175 research outputs found

    Improvement for detection of microcalcifications through clustering algorithms and artificial neural networks

    Get PDF
    A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detectio

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    PERFORMANCE OF A CAD SCHEME APPLIED TO IMAGES OBTAINED FROM MAMMOGRAPHIC FILM DIGITIZATION AND FULL-FIELD DIGITAL MAMMOGRAPHY (FFDM)

    Full text link

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Studies on deep learning approach in breast lesions detection and cancer diagnosis in mammograms

    Get PDF
    Breast cancer accounts for the largest proportion of newly diagnosed cancers in women recently. Early diagnosis of breast cancer can improve treatment outcomes and reduce mortality. Mammography is convenient and reliable, which is the most commonly used method for breast cancer screening. However, manual examinations are limited by the cost and experience of radiologists, which introduce a high false positive rate and false examination. Therefore, a high-performance computer-aided diagnosis (CAD) system is significant for lesions detection and cancer diagnosis. Traditional CADs for cancer diagnosis require a large number of features selected manually and remain a high false positive rate. The methods based on deep learning can automatically extract image features through the network, but their performance is limited by the problems of multicenter data biases, the complexity of lesion features, and the high cost of annotations. Therefore, it is necessary to propose a CAD system to improve the ability of lesion detection and cancer diagnosis, which is optimized for the above problems. This thesis aims to utilize deep learning methods to improve the CADs' performance and effectiveness of lesion detection and cancer diagnosis. Starting from the detection of multi-type lesions using deep learning methods based on full consideration of characteristics of mammography, this thesis explores the detection method of microcalcification based on multiscale feature fusion and the detection method of mass based on multi-view enhancing. Then, a classification method based on multi-instance learning is developed, which integrates the detection results from the above methods, to realize the precise lesions detection and cancer diagnosis in mammography. For the detection of microcalcification, a microcalcification detection network named MCDNet is proposed to overcome the problems of multicenter data biases, the low resolution of network inputs, and scale differences between microcalcifications. In MCDNet, Adaptive Image Adjustment mitigates the impact of multicenter biases and maximizes the input effective pixels. Then, the proposed pyramid network with shortcut connections ensures that the feature maps for detection contain more precise localization and classification information about multiscale objects. In the structure, trainable Weighted Feature Fusion is proposed to improve the detection performance of both scale objects by learning the contribution of feature maps in different stages. The experiments show that MCDNet outperforms other methods on robustness and precision. In case the average number of false positives per image is 1, the recall rates of benign and malignant microcalcification are 96.8% and 98.9%, respectively. MCDNet can effectively help radiologists detect microcalcifications in clinical applications. For the detection of breast masses, a weakly supervised multi-view enhancing mass detection network named MVMDNet is proposed to solve the lack of lesion-level labels. MVMDNet can be trained on the image-level labeled dataset and extract the extra localization information by exploring the geometric relation between multi-view mammograms. In Multi-view Enhancing, Spatial Correlation Attention is proposed to extract correspondent location information between different views while Sigmoid Weighted Fusion module fuse diagnostic and auxiliary features to improve the precision of localization. CAM-based Detection module is proposed to provide detections for mass through the classification labels. The results of experiments on both in-house dataset and public dataset, [email protected] and [email protected] (recall rate@average number of false positive per image), demonstrate MVMDNet achieves state-of-art performances among weakly supervised methods and has robust generalization ability to alleviate the multicenter biases. In the study of cancer diagnosis, a breast cancer classification network named CancerDNet based on Multi-instance Learning is proposed. CancerDNet successfully solves the problem that the features of lesions are complex in whole image classification utilizing the lesion detection results from the previous chapters. Whole Case Bag Learning is proposed to combined the features extracted from four-view, which works like a radiologist to realize the classification of each case. Low-capacity Instance Learning and High-capacity Instance Learning successfully integrate the detections of multi-type lesions into the CancerDNet, so that the model can fully consider lesions with complex features in the classification task. CancerDNet achieves the AUC of 0.907 and AUC of 0.925 on the in-house and the public datasets, respectively, which is better than current methods. The results show that CancerDNet achieves a high-performance cancer diagnosis. In the works of the above three parts, this thesis fully considers the characteristics of mammograms and proposes methods based on deep learning for lesions detection and cancer diagnosis. The results of experiments on in-house and public datasets show that the methods proposed in this thesis achieve the state-of-the-art in the microcalcifications detection, masses detection, and the case-level classification of cancer and have a strong ability of multicenter generalization. The results also prove that the methods proposed in this thesis can effectively assist radiologists in making the diagnosis while saving labor costs

