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Breast cancer accounts for the largest proportion of newly diagnosed cancers in women recently. Early 

diagnosis of breast cancer can improve treatment outcomes and reduce mortality. Mammography is 

convenient and reliable, which is the most commonly used method for breast cancer screening. 

However, manual examinations are limited by the cost and experience of radiologists, which introduce 

a high false positive rate and false examination. Therefore, a high-performance computer-aided 

diagnosis (CAD) system is significant for lesions detection and cancer diagnosis. Traditional CADs 

for cancer diagnosis require a large number of features selected manually and remain a high false 

positive rate. The methods based on deep learning can automatically extract image features through 

the network, but their performance is limited by the problems of multicenter data biases, the 

complexity of lesion features, and the high cost of annotations. Therefore, it is necessary to propose a 

CAD system to improve the ability of lesion detection and cancer diagnosis, which is optimized for 

the above problems. 

This thesis aims to utilize deep learning methods to improve the CADs' performance and effectiveness 

of lesion detection and cancer diagnosis. Starting from the detection of multi-type lesions using deep 

learning methods based on full consideration of characteristics of mammography, this thesis explores 

the detection method of microcalcification based on multiscale feature fusion and the detection 

method of mass based on multi-view enhancing. Then, a classification method based on multi-instance 

learning is developed, which integrates the detection results from the above methods, to realize the 

precise lesions detection and cancer diagnosis in mammography.  

For the detection of microcalcification, a microcalcification detection network named MCDNet is 

proposed to overcome the problems of multicenter data biases, the low resolution of network inputs, 

and scale differences between microcalcifications. In MCDNet, Adaptive Image Adjustment mitigates 

the impact of multicenter biases and maximizes the input effective pixels. Then, the proposed pyramid 

network with shortcut connections ensures that the feature maps for detection contain more precise 

localization and classification information about multiscale objects. In the structure, trainable 

Weighted Feature Fusion is proposed to improve the detection performance of both scale objects by 

learning the contribution of feature maps in different stages. The experiments show that MCDNet 

outperforms other methods on robustness and precision. In case the average number of false positives 

per image is 1, the recall rates of benign and malignant microcalcification are 96.8% and 98.9%, 

respectively. MCDNet can effectively help radiologists detect microcalcifications in clinical 

applications. 

For the detection of breast masses, a weakly supervised multi-view enhancing mass detection network 

named MVMDNet is proposed to solve the lack of lesion-level labels. MVMDNet can be trained on 

the image-level labeled dataset and extract the extra localization information by exploring the 

geometric relation between multi-view mammograms. In Multi-view Enhancing, Spatial Correlation 

Attention is proposed to extract correspondent location information between different views while 

Sigmoid Weighted Fusion module fuse diagnostic and auxiliary features to improve the precision of 

localization. CAM-based Detection module is proposed to provide detections for mass through the 

classification labels. The results of experiments on both in-house dataset and public dataset, 

0.92@0.52 and 0.96@0.77 (recall rate@average number of false positive per image), demonstrate 



 
 

MVMDNet achieves state-of-art performances among weakly supervised methods and has robust 

generalization ability to alleviate the multicenter biases. 

In the study of cancer diagnosis, a breast cancer classification network named CancerDNet based on 

Multi-instance Learning is proposed. CancerDNet successfully solves the problem that the features of 

lesions are complex in whole image classification utilizing the lesion detection results from the 

previous chapters. Whole Case Bag Learning is proposed to combined the features extracted from 

four-view, which works like a radiologist to realize the classification of each case. Low-capacity 

Instance Learning and High-capacity Instance Learning successfully integrate the detections of multi-

type lesions into the CancerDNet, so that the model can fully consider lesions with complex features 

in the classification task. CancerDNet achieves the AUC of 0.907 and AUC of 0.925 on the in-house 

and the public datasets, respectively, which is better than current methods. The results show that 

CancerDNet achieves a high-performance cancer diagnosis. 

In the works of the above three parts, this thesis fully considers the characteristics of mammograms 

and proposes methods based on deep learning for lesions detection and cancer diagnosis. The results 

of experiments on in-house and public datasets show that the methods proposed in this thesis achieve 

the state-of-the-art in the microcalcifications detection, masses detection, and the case-level 

classification of cancer and have a strong ability of multicenter generalization. The results also prove 

that the methods proposed in this thesis can effectively assist radiologists in making the diagnosis 

while saving labor costs. 
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1 Chapter 1: Introduction 

1.1 Background 

Breast cancer accounts for around 31% of newly diagnosed cancers in women worldwide and 

is the second leading cause of cancer-related deaths among women globally[1]. In China, 

breast cancer is also the most common cancer diagnosed in women and there will be 429,105 

new cases in 2022 by estimation[2]. Fortunately, early detection of breast cancer has been 

proven to enhance treatment results and reduce mortality[3-4]. The 5-year survival rate of 

patients who have early treatments is significantly higher than that of patients with advanced 

disease, which can reach more than 90%[5]. 

Breast tissue biopsy is a clinical method for diagnosing breast cancer, and its results are 

regarded as the ground truth for cancer diagnosis. However, the biopsy is invasive and not 

suitable for screening. Medical Imaging, which can present the suspicious lesions associated 

with cancer, such as microcalcification and mass, is an ideal method for breast cancer 

screening because of its non-invasiveness, independence, and high diagnostic performance. 

Therefore, imaging is a popular modality presently used for breast cancer screening[6]. 

Imaging generally includes ultrasonography, breast magnetic resonance imaging (MRI), and 

Mammography[7], and can present the suspicious lesion. 

Ultrasonography: The use of ultrasound imaging to diagnose breast cancer is an important 

method[8]. However, most microcalcifications are not detectable by breast 

ultrasonography[9]. 

Breast MRI: It is not commonly used for routine screening because of its high cost. When 

mammography and ultrasonography fail to diagnose suspicious nipple discharge, MRI may be 

employed[10]. 

Mammography: The mammography can better display microcalcifications with high imaging 

resolution while it is inexpensive and easy to be implanted. Therefore, it is recommended as 

the primary method for screening early breast cancer in current guidelines[11]. 

Currently, mammographic examinations are mainly performed by radiologists by reading 

mammograms. However, the different experiences of radiologists, the decreased attention due 

to the prolonged reading, and the lesion features that are difficult to detect in dense breast 

tissue result in errors in diagnosis outcomes. In these false examinations, benign lesions can 
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be misinterpreted as cancer (false positive), while malignancies may be ignored (false 

negative). As a result, radiologists fail to detect about 15% of breast cancers, which more 

likely appears in cases of women with dense breasts[12]. One of the solutions is blinded 

double reading, which improves the cancer detection rate. However, double reading is not a 

cost-effective choice, according to multiple studies[11-14].  

Traditional computer-aided diagnosis (CAD) systems can be regarded as an alternate 

framework that functions as a second reader to improve interpretation performance. 

According to research in the early years, using traditional CAD systems increase the 

efficiency in the detection of cancer by improving performance in detecting microcalcification 

and mass in mammograms[15-16]. Instead of pre-taught algorithms used by traditional CADs, 

the new generation of CADs systems based on deep learning can integrate cancer features that 

reflect underlying pathophysiology and are difficult to be found by the naked eye in images. 

More research on CAD based on deep learning has emerged in recent years and achieved 

great performance[17]. Thus, a high-performance deep learning approach for breast lesions 

detection and cancer diagnosis in mammography is significant for the reduction of 

radiologists’ workload and improvement of diagnostic accuracy.  

1.2 Features of Mammography 

Mammography uses a low-dose X-ray to make projections of the organizational structure of 

the breast in different views as shown in Figure 1.1. Generally, there are two projection views 

in standard mammography: the craniocaudal (CC) view is a projection that displays the 

medial and external lateral portions of the breast, while the mediolateral oblique (MLO) view 

is the most important projection taken from the oblique view. Because the different lesions or 

tissues appear in different grayscales after processing the projection signal in mammography, 

the lesions or cancer can be detected in mammograms. The two most significant signs of 

malignancy in mammograms are microcalcifications and masse.  
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Figure 1.1 Demonstration of mammograms and breast lesions. The first and second rows show two 
cases with microcalcification and mass, respectively. 

When utilizing the deep learning approach for lesion detection or cancer diagnosis in 

mammography, it is important to fully consider the characteristics of mammograms and 

lesions, and develop appropriate methods to assist radiologists to diagnose. The main 

characteristics and related issues of mammograms and lesions are as follows: 

Microcalcification: Breast microcalcifications are specks of calcium scattered in the breast 

and generally appear as white high-density tissue in mammograms. Different types of 

microcalcification (benign or malignant) need to be distinguished by distribution and 

morphology[18]. More than 30% of breast cancer are associated with microcalcifications 

according to the study, and this proportion will increase to more than 70% when only 

considering cancer in situ[19]. However, microcalcifications generally have poor contrast 

with surrounding breast tissue, especially in young women[20]. Benign microcalcifications 

are extremely tiny while malignant microcalcifications are scattered in tissue. It is not very 

easy to find and distinguish these microcalcifications with the naked eye, which brings 

difficulties to the timely detection and diagnosis in clinical.  

Mass: Breast mass is a lump in the breast. In mammograms, radiologists diagnose whether the 

mass is benign or malignant based on the shape, margin, and density of the mass[18]. It is 

difficult to find the border between the masses and normal tissue. because breast masses have 

similar and ambiguous characteristics with the normal tissue and could even be occluded by 
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normal tissue in some cases. Due to the above reasons, mass detection in mammograms is 

harder than microcalcification detection, which is verified by the studies[21]. 

High Resolution: Mammograms have low noise and high-resolution, close to 4000*3000 with 

12 million pixels, compared to ultrasound images which contain speckle noise that destroys 

image quality[22]. However, high-resolution images with small objects, such as some 

microcalcifications that are only about 50 pixels, are the challenging task for deep learning-

based image detection and classification. One reason is that the computing resources and the 

inference times of CAD greatly increase as the size of the image increases, which depends on 

the architecture of the deep learning model. The other reason is the detection performance of 

small-size objects is far from satisfactory[23]. 

Projection View: The principle of mammography leads to some situations that lesions, 

especially breast masses, are occluded by other breast tissue. In another aspect, multi-

projection views provide compensation information for lesions. 

Multicenter Biases: Different clinical settings (imaging protocol, scanner, etc.) of 

mammography provide multicenter biases in mammograms. The most significant bias among 

multiple centers is the changes in intensity values, which leads to the different contrast 

between the fibroglandular tissues and the adipose region of the breast in different 

mammograms. According to the study, more than 94% of published studies in AI CAD of 

medical images did not include multicenter validation, which is the reason that these studies 

are difficult to deploy in changing clinical applications[24]. 

1.3 Related Works  

It is necessary to fully consider the above characteristics of mammograms and lesions, and 

find the targeted solutions when studying on deep learning approach for lesion detection and 

cancer diagnosis. The cancer-related lesions in mammograms are complex as shown, which 

are multiple classes objectively. Thus, it is hard to directly perform binary classification on 

such images in deep learning. The idea of this thesis for the above problems is to separate the 

direct classification into two steps: lesions detection and cancer classification based on the 

detection. The related works about each part are as follows. 
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1.3.1 Microcalcification Detection 

The traditional CAD of microcalcification follows similar image processing steps: images 

augmentation, extraction of regions of interest (ROI), features calculation, and classification. 

To identify microcalcification, the early method clustered the area, based on the feature of 

appearances, such as shape and gray, by setting a gray threshold[25]. However, this method 

faced a high false positive rate because the gray threshold for segmentation is hard to be 

selected and features used for classification are simple. With the development of machine 

learning, researchers use different classifiers, such as decision trees, support vector machines 

(SVM), and artificial neural networks, to map features to higher-dimensional spaces for 

classification[26-27]. Among these classifiers, SVM is the most widely used[28]. Phadke et 

al. used SVM to classify manually ROI of abnormal tissues by fusion features consisting of 

local features and global features[29]. However, traditional image processing ROI selection is 

not robust and manual features design should select the best features among many features by 

performing lots of experiments. 

In recent years, deep learning has been widely used in medical image processing[30]. 

Compared with traditional methods, deep learning uses the convolutional neural network 

(CNN) and its variants to automatically learn and extract the most relevant features. Zhang et 

al. proposed a cascaded network that included a false positive reduction network for 

microcalcifications[31]. Xi et al. calculated class activation mappings (CAMs) to create a 

heatmap, which plays a role in localizing microcalcifications[32]. Both two works regard 

detection as a process involving multiple stages, which are difficult to optimize for complex 

tasks. Ayelet et al. first presented an integrated detection network based on Faster R-CNN that 

combines positioning and classification, and a cascade classifier is added to the end to further 

reduce the false positive rate of the network[33]. Cao et al. adopted a segmentation network to 

detect individual microcalcifications. A 512*512 sliding window was used to perform 

detection on the whole mammogram, but clustered microcalcifications exceeding the size of 

the chosen slice were not included in the training stage[34]. In the above works, various 

features of multiscale objects limit the performance of their methods. 

1.3.2 Mass Detection 

Full-supervised deep learning methods are the most commonly utilized in CAD because of 

their high performance[35]. However, the collection of high-quality annotations that 
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contributes to the high performance is time-consuming. Three weakly supervised methods are 

commonly used to alleviate the lack of annotations, including transfer learning, multiple 

instance learning, and class activation mapping[35-41]. Transfer learning approaches fine-

tuned the fully-supervised detection model to the dataset with weak annotation[37-38]. 

However, the supervised training stage still needs a large number of lesion annotations. 

Multiple instance learning (MIL) provides supervision for the entire bag instead of its 

instances. That is, instead of patch-level labels, the MIL approach for lesion detection simply 

requires image-level labels. Shen et al. proposed a Globally-Aware Multiple Instance 

Classifier with joint training of patches and whole images using image-level labels[39]. The 

performance is constrained by the loss design and the additional patches selection algorithms, 

which leads to a high false positive rate. Class Activation Mapping (CAM) techniques are 

innovated for the visual interpretation of CNN and applied in weakly-supervised detections in 

natural images[40]. Liang et al. utilized the self-training strategy in CAM for localization of 

breast masses[41]. However, the self-training strategy is difficult to find hard samples that 

occlude by healthy breast tissues which have similar grayscale to the mass. 

Some fully-supervised learning works focus on how to provide more additional information 

utilizing multi-view images. In early approaches, they do not provide end-to-end frameworks 

and the fusion step is applied after first stage detection[42-43]. Two-stage design is a 

disadvantage because the second stage is sensitive to the detection results and hard to be 

optimized. Ma et al. proposed an end-to-end model including a relation fusion module, where 

the extra cross-view information was extracted from patches[44]. However, the proposal of 

patches affects its performance easily. Liu et al. utilized the graph convolution network 

(GCN) to extract correspondence in multi-view mammograms mapped by nodes[45]. But the 

region-level correspondence extracted by the GCN is not precise due to the tissue deformation 

in the projection process. Inspired by the above works, we apply the idea of multi-view in the 

weakly supervised detection.  

1.3.3 Cancer Diagnosis 

The cancer diagnosis of CADs in mammography aims to help radiologists to determine the 

lesions in mammograms as benign or malignant. The deep learning methods for cancer 

diagnosis generally can be divided into two categories based on whether the input is ROI of 

lesion or is the entire mammogram. 
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One is the ROI-based classification, of which inputs are ROIs of abnormalities. Arevalo et al. 

proposed a mass classification network based on deep learning, which utilizes the SVM to 

follow the network to finetune the classification while Qiu et al. used the end-to-end CNN to 

realize the classification of mass patch[46-47]. Sun et al. developed a semi-supervised deep 

learning network, of which the accuracy can be improved by using a large amount of 

unlabeled data[48]. Morrell et al. proposed a fully convolutional network and deformable 

convolutional nets to improve the performance of CAD for mammography[49]. However, the 

above method based on ROI focuses only on binary classification of certain lesions, which 

faces the problem of the acquisition of lesion patches. The performance of these methods 

would be limited by the accuracy of the patch selection and obtaining accurate ROI patches 

manually is time-consuming. Thus, we consider taking another approach: the classification 

based on the whole image, of which inputs are whole images. In this type of approach, the 

binary classification indicates that the images contain or do not contain lesions associated 

with cancer. 

A binary classification that is directly performed on the whole image is easy to cause 

insufficient consideration of various lesions associated with cancer in mammograms. Thus, 

most works try to add lesion information in whole image classification. Carneiro et al. 

integrated six CNN models for multi-view mammograms with and without lesion masks to 

enhance the performance of the whole image classification for one side breast[50]. Dhungel et 

al proposed a multi-view deep residual neural network named mResNet for the classification 

of mammograms, which also concatenates the six images features in one fully connected 

layer[51]. Zhao et al. proposed a bi-lateral attention module and bi-projection attention 

module, which are more refined in designing the modules of multi-view relationships[52]. 

To optimize the feature extraction of whole image classification in the network, Shen et al. 

utilized the ROI patch pretraining the classification network while Shanms et al. 

simultaneously trains a GAN network that is trained on lesion patches and share a feature 

extraction backbone with the classification network[38,54]. Hu et al proposed a weighted 

MIL network with multiple gamma-corrected images input[55]. The above works focus only 

on the direct classification of one side breast or one image instead of the whole case. 

McKinney et al proposed an AI system to realize the whole case classification and make a 

comparison with radiologists. This AI system consists of three deep learning networks for 

lesion level, breast level, and case level classification respectively, which diagnose according 
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to the average score of three networks[56]. However, this scoring mechanism is not optimal 

for model integration.  

According to the above overview of works related to lesion detection and cancer diagnosis, 

some main challenges are still faced in current methods: Diversity of features of multiscale 

microcalcification in microcalcification detection; Lack of localization information in mass 

weakly supervised detection; Complexity of lesion features in whole image classification. Our 

methods are introduced next, which are proposed aiming to address these challenges.  

1.4 Our Work and Contributions 

In this thesis, we successfully develop a computer-aided diagnosis that can efficiently use 

existing clinical annotations to achieve the detection of multi-type lesions and help 

radiologists make the diagnosis in clinical. 

Figure 1.2 is the outline of the thesis. Firstly, stating from lesions detection, we propose a 

network for detection of microcalcification in mammography based on multiscale features 

fusion. Secondly, considering compensation information from multiple views, we propose a 

weakly supervised multi-view enhancing network for mass detection in mammography. 

Finally, utilizing the works of lesions detection motioned above, we propose a breast cancer 

classification network based on multi-instance learning, which achieves high-performance 

cancer diagnosis. 

 

Figure 1.2 Outline of the thesis work. 



14 
 

In the above outline of thesis work, the main contributions of this thesis can be summarized as 

follows: 

Aiming to overcome the problems of multicenter data bias, the high-resolution of 

mammograms, and scale differences between microcalcifications, a pyramid feature network 

for microcalcification detection (MCDNet) is proposed. In MCDNet, the Adaptive Image 

Adjustment mitigates the impact of multicenter biases and maximizes the input effective 

pixels. Then, the proposed shortcut connection pyramid network makes sure the detection 

ability of the network for multiscale objects. Based on the structure, Weighted Feature Fusion 

is proposed to improve the detection performance of both scale objects by learning the 

contribution of feature maps in different stages. The experiments show that MCDNet is more 

precise and robust than other methods in microcalcification detection, which can effectively 

help radiologists identify two types of microcalcifications in clinical applications. 

Aiming to solve the problem of the lack of lesion-level labels, a weakly supervised multi-

view enhancing mass detection network (MVMDNet) is proposed, which can be trained on 

the image-level labeled dataset to detect breast masses. The image preprocessing including 

Adaptive Image Adjustment makes sure the alignment of multi-view and reduces the biases. 

Multi-view Enhancing module is proposed to extract correspondent localization information 

between different views, and enhance these features by fusing diagnostic and auxiliary feature 

maps, which solve the lack of localization information in weakly supervised training with 

only image-level labels. CAM-based detection module is proposed to provide detections for 

mass through the enhanced localization information from Multi-view Enhancing modules. 

The experiments conducted on both in-house and public datasets demonstrate that MVMDNet 

achieves state-of-art performances and a robust generalization among weakly supervised 

methods. 

Aiming to face the complex features of multiple lesions in mammograms, a breast cancer 

diagnosis network based on Multi-instance Learning named CancerDNet is proposed to 

realize the full images classification for the whole case, which utilizes the lesion detection 

results from the previous chapters. The Whole Case Bag Learning is proposed to combined 

the features extracted from four-view mammograms and works as a radiologist to realize the 

classification of each case. Low-capacity Instance Learning and High-capacity Instance 

Learning successfully integrate the detections of multiple types of lesions, which are the 

works of chapters 2 and 3, into the CancerDNet, so that the model can fully consider lesions 
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with complex features in the classification task. The experiments conducted on both in-house 

and public datasets show that CancerDNet achieves a high-performance cancer diagnosis. 

1.5 Datasets and Implementation 

The datasets we used in this thesis include one in-house dataset and one public dataset. The 

in-house dataset is collected from Renji Hospital, Shanghai Jiao Tong University School of 

Medicine, which contains a total of 1491 cases. Informed consent was obtained from all 

individual participants included in the study. This study has been approved by the ethics 

committee of the Renji Hospital. The public dataset is INbreast, which contains a total of 115 

cases, and its usage has been authorized by the publisher[57]. Both these two datasets are full-

field digital mammography. However, the different clinical settings of these two datasets 

provide multicenter biases in mammograms. The most significant bias is the changes in 

intensity values, which leads to the different contrast between the normal and the abnormal 

tissues of the breast. As shown in Figure 1.1, the mammogram in the second row is from 

INbreast, where the contrast between mass and normal region is lower than that in the 

mammogram of the in-house dataset which is demonstrated in the first row. The details of the 

use of the datasets are described in each chapter. 

All experiments of this thesis are implemented on the deep learning framework, TensorFlow 

(https://www.tensorflow.org/), PyTorch (https://pytorch.org/), etc.  

1.6 Thesis Structure 

Chapter 1 is the introduction that introduces the relevant background of breast cancer 

diagnosis and the significance of deep learning-based computer-aided diagnosis in 

mammography screening. It also describes the related work and contributions of this thesis. 

Finally, the datasets and implementation platform are briefly introduced. 

Chapter 2 focuses on the detection of microcalcification, which is one of the important 

indicators of breast cancer. First, the development background of MCDNet is introduced, and 

then each contribution is explained in detail. The experiments that validate the performance of 

each contribution and whole network are shown with a discussion of the results.  

Chapter 3 introduces the detection of breast mass in mammography. Similarly, the 

background of how to solve the problem of the leak of labels is stated. Then, the innovation 

details of MVMDNet are explained with a detailed network structure. Finally, ablation studies 
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and comparison experiments are presented to demonstrate the performance of MVMDNet, 

and interpretation of the results is discussed. 

Chapter 4 introduces the CancerDNet, which is a cancer classification network based on the 

works of the previous two chapters. Firstly, the idea that how to realize the whole image 

classification is explained. Secondly, the methods of CancerDNet are illustrated with 

diagrams. Finally, comparative experiments are implemented, and a discussion of the above 

comparison results is presented. 

Chapter 5 is the conclusion and perspective. It summarizes the whole works of the thesis and 

proposes targeted improvement directions for some optimizable parts. 
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2 Chapter 2: Microcalcification Detection in Mammography Based 

on Multiscale Features Fusion 

2.1 Introduction 

Lesions detection can help the cancer diagnosis network focus on the regions or features, 

which is needed to consider when classifying mammograms. This chapter focuses on the 

detection of microcalcifications in mammograms. Mammograms generally display two types 

of microcalcifications. One appears as an amorphous clustered group and is strongly related to 

cancer. The other looks like tiny and individual points and is generally found in benign 

tumors[18]. High-precision detection for individual and clustered microcalcifications in 

mammography is important for the early diagnosis of breast cancer. However, individual 

microcalcifications are observed on a much smaller scale than clustered microcalcifications 

and the contrast between the microcalcification and the background tissue is generally 

low[20]. Therefore, it is time-consuming for radiologists to identify these microcalcifications, 

which introduces some error diagnoses.  

Some examples of microcalcifications are shown in Figure 2.1, images (a)-(c) are collected 

from the in-house dataset with the lesions labeled by radiologists using green bounding boxes. 

Image (d) is collected is from the INbreast dataset. Image (a) contains a large region of 

clustered microcalcifications while (b) contains a small region of clustered 

microcalcifications. Image (c) and (d) contain extremely tiny individual microcalcifications.  

 

Figure 2.1 Illustrations of microcalcifications. (a) and (b) demonstrate clustered microcalcifications. (c) 
and (d) demonstrate individual microcalcifications. 

A computer-aided detection (CAD) system can help radiologists improve efficiency and 

accuracy, which could detect lesions automatically. Widely used deep learning approaches 
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and their variants can automatically learn and extract the most relevant features[30]. 

However, the performances of related methods[31,34] are limited by several challenges. First, 

the performance of deep learning models is generally sensitive to the dataset and is limited by 

multicenter biases. As shown in Figure 2.1 (c) and (d), the contrast between 

microcalcifications and normal tissues are different, which results in poor robustness when 

conducting the model on other datasets. Second, the input images are generally resized to a 

low resolution due to the constrain of computational resources. Figure 2.1 (b) and (c) 

demonstrate the appearances of lesions presented in different resolutions, where the 

resolutions of patches in yellow boxes from top to bottom are original, 1/4, and 1/8, 

respectively. The edge features of small objects and the internal features of clustered 

microcalcifications are destroyed by the down resize operation and further lost during the 

convolutions of downsampling. A commonly used method is to crop the image into patches, 

which fail to detect the large-region clustered microcalcifications, such as image (a) in Figure 

2.1[33-34]. Third, the traditional CNN is weak for the detection of multiscale objects, such as 

the microcalcifications in this work. After feature propagation in CNN, the localization 

information and internal features are not precise. As a result, small objects cannot be detected 

while large objects are scattered.   

We propose a microcalcification detection network MCDNet to solve the above challenges, 

which realizes the precision detection of two types of microcalcification.  Firstly, a built-in 

image preprocessing named Adaptive Image Adjustment (AIA) is proposed to mitigate the 

multicenter biases. Second, a feature extraction and fusion structure, Shortcut Connection 

Pyramid Network (SCPN), is proposed to improve the propagation of the multiscale critical 

features more efficiently compared with the traditional feature pyramid network (FPN)[58]. 

Finally, a Weighted Feature Fusion (WFF) strategy is designed in SCPN to learn the 

contributions of feature maps that contain different scale information.                                                                                                                                                 

2.2 Detection Based on Multiscale Features Fusion 

2.2.1 Overview 

MCDNet consists of three parts. Firstly, AIA adjusts the input mammograms to leverage the 

impact of multicenter biases and maximize the effective pixels of the input. Secondly, the 

outputs of AIA are fed into SCPN, where different scale feature maps are fused by trainable 

weights of WFF to improve the ability of multiscale feature extraction. Next, two branches of 
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CNN predict the classes and generate precise boxes on the proposed region by the region 

proposal network (RPN). Finally, the detection results are presented on the origin 

mammograms. Figure 2.2 demonstrates the framework of MCDNet.  

 

Figure 2.2 The framework of MCDNet. 

2.2.2 Adaptive Image Adjustment 

As shown in Figure 2.3, AIA consists of standard histogram specification and adaptive image 

cropping. 

 

Figure 2.3 A demonstration of Adaptive Image Adjustment. 
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To ensure that the training and testing sets share a similar intensity distribution, a histogram 

specification is applied to match the histogram of different datasets. In the study, the public 

dataset is regarded as source mammograms while our in-house dataset is regarded as target 

mammograms. The cumulative distribution function (CDF) of the reference image 𝐹𝑆(·) and 

target image 𝐹𝑇(·) is calculated at first. Then, the gray level 𝐺𝑇 for which 𝐹𝑠(𝐺𝑠)  =  𝐹𝑇(𝐺𝑇) 

is found, so that the matching function is 𝑆(𝐺𝑠)  =  𝐺𝑇. If the values of the CDF are discrete, 

the nearest 𝐹𝑠(𝐺𝑠) is to be found. Finally, 𝑆(·) is applied to each pixel of the reference 

mammogram.  

Many ineffective pixels of full mammograms are useless for the detection of the object and 

waste training resources so that the non-breast region should be removed. Previous works 

which crop mammograms into several patches are proved to negatively impact the detection. 

Cropping according to a minimal rectangle is a simple and frequent strategy in other studies. 

However, it results in varied sizes, which causes image distortion when the fixed input size is 

used by the deep learning network. 

To mitigate this effect, we explore novel adaptive cropping rules implemented in AIA on the 

network's input and output ends. Because most breasts exist on the one side of mammograms, 

the picture is cropped from the middle in AIA. The cropping window automatically shifts if 

the breast region is more than half of the image. If the breast extends beyond the midline, as 

illustrated in Figure 2.3, the cropping window marked by green automatically shifts to the left 

to guarantee that the left edge of the cropping window marked by red is aligned with the 

breast's edge, and the size remains intact. Both cropped mammograms are sent into the 

training or detection queue at the same size. 

2.2.3 Shortcut Connection Pyramid Network 

Clustered microcalcifications in mammograms are typically one hundred times bigger than 

individual microcalcifications. Because clustered microcalcifications generally are dispersed 

throughout the breast, extra semantic information is required to retain the object's integrity 

during the detection. On the contrary, the localization of individual microcalcification 

necessitates additional edge features and shallow information from high-resolution feature 

maps. 

It's challenging to preserve valuable information on the same feature map layer level for both 

types of microcalcifications with distinct sizes at the same time for a generic CNN detection 
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network. Low-level features have more edges and accurate localization information during 

downsampling while high-level features have more spatial semantic information. We propose 

a multiscale feature pyramid architecture with a shortcut connection named SCPN inspired by 

the FPN to solve the multiscale object detection challenge. Feature maps are sampled and 

fused following the paths in SCPN to generate multiscale feature maps for prediction. 

Especially along with the shortcut connection that crosses over one layer, the required 

information is effectively propagated. 

This traditional pyramid structure is expressed as 𝑃𝑖  =  𝐶𝑜𝑛𝑣(𝐶𝑖 + 𝑅𝑒𝑠𝑖𝑧𝑒(𝑃𝑖+1)). In the 

formula, 𝑃𝑖 is the feature map in the upsampling and fusion process on which the RPN runs 

while 𝐶𝑖 is the feature map in the downsampling process as shown in Figure 2.2. Starting from 

𝐶4, the typical pyramid network prioritizes semantic and spatial features above edge features, 

as seen in Figure 2.4. Because of the addition of high-level feature maps 𝐶𝑖, we think that the 

high-level prediction feature maps 𝑃𝑖 include more worthless information for individual 

microcalcifications, which has detrimental impacts on localization. 

It is difficult to prediction feature maps that aliases numerous high-level feature maps, such as 

𝑃3, to get correct localization information in the traditional pyramid structure. As the 

comparison between Figure 2.4 (a) and (g), the localization of the individual 

microcalcification is not precise. 

 

Figure 2.4 The heatmaps in the traditional pyramid structure. (a)-(g) are feature maps. 

Figure 2.4 (f) shows the imprecise localization of individual microcalcifications in the 𝑃3 

layer. Our intuition is that minimizing the amount of confusing and useless information 

stacked in the 𝑃3 could enhance the localization precision of individual microcalcification. 

Therefore, we design a cascaded information propagation shortcut connection structure.  

 𝑃3  =  𝐶𝑜𝑛𝑣(𝐶3 + 𝑅𝑒𝑠𝑖𝑧𝑒(𝑃5)) (2.1) 
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Formula 2.1 shows that the quantity of aliased high-level information gained through the 

proposed shortcut connection over 𝑃4 is minimized. That is, the SCPN can minimize the high-

level feature maps contributions when the information flow is propagated in the network, such 

as 𝐶4, 𝑃5, 𝐶5, 𝑃6, and enhance the localization precision. Sematic and spatial information from 

high-level feature maps, on the other hand, is critical for ensuring the entire recognition of 

whole lesions for clustered microcalcifications. The key contributing feature map layers 𝑃6 to 

 𝑃4 preserve the high-level feature maps containing semantic and spatial information 

according to the calculation of downsampling ratio. 

2.2.4 Trainable Weighted Feature Fusion 

The commonly used feature layer fusion approach resizes one layer of a feature map by 

upsampling it to the size of another layer and summits the two feature maps directly. 𝑃𝑖  =

 𝐶𝑖 + 𝑅𝑒𝑠𝑖𝑧𝑒(𝑃𝑖+1) is the formula describing the fusion process, where the contributions of 

the two input layers 𝐶𝑖 and 𝑃𝑖+1 are equivalent. However, as previously indicated, feature 

maps of different resolutions contain different information. As a result, these feature maps’ 

contributions are unbalanced. The localization and edges information contained in the low-

level feature maps is important to the individual microcalcification, whereas the spatial 

semantic information in the high-level features serves primarily as a supplement. On the 

contrary, semantic and spatial information are critical for clustered microcalcifications. Thus, 

the Weighted Feature Fusion approach is employed to solve this problem. Trainable weights 

are used to fuse two feature maps based on the parameter 𝑤𝑖, rather than explicitly adding two 

feature maps. This technique is carried out using Formula 2.2 during the training stage: 

 𝑂𝑢𝑡 = ∑
 𝑚𝑎𝑥(0,𝑤𝑖)

𝜖+∑ 𝑚𝑎𝑥(0,𝑤𝑗)𝑗
𝑖𝑖  (2.2) 

in which 𝑚𝑎𝑥(0, 𝑤𝑖)/(𝜖 + ∑ 𝑚𝑎𝑥(0, 𝑤𝑗)𝑗 ) is the weight assigned to each feature map, 𝑖, in 

the fusion stage. The weights are quickly normalized to avoid potential training instability and 

their sum equals 1, which is the same as the outcome of a simple addition operation. A 

rectified linear unit (ReLU) is applied on 𝑤 to ensure that 𝑤 > 0 in the training stage. 𝜖 =

0.001 improves the stability in the training stage. Formula 2.3 is used to explain the fusion 

process of 𝑃3 : 

 𝑃3 =  𝐶𝑜𝑛𝑣 (
𝑤1⋅𝐶3+𝑤2⋅𝑅𝑒𝑠𝑖𝑧𝑒(𝑃5)

𝑤1 + 𝑤2 + 𝜖
) (2.3) 
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2.3 Experiments 

2.3.1 Dataset and Implementation 

The datasets we used in the experiments include a part of the in-house dataset and INbreast 

dataset which contains microcalcification detection labels, as shown in Table 2.1. The in-

house dataset contains two sub-datasets, where the labels include the bounding boxes of 

objects and the classification of objects, which are labeled by radiologists. The first sub-

dataset comprises 125 mammograms from 65 cases, with 91 clustered microcalcification 

labels that indicate the malignant microcalcifications, and 226 individual microcalcification 

labels that indicate the benign microcalcifications. The second sub-dataset includes 598 

mammograms from 152 cases, as well as 1672 benign microcalcification labels. 

100 mammograms are collocated from INbreast, which contains 92 individual 

microcalcifications and 18 clustered microcalcification labels. All of the labels are derived 

from masks in INbreast dataset files. 

Table 2.1 Overview of the datasets. 

Types of 
microcalcification 

INbreast 
In-house Dataset 

First Sub-dataset Second Sub-dataset 

Benign 92 226 1672 

Malignant 18 91 - 

 

We merged the first sub-dataset with the public dataset to create a new mixed dataset. In each 

time of a 5-fold cross-validation strategy implemented in experiments, a total of 180 

mammograms from the mixed dataset were utilized for training and 45 mammograms for 

testing. In addition, the model’s performance of the individual microcalcification detection 

was conducted on the second sub-dataset. 

MCDNet was built using the TensorFlow framework and trained on a machine with an 

NVIDIA Tesla V100 SXM2 graphics processing unit (GPU). The momentum gradient 

descent approach was utilized in the training stage with a learning rate of 0.001 and a 

momentum hyperparameter of 0.9. After AIA, the network's input resolution was 1200*2954, 

and the average GPU memory utilization was 17 GB while the batch size is 1. We used cross-

entropy loss and smooth L1 loss in networks followed the RPN. 
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2.3.2 Compared Methods 

Firstly, we utilized commonly used detection networks as baselines, including You Only Live 

Once (YOLO)-V3[59], Faster R-CNN, and Faster R-CNN with an FPN, with input 

resolutions of 608*608, 600*600, and 600*600, respectively. Due to the structural constraints 

of YOLO-V3, the input resolution can only be approximated. To show the benefits of high-

resolution (HR) inputs for our study, we used 1664*2048 mammograms for Faster R-CNN 

with an FPN. To show the contributions of our approaches, including AIA, SCPN, and WFF, 

we conducted an ablation study. The mixed dataset and the second sub-dataset were used for 

this section. 

Secondly, MCDNet is compared with several state-of-the-art methods. Lu et al. proposed a 

cascade of boosting classifiers[60]. Liu et al. integrated clustering algorithm and a weighted 

support SVM[61]. Zhang et al. presented a cascade model consisting of an anomaly 

separation network and a discriminative model[31]. Akselrod-Ballin et al. cascaded a deep 

neural network following Faster R-CNN[33]. DeepLIMa uses the U-Net model with group 

normalization[34].  

2.3.3 Evaluation Metrics 

The mean average precision (mAP) and maximum recall rate (recall) metrics are used to 

compare the common detection network baselines and conduct ablation tests. We believe the 

prediction is true positive if the intersection over union (IOU) between the prediction and the 

ground truth annotation is more than 0.5. The average precision of two types of 

microcalcifications is used to calculate the mAP. A high mAP implies more reliable lesion 

detection findings, and a high recall rate indicates more objects can be detected. 

We utilize the recall rate at a particular number of false positives per image (Recall@FPI) and 

free-response receiver operating characteristic (FROC) curves to compare with state-of-the-art 

models. Recall@FPI evaluates recall ability based on an average amount of false positives, 

which varies depending on the clinical application. In an FROC curve, the abscissa reflects 

the number of false positives, while the ordinate represents the recall rate. The higher curves 

indicate the better performance of the model. These metrics also evaluate the ability to be 

applied clinically. 
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2.3.4 Results and Discussion 

The comparison between the baselines and our model is presented first in this section. Then 

we compare MCDNet's detection performance to that of other models. We also examine the 

contributions of our methods based on the experimental results. Here, individual 

microcalcification is denoted by IM, while clustered microcalcification is denoted by CM in 

Table 2.2. 

Table 2.2 Comparison of different baselines and an ablation study. 

Model 

Mixed Dataset 
Second 
Subdataset 

mAP 
Both 

Recall 
(%) IM 

Recall 
(%) CM 

Recall (%) IM 

Baseline 

YOLO-V3 0.535 65.4 66.7 57.3 

Faster RCNN 0.670 58.7 64.8 51.0 

Faster RCNN + FPN 0.780 88.9 88.9 82.7 

Faster RCNN + FPN (HR) 0.882 92.6 96.3 89.1 

Ablation 
Study 

AIA + Faster RCNN + FPN 0.888 93.5 100 92.6 

AIA + SCPN 0.944 99.7 100 97.1 

AIA + SCPN + WFF 0.963 100 100 98.4 

 

a）Baseline and Ablation Study 

As shown in Figure 2.5, clustered microcalcifications are marked by red bounding boxes 

while individual microcalcifications are marked by green bounding boxes except in (f).  

From Table 2.2, the accuracy of YOLO-V3 and Faster RCNN is poor. Individual and 

clustered microcalcification recall rates rise from 58.7% and 64.8% to 88.9% and 88.9%, 

respectively, after stacking an FPN structure on Faster R-CNN, indicating that the FPN is an 

effective structure for multiscale objects detection. Furthermore, as we increase the input 

resolution of Faster R-CNN, the recall rates rise to 92.6% and 96.3%, respectively, while 

more extreme small-scale microcalcifications with low contrast are detected, as shown in 

Figure 2.5 (b) and (c), because the structure and pixel details of microcalcifications are 

preserved.  
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Figure 2.5 Detection results of experiments. (a)-(e) present results of the Faster R-CNN FPN, Faster 
R-CNN FPN with high-resolution inputs, AIA, AIA + SCPN, and AIA + SCPN + WFF, respectively. (f) is 
the ground truth labeled by radiologists. 

Because the input resolution is increased from 1664*2048 to 1200*2954 with identical GPU 

memory usage, that is the number of effective pixels is doubled, the AIA approach raises the 

average recall rate of the two kinds from 94.5% to 96.8%. The 3.5% improvement produced 

by AIA in the second sub-dataset is notably substantial when compared to the 0.9% increase 

in the recall rate attained for individual microcalcifications in the mixed dataset. Furthermore, 

the model has a strong generalization ability and can mitigate the biases due to different sub-

branches or multiple centers, as evidenced by the reduction in performance degradation 

incurred on different datasets of approximately 77%, which is a reduction of between 3.8% 

and 0.9%. 

For clustered microcalcifications, there is a significant improvement and a 100% recall rate is 

attained. However, as shown in Figure 2.5 (c), some large-region clustered 

microcalcifications are split, and the top red bounding box is recognized as a false positive 

case because the IOU with the ground truth is less than 0.5. Additionally, the detection box 

does not correctly mark some individual microcalcifications. The mAP was lowered in these 

circumstances. 
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The mAP of the two types of microcalcifications increase from 0.888 to 0.944 when the 

SCPN is used, and the recall rate for individual microcalcifications increases from 93.5% to 

99.7%, demonstrating that the SCPN model can solve the above problem of incorrect 

detection boxes. In Figure 2.5 (d), both big and tiny regional clustered microcalcifications are 

appropriately detected without being separated. 

Another benefit of the shortcut connection structure is that it increases the model's 

localization ability of tiny object detection, allowing for more precise detection box 

regression whose IOUs are over the threshold. As shown in Figure 2.6, the heatmap generated 

by the SCPN is more concentrated on objects than the heatmap produced by the traditional 

FPN structure. In terms of propagating characteristics for localizing individual 

microcalcifications, we believe the SCPN is more successful than the FPN. The detection 

boxes are accurately regressed, allowing these objects to be properly recognized as true 

positives while simultaneously improving the recall rate and mAP. 

 

Figure 2.6 An illustration of heatmaps for different structures. (a) and (b) are heatmaps of the P_3 in 
the FPN and SCPN, respectively. (c) shows detection results of MCDNet. (d) is ground truth. 

On our in-house dataset, weighted fusion increases the recall rate for individual 

microcalcifications to 100%, and the mAP increases to 0.963. The trainable weights 𝑤i of the 

downsampling and upsampling feature maps produced by the trained model at various stages 

shows that the model tends to enhance the weights of the upsampling feature maps during the 

𝑃3 and 𝑃4 fusion stages, and to enhance the weights of the downsampling feature maps during 

the 𝑃3 fusion stage. 

b) Comparison with Other Models 

We compare MCDNet to other state-of-the-art models in microcalcification detection on 

INbreast dataset. As shown in Figure 2.7, the red, blue, and black curves are the FROC curves 

obtained from the detection of the individual microcalcification, the clustered 
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microcalcification, and both types of microcalcifications, respectively. For the two types of 

microcalcifications, MCDNet achieves an average of 0.84@1FPI. The FROC curves of 

MCDNet are higher than other models. According to these analyses, MCDNet can detect 

more lesions related to breast cancer than other methods under particular clinical application 

constraints. As shown in Table 2.3, the results of experiments conducted on INbreast also 

prove that the recall ability of MCDNet is better than others. 

 

Figure 2.7 Performance on INbreast. 

Table 2.3Table 2.3 Results of different methods. 

Model INbreast In-house 

Lu’s 0.40@1, 0.80@10 for CM - 

Liu’s 0.80@0.5, 0.95@4.6 for CM - 

Zhang’s 0.89@20 for IM 0.853@1 for IM 

Akselrod-Ballin’s 0.85@1.5 for Both Types 0.48@1 for CM, 0.52@1 for IM 

DeeplMa - 0.912@1 for CM,0.691@1 for IM 

MCDNet 0.95@2 for CM, 0.93@10 for IM 0.989@1 for CM, 0.968@1 for IM 

 

Our model achieves the best detection performance in the in-house dataset comparison, with 

0.968@1FPI for individual microcalcifications and 0.989@1FPI for clustered 

microcalcifications. The results in Table 2.3 show that our model outperforms the other 

models for both types of microcalcification. When compared to the newly proposed deep 
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learning model DeepLMa, our model improves microcalcification detection significantly. 

When the number of false positives per picture is equal to 1, our model improves a recall rate 

of 11.8% for both types compared to the DeepLIMa, with a considerable gain of 14.8% for 

individual microcalcifications. 

2.4 Conclusion 

In this chapter, a deep learning microcalcification detection network MCDNet is proposed to 

realize the detection of two types of microcalcifications. First, Adaptive Image Adjustment 

mitigates the impact of dataset bias and maximizes the effective pixel input. Second, Shortcut 

Connection Pyramid Network ensures that the feature maps retain all relevant features for 

multiscale objects, and improves the feature propagation efficiency. Third, the weights of 

each feature map in the fusion stage are optimized when training, allowing the network to 

learn the contributions of each feature map automatically. MCDNet achieves 96.8%@1 

(individual) and 98.9%@1 (clustered) on the in-house dataset while the FROC demonstrates 

that MCDNet outperforms other methods in the public dataset. The results on both in-house 

and INbreast datasets show that MCDNet can effectively help radiologists detect and identify 

microcalcifications and lay a groundwork for subsequent whole-image cancer diagnosis 

studies.  
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3 Chapter 3: Weakly Supervised Mass Detection in Mammography 

Based on Multi-view Enhancing 

3.1 Introduction 

Breast mass is another suspicious lesion that can indicate breast cancer, which is tougher to be 

detected by CAD than microcalcification[21]. However, the high performance of the full-

supervised deep learning is contributed by the high-quality annotations of lesions, whose 

collection is time expensive. The clinical datasets collected are generally only accompanied 

by diagnostic reports, which is a rough textual description of the mammograms. We face the 

lack of labels problem in our in-house dataset of which labels only indicate whether there is a 

mass in mammograms (image-level label) but no specific location (lesion-level label), which 

is a growing problem in the field of medical imaging. Thus, detection approaches in case of 

the lack of labels need to be explored instead of a high-cost method such as collecting more 

data with high-quality annotations. 

As mentioned in related works, the CAM technique is a better solution to the problem we 

encounter compared with transfer learning and multi-instance learning. However, the existing 

methods such as Liang’s proposal cannot solve the imprecise localization problem due to the 

lack of information when using image-level labels. Because the self-training strategy is based 

on the possible correct detection results to re-train the model, which can not introduce extra 

information about localization, especially for the objects that are occluded. Some fully-

supervised learning studies utilize multi-view images to extract the extra information[42,45]. 

Inspired by these works, this is the first work that introduces multi-view enhancing into the 

weakly supervised detection of breast masses. 

A standard mammography examination for each breast consists of the CC view and the MLO 

view as shown in Figure 3.1 (a). According to the direction of projection as illustrated in 

Figure 3.1 (b), the mass marked by the green bounding box is projected in the same position 

on the red line from the nipple (purple line) to the chest wall (yellow line) in ipsilateral pairