog [4 0] = { " @1123123123 ! " , " @1123123123 ! " , " @1123123123 ! " , " @1123123123 ! " , " @112312312
i n t automationCounter = 0 ;
i n t automationRunningCounter = 0 ;

s t r u c t COOR_POINTS {
byte cnt0 ;
byte cnt1 ;
byte cnt2 ;
COOR_POINTS * n ext Poin t ;

} ;
typedef COOR_POINTS coord in at es ;

void setup () {
S e r i a l . begin (1 9 2 0 0) ;
S e r i a l 1 . begin (1 9 2 0 0) ;
S e r i a l 2 . begin (1 9 2 0 0) ;
S e r i a l 3 . begin (1 9 2 0 0) ;
S e r i a l . p r i n t l n (" SETUP MEGA") ;
// S e r i a l 1 . write (" @11 ! ") ;
// S e r i a l 1 . p r i n t (" @11 ! ") ;
// S e r i a l 1 . write (" @11 ! ") ;
pinMode (8 , OUTPUT) ;

// f o r (i n t i =0; i <400; i ++){
// S e r i a l . p r i n t (" \ " @1123123123 ! \ " , ") ;
// }

}//end of setup

void loop () {
c h e c k S e r i a l () ;
checkSensors () ;
// S e r i a l . p r i n t l n (" Process in g ") ;
//delay (1 0 0 0) ;

173

}//end of loop

//@(boardNumber(0−4)−1 d i g i t s) (CounterNumbers(0−207)−9 d i g i t s) (PWM_Speed(0−255)3 d i g i t s) !

void c h e c k S e r i a l () {
// v a r i a b l e s
S t r i n g tempStr0 = " " ;
S t r i n g tempStr1 = " " ;
S t r i n g tempStr2 = " " ;
S t r i n g tempStr3 = " " ;

// S e r i a l . p r i n t l n (" TEST1 ") ;
i f (S e r i a l . a v a i l a b l e () > 0) {

readValue = S e r i a l . read () ;
// S e r i a l . p r i n t l n (" . ") ;
i f ((char) readValue == ’@ ’) {

while (readValue != ’ ! ’) {
readValue = S e r i a l . read () ;
d i g i t a l W r i t e (1 3 , HIGH) ;
i f ((char) readValue != ’ ! ’ && readValue > 32 && readValue <125){

tempStr0 = tempStr0 + (char) readValue ;
}//end of i f !

}//end of while
// S e r i a l . p r i n t l n (" i t i s ") ;
// S e r i a l . p r i n t l n (tempStr0) ;
d i g i t a l W r i t e (1 3 , LOW) ;

}//end of i f
}//end of i f S e r i a l 0

/ / * * * * * * * * * * * * * * * * * * *

i f (S e r i a l 1 . a v a i l a b l e () > 0) {
readValue = S e r i a l 1 . read () ;
i f ((char) readValue == ’@ ’) {

while (readValue != ’ ! ’) {
readValue = S e r i a l 1 . read () ;
d i g i t a l W r i t e (1 3 , HIGH) ;
i f ((char) readValue != ’ ! ’ && readValue > 32 && readValue <125){

tempStr1 = tempStr1 + (char) readValue ;
}//end of i f !

}//end of while
d i g i t a l W r i t e (1 3 , LOW) ;

}//end of i f
}//end of i f S e r i a l 1

/ / * * * * * * * * * * * * * * * * * * *

i f (S e r i a l 2 . a v a i l a b l e () > 0) {
readValue = S e r i a l 2 . read () ;
i f ((char) readValue == ’@ ’) {

while (readValue != ’ ! ’) {
readValue = S e r i a l 2 . read () ;
d i g i t a l W r i t e (1 3 , HIGH) ;
i f ((char) readValue != ’ ! ’ && readValue > 32 && readValue <125){

tempStr2 = tempStr2 + (char) readValue ;
}//end of i f !

}//end of while
d i g i t a l W r i t e (1 3 , LOW) ;

}//end of i f
}//end of i f S e r i a l 2

/ / * * * * * * * * * * * * * * * * * * *

174

i f (S e r i a l 3 . a v a i l a b l e () > 0) {
readValue = S e r i a l 3 . read () ;
i f ((char) readValue == ’@ ’) {

while (readValue != ’ ! ’) {
readValue = S e r i a l 3 . read () ;
d i g i t a l W r i t e (1 3 , HIGH) ;

i f ((char) readValue != ’ ! ’ && readValue > 32 && readValue <125){
tempStr3 = tempStr3 + (char) readValue ;

}//end of i f !
}//end of while
d i g i t a l W r i t e (1 3 , LOW) ;

}//end of i f
}//end of i f S e r i a l 3

/ / * * * * * * * * * * * * * * * * * * *

// S e r i a l . p r i n t (" read ") ;
// i f (tempStr0 != " ") S e r i a l . p r i n t (tempStr0) ;

//process in g the incoming
i f (tempStr0 != " ") {

processCenter (tempStr0) ;
i f (teach == t rue)

logThis (tempStr0) ;
}
i f (tempStr1 != " ") {

processCenter (tempStr1) ;
i f (teach == t rue)

logThis (tempStr1) ;
}
i f (tempStr2 != " ") {

processCenter (tempStr2) ;
i f (teach == t rue)

logThis (tempStr2) ;
}
i f (tempStr3 != " ") {

processCenter (tempStr3) ;
i f (teach == t rue)

logThis (tempStr3) ;
}

i f (auto_ == t rue) {
automationProcess () ;

}

// r e s t a r t i n g the queue
tempStr0 = " " ;
tempStr1 = " " ;
tempStr2 = " " ;
tempStr3 = " " ;

}//end of c h e c k S e r i a l ()

/ / * * * * * * * * * * * * * * * * * * *

//** * * s e t to s leep

void sendSleepSigna (i n t i) {
i f (i == 1)

S e r i a l 1 . write (’ S ’) ;

175

e l s e i f (i ==2)
S e r i a l 2 . write (’ S ’) ;

e l s e i f (i ==3)
S e r i a l 3 . write (’ S ’) ;

}

void PSO_SleepController () {
/* The 5 s leepin g ch oices :

* SLEEP_MODE_IDLE − LEAST power savings | HIGHEST a v a i l a b i l i t y

* SLEEP_MODE_ADC

* SLEEP_MODE_PWR_SAVE

* SLEEP_MODE_STANDBY

* SLEEP_MODE_PWR_DOWN − HIGHEST power savings | LEAST a v a i l a b i l i t y

*/

// S e t t i n g to s leep mode, although t h i s one save l e a s t energy but allows us to e a s i l y bring the board back o
set_sleep_mode (SLEEP_MODE_IDLE) ;
s leep_en ab le () ;
// Disab l in g a l l other par t s to save e x t r a energy
power_adc_disable () ;
power_spi_disable () ;
power_t imer0_disable () ;
power_t imer1_disable () ;
power_t imer2_disable () ;
power_twi_disable () ;
sleep_mode () ;
//DEVICE GOES TO SLEEP NOW!

// Zzzzzzzzz
s l e e p _ d i s a b l e () ; // Waking up , everything back on l in e and now and con t in iue running the code from t h i s exact
power_all_enable () ;

}

void automationProcess () {
//automationFromRestoreLog [automationRunningCounter] ;
i f (automationRunningCounter < 40 && feedbackRecieved) {

S e r i a l . p r i n t (automationFromRestoreLog [automationRunningCounter]) ;
automationRunningCounter++;
s l e e p P o l i c y = t rue ;
feedbackRecieved = f a l s e ;

}
e l s e {

S e r i a l . p r i n t (" Automation i s over − ") ;
S e r i a l . p r i n t l n (automationRunningCounter) ;

}
}

void logThis (S t r i n g tempStr) {
S t r i n g tempTag = " " ;

i f (SD . begin (8)) {
f o r (i n t i = 1 0 ; i < tempStr . length () ; i ++){// more than 10 char would be t ags

tempTag = tempTag + tempStr [i] ;
}//end of f o r
S t r i n g fileName = " local_knowledge_DB "+tempTag + " . t x t " ;
l o g F i l e = SD . open (" t e s t . t x t " , FILE_WRITE) ; // APPENDS

i f (l o g F i l e) {// wri t in g to log f i l e
l o g F i l e . p r i n t l n (tempStr) ;
l o g F i l e . c l o s e () ;

} e l s e {

176

S e r i a l . p r i n t (" E05 ") ;
}//end of i f
} e l s e {

S e r i a l . p r i n t (" E06 ") ;
re t urn ;

}//end of e l s e
}//end of l o g t h i s

/ / * * * * * * * * * * * * * * * * * * *

void restoreKnowledge (S t r i n g tempTag) {
automationCounter = 0 ;
automationRunningCounter = 0 ;
i f (SD . begin (8)) {

S t r i n g fileName = " local_knowledge_DB "+tempTag + " . t x t " ;
r e s t o r e F i l e = SD . open (" t e s t . t x t ") ;
i f (r e s t o r e F i l e) {

while (r e s t o r e F i l e . a v a i l a b l e ()) {
i f (automationCounter < 4 6 0 0) {

automationFromRestoreLog [automationCounter] = (S t r i n g) r e s t o r e F i l e . read () ;
automationCounter ++;

}//end of 10000 l i m i t a t i o n
}//end of while
r e s t o r e F i l e . c l o s e () ;

} e l s e {
S e r i a l . p r i n t (" E07 ") ;
re t urn ;

}
} e l s e {

S e r i a l . p r i n t (" E07 ") ;
re t urn ;

}
}

/ / * * * * * * * * * * * * * * * * * * *

void checkSensors () {
// Conceptual based on a v a i l a b l e sen sors onboard the robot
// ANALOGS
// i n t value0 = analogRead (Gyroscope) ;
// i n t value1 = analogRead (distanceMeter) ;
// i n t value2 = analogRead (termoMeter) ;
// i n t value3 = analogRead (Rfeed) ;
// DIGITAL
// i n t value2 = d ig i t a lRead (encoder) ;
// i n t value3 = analogRead (l igh t ForkSen sor) ;

//ProcessSensor (in t , in t , double , double , tag) ;
}//end of checkSensors

void processCenter (S t r i n g tempStr) {
// S e r i a l . p r i n t l n (" TEST2 ") ;

i f (tempStr [0] != ’ 0 ’) {
readValueTemp = "@" + readValueTemp + " ! " ;
switch (readValueTemp [2]) {

case ’ 1 ’ :
S e r i a l 1 . p r i n t l n (readValueTemp) ;
sendSleepSigna (2) ;

sendSleepSigna (3) ;

177

break ;
case ’ 2 ’ :

S e r i a l 2 . p r i n t l n (readValueTemp) ;
sendSleepSigna (1) ;

sendSleepSigna (3) ;
break ;

case ’ 3 ’ :
S e r i a l 3 . p r i n t l n (readValueTemp) ;
sendSleepSigna (1) ;

sendSleepSigna (2) ;
break ;

//case ’ 4 ’ :
// S e r i a l 4 . p r i n t l n (readValueTemp) ;
//break ;

}//end of switch
}
e l s e {

switch (tempStr [1]) {
case ’m’ ://Manual mode

manual = t rue ;
auto_ = f a l s e ;
S e r i a l . p r i n t (" Manual ") ;
break ;

case ’ a ’ : / / Auto mode
auto_ = t rue ;
manual = f a l s e ;
S e r i a l . p r i n t (" Auto ") ;
break ;

case ’ t ’ : / / Teach mode
auto_ = f a l s e ;
manual = t rue ;
teach = t rue ;
S e r i a l . p r i n t (" Teach ") ;
break ;

case ’h ’ : //handshake
S e r i a l . p r i n t (" h ") ;
delay (5 0) ;
break ;
//READING CURRENT STORED POSITION

case ’P ’ : //f in d the curren t p o s i t i o n
f in d Curren t Pos i t ion = t rue ;
delay (5 0) ;
break ;

case ’ f ’ :
//feedback from Slave c o n t r o l l e r s , send i t back to serv er
feedbackRecieved = t rue ;
S e r i a l . p r i n t l n (tempStr) ;
feedbackProcessing (tempStr) ;

case ’ l ’ :
//Upload log to the serv er
break ;

case ’o ’ :
//go o f f l i n e
break ;

d e f a u l t :
S e r i a l . p r i n t l n (" \ n * * * E00 − Wrong input * * * ") ;
// S e r i a l . p r i n t (" tempStr i s : ") ;
// S e r i a l . p r i n t (tempStr) ;
// S e r i a l . p r i n t l n (" * * * ") ;
break ;

}//end of switch
tempStr = " " ;

178

}//end of i f r e l a t e d to Mega

}//end of processCenter

void feedbackProcessing (S t r i n g tempFeed) {

}//end of feedbackProcessing

void feedbackMoveJ (S t r i n g tempStr) {
// S e r i a l . p r i n t l n (" feedbackMoveJ ") ;
S e r i a l . p r i n t l n (tempStr) ;

}

void feedbackBoardAct (S t r i n g tempStr) {
// S e r i a l . p r i n t l n (" feedbackBoardAct ") ;
S e r i a l . p r i n t l n (tempStr) ;

}

void feedbackError (S t r i n g tempStr) {
// S e r i a l . p r i n t l n (" feedbackError ") ;
S e r i a l . p r i n t l n (tempStr) ;

}

void processMoveOrder (S t r i n g tempStr) {
i n t boardNumber = −1;
i n t motorSpeed = 0 ;
i n t counter [3] = {

0 , 0 , 0 } ;
// S e r i a l . p r i n t l n ("MOVEJ") ;
i f (tempStr . length () == 1 3) {

//boardNumber = a t o i (tempChar) ;
boardNumber = tempStr [0] − 4 8 ;
// S e r i a l . p r i n t (" Board Number i s : ") ;
// S e r i a l . p r i n t l n (boardNumber) ;
//*tempChar = tempStr [1] + tempStr [2] + tempStr [3] ;
counter [0] = 1 0 0 * (tempStr [1] − 48) + 1 0 * (tempStr [2] − 48) + (tempStr [3] − 4 8) ;
// S e r i a l . p r i n t (" Counter 0 i s : ") ;
// S e r i a l . p r i n t l n (counter [0]) ;
counter [1] = 1 0 0 * (tempStr [4] − 48) + 1 0 * (tempStr [5] − 48) + (tempStr [6] − 4 8) ;
// S e r i a l . p r i n t (" Counter 1 i s : ") ;
// S e r i a l . p r i n t l n (counter [1]) ;
counter [2] = 1 0 0 * (tempStr [7] − 48) + 1 0 * (tempStr [8] − 48) + (tempStr [9] − 4 8) ;
// S e r i a l . p r i n t (" Counter 2 i s : ") ;
// S e r i a l . p r i n t l n (counter [2]) ;
motorSpeed = 1 0 0 * (tempStr [1 0] − 48) + 1 0 * (tempStr [1 1] − 48) + (tempStr [1 2] − 4 8) ;
// S e r i a l . p r i n t (" Motor Speed : ") ;
// S e r i a l . p r i n t l n (motorSpeed) ;
// S e r i a l 1 . write (" @1234567899999 ! ") ;
MoveJ (motorSpeed , counter) ;

}//end of i f
e l s e S e r i a l . p r i n t l n (" E01 − Wrong length of tempStr ") ;

}//end of processMoveOrder

void MoveJ (i n t _mSpeed , i n t _counter []) {
// d i g i t a l W r i t e (pinDir [0] , HIGH) ;
// d i g i t a l W r i t e (pinPwm [0] , HIGH) ;
turnOnLED () ;
delay (2 0 0 0) ;
turnOffLED () ;
delay (2 0 0 0) ;
turnOnLED () ;

179

delay (2 0 0 0) ;
turnOffLED () ;
delay (2 0 0 0) ;
turnOnLED () ;
delay (2 0 0 0) ;
turnOffLED () ;

}//end of MoveJ

void processEnDisOrder (S t r i n g tempStr) {
i n t boardNumber = −1;
i f (tempStr . length () == 2) {

boardNumber = tempStr [0] − 4 8 ;
// S e r i a l . p r i n t (" Board Number i s : ") ;
// S e r i a l . p r i n t l n (boardNumber) ;
i f ((tempStr [1] − 48) == 0) {

enORdis = f a l s e ;
// S e r i a l . p r i n t l n (" DISABLED ") ;
en ab leDisab le (f a l s e) ;
// S e r i a l 1 . write (" @10 ! ") ;

}
e l s e i f ((tempStr [1] − 48) == 1) {

enORdis = t rue ;
// S e r i a l . p r i n t l n ("ENABLED") ;
en ab leDisab le (t rue) ;
// S e r i a l 1 . write (" @11 ! ") ;

}//END OF ELSE−IF
}//end of i f
e l s e S e r i a l . p r i n t l n (" E01 − Wrong length of tempStr ") ;

}//end of processEnDisOrder

void en ab leDisab le (boolean _ f l a g) {
i f (_ f l a g) {

analogWrite (5 2 , 0) ; //R
analogWrite (5 0 , 255) ; //B
analogWrite (4 8 , 255) ; //G

}
e l s e {

analogWrite (5 2 , 255) ; //R
analogWrite (5 0 , 255) ; //B
analogWrite (4 8 , 255) ; //G

}
}//end of en ab leDisab le

void turnOnLED () {
analogWrite (4 6 , 0) ; //R
analogWrite (4 4 , 0) ; //B
analogWrite (4 2 , 255) ; //G

}//end of turnOnLED

void turnOffLED () {
analogWrite (4 6 , 255) ; //R
analogWrite (4 4 , 255) ; //B
analogWrite (4 2 , 255) ; //G

}//end of turnOnLED

//*** * Slave C o n t r o l l e r

include <EEPROM. h>
include <MATH. h>

180

include <avr/power . h>
include <avr/s leep . h>

byte pinEncA [] = {
3 , 5 , 7 } ; // d i g i t a l inputs

byte pinEncB [] = {
2 , 4 , 6 } ; // d i g i t a l inputs

// MOTOR OUTPUTS
byte pinDir [] = {

1 3 , 8 , 1 2 } ; // d i g i t a l output , c o n t r o l s d i r e c t i o n f o r motor nr . [x]
byte pinPwm [] = {

1 0 , 1 1 , 9 } ; // analog output , c o n t r o l s motor speed , nr . [x]

safetyAllow = f a l s e ;

s t r u c t COOR_POINTS {
byte cnt0 ;
byte cnt1 ;
byte cnt2 ;
COOR_POINTS * n ext Poin t ;

} ;
typedef COOR_POINTS coord in at es ;

//Global v a r i a b l e s
i n t value ;
i n t readValue ;
i n t pwmValue ;
i n t motorDir ;
boolean inMotion = f a l s e ;
// i n t channelA = 2 ;
// i n t channelB = 3 ;
i n t c y c l e [] = { 0 , 0 , 0 } ;
i n t goal [] = { 0 , 0 , 0 } ;
double a0 = 150 . 00 ; // measure system i s m i l l im et er (mm) and
//Max opening of one a c t u a t o r 45 mm −> 45/217 −> 0 ,20737327188940092165898617511521 = 0 . 2073 mm f o r every coun
double b0 = 1 4 0 . 0 0 ;

double d i s t 0 = 1 9 0 . 0 0 ;
double origo [] = { 0 . 0 0 , 0 . 0 0 , 0 . 0 0 } ;

i n t cn t 0goal =0 , cn t 1goal =0 , cn t 2goal =0;

double motor [3] [3] = {
{ ((− 3 . 0 0 / 8 . 0 0) * a0) , ((−1* s q r t (3) / 8 . 0 0) * a0) , 0 . 0 0 } ,
{ ((s q r t (3) / 4 . 0 0) * a0) , 0 . 0 0 , 0 . 0 } ,
{ ((3 . 0 0 / 8 . 0 0) * a0) , ((−1* s q r t (3) / 8 . 0 0) * a0) , 0 . 0 0 }

} ;
//double motor0 [] = { (−1* (3/8)* a0) , (−1*(s q r t (3) / 8) * a0) , 0 . 0 0 } ; //Mi
//double motor1 [] = { (s q r t (4) / 4) * a0 , 0 . 0 0 , 0 . 0 0 } ; / / Mj
//double motor2 [] = { (3 / 8) * a0 , −1*(s q r t (3) / 8) * a0 , 0 . 0 0 } ; / /Mk

boolean f = f a l s e , b = f a l s e , r = f a l s e , l = f a l s e , manulaSteering = f a l s e ;
i n t cyclecoun t er [] = {

−1, −1, −1};
i n t cyclecoun t erold [] = {

−1, −1, −1};
//13 , 10 r igh t , down
//8 , 11 middle , top
//9 , 12 l e f t , down

void setup () {

181

S e r i a l . begin (1 9 2 0 0) ;
// S e r i a l . p r i n t ("WELCOME TO C1S0 ") ;
f o r (i n t i =0; i < 3 ; i ++){

pinMode (pinDir [i] , OUTPUT) ;
pinMode (pinPwm [i] , OUTPUT) ;
//in case , j u s t to be sure . . .
d i g i t a l W r i t e (pinPwm [i] , LOW) ;
// j u s t in case to be sure
d i g i t a l W r i t e (pinDir [i] , LOW) ;
pinMode (pinEncA [i] , INPUT) ;
pinMode (pinEncB [i] , INPUT) ;
d i g i t a l W r i t e (pinEncA [i] , LOW) ;
d i g i t a l W r i t e (pinEncB [i] , LOW) ;
//cyclecoun t er [i] = −1;
//cyclecoun t erold [i] = −1;
//safetyAllow = t rue ;

}//end of f o r
f in d Curren t Pos i t ion (f a l s e) ;

}//end of setup ()

void loop () {
commandCenter () ;
checkEncoder () ;
i f (inMotion == t rue) {

runMotors () ;
}

}//end of loop

void commandCenter () {
// v a r i a b l e s
i n t temp = 0 ;
S t r i n g tempStr = " " ;

i f (S e r i a l . a v a i l a b l e () > 0) {
readValue = S e r i a l . read () ;
//delay (5 0) ;
i f (readValue == ’@’) {

while (readValue != ’ ! ’) {
readValue = S e r i a l . read () ;
d i g i t a l W r i t e (1 3 , HIGH) ;
i f ((char) readValue != ’ ! ’ && readValue > 32 && readValue <125){

tempStr = tempStr + (char) readValue ;
}//end of i f !

}//end of while
switch (tempStr [1]) {
case ’h ’ : //handshake

S e r i a l . p r i n t (" @0h ! ") ;
delay (5 0) ;
break ;

case ’P ’ : //f in d the curren t p o s i t i o n
f in d Curren t Pos i t ion (t rue) ;
delay (5 0) ;
break ;

case ’ g ’ :
i f (moveToXYZ (4 8 , 55 , 4 7)) {

S e r i a l . p r i n t l n (" \nTRUE returned from moveToXYZ ") ;
} e l s e {

S e r i a l . p r i n t l n (" \nFALSE returned from moveToXYZ ") ;
}
break ;

182

case ’ a ’ : //1 a123123123

cn t 0goal = (tempStr [2] −48) * 100 + (tempStr [3] −48) * 10 + (tempStr [4] −48) ;
cn t 1goal = (tempStr [5] −48) * 100 + (tempStr [6] −48) * 10 + (tempStr [7] −48) ;
cn t 2goal = (tempStr [8] −48) * 100 + (tempStr[9]−48 * 10) + (tempStr [10] −48) ;
inMotion = t rue ;
S e r i a l . p r i n t l n ("−−−−−");
S e r i a l . p r i n t l n (tempStr) ;
runMotors () ;
break ;

case ’ S ’ :
i f (safetyAllow == t rue)

PSO_SleepController () ;
break ;

case ’0 ’ ://motor #0
i n t temp__ ;
temp__ = 0 ;
i f (S e r i a l . a v a i l a b l e () < 0)

;
delay (5 0 0) ;
temp__ = S e r i a l . read () ;
i f (temp__ == 102){// −f −> forward

// S e r i a l . p r i n t (" * * * Right forward * * * ") ;
d i g i t a l W r i t e (pinDir [0] , LOW) ;
d i g i t a l W r i t e (pinPwm [0] , HIGH) ;

}//end of i f
e l s e i f (temp__ == 98){// −b −> backward

// S e r i a l . p r i n t (" * * * Right backward * * * ") ;
d i g i t a l W r i t e (pinDir [0] , HIGH) ;
d i g i t a l W r i t e (pinPwm [0] , HIGH) ;

}
e l s e {

S e r i a l . p r i n t l n (" E00 ") ;
// S e r i a l . p r i n t (temp__) ;

}
f = f a l s e ;
b = f a l s e ;
l = t rue ;
r = f a l s e ;
break ;

case ’1 ’ ://motor #1
i n t temp_ ;
i f (S e r i a l . a v a i l a b l e () < 1)

;
delay (5 0 0) ;
temp_ = S e r i a l . read () ;
i f (temp_ == 102){// −f

// S e r i a l . p r i n t (" * 1FW* ") ;
d i g i t a l W r i t e (pinDir [1] , LOW) ;
d i g i t a l W r i t e (pinPwm [1] , HIGH) ;

}//end of i f
e l s e i f (temp_ == 98){// −b

// S e r i a l . p r i n t (" * 1BW* ") ;
d i g i t a l W r i t e (pinDir [1] , HIGH) ;
d i g i t a l W r i t e (pinPwm [1] , HIGH) ;

}
e l s e {

S e r i a l . p r i n t l n (" E00 ") ;
// S e r i a l . p r i n t (temp_) ;

}

183

f = t rue ;
b = f a l s e ;
l = f a l s e ;
r = f a l s e ;
break ;

case ’2 ’ :// l −> l e f t
temp_ = 0 ;
i f (S e r i a l . a v a i l a b l e () < 1)

;
delay (5 0 0) ;
temp_ = S e r i a l . read () ;
i f (temp_ == 102){// motor #2

// S e r i a l . p r i n t (" * 2FW* ") ;
d i g i t a l W r i t e (pinDir [2] , LOW) ;
d i g i t a l W r i t e (pinPwm [2] , HIGH) ;

}//end of i f
e l s e i f (temp_ == 98){// −b

// S e r i a l . p r i n t (" * 2BW* ") ;
d i g i t a l W r i t e (pinDir [2] , HIGH) ;
d i g i t a l W r i t e (pinPwm [2] , HIGH) ;

}
e l s e {

S e r i a l . p r i n t l n (" E00 ") ;
// S e r i a l . p r i n t (temp_) ;

}
f = f a l s e ;
b = f a l s e ;
l = f a l s e ;
r = t rue ;
break ;

case 109 : //m−>turning on and o f f manual s t e e r i n g
manulaSteering = ! manulaSteering ;// turning manual s t e e r i n g o f f and on by press in g m
sendFeedbackManualSteering () ;
break ;

case 82 : //R−>RESET
S e r i a l . p r i n t l n (" R ") ;
r e s e t A l l () ;
i f (manulaSteering){// i f manual s t e e r i n g i s on , a Reset w i l l s e t everything to ZERO

EEPROM. write (0 , 0) ;
EEPROM. write (1 , 0) ;
EEPROM. write (2 , 0) ;
f in d Curren t Pos i t ion (f a l s e) ;

}
f = f a l s e ;
b = f a l s e ;
l = f a l s e ;
r = f a l s e ;
break ;

}//end of switch
}
/*
i f (f || b || r || l) {

S e r i a l . p r i n t (" c y c l e [i] : ") ;
convertToThreeDigits (c y c l e [i]) ;
}//end of i f

*/
}

}//end of commandCenter

// i n t angleMaalt ;

void runMotors () {

184

/* S e r i a l . p r i n t (" cn t 0goal ") ;
S e r i a l . p r i n t l n (cn t 0goal) ;

S e r i a l . p r i n t (" c y c l e ") ;
S e r i a l . p r i n t l n (c y c l e [0]) ; * /

i f (cn t 0goal != c y c l e [0]) {
i f (cn t 0goal > c y c l e [0]) { / / motor #2

// S e r i a l . p r i n t (" * 2FW* ") ;
d i g i t a l W r i t e (pinDir [0] , LOW) ;
d i g i t a l W r i t e (pinPwm [0] , HIGH) ;

}//end of i f
e l s e i f (cn t 0goal < c y c l e [0]) { / / −b

// S e r i a l . p r i n t (" * 2BW* ") ;
d i g i t a l W r i t e (pinDir [0] , HIGH) ;
d i g i t a l W r i t e (pinPwm [0] , HIGH) ;

}
}

i f (cn t 1goal != c y c l e [1]) {
i f (cn t 1goal > c y c l e [1]) { / / motor #2

// S e r i a l . p r i n t (" * 2FW* ") ;
d i g i t a l W r i t e (pinDir [1] , LOW) ;
d i g i t a l W r i t e (pinPwm [1] , HIGH) ;

}//end of i f
e l s e i f (cn t 1goal < c y c l e [1]) { / / −b

// S e r i a l . p r i n t (" * 2BW* ") ;
d i g i t a l W r i t e (pinDir [1] , HIGH) ;
d i g i t a l W r i t e (pinPwm [1] , HIGH) ;

}
}

i f (cn t 2goal != c y c l e [2]) {
i f (cn t 2goal > c y c l e [2]) { / / motor #2

// S e r i a l . p r i n t (" * 2FW* ") ;
d i g i t a l W r i t e (pinDir [2] , LOW) ;
d i g i t a l W r i t e (pinPwm [2] , HIGH) ;

}//end of i f
e l s e i f (cn t 2goal < c y c l e [2]) { / / −b

// S e r i a l . p r i n t (" * 2BW* ") ;
d i g i t a l W r i t e (pinDir [2] , HIGH) ;
d i g i t a l W r i t e (pinPwm [2] , HIGH) ;

}
}
i f (cn t 0goal == c y c l e [0] && cn t 1goal == c y c l e [1] && cn t 2goal == c y c l e [2]) {

inMotion = f a l s e ;
S e r i a l . p r i n t (" @0fsu ! ") ;

}
}

void PSO_SleepController () {
/* The 5 s leepin g ch oices :

* SLEEP_MODE_IDLE − LEAST power savings | HIGHEST a v a i l a b i l i t y

* SLEEP_MODE_ADC

* SLEEP_MODE_PWR_SAVE

* SLEEP_MODE_STANDBY

* SLEEP_MODE_PWR_DOWN − HIGHEST power savings | LEAST a v a i l a b i l i t y

*/

// S e t t i n g to s leep mode, although t h i s one save l e a s t energy but allows us to e a s i l y bring the board back o
set_sleep_mode (SLEEP_MODE_IDLE) ;
s leep_en ab le () ;

185

// Disab l in g a l l other par t s to save e x t r a energy
power_adc_disable () ;
power_spi_disable () ;
power_t imer0_disable () ;
power_t imer1_disable () ;
power_t imer2_disable () ;
power_twi_disable () ;
sleep_mode () ;
//DEVICE GOES TO SLEEP NOW!

// Zzzzzzzzz
s l e e p _ d i s a b l e () ; // Waking up , everything back on l in e and now and con t in iue running the code from t h i s exact
power_all_enable () ;

}

void checkEncoder () {
i n t A;
i n t B ;
i n t i ;
f o r (i = 0 ; i < 3 ; i ++){

cyclecoun t erold [i] = cyclecoun t er [i] ;
A = d ig i t a lRead (pinEncA [i]) ;
B = d ig i t a lRead (pinEncB [i]) ;

i f ((A==LOW) && (B==LOW))
cyclecoun t er [i] = 0 ;

e l s e i f ((A==LOW) && (B==HIGH))
cyclecoun t er [i] = 1 ;

e l s e i f ((A==HIGH) && (B==HIGH))
cyclecoun t er [i] = 2 ;

e l s e i f ((A==HIGH) && (B==LOW))
cyclecoun t er [i] = 3 ;

switch (cyclecoun t er [i]) {
case (0) :
{

i f (cyc lecoun t erold [i] == 0) {
;//Do nothing

}
e l s e i f (cyc lecoun t erold [i] == 1) {

i f (ifReachedHighBorder (c y c l e [i])) {
c r i t i c a l S i t u a t i o n (i , 1) ;

}
e l s e {

c y c l e [i]++;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e i f (cyc lecoun t erold [i] == 2) {

S e r i a l . p r i n t l n (" E01 ") ; / / Error reading from Encoder−
}
e l s e i f (cyc lecoun t erold [i] == 3) {

i f (ifReachedLowBorder (c y c l e [i])) {
c r i t i c a l S i t u a t i o n (i , 0) ;

}
e l s e {

186

c y c l e [i]−−;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e

;// S e r i a l . p r i n t ("ERROR") ;
break ;

}//end of case−0
case (1) :
{

i f (cyc lecoun t erold [i] == 0) {
i f (ifReachedLowBorder (c y c l e [i])) {

c r i t i c a l S i t u a t i o n (i , 0) ;
}
e l s e {

c y c l e [i]−−;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
i f (cyc lecoun t erold [i] == 2) {

i f (ifReachedHighBorder (c y c l e [i])) {
c r i t i c a l S i t u a t i o n (i , 1) ;

}
e l s e {

c y c l e [i]++;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e i f (cyc lecoun t erold [i] == 3) {

S e r i a l . p r i n t l n (" E01 ") ; / / Error reading from Encoder−
}
e l s e

;// S e r i a l . p r i n t ("ERROR") ;
break ;

}
case (2) :
{

i f (cyc lecoun t erold [i] == 1) {
i f (ifReachedLowBorder (c y c l e [i])) {

c r i t i c a l S i t u a t i o n (i , 0) ;
}
e l s e {

c y c l e [i]−−;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}

187

e l s e i f (cyc lecoun t erold [i] == 2)
;

e l s e i f (cyc lecoun t erold [i] == 3) {
i f (ifReachedHighBorder (c y c l e [i])) {

c r i t i c a l S i t u a t i o n (i , 1) ;
}
e l s e {

c y c l e [i]++;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e i f (cyc lecoun t erold [i] == 0) {

S e r i a l . p r i n t l n (" E01 ") ; / / Error reading from Encoder−
}
e l s e

;// S e r i a l . p r i n t ("ERROR") ;
break ;

}//end of case−2
case (3) :
{

i f (cyc lecoun t erold [i] == 0) {
i f (ifReachedHighBorder (c y c l e [i])) {

c r i t i c a l S i t u a t i o n (i , 1) ;
}
e l s e {

c y c l e [i]++;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e i f (cyc lecoun t erold [i] == 1) {

S e r i a l . p r i n t l n (" E01 ") ; / / Error reading from Encoder−
}
e l s e i f (cyc lecoun t erold [i] == 2) {

i f (ifReachedLowBorder (c y c l e [i])) {
c r i t i c a l S i t u a t i o n (i , 0) ;

}
e l s e {

c y c l e [i]−−;
sav eCurren t Pos i t ion (i) ;
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (c y c l e [i]) ;

}
}
e l s e i f (cyc lecoun t erold [i] == 3)

;
e l s e

;// S e r i a l . p r i n t ("ERROR") ;
break ;

}//end of case−3
}

}//end of f o r
}//end of checkEncoder ()

188

i n t c r i t i c a l S i t u a t i o n (i n t motorNumber , i n t type) {
d i g i t a l W r i t e (pinPwm [motorNumber] , LOW); // S e t t i n g a l l PWM’ s to LOW
i f (type == 0) {

S e r i a l . p r i n t l n (" E02 ") ; / / * * * FATAL ERROR, CRASH POSSIBLE , STOPPING MOTOR * * *
S e r i a l . p r i n t l n (motorNumber) ; / / * * * FATAL ERROR, CRASH POSSIBLE , STOPPING MOTOR * * *

}
e l s e i f (type == 1) {

S e r i a l . p r i n t l n (" E03 ") ; / / * * * FATAL ERROR, ROBOT ARM MIGHT GO LOOSE, STOPPING MOTOR * * *
S e r i a l . p r i n t l n (motorNumber) ; / / * * * FATAL ERROR, CRASH POSSIBLE , STOPPING MOTOR * * *

}
// S e r i a l . p r i n t (motorNumber) ;
re t urn 0 ;

}//end of c r i t i c a l S i t u a t i o n

i n t r e s e t A l l () {
f o r (i n t i =0; i < 3 ; i ++){

d i g i t a l W r i t e (pinPwm [i] , LOW); // S e t t i n g a l l PWM’ s to LOW
S e r i a l . p r i n t ("C ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" = ") ;
convertToThreeDigits (c y c l e [i]) ;

}//end of f o r
re t urn 0 ;

}//end of r e s e t A l l ()

void convertToThreeDigits (i n t input) {
i f (input >= 0 && input < 1 0) {

/* switch (input) {
case 0 :
S e r i a l . p r i n t (" 0 0 ") ;
break ;
case 1 :
S e r i a l . p r i n t (" 0 1 ") ;
break ;
case 2 :
S e r i a l . p r i n t (" 0 2 ") ;
break ;
case 3 :
S e r i a l . p r i n t (" 0 3 ") ;
break ;
case 4 :
S e r i a l . p r i n t (" 0 4 ") ;
break ;
case 5 :
S e r i a l . p r i n t (" 0 5 ") ;
break ;
case 6 :
S e r i a l . p r i n t (" 0 6 ") ;
break ;
case 7 :
S e r i a l . p r i n t (" 0 7 ") ;
break ;
case 8 :
S e r i a l . p r i n t (" 0 8 ") ;
break ;
case 9 :
S e r i a l . p r i n t (" 0 9 ") ;
break ;
d e f a u l t :
S e r i a l . p r i n t (" 0 0 ") ;

189

break ;
}//end of switch

*/
S e r i a l . p r i n t (" 0 0 ") ;
S e r i a l . p r i n t (input) ;

}
e l s e i f (input >= 10 && input < 1 0 0) {

S e r i a l . p r i n t (" 0 ") ;
S e r i a l . p r i n t (input) ;

}
e l s e {

S e r i a l . p r i n t (input) ;
}

}//end of convertToThreeDigits ()

void sav eCurren t Pos i t ion (i n t index) {
i f (! manulaSteering) {

EEPROM. write (index , c y c l e [index]) ;
}

}//end of sav eCurren t Pos i t ion

void f in d Curren t Pos i t ion (boolean p r i n t I n f o) {
f o r (i n t i = 0 ; i < 3 ; i ++){

value = EEPROM. read (i) ;
c y c l e [i] = value ;
i f (p r i n t I n f o) {

S e r i a l . p r i n t (" P ") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" * ") ;
convertToThreeDigits (value) ;

}
}

}//end of f in d Curren t Pos i t ion

boolean ifReachedHighBorder (i n t index) {
i f ((! manulaSteering) && (index + 1 > 2 1 7)) {

re t urn t rue ;
}
e l s e {

re t urn f a l s e ;
}

}

boolean ifReachedLowBorder (i n t index) {
i f ((! manulaSteering) && (index − 1 < 0)) {

re t urn t rue ;
}
e l s e {

re t urn f a l s e ;
}

}

void sendFeedbackManualSteering () {
i f (manulaSteering) {

S e r i a l . p r i n t (" m00 ") ;
}
e l s e {

S e r i a l . p r i n t (" m01 ") ;
}

}

void handleMotor (byte index , byte dir , byte pwm) {

190

i f (d ir == 0) {
d i g i t a l W r i t e (pinDir [index] , LOW) ;

}
e l s e {

d i g i t a l W r i t e (pinDir [index] , HIGH) ;
}
i f (pwm == 0) {

d i g i t a l W r i t e (pinPwm [index] , LOW) ;
}
e l s e {

d i g i t a l W r i t e (pinPwm [index] , HIGH) ;
}

}//end of handleMotor

boolean moveToXYZ (i n t x , i n t y , i n t z) {
f o r (i n t i = 0 ; i <3; i ++){

i n t tempCnt = howManyCounterRound(c a l c D i s t (i , x , y , z)) ;
i f (tempCnt == −1){//Not reach ab le point

r e s e t A l l () ;
S e r i a l . p r i n t l n ("ERROR NOT REACHABLE POINT , RESETTING") ; / / Error in xyz c o n t r o l
re t urn f a l s e ;

}
// S e r i a l . p r i n t l n (" \ nCounter 1 ? ") ;
// S e r i a l . p r i n t l n (tempCnt) ;
// S e r i a l . p r i n t l n (" \ n ") ;

s t ar t Mot or (i , tempCnt) ;
i f (i == 2) {

re t urn t rue ;
}

}
S e r i a l . p r i n t l n (" E04 ") ; / / Error in xyz c o n t r o l
re t urn f a l s e ;

}//end of moveToXYZ ()

double c a l c D i s t (byte i , double x , double y , double z) {

S e r i a l . p r i n t l n (" \ nCalculated d is t an ce i s : \n ") ;
S e r i a l . p r i n t l n ((s q r t (squareOfInput (x − motor [i] [0]) + squareOfInput (y − motor [i] [1]) + squareOfInput (z − m
ret urn (s q r t (squareOfInput (x − motor [i] [0]) + squareOfInput (y − motor [i] [1]) + squareOfInput (z − motor [i] [

}

i n t howManyCounterRound(double d i s t) {
double tempDis = d i s t − d i s t 0 ;
S e r i a l . p r i n t l n (" \ nTempdis i s : ") ;
S e r i a l . p r i n t l n (tempDis) ;
S e r i a l . p r i n t l n (" \nHow many counter round i s l e f t ? ") ;
i n t tempCnt = (i n t) (tempDis / 0 . 2 0 7 3) ;
S e r i a l . p r i n t l n (tempCnt) ;
S e r i a l . p r i n t l n (" \ n ") ;
i f (abs (tempCnt) > 2 1 7) {

S e r i a l . p r i n t l n (" \ n * * * UNREACHABLE POINT ***\ n ") ;
re t urn −1;

}
re t urn tempCnt ;

}

i n t s t ar t Mot or (byte index , i n t cnt) {
// S e r i a l . p r i n t l n (" \ nCounter 2 ? ") ;
// S e r i a l . p r i n t l n (cnt) ;
// S e r i a l . p r i n t l n (" \ n ") ;

goal [index] = abs (cnt) ;
i f (cnt > 0 && goal [index] != c y c l e [index]) {

191

handleMotor (index , 1 , 1) ; // needs to go forward
}
e l s e i f (cnt < 0 && goal [index] != c y c l e [index]) {

handleMotor (index , 0 , 1) ; // needs to go backward
}

}

i n t checkIfReachedGoal () {
f o r (i n t i = 0 ; i ++; i <3) {

i f (goal [i] == c y c l e [i]) {
stopMotor (i) ;

}
}

}

i n t stopMotor (byte index) {
d i g i t a l W r i t e (pinPwm [index] , LOW); // S e t t i n g a l l PWM’ s to LOW

}

double squareOfInput (double input) {
re t urn (input * input) ;

}//end of squareOfInput

D.3 Simulation, Processing

//**//**
//**PROCESSING CODE, SIMULA-
TIONS //**//**

//Robot Simulat ion program 2 3 . 1 1 . 1 1
//by Shahab
/ / *
/ / *
//Robot Simulat ion program 2 3 . 1 1 . 1 1
//by Shahab
/ / * DRAGGING
i n t x0 = 175 , y0 = 0 ;
i n t x1 = 250 , y1 = 0 ;
i n t x2 = 325 , y2 = 0 ;
i n t counter = 0 ;

i n t x1D = 200 , y1D = 7 0 ;
i n t x2D = 250 , y2D = 7 0 ;
i n t x3D = 200 , y3D = 2 0 ;
i n t x4D = 250 , y4D = 2 0 ;
i n t x5D = 250 , y5D = 2 0 ;
i n t x6D = 250 , y6D = 2 0 ;
i n t x7D = 250 , y7D = 2 0 ;
i n t x8D = 250 , y8D = 2 0 ;

i n t x1R = 200 , y1R = 7 0 ;
i n t x2R = 250 , y2R = 7 0 ;
i n t x3R = 200 , y3R = 2 0 ;
i n t x4R = 250 , y4R = 2 0 ;

i n t d i r e c t i o n = 1 ;

192

i n t s c a l e = 2 5 ;
i n t robot Sca le = 5 0 ;

boolean moveDown = f a l s e , moveUp = f a l s e ;

i n t [] arm1Color = { 2 0 0 , 1 0 0 , 0 } , arm2Color = { 2 0 0 , 1 0 0 , 0 } , arm3Color = { 2 0 0 , 1 0 0 , 0 } , arm4Color = { 2 0 0 , 1 0 0 , 0 } , robo

void setup () {
s i z e (6 4 0 , 360 , P3D) ;
smooth () ;
noStroke () ;
i n i t i a l i z e () ;

}

void draw () {
background (5 1) ;
f i l l (2 0 4) ;
f o r (i n t i =0; i <500; i = i + s c a l e) {

e l l i p s e (x0 , y0+i , 5 , 5) ;
e l l i p s e (x1 , y1+i , 5 , 5) ;
e l l i p s e (x2 , y2+i , 5 , 5) ;

}//end of f o r
moveRobot () ;
drawRobot () ;

}

void i n i t i a l i z e () {
x1D = 2 0 0 ;
y1D = 1 0 0 ;
x2D = 3 0 0 ;
y2D = 1 0 0 ;
x3D = 2 0 0 ;
y3D = 5 0 ;
x4D = 3 0 0 ;
y4D = 5 0 ;
x5D = 2 5 0 ;
y5D = 0 ;
x6D = 2 5 0 ;
y6D = 1 5 0 ;
x7D = 3 2 5 ;
y7D = 7 5 ;
x8D = 1 7 5 ;
y8D = 7 5 ;
x1R = (x7D+x8D)/2−(robot Sca le / 2) ;
y1R = (y5D+y6D)/2−(robot Sca le / 2) ;
x2R = (x7D+x8D)/2+(robot Sca le / 2) ;
y2R = (y5D+y6D)/2−(robot Sca le / 2) ;
x3R = (x7D+x8D)/2−(robot Sca le / 2) ;
y3R = (y5D+y6D)/2+(robot Sca le / 2) ;
x4R = (x7D+x8D)/2+(robot Sca le / 2) ;
y4R = (y5D+y6D)/2+(robot Sca le / 2) ;

}//end of i n i t i a l i z e

void robot L ocat ion () {
i f (moveDown) {

y1R = y1R + s c a l e ;
y2R = y2R + s c a l e ;
y3R = y3R + s c a l e ;
y4R = y4R + s c a l e ;

}
e l s e i f (moveUp) {

y1R = y1R − s c a l e ;

193

y2R = y2R − s c a l e ;
y3R = y3R − s c a l e ;
y4R = y4R − s c a l e ;

}
x1R = (x7D+x8D)/2−(robot Sca le / 2) ;
x2R = (x7D+x8D)/2+(robot Sca le / 2) ;
x3R = (x7D+x8D)/2−(robot Sca le / 2) ;
x4R = (x3D+x4D)/2+(robot Sca le / 2) ;

}//end of robot L ocat ion

void drawRobot () {
//END EFFECTORS

f i l l (arm1Color [0] , arm1Color [1] , arm1Color [2]) ;
e l l i p s e (x5D , y5D , 7 , 7) ;
f i l l (arm2Color [0] , arm2Color [1] , arm2Color [2]) ;
e l l i p s e (x6D , y6D , 7 , 7) ;
f i l l (arm3Color [0] , arm3Color [1] , arm3Color [2]) ;
e l l i p s e (x7D , y7D , 7 , 7) ;
f i l l (arm4Color [0] , arm4Color [1] , arm4Color [2]) ;
e l l i p s e (x8D , y8D , 7 , 7) ;
//ROBOT
f i l l (robotColor [0] , robotColor [1] , robotColor [2]) ;
//quad (x1R , y1R , x2R , y2R , x3R , y3R , x4R , y4R) ;
r e c t (x1R , y1R , robot Sca le , robot Sca le) ;
//arm1
st roke (1 0 0) ;
l i n e (x5D , y5D , 0 , x1R , y1R , 0) ;
l i n e (x5D , y5D , 0 , x2R , y2R , 0) ;
l i n e (x5D , y5D , 0 , x1R + (robot Sca le /2) , y1R , 0) ;
//arm2
st roke (1 5 0) ;
l i n e (x7D , y7D , 0 , x2R , y2R , 0) ;
l i n e (x7D , y7D , 0 , x4R , y4R , 0) ;
l i n e (x7D , y7D , 0 , x2R , y2R + (robot Sca le /2) , 0) ;
//arm3
st roke (2 5 5) ;
l i n e (x8D , y8D , 0 , x1R , y1R , 0) ;
l i n e (x8D , y8D , 0 , x3R , y3R , 0) ;
l i n e (x8D , y8D , 0 , x1R , y1R + (robot Sca le /2) , 0) ;
//arm4
st roke (0) ;
l i n e (x6D , y6D , 0 , x3R , y3R , 0) ;
l i n e (x6D , y6D , 0 , x4R , y4R , 0) ;
l i n e (x6D , y6D , 0 , x3R + (robot Sca le /2) , y3R , 0) ;
i f (moveUp || moveDown)

delay (1 0 0 0) ;
e l s e i f (cycleCounter == 5) {

delay (1 0 0 0) ;
cycleCounter = 0 ;
}

}
i n t cycleCounter = 0 ;
void moveRobot () {

i f (moveDown) {
switch (cycleCounter %5){

case 1 :
y6D = y6D + s c a l e ;
cycleCounter ++;
break ;

case 2 :
y7D = y7D + s c a l e ;

194

y8D = y8D + s c a l e ;
robot L ocat ion () ;
cycleCounter = cycleCounter + 3 ;
break ;

case 0 :
y5D = y5D + s c a l e ;

// cycleCounter ++;
moveDown = f a l s e ;
break ;

}
}//end of i f
e l s e i f (moveUp) {

switch (cycleCounter %5){
case 1 :

y5D = y5D − s c a l e ;
cycleCounter ++;
break ;

case 2 :
y7D = y7D − s c a l e ;
y8D = y8D − s c a l e ;
robot L ocat ion () ;
cycleCounter = cycleCounter + 3 ;
//robot L ocat ion () ;
break ;

case 0 :
y6D = y6D − s c a l e ;

// cycleCounter ++;
moveUp = f a l s e ;
break ;

}//end of switch
}//end of e lse−i f

}//end of moveRobot

void keyPressed () {
i f (keyCode == DOWN) {

// d i r e c t i o n = 1 ;
counter ++;
moveDown = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot DOWN") ;

} e l s e i f (keyCode == UP) {
// d i r e c t i o n = −1;
counter−−;
moveUp = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot UP ") ;

}
}//end of keyPressed

/ / * Opt . Pull−Up

/ / *
//Robot Simulat ion program 2 3 . 1 1 . 1 1
//by Shahab
/ / *
i n t x0 = 200 , y0 = 0 ;
i n t x1 = 325 , y1 = 0 ;
i n t counter = 0 ;

i n t x1D = 200 , y1D = 7 0 ;
i n t x2D = 250 , y2D = 7 0 ;

195

i n t x3D = 200 , y3D = 2 0 ;
i n t x4D = 250 , y4D = 2 0 ;

i n t x1R = 200 , y1R = 7 0 ;
i n t x2R = 250 , y2R = 7 0 ;
i n t x3R = 200 , y3R = 2 0 ;
i n t x4R = 250 , y4R = 2 0 ;

i n t [] arm1Color = { 2 0 0 , 1 0 0 , 0 } , arm2Color = { 2 0 0 , 1 0 0 , 0 } , arm3Color = { 2 0 0 , 1 0 0 , 0 } , arm4Color = { 2 0 0 , 1 0 0 , 0 } , robo

i n t d i r e c t i o n = 1 ;

i n t s c a l e = 2 5 ;
i n t robot Sca le = 5 0 ;

boolean moveDown = f a l s e , moveUp = f a l s e , beginningFlag = t rue ;

void setup () {
s i z e (6 4 0 , 360 , P3D) ;
smooth () ;
noStroke () ;
i n i t i a l i z e () ;

}

void draw () {
background (5 1) ;
f i l l (2 0 4) ;
f o r (i n t i =0; i <500; i = i + s c a l e) {

e l l i p s e (x0 , y0+i , 5 , 5) ;
e l l i p s e (x1 , y1+i , 5 , 5) ;

}//end of f o r
moveRobot () ;
drawRobot () ;

}

void i n i t i a l i z e () {
x1D = 2 0 0 ;
y1D = 7 5 ;
x2D = 3 2 5 ;
y2D = 7 5 ;
x3D = 2 0 0 ;
y3D = 0 ;
x4D = 3 2 5 ;
y4D = 0 ;
x1R = (x3D+x4D)/2−(robot Sca le / 2) ;
y1R = (y1D+y3D) / 2 ;
x2R = (x3D+x4D) / 2 ;
y2R = (y1D+y3D)/2−(robot Sca le / 2) ;
x3R = (x3D+x4D)/2+(robot Sca le / 2) ;
y3R = (y1D+y3D) / 2 ;
x4R = (x3D+x4D) / 2 ;
y4R = (y1D+y3D)/2+(robot Sca le / 2) ;

}//end of i n i t i a l i z e

void robot L ocat ion () {
i f (moveDown) {

y1R = y1R + s c a l e ;
y2R = y2R + s c a l e ;
y3R = y3R + s c a l e ;
y4R = y4R + s c a l e ;

}
e l s e i f (moveUp) {

196

y1R = y1R − s c a l e ;
y2R = y2R − s c a l e ;
y3R = y3R − s c a l e ;
y4R = y4R − s c a l e ;

}
x1R = (x3D+x4D)/2−(robot Sca le / 2) ;
x2R = (x3D+x4D) / 2 ;
x3R = (x3D+x4D)/2+(robot Sca le / 2) ;
x4R = (x3D+x4D) / 2 ;

}//end of robot L ocat ion

void drawRobot () {
//END EFFECTORS
f i l l (arm1Color [0] , arm1Color [1] , arm1Color [2]) ;
e l l i p s e (x1D , y1D , 7 , 7) ;
f i l l (arm2Color [0] , arm2Color [1] , arm2Color [2]) ;
e l l i p s e (x2D , y2D , 7 , 7) ;
f i l l (arm3Color [0] , arm3Color [1] , arm3Color [2]) ;
e l l i p s e (x3D , y3D , 7 , 7) ;
f i l l (arm4Color [0] , arm4Color [1] , arm4Color [2]) ;
e l l i p s e (x4D , y4D , 7 , 7) ;
//ROBOT
f i l l (robotColor [0] , robotColor [1] , robotColor [2]) ;
quad (x1R , y1R , x2R , y2R , x3R , y3R , x4R , y4R) ;
//arm1
st roke (2 5 5) ;
l i n e (x3D , y3D , 0 , x1R , y1R , 0) ;
l i n e (x3D , y3D , 0 , x2R , y2R , 0) ;
l i n e (x3D , y3D , 0 , x1R + (robot Sca le /4) , y1R − (robot Sca le /4) , 0) ;
//arm2
st roke (2 5 5) ;
l i n e (x4D , y4D , 0 , x2R , y2R , 0) ;
l i n e (x4D , y4D , 0 , x3R , y3R , 0) ;
l i n e (x4D , y4D , 0 , x2R + (robot Sca le /4) , y2R + (robot Sca le /4) , 0) ;
//arm3
st roke (2 5 5) ;
l i n e (x1D , y1D , 0 , x1R , y1R , 0) ;
l i n e (x1D , y1D , 0 , x4R , y4R , 0) ;
l i n e (x1D , y1D , 0 , x1R + (robot Sca le /4) , y1R + (robot Sca le /4) , 0) ;
//arm4
st roke (2 5 5) ;
l i n e (x2D , y2D , 0 , x3R , y3R , 0) ;
l i n e (x2D , y2D , 0 , x4R , y4R , 0) ;
l i n e (x2D , y2D , 0 , x3R − (robot Sca le /4) , y3R + (robot Sca le /4) , 0) ;

i f ((moveUp || moveDown) && (cycleCounter > 2)){// during climbing
delay (1 0 0 0) ;

}
e l s e i f (cycleCounter == 1 && optFlag == f a l s e) {

delay (1 0 0 0) ;
}
e l s e i f (cycleCounter == 2 && optFlag == t rue) {

delay (1 0 0 0) ;
}
e l s e i f (cycleCounter == 5) {// ending phase

delay (1 0 0 0) ;
cycleCounter = 0 ;
}

r e s e t C o l o r s () ;
}

197

void r e s e t C o l o r s () {
arm1Color [0] = 2 0 0 ;
arm1Color [1] = 1 0 0 ;
arm1Color [2] = 0 ;
arm2Color [0] = 2 0 0 ;
arm2Color [1] = 1 0 0 ;
arm2Color [2] = 0 ;
arm3Color [0] = 2 0 0 ;
arm3Color [1] = 1 0 0 ;
arm3Color [2] = 0 ;
arm4Color [0] = 2 0 0 ;
arm4Color [1] = 1 0 0 ;
arm4Color [2] = 0 ;
robotColor [0] = 2 0 0 ;
robotColor [1] = 1 0 0 ;
robotColor [2] = 1 5 0 ;
//optimized c o l o r
i f (! optFlag && ! beginningFlag && optDone) {

arm1Color [0] = 1 1 0 ;
arm1Color [1] = 2 0 0 ;
arm1Color [2] = 0 ;

}//end of i f
e l s e i f (optFlag && ! beginningFlag && optDone) {

arm2Color [0] = 1 1 0 ;
arm2Color [1] = 2 0 0 ;
arm2Color [2] = 1 5 0 ;

}//end of e l s e
}//end of r e s e t C o l o r s

i n t cycleCounter = 0 ;
boolean optFlag = f a l s e , optChecker = f a l s e , optDone = f a l s e ;

void moveRobot () {
i f (moveDown) {

switch (cycleCounter %5){
case 1 :

//WHEN FLAG IS FALSE , LEG 2 IS THE OPTIMIZED ARM
cycleCounter ++;
i f (! optFlag) { // Simple

y1D = y1D + s c a l e ;
arm1Color [0] = 2 0 0 ;
arm1Color [1] = 2 0 0 ;
arm1Color [2] = 1 0 0 ;

}
break ;

case 2 :
//WHEN FLAG IS TRUE, LEG 1 IS THE OPTIMIZED ARM
cycleCounter ++;
i f (optFlag) { // Simple

y2D = y2D + s c a l e ;
arm2Color [0] = 2 0 0 ;
arm2Color [1] = 2 0 0 ;
arm2Color [2] = 1 0 0 ;

}
break ;

case 3 :
robot L ocat ion () ;
robotColor [0] = 2 0 0 ;
robotColor [1] = 2 0 0 ;
robotColor [2] = 1 5 0 ;
cycleCounter ++;
i f (optFlag){//Arm1 i s moving optimized

198

y1D = y1D + s c a l e ;
}//end of i f
e l s e {

y2D = y2D + s c a l e ;
}//end of e l s e
optFlag = ! optFlag ;
optDone = t rue ;
break ;

case 4 :
y3D = y3D + s c a l e ;
cycleCounter ++;
arm3Color [0] = 2 0 0 ;
arm3Color [1] = 2 0 0 ;
arm3Color [2] = 1 0 0 ;
break ;

case 0 :
y4D = y4D + s c a l e ;
arm4Color [0] = 2 0 0 ;
arm4Color [1] = 2 0 0 ;
arm4Color [2] = 1 0 0 ;
moveDown = f a l s e ;
break ;

}
}//end of i f
e l s e i f (moveUp) {

switch (cycleCounter %5){
case 1 :

y4D = y4D − s c a l e ;
cycleCounter ++;
break ;

case 2 :
y3D = y3D − s c a l e ;
cycleCounter ++;
//robot L ocat ion () ;
break ;

case 3 :
robot L ocat ion () ;
cycleCounter ++;
break ;

case 4 :
y2D = y2D − s c a l e ;
cycleCounter ++;
break ;

case 0 :
y1D = y1D − s c a l e ;

// cycleCounter ++;
moveUp = f a l s e ;
break ;

}//end of switch
}//end of e lse−i f

}//end of moveRobot

void keyPressed () {
i f (keyCode == DOWN) {

// d i r e c t i o n = 1 ;
counter ++;
moveDown = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot DOWN") ;
beginningFlag = f a l s e ;

} e l s e i f (keyCode == UP) {

199

// d i r e c t i o n = −1;
counter−−;
moveUp = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot UP ") ;
beginningFlag = f a l s e ;

}
}//end of keyPressed

/ / * simple pull−up

/ / *
//Robot Simulat ion program 2 3 . 1 1 . 1 1
//by Shahab
/ / *
i n t x0 = 200 , y0 = 0 ;
i n t x1 = 325 , y1 = 0 ;
i n t counter = 0 ;

i n t x1D = 200 , y1D = 7 0 ;
i n t x2D = 250 , y2D = 7 0 ;
i n t x3D = 200 , y3D = 2 0 ;
i n t x4D = 250 , y4D = 2 0 ;

i n t x1R = 200 , y1R = 7 0 ;
i n t x2R = 250 , y2R = 7 0 ;
i n t x3R = 200 , y3R = 2 0 ;
i n t x4R = 250 , y4R = 2 0 ;

i n t d i r e c t i o n = 1 ;

i n t s c a l e = 2 5 ;
i n t robot Sca le = 5 0 ;

boolean moveDown = f a l s e , moveUp = f a l s e ;

S t r i n g phase = " " ;

void setup () {
s i z e (6 4 0 , 360 , P3D) ;
smooth () ;
noStroke () ;
i n i t i a l i z e () ;

}

void draw () {
background (5 1) ;
f i l l (2 0 4) ;
f o r (i n t i =0; i <500; i = i + s c a l e) {

e l l i p s e (x0 , y0+i , 5 , 5) ;
e l l i p s e (x1 , y1+i , 5 , 5) ;

}//end of f o r
moveRobot () ;
drawRobot () ;
f i l l (2 5 5) ;
t e x t (phase , 15 , 20 , 70 , 7 0) ;
p r i n t l n (phase) ;

}

void i n i t i a l i z e () {
x1D = 2 0 0 ;
y1D = 7 5 ;

200

x2D = 3 2 5 ;
y2D = 7 5 ;
x3D = 2 0 0 ;
y3D = 0 ;
x4D = 3 2 5 ;
y4D = 0 ;
x1R = (x3D+x4D)/2−(robot Sca le / 2) ;
y1R = (y1D+y3D) / 2 ;
x2R = (x3D+x4D) / 2 ;
y2R = (y1D+y3D)/2−(robot Sca le / 2) ;
x3R = (x3D+x4D)/2+(robot Sca le / 2) ;
y3R = (y1D+y3D) / 2 ;
x4R = (x3D+x4D) / 2 ;
y4R = (y1D+y3D)/2+(robot Sca le / 2) ;

}//end of i n i t i a l i z e

void robot L ocat ion () {
i f (moveDown) {

y1R = y1R + s c a l e ;
y2R = y2R + s c a l e ;
y3R = y3R + s c a l e ;
y4R = y4R + s c a l e ;

}
e l s e i f (moveUp) {

y1R = y1R − s c a l e ;
y2R = y2R − s c a l e ;
y3R = y3R − s c a l e ;
y4R = y4R − s c a l e ;

}
x1R = (x3D+x4D)/2−(robot Sca le / 2) ;
x2R = (x3D+x4D) / 2 ;
x3R = (x3D+x4D)/2+(robot Sca le / 2) ;
x4R = (x3D+x4D) / 2 ;

}//end of robot L ocat ion

void drawRobot () {
f i l l (2 0 0 , 1 0 0 , 0) ;
e l l i p s e (x1D , y1D , 7 , 7) ;
e l l i p s e (x2D , y2D , 7 , 7) ;
e l l i p s e (x3D , y3D , 7 , 7) ;
e l l i p s e (x4D , y4D , 7 , 7) ;
f i l l (2 0 0 , 1 0 0 , 1 5 0) ;

// e l l i p s e ((x1D+x2D)/2 , y1R , 30 , 3 0) ;
//Robot

// r e c t (x1R , (y1D+y3D)/2−(robot Sca le /2) , 30 , 3 0) ;
//quad (x1R , y1R , (x3D+x4D)/2 , (y1D+y3D)/2−(robot Sca le /2) , (x3D+x4D)/2+(robot Sca le /2) , (y1D+y3D)/2 , (x3D+x4D)
//robot L ocat ion () ;
quad (x1R , y1R , x2R , y2R , x3R , y3R , x4R , y4R) ;
//arm1
st roke (2 5 5) ;
l i n e (x3D , y3D , 0 , x1R , y1R , 0) ;
l i n e (x3D , y3D , 0 , x2R , y2R , 0) ;
l i n e (x3D , y3D , 0 , x1R + (robot Sca le /4) , y1R − (robot Sca le /4) , 0) ;
//arm2
st roke (2 5 5) ;
l i n e (x4D , y4D , 0 , x2R , y2R , 0) ;
l i n e (x4D , y4D , 0 , x3R , y3R , 0) ;
l i n e (x4D , y4D , 0 , x2R + (robot Sca le /4) , y2R + (robot Sca le /4) , 0) ;
//arm3
st roke (2 5 5) ;
l i n e (x1D , y1D , 0 , x1R , y1R , 0) ;

201

l i n e (x1D , y1D , 0 , x4R , y4R , 0) ;
l i n e (x1D , y1D , 0 , x1R + (robot Sca le /4) , y1R + (robot Sca le /4) , 0) ;
//arm4
st roke (2 5 5) ;
l i n e (x2D , y2D , 0 , x3R , y3R , 0) ;
l i n e (x2D , y2D , 0 , x4R , y4R , 0) ;
l i n e (x2D , y2D , 0 , x3R − (robot Sca le /4) , y3R + (robot Sca le /4) , 0) ;
i f (moveUp || moveDown)

delay (1 0 0 0) ;
e l s e i f (cycleCounter == 5) {

delay (1 0 0 0) ;
cycleCounter = 0 ;
}

}
i n t cycleCounter = 0 ;
void moveRobot () {

i f (moveDown) {
switch (cycleCounter %5){

case 1 :
y1D = y1D + s c a l e ;
cycleCounter ++;
phase = " Phase # 1 " ;
break ;

case 2 :
y2D = y2D + s c a l e ;
cycleCounter ++;
phase = " Phase # 2 " ;
break ;

case 3 :
robot L ocat ion () ;
cycleCounter ++;
phase = " Phase # 3 " ;
break ;

case 4 :
y3D = y3D + s c a l e ;
cycleCounter ++;
phase = " Phase # 4 " ;
break ;

case 0 :
y4D = y4D + s c a l e ;

// cycleCounter ++;
phase = " Phase # 5 " ;
moveDown = f a l s e ;
break ;

}
}//end of i f
e l s e i f (moveUp) {

switch (cycleCounter %5){
case 1 :

y4D = y4D − s c a l e ;
cycleCounter ++;
phase = " Phase # 1 " ;
break ;

case 2 :
y3D = y3D − s c a l e ;
cycleCounter ++;
phase = " Phase # 2 " ;
//robot L ocat ion () ;
break ;

case 3 :
robot L ocat ion () ;
cycleCounter ++;

202

phase = " Phase # 3 " ;
break ;

case 4 :
y2D = y2D − s c a l e ;
cycleCounter ++;
phase = " Phase # 4 " ;
break ;

case 0 :
y1D = y1D − s c a l e ;

// cycleCounter ++;
phase = " Phase # 5 " ;
moveUp = f a l s e ;
break ;

}//end of switch
}//end of e lse−i f

}//end of moveRobot

void keyPressed () {
i f (keyCode == DOWN) {

// d i r e c t i o n = 1 ;
counter ++;
moveDown = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot DOWN") ;

} e l s e i f (keyCode == UP) {
// d i r e c t i o n = −1;
counter−−;
moveUp = t rue ;
cycleCounter = 1 ;
p r i n t l n (" Moving robot UP ") ;

}
}//end of keyPressed

D.4 Matlab, Workspace

//WORKSPACE ANIMATION
/ / *

c l e a r a l l ;
c l o s e a l l ;
c l c ;
cnt0 = 0 ;
cnt1 = 0 ;
cnt2 = 0 ;
%d = CONST(47mm + 10mm) + VARIABLE(45mm)
d0 = 190 + (cnt0 * 0 . 2 5) ;
d1 = 190 + (cnt1 * 0 . 2 5) ;
d2 = 190 + (cnt2 * 0 . 2 5) ;
% *
a0 = 1 5 0 ;
b0 = 1 4 0 ;
% *
x0 = (s q r t (2) * a0) / 2 ;
y0 = 0 ;
z0 = 0 ;

%***

203

x1 = 0 ;
y1 = (s q r t (2) * a0) / 2 ;
z1 = 0 ;

%***
x2 = 0 ;
y2 = 0 ;
z2 = −1* s q r t (b0^2−(a0 ^ 2 / 2)) ;

XLine = [0 , x0 , x1 , 0 , x2 , x1 , 0 , x0 , x2]
YLine = [0 , y0 , y1 , 0 , y2 , y1 , 0 , y0 , y2]
ZLine = [0 , z0 , z1 , 0 , z2 , z1 , 0 , z0 , z2]

% *

xMin = 1000 ;
xMax = −999;
yMin = 1000 ;
yMax = −999;
zMin = 1000 ;
zMax = −999;
counter = 0 ;

p lot 3 (0 , 0 , 0 , ’ or ’) ;
hold on
plot 3 (x0 , y0 , z0 , ’ og ’) ;
hold on
plot 3 (x1 , y1 , z1 , ’ ob ’) ;
hold on
plot 3 (x2 , y2 , z2 , ’ ok ’) ;
hold on

% plot ([0 , 0 , 0] , [x0 , y0 , z0])
% hold on
% plot 3 ([x0 , y0 , z0] , [x1 , y1 , z1] , [x2 , y2 , z2])

a = ’ * * * * * * * * * * * * * * * * * * * ’ ;

% l i n e ([x1 , y1 , z1] , [x0 , y0 , z0] , ’ Color ’ , [. 8 . 8 . 8]) ;
% hold on
% l i n e ([x2 , y2 , z2] , [x0 , y0 , z0] , ’ Color ’ , [. 8 . 8 . 8]) ;
% hold on
% l i n e ([x1 , y1 , z1] , [x2 , y2 , z2] , ’ Color ’ , [. 8 . 8 . 8]) ;
% hold on
%

counter = 0 ;
% X range 260 − 400
% Y range 260 − 400
% Z range 20 − −150
f o r x =50 : 20 : 250

f o r y =50 : 20 : 250
f o r z=−220:20:−50

r0 = s q r t ((x−x0)^2 + (y−y0)^2 + (z−z0) ^ 2) ;
r1 = s q r t ((x−x1)^2 + (y−y1)^2 + (z−z1) ^ 2) ;
r2 = s q r t ((x−x2)^2 + (y−y2)^2 + (z−z2) ^ 2) ;

% r0 = s q r t ((x−103.2376)^2 + y^2 + z ^ 2) ;

204

% r1 = s q r t (x^2 + (y−103.2376)^2 + z ^ 2) ;
% r2 = s q r t (x^2 + y^2 + (z +1* s q r t (b0^2−(a0 ^ 2 / 2))) ^ 2) ;

cnt0 = (r0 − 1 9 0) / 0 . 2 5 ;
cnt1 = (r1 − 1 9 0) / 0 . 2 5 ;
cnt2 = (r2 − 1 9 0) / 0 . 2 5 ;
i f (cnt0 < 0)

a = ’ * * * * * * * * * * * * * * * * * * + + + ’ ;
end
%a = ’ * ’
i f (cnt0 >=0 && cnt0 <= 217 && cnt1 >=0 && cnt1 <= 217 && cnt2 >=0 && cnt2 <= 217)

%i f (cnt0 == 0 && cnt1 == 0 && cnt2 == 0)
% i f (x >0 && y>0 && y>(−1*x+(s q r t (2) * a0) / 2))

XLine = [0 , x0 , x1 , 0 , x2 , x1 , 0 , x0 , x2 , x0 , x , x1 , x , x2]
YLine = [0 , y0 , y1 , 0 , y2 , y1 , 0 , y0 , y2 , y0 , y , y1 , y , y2]
ZLine = [0 , z0 , z1 , 0 , z2 , z1 , 0 , z0 , z2 , z0 , z , z1 , z , z2]
p lot 3 (XLine , YLine , ZLine)
hold
plot 3 (x , y , z , ’ or ’)
a x i s ([40 300 40 300 −300 5 0])

% hold on
counter = counter +1

M(counter) = getframe (gcf) ;

% cnt0
% cnt1
% cnt2

r0
r1
r2

% x
% y
% z

i f (x > xMax)
xMax = x ;
xMaxVec = [x y z] ;

end
i f (x < xMin)

xMin = x ;
xMinVec = [x y z] ;

end
i f (y > yMax)

yMax = y ;
yMaxVec = [x y z] ;

end
i f (y < yMin)

yMin = y ;
yMinVec = [x y z] ;

end
i f (z > zMax)

zMax = z ;
zMaxVec = [x y z] ;

end
i f (z < zMin)

zMin = z ;
zMinVec = [x y z] ;

end
end

end
end

end

205

counter
xMinVec
xMaxVec
yMinVec
yMaxVec
zMinVec
zMaxVec
a

numtimes =1;
fps =10;
movie (M, 1 , fps)

% Now save the movie as an mpeg f i l e f o r use on the Web:
% map=colormap % Uses the prev ious ly defined colormap
% mpgwrite (M, map, ’ sstmovie . mpg’)

/ / *
/ / * WORKSPACE FULL

c l e a r a l l ;
c l o s e a l l ;
c l c ;
cnt0 = 0 ;
cnt1 = 0 ;
cnt2 = 0 ;
%d = CONST(47mm + 10mm) + VARIABLE(45mm)
d0 = 190 + (cnt0 * 0 . 2 5) ;
d1 = 190 + (cnt1 * 0 . 2 5) ;
d2 = 190 + (cnt2 * 0 . 2 5) ;
% *
a0 = 1 5 0 ;
b0 = 1 4 0 ;
% *
x0 = (s q r t (2) * a0) / 2 ;
y0 = 0 ;
z0 = 0 ;
%***
x1 = 0 ;
y1 = (s q r t (2) * a0) / 2 ;
z1 = 0 ;
%***
x2 = 0 ;
y2 = 0 ;
z2 = −1* s q r t (b0^2−(a0 ^ 2 / 2)) ;
%****
x3 = 0 ;
y3 = −1 * (s q r t (2) * a0) / 2 ;
z3 = 0 ;
%***
x4 = −1 * (s q r t (2) * a0) / 2 ;
y4 = 0 ;
z4 = 0 ;

%robot c h a s s i s
XLine = [x0 , x1 , x2 , x0 , x3 , x4 , x2 , x3 , x4 , x1] ;
YLine = [y0 , y1 , y2 , y0 , y3 , y4 , y2 , y3 , y4 , y1] ;
ZLine = [z0 , z1 , z2 , z0 , z3 , z4 , z2 , z3 , z4 , z1] ;
p lot 3 (XLine , YLine , ZLine , ’ color ’ , ’k ’ , ’ LineWidth ’ , 5) ;
hold on
% *

%robot arms

206

%arm 0
ix0 = 1 3 0 ;
iy0 = 1 3 0 ;
iz0 = −140;
XArm = [x0 , ix0 , x1 , x2 , ix0] ;
YArm = [y0 , iy0 , y1 , y2 , iy0] ;
ZArm = [z0 , iz0 , z1 , z2 , iz0] ;
p lot 3 (XArm,YArm, ZArm, ’ color ’ , ’ k ’ , ’ LineWidth ’ , 5) ;
hold on

%arm 1
ix1 = −130;
iy1 = 1 3 0 ;
iz1 = −140;
XArm = [x1 , ix1 , x4 , x2 , ix1] ;
YArm = [y1 , iy1 , y4 , y2 , iy1] ;
ZArm = [z1 , iz1 , z4 , z2 , iz1] ;
p lot 3 (XArm,YArm, ZArm, ’ color ’ , ’ k ’ , ’ LineWidth ’ , 5) ;
hold on

%arm 2
ix2 = −130;
iy2 = −130;
iz2 = −140;
XArm = [x3 , ix2 , x4 , x2 , ix2] ;
YArm = [y3 , iy2 , y4 , y2 , iy2] ;
ZArm = [z3 , iz2 , z4 , z2 , iz2] ;
p lot 3 (XArm,YArm, ZArm, ’ color ’ , ’ k ’ , ’ LineWidth ’ , 5) ;
hold on

%arm 3
ix3 = 1 3 0 ;
iy3 = −130;
iz3 = −140;
XArm = [x3 , ix3 , x0 , x2 , ix3] ;
YArm = [y3 , iy3 , y0 , y2 , iy3] ;
ZArm = [z3 , iz3 , z0 , z2 , iz3] ;
p lot 3 (XArm,YArm, ZArm, ’ color ’ , ’ k ’ , ’ LineWidth ’ , 5) ;
hold on

% Poin t s
p lot 3 (0 , 0 , 0 , ’ * r ’ , ’ LineWidth ’ , 2 0) ;
hold on
plot 3 (x0 , y0 , z0 , ’ ob ’ , ’ LineWidth ’ , 1 0) ;
hold on
plot 3 (x1 , y1 , z1 , ’ ob ’ , ’ LineWidth ’ , 1 0) ;
hold on
%plot 3 (x2 , y2 , z2 , ’ ob ’) ;
hold on
plot 3 (x3 , y3 , z3 , ’ ob ’ , ’ LineWidth ’ , 1 0) ;
hold on
plot 3 (x4 , y4 , z4 , ’ ob ’ , ’ LineWidth ’ , 1 0) ;
hold on
plot 3 (ix0 , iy0 , iz0 , ’ og ’ , ’ LineWidth ’ , 3 0) ;
hold on
plot 3 (ix1 , iy1 , iz1 , ’ og ’ , ’ LineWidth ’ , 3 0) ;
hold on
plot 3 (ix2 , iy2 , iz2 , ’ og ’ , ’ LineWidth ’ , 3 0) ;
hold on
plot 3 (ix3 , iy3 , iz3 , ’ og ’ , ’ LineWidth ’ , 3 0) ;
hold on

207

counter0 = 0 ;
counter1 = 0 ;
counter2 = 0 ;
counter3 = 0 ;

%Workspace loops
f o r x = 5 0 : 5 : 2 5 0

f o r y = 5 0 : 5 : 2 5 0
f o r z=−220:5:−50

r0 = s q r t ((x−x0)^2 + (y−y0)^2 + (z−z0) ^ 2) ;
r1 = s q r t ((x−x1)^2 + (y−y1)^2 + (z−z1) ^ 2) ;
r2 = s q r t ((x−x2)^2 + (y−y2)^2 + (z−z2) ^ 2) ;
cnt0 = (r0 − 1 9 0) / 0 . 2 5 ;
cnt1 = (r1 − 1 9 0) / 0 . 2 5 ;
cnt2 = (r2 − 1 9 0) / 0 . 2 5 ;
i f (cnt0 >=0 && cnt0 <= 217 && cnt1 >=0 && cnt1 <= 217 && cnt2 >=0 && cnt2 <= 217)

p lot 3 (x , y , z , ’ * r ’)
hold on
counter0 = counter0 + 1 ;

% i f (r0 < 195 && r1 < 195 && r2 < 195)
% v = [x , y , z]
% r0
% r1
% r2
% end

end
end

end
end

counter0

f o r x=−50:−5:−250
f o r y=−50:−5:−250

f o r z=−220:5:−50
r3 = s q r t ((x−x3)^2 + (y−y3)^2 + (z−z3) ^ 2) ;
r4 = s q r t ((x−x4)^2 + (y−y4)^2 + (z−z4) ^ 2) ;
r2 = s q r t ((x−x2)^2 + (y−y2)^2 + (z−z2) ^ 2) ;
cnt3 = (r3 − 1 9 0) / 0 . 2 5 ;
cnt4 = (r4 − 1 9 0) / 0 . 2 5 ;
cnt2 = (r2 − 1 9 0) / 0 . 2 5 ;
i f (cnt3 >=0 && cnt3 <= 217 && cnt4 >=0 && cnt4 <= 217 && cnt2 >=0 && cnt2 <= 217)

p lot 3 (x , y , z , ’ db ’)
hold on
counter1 = counter1 + 1 ;

end
end

end
end

counter1

f o r x = 5 0 : 5 : 2 5 0
f o r y=−50:−5:−250

f o r z=−220:5:−50
r3 = s q r t ((x−x3)^2 + (y−y3)^2 + (z−z3) ^ 2) ;
r0 = s q r t ((x−x0)^2 + (y−y0)^2 + (z−z0) ^ 2) ;
r2 = s q r t ((x−x2)^2 + (y−y2)^2 + (z−z2) ^ 2) ;
cnt3 = (r3 − 1 9 0) / 0 . 2 5 ;
cnt0 = (r0 − 1 9 0) / 0 . 2 5 ;

208

cnt2 = (r2 − 1 9 0) / 0 . 2 5 ;
i f (cnt3 >=0 && cnt3 <= 217 && cnt0 >=0 && cnt0 <= 217 && cnt2 >=0 && cnt2 <= 217)

p lot 3 (x , y , z , ’ sb ’)
hold on
counter2 = counter2 + 1 ;

end
end

end
end

counter2

f o r x=−50:−5:−250
f o r y = 5 0 : 5 : 2 5 0

f o r z=−220:5:−50
r1 = s q r t ((x−x1)^2 + (y−y1)^2 + (z−z1) ^ 2) ;
r4 = s q r t ((x−x4)^2 + (y−y4)^2 + (z−z4) ^ 2) ;
r2 = s q r t ((x−x2)^2 + (y−y2)^2 + (z−z2) ^ 2) ;
cnt1 = (r1 − 1 9 0) / 0 . 2 5 ;
cnt4 = (r4 − 1 9 0) / 0 . 2 5 ;
cnt2 = (r2 − 1 9 0) / 0 . 2 5 ;
i f (cnt1 >=0 && cnt1 <= 217 && cnt4 >=0 && cnt4 <= 217 && cnt2 >=0 && cnt2 <= 217)

p lot 3 (x , y , z , ’ or ’)
hold on
counter3 = counter3 + 1 ;

end
end

end
end

counter3
%
% numtimes =1;
% fps =10;
% movie (M, 1 , fps)
%
% Now save the movie as an mpeg f i l e f o r use on the Web:
% map=colormap % Uses the prev ious ly defined colormap
% mpgwrite (M, map, ’ sstmovie . mpg’)

209

List of Figures

1.1
Walloid Robot, an ongoing project at ROBIN group, University of Oslo 3

2.1
left to right Max V a chain-driven climber using vacuum cups, devel-
oped at University of Aalen - Rest six legged welding robot using mag-
netic force, Developed at CSIC Madrid - Roma grasping robot, special-
ized for inspection in steel bridge, developed at University of Madrid . . 7

2.2
Operator works side by side with a climbing welding robot (on-site user). 9

2.3
Autonomous cleaning climbing robot for glass and solar panels. 10

2.4
Artificial intelligence and smart agents. 11

2.5
The components of an embedded system [27] 14

2.6
Number of incidents in UK offshore from 2006 - 2010 [32] 19

2.7
A:Bad weather condition | B:Shallow water platform 21

2.8
After being submerged in concentrated salt water for 5,000 hours, the
unprotected iron T-Bolt on the left is totally corroded and unusable. . . 23

2.9
Washing salt off equipment with high pressure water 23

3.1
From left to right: Walloid robot received part, Walloid 3D design, in-
house developed encoder (rotor and sensors), the implemented version
of in-house designed version of the encoder, prototype 28

3.2
Left to right: 1: Control system hardware | 2: Walloid arm 29

211

3.3
In-house built encoder, the rotor and the Sensors (A and B), together
both read the rotation of the rotor and transfer motion to the motor axel 30

3.4
Walloid Prismatic joint . 31

3.5
Walloid robot arm | 2: Motor-rotor-encoder design 32

3.6
Left to right: Arrow model of Walloid arm | Prismatic joint of the
robotic arm . 32

3.7
GPS positioning system . 33

3.8
Robot workspace caluclated in Matlab by the logic discovered and de-
veloped here . 34

3.9
A: Walloid arm | B: Top view of Walloid chassis with one arm(as the
received part was) . 35

3.10
The longer the feet extends, the lower the height of the robot gets (A) and
this means less place for overcoming obstacles | B: Maximum height of
Walloid . 36

3.11
Adjoining surfaces is a challenge and possibility can be a candidate for
future works . 37

3.12
Left to right: 1: Part-1 is thinner than part-2 which imposes a weak
point to the construction | 2: Weak points of rotor in ROBIN developed
encoder | 3: Motor overheating and breakage results 38

3.13
Left to right: 1: Better construction as new rotor design with thicker
walls, based on new jacket design | 2: The redesigned jacket giving
more space . 39

4.1
Top-Down view of DES, designed for Control Hardware System 43

4.2
Top-Down view of DNP designed, for Control algorithm 44

4.3
Top-Down view of autonomy level of developed DNP 45

212

5.1
Assembly of the designed end effector with the rest of Walloid chassis
design in Solidworks . 48

5.2
Left to right: 1-6: Early designs for X2 prototype | 7-8: Walloid end
effector designs . 49

5.3
Left to right: 1-2: semi-final End Effector design | 3-4: semi-final bolt
design . 49

5.4
Left to right: 1-2: Final end effector design | 3-4: Final bolt design . . . 50

5.5
Phase 1: Initial position | Phase 2: Rotated 90 degrees from initial
position | Phase 3: Rotated 180 degrees from initial position (final phase) 51

5.6
Slow climbing and its similarity with pull-up exercise 53

5.7
Optimized slow climbing . 54

5.8
Optimized slow climbing . 55

5.9
Faster variation of climbing gait . 57

5.10
Speed and Stability have opposite relation to eachother. The factor of
stability is based on minimum number of locked arms to the wall during
opeartion . 58

5.11
Left - Asus Eee 900 - Right, Raspberry Pi motherboard 60

5.12
Embedded system / Server communication 62

5.13
A: Arduino Mega with AVR Atmega 1280 B: Arduino Fio with AVR
Atmega 328P . 63

5.14
I2C schematic for inter-connection of Arduino boards 67

5.15
Implementation of I2C connection of micro-controllers | 2: Program
results of testing the I2C connection 68

5.16
Arduino star network . 69

213

5.17
Implementation plan for RxTx system configuration 70

5.18
Connecting three Arduino boards with Atemga AVR micro-controllers
together with RxTx ports . 71

5.19
Left: Power consumption for Bluetooth(BT), Ultra-wideband(UWB),
ZigBee and WiFi |Right: Normalized energy consumption for each
method [58] . 71

5.20
A: Xbee connecting with Serial protocol to Arduino board [67] | B:
Xbee pins [68] . 73

5.21
Implementation plan of ZigBee network 74

5.22
Robot-Server-Client System Specifications | Green boxes were imple-
mented, while purple boxes are abstract definitions 76

5.23
Simulation . 77

5.24
The industrial vision of a Robot - Server - Client 78

5.25
Combination of several network DAQ in rapid prototyping 0 | 2: Com-
bination of Several Local DAQ in rapid prototyping 1 | 3: The indus-
trial vision . 79

5.26
Early stage hand drawn GUI design for different stakeholders in a RSC
model . 79

5.27
A: Walloid arm | B: Walloid Java based standalone control panel 81

5.28
Multi thread programming, FIFO list 82

5.29
Control panel, simulated data flow, logging and simulation 83

5.30
Master & Slave Micro-Controller tasks 83

5.31
Distributed Navigation Program Flowchart 85

214

5.32
Simple pull-up climbing gait Power consumption before and after im-
plementation of Power Optimizer Algorithm (40% difference) 86

5.33
Optimized Algorithm can reduce power consumption in one robot stride
by 40%. Ts: Arms stride time, Tg: Grasp time, Pa: Arm Power Con-
sumption, Pm: Motor Power Consumption, Pc: Master Controller
(Core Micro-controller) Power Consumption 87

5.34
Web based Remote Control Panel, A:Developer |B:Operator |C:Expert 88

5.35
Ethernet shield used in web based CP test 89

5.36
Logging flowchart on server side and robot side 90

5.37
Communication protocol example between Server and Robot in RSC
model . 90

5.38
Workspace simulation with the Java CP and the arm 94

5.39
Different climbing gaits simulation 94

5.40
Optimized pull-up gait vs. simple pull-up gait 95

5.41
StatoilHydro experts looking at a virtual reality based on sensor read-
ings from bottom of the sea . 96

6.1
Walloid robot workspace with 5mm precision. 101

6.2
Final end effector design (blue) assembled with the rest of Walloid robot
parts. 101

6.3
Red line stands for simple pull-up(assumed as base of consumption),
blue for optimized pull-up and black for dragging. Optimized climbing
and dragging save steps (motor actuation), therefore beside time and
consequently speed they would be saving power as well. 102

6.4
Virtual presentation of climbing Gaits differences of speed 103

6.5
A: I2C - B: RS-232 - C:ZigBee . 104

215

6.6
Distributed Embedded System implemented by using ZigBee and servo
motors . 105

6.7
Web based Remote Control Panel, A:Developer |B:Operator |C:Expert 106

6.8
Simple pull-up climbing gait Power consumption before and after im-
plementation of Power Optimizer Algorithm (40% difference) 107

6.9
Processing simulations and Java CP were cooperting to connect to the
hardware. 108

7.1
The rotor on the right (black) was broken in a way that still could for-
ward the motor rotation to the rotary part, but no to the screw shaft . . 116

7.2
Polou Digital Distance Sensor - 2: Prismatic joint with distance meter
sensor - 3: Sensor - Micro-controller schematic 117

7.3
Left schematic, switching to spare battery with power loss - Right schematic,
switching to spare battery without power loss 118

7.4
Left to right: zero and ninety degrees angle with horizontal line | 2:
Gyro sensor [83] . 119

B.1
Walloid robot designs . 128

B.2
Bolt Design . 129

B.3
End effector design . 130

B.4
Spherical wrist design . 131

B.5
Proteus simulation of the DES, which wasn’t so successful due to the
complexity of the simulation process in Proteus 132

C.1
Robots moving in docking station to their place, being charged, main-
tained and software upgraded . 137

216

C.2
In case of continuous receiving signals polling can be faster, halting,
running interrupt functions, and retrieving system to the previous mode
is time consuming [92] . 142

C.3
Left to right : 1:Extrenal EEPROM memory |2: MicroSD shield for
Arduino boards| 3: microSD card . 143

217

Bibliography

218

Bibliography

[1] Daily Mail. 50 dead as oil rig capsizes and sinks
http://www.dailymail.co.uk, 2012 (accessed on 28.01.2012).

[2] CNBC. Cnbc, mexican gulf, 2010 (accessed on 02.03.2011).

[3] Dr. Thore Langeland. The norwegian oil industry association (2006) poten-
tial value of integrated operations on the norwegian shelf, 2011 (accessed
15.07.2011).

[4] Svein Vatland Arne Ulrik Bindingsbø. The tail io project improves opera-
tions. Touch Briefings, 5:46 – 51, 2008.

[5] Trond Michael Andersen Svein Vatland, Paula Doyle. Integrate operation
- http://library.abb.com/. Touch Briefings, 5:46 – 51, 2007.

[6] StatoilHydro. Case study: Io on the kristin platform, statoilhydro website
- http://www.statoil.com/, 2011 (accessed 17.09.2011).

[7] InTech. Oil companies of future - http://www.isa.org, 2012 (accessed on
29.01.2012).

[8] Mats Høvin. Walloid / x2 robots -
http://www.robotikk.com/reseach.html, 2009 (accessed 15.08.2011).

[9] Walloid weblog - http://walloid.blogspot.com. 2010.

[10] ABB. 10 good reasons to invest in robots -
http://www04.abb.com/global/seitp, 2011 (accessed on 02.10.2011).

[11] Kai Pfeiffer Birgit Graf. Mobile robotics for offshore automation. In Pro-
ceedings of the EURON/IARP International Workshop on Robotics for Risky In-
terventions and Surveillance of the Environment, Benicassim, Spain, January
2008.

219

[12] New Scientist. Foxconn aims for a million robot workers by 2014 -
http://www.newscientist.com/, 2011 (accessed on 04.08.2011).

[13] European Robotics research Network. White paper - industrial robot au-
tomation - http://www.euron.org/miscdocs/docs/euron2/year2/dr-14-
1-industry.pdf, 2012 (accessed on 23.01.2012).

[14] International Federation of Robotics. Industrial robots statistics -
www.ifr.org, 2012 (accessed on 23.01.2012).

[15] European Commission. Work on preparatory studies for
eco-design requirements of eups, lot 17 vacuum cleaners -
http://ec.europa.eu/energy/efficiency/studies, 2012 (accessed on
23.01.2012).

[16] S. Trujillo, B. Heyneman, and M. Cutkosky. Constrained convergent gait
regulation for a climbing robot. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 5243 –5249, may 2010.

[17] Thomas A. Potts George I. Matsumoto. Two ways of researching the un-
derwater world. 31, 2010.

[18] Paal Johan From. Off-shore robotics, robust and optimal solutions for au-
tonomous operation. PhD Thesis, Norwegian University of Science and Tech-
nology Press, 2010, 312, 2010.

[19] StatoilHydro. Statoilhydro website, integrated operation -
http://www.statoil.com/, 2011 (accessed 16.09.2011).

[20] K. Berns, C. Hillenbr, and T. Luksch. Climbing robots for commercial ap-
plications - a survey, 2003.

[21] A. Steinfeld. Interface lessons for fully and semi-autonomous mobile
robots. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 3, pages 2752 – 2757 Vol.3, april-1 may
2004.

[22] S. Trujillo, B. Heyneman, and M. Cutkosky. Constrained convergent gait
regulation for a climbing robot. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 5243 –5249, may 2010.

[23] R.T. Pack, Jr. Christopher, J.L., and K. Kawamura. A rubbertuator-based
structure-climbing inspection robot. In Robotics and Automation, 1997. Pro-
ceedings., 1997 IEEE International Conference on, volume 3, pages 1869 –1874
vol.3, apr 1997.

220

[24] George A. Bekey. Autonomous Robots, page 560. The MIT Press, 1 edition,
2005.

[25] Peter Norvig Stuart Russell. AI a mordern approach, page 1152. Prentice
Hall, 2 edition, 2009.

[26] Ørjan G. Martinsen. PC-basert instrumentering og mikrokontrollere, page 232.
Gyldendal akademisk, 1 edition, 2006.

[27] Raj Kamal. Embedded Systems: Architecture, Programming and Design, page
704. McGraw-Hill Education (India), 2 edition, 2009.

[28] British Petroleum. Remotely operated vehicles, bp report -
http://www.bp.com/, 2011 (accessed on 02.10.2011).

[29] Digital Energy journal. Integrate operations at kristin -
http://c183554.r54.cf1.rackcdn.com/novdec07web.pdf. Digital Energy
journal, November - December 2007, 44:2 – 3, 2007.

[30] Reuters. Reuters offshore incident timeline, 2010 (accessed on 11.04.2011).

[31] Bente E. Moen Tone Morken, Ingrid Sivesind Mehlum. Work-related mus-
culoskeletal disorders in norway’s offshore petroleum industry. Oxford
University Press on behalf of the Society of Occupational Medicine, 6, 2007.

[32] Health and UK Safety Executive. Offshore injury, ill health and incident
statistics - http://www.hse.gov.uk/, 2010 (accessed on 11.04.2011).

[33] R. Mayor G. Bright, D. Ferreira. Automated pipe inspection robot. Indus-
trial Robot, 24(4):285–289, 1997.

[34] Erik Kyrkjebø, Pål Liljebäck, and Aksel A. Transeth. A robotic concept
for remote inspection and maintenance on oil platforms. ASME Conference
Proceedings, 2009(43413):667–674, 2009.

[35] M. Stratmann T. Kamimuraa. The influence of chromium on the atmo-
spheric corrosion of steel. 1999.

[36] GMT. Mil-std-810 - http://www.dtc.army.mil/navigator/, (accessed on
11.10.2011).

[37] Magnus Lange. Study and development of manipulators in an academic
environment. Master Project, University of Oslo 2011, 170, 2011.

[38] Abb robotstudio http://www.abb.com/product/. visited 2012.01.22.

221

[39] Motoman motosim http://www.motoman.com/products/software/. vis-
ited 2012.01.220.

[40] UiO ROBIN Group, IFI. Robin group wiki page,
http://robin.wiki.ifi.uio.no, (accessed on 01.04.2011).

[41] Object Co. Object connex 500 - http://www.objet.com, 2011 (accessed on
01.04.2011).

[42] Lars Skaret. A stewart platform based replicating rapid prototyping sys-
tem with biologically inspired path-optimization. Master Project, University
of Oslo 2011, 134, 2011.

[43] O. Unver, A. Uneri, A. Aydemir, and M. Sitti. Geckobot: a gecko inspired
climbing robot using elastomer adhesives. In Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 2329 –
2335, may 2006.

[44] Sangbae Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M.R.
Cutkosky. Smooth vertical surface climbing with directional adhesion.
Robotics, IEEE Transactions on, 24(1):65 –74, feb. 2008.

[45] Asus Co. Asus eee - http://uk.asus.com/eee/, 2011 (accessed on
22.09.2011).

[46] Raspberry Pi Foundation. Raspberry pi -
http://www.raspberrypi.org/sample-page, 2011 (accessed on 22.09.2011).

[47] Atmel. Atmel - http://www.atmel.com, 2011 (accessed on 18.08.2011).

[48] Arduino. Arduino website - http://www.arduino.cc/en/guide/introduction,
2011 (accessed on 23.09.2011).

[49] Arduino. Arduino website, reference page -
http://www.arduino.cc/en/reference/homepage, 2011 (accessed on
01.07.2011).

[50] Sparkfun. Wifly shield - http://www.sparkfun.com/products/9954, 2011
(accessed on 29.09.2011).

[51] Sparkfun. Sparkfun can-bus shield -
http://www.sparkfun.com/products/10039, 2011 (accessed on
29.09.2011).

222

[52] Jonathan W. Valvano. Embedded Microcomputer Systems: Real Time Interfac-
ing, page 816. CL-Engineering, 3 edition, 2011.

[53] Arduino. I2c/wire library - http://arduino.cc/, 2012 (accessed on
20.01.2012).

[54] Ieee 802.3 http://www.ieee802.org/3/. visited 2011.12.22.

[55] Jan L. Harrington. Ethernet Networking for the Small Office and Professional
Home Office, page 352. Morgan Kaufmann, 3 edition, 2007.

[56] Arduino Ethernet Shield. Arduino ethernet shield -
http://www.arduino.cc/en/main/arduinoethernetshield, 2011 (accessed
on 15.07.2011).

[57] David Russell and Mitchell Thornton. Introduction to Embedded Systems:
Using ANSI C and the Arduino Development Environment (Synthesis Lectures
on Digital Circuits and Systems), page 276. Morgan and Claypool Publishers,
1 edition, 2010.

[58] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A comparative study
of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. In Industrial Elec-
tronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pages
46 –51, nov. 2007.

[59] Monroe Schlessinger and Irving J. Spiro. Infrared Technology Fundamentals
(Optical Science and Engineering), page 480. CRC Press, 2 edition, 1994.

[60] J.M. Kahn and J.R. Barry. Wireless infrared communications. In Proceedings
of the IEEE, volume 85, pages 265 – 298, 1997.

[61] Jens Eliasson, Per Lindgren, and Jerker Delsing. A bluetooth-based sensor
node for low-power ad hoc networks. Journal of Computers, 3(5), 2008.

[62] Philippe Bonnet, Allan Beaufour, Mads Bondo Dydensborg, and Martin
Leopold. Bluetooth-based sensor networks. SIGMOD Rec., 32:35–40, De-
cember 2003.

[63] Jens Eliasson, Per Lindgren, and Jerker Delsing. A bluetooth-based sensor
node for low-power ad hoc networks. Journal of Computers, 3(5), 2008.

[64] C. Evans-Pughe. Bzzzz zzz [zigbee wireless standard]. IEE Review, 49(3):28
– 31, march 2003.

[65] ZigBee Alliance. Zigbee technology features, 2011 (accessed on 16.10.2011).

223

[66] ZigBee Alliance. Zigbee specifications, http://www.zigbee.org/, 2011 (ac-
cessed on 16.10.2011).

[67] Bildr. Xbee, bildr.org, 2012 (accessed on 13.01.2012).

[68] RobotShop. Xbee, robotshop - http://www.robotshop.com, 2012 (accessed
on 13.01.2012).

[69] Java.com. Java programming language -
http://www.java.com/en/about/, 2012 (accessed on 19.01.2012).

[70] Oracle. Java ee - http://www.oracle.com/technetwork/java/, 2012 (ac-
cessed on 19.01.2012).

[71] Processing Org. Processing language - http://processing.org/, 2011 (ac-
cessed on 18.08.2011).

[72] Processing Org. Processing features - http://processing.org/about/, 2011
(accessed on 18.08.2011).

[73] Rxtx library used in java - http://rxtx.qbang.org. 2011.

[74] Arduino. Arduino-avr sleep mode, http://arduino.cc/, 2012 (accessed on
05.01.2012).

[75] Atmel. Avr atmel sleep mode - http://www.atmel.com, 2012 (accessed on
10.01.2012).

[76] Mikihiko Ohnari. Simulation Engineering, page 190. Distributor in the USA
and Canada, IOS Press, 1 edition, 1998.

[77] Delfoi simulator http://www.delfoi.com/. visited 2012.01.22.

[78] Curtis Blais, Don Brutzman, Doug Horner, and Major Shane Nicklaus.
Web-based 3d technology for scenario authoring and visualization: The
savage project. In The Interservice/Industry Training, Simulation and Edu-
cation Conference (I/ITSEC), volume 2001 - Conference Theme: Warfighter
Readiness Through Innovative Training Technology, 2001.

[79] Microsoft flight simulator http://www.microsoft.com/games/fsinsider/.
visited 2012.01.22.

[80] Flyit http://www.flyit.com/. visited 2012.01.22.

224

[81] Nasa helping pilots see through ’soup’ -
http://www.nasa.gov/centers/langley/news/factsheets/soup.html.
visited 2012.01.22.

[82] InterSil. Icl7673 http://www.intersil.com/, 2012 (accessed on 12.01.2012).

[83] Sparkfun. Dual axis gyro - idg500, sparkfun -
http://www.sparkfun.com/products/9070, 2011 (accessed on 12.10.2011).

[84] Office of Naval Research. Hull bug - http://www.onr.navy.mil, 2011 (ac-
cessed on 21.05.2011).

[85] Robotic technologies of Tennessee. Tennessee climbing robot -
http://www.robotictechtn.com, 2011 (accessed on 03.08.2011).

[86] Serbot Swiss Innovation. Gekko junior g1 - http://www.serbot.ch, 2011
(accessed on 05.10.2011).

[87] Serbot Swiss Innovation. Solar power plants - http://www.serbot.ch, 2011
(accessed on 05.10.2011).

[88] URAKAMI Research and Development. Ua - abrasives blast cleaning -
http://www.urakami.co.jp, 2011 (accessed on 05.08.2011).

[89] URAKAMI Research and Development. Ud - cleaning / polishing / in-
spection - http://www.urakami.co.jp, 2011 (accessed on 05.08.2011).

[90] URAKAMI Research and Development. Um - surface polishing -
http://www.urakami.co.jp, 2011 (accessed on 05.08.2011).

[91] Robotic technologies of Tennessee. Mrws robot - http://www.nsrp.org,
2011 (accessed on 03.08.2011).

[92] Livermore Computing Center Super-Computers. Mpi performance -
https://computing.llnl.gov, 2011 (accessed on 19.10.2011).

[93] Tronixstuff weblog. Eeprom lifespan - http://tronixstuff.wordpress.com/,
2011 (accessed on 20.06.2011).

225