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Performance of a CAD scheme applied to images obtained from mammographic film digitization and full-field digital mammography (FFDM).

    Get PDF
    This work has as purpose to compare the effects of a CAD scheme applied to digitized and \ud direct digital mamograms sets. A routine designed to be applied to mammogram in \ud DICOM standard was developed and a schema based on the Watershed Transform to \ud masses detection was applied to 252 ROIs from 130 digitized mammograms, resulting in \ud 92% of true positive and 10% of false positives. For clustered microcalcifications \ud detection, another procedure was applied to 165 ROIs from 120 mammograms, resulting in \ud 93% of true positive and 16% of false positive. By using the same procedures to 154 \ud digital mammograms obtained from FFDM, the rates have shown a little decrease in the \ud scheme performance: 89% of true positive and 16% of false positive for masses detection; \ud 90% of true positive and 27% of false positive for clusters detection. Although the tests \ud with digital mammograms have been carried with a smaller number of images and \ud different cases compared to the digitized ones, including several dense breasts images, the \ud results can be considered comparable, mainly forclustered microcalcifications detection \ud with a difference of only 3% between the sensibility rates for the both images sets. Another \ud important feature affecting these results is the contrast difference between the two images \ud set. This implies the need of extensive investigations not only with a larger number of \ud cases from FFDM but also on the parameters related to its image acquisition as well as to \ud its corresponding processing.Este trabalho tem como objetivo comparar os resultados de um esquema CAD aplicado em \ud conjunto de mamografias digitalizadas e em um conjunto de mamografias obtidas de um \ud mamógrafo digital. Para extrair as imagens do padrão DICOM, padrão utilizado pelos \ud mamógrafos digitais, uma rotina computacional foi desenvolvida. Para a detecção de \ud nódulos, um esquema baseado em Transforma Watershed foi aplicado a 252 regiões de \ud interesse (ROIs) de 130 mamografias digitalizadas, resultando em 92% de verdadeiro \ud positivo e 10%de falsos positivos. Para a detecção de microcalcificações agrupadas, outro \ud procedimento foi aplicado a165 ROIs extraídas de 120 mamografias digitalizadas, \ud resultando em 93% de verdadeiro positivo e 16% de falso positivo. Ao utilizar os mesmos \ud procedimentos para154 mamografias digitais obtidas a partir de um FFDM, as taxas \ud mostraram uma diminuição pequena no desempenho: 89% do verdadeiro positivo e 16% \ud de falso positivo para a detecção de nódulos, e 90% de verdadeiro positivo e 27% de falsos \ud positivo para a detecção de clusters de microcalcificações. Embora os testes com \ud mamografias digitais tenham sido realizados com um menor número de imagens e casos \ud diferentes em comparação com os digitalizados, incluindo várias imagens de mamas \ud densas, os resultados podem ser considerados comparáveis, principalmente para a detecção \ud de clusters de microcalcificações com uma diferença de apenas 3% entre as taxas de \ud sensibilidade para as imagens dos dois conjuntos. Outra característica importante que afeta \ud esses resultados é a diferença de contraste dos dois grupos de imagens analisados. Isto \ud implica na necessidade de extensas investigações não só com um maior número de casos \ud de mamografias digitais, mas também um estudo sobre os parâmetros relacionados a \ud aquisição da imagem, bem como para o seu processamentoCNPqFAPESPHospital of Clinics in Botucatu/S
    • …
    corecore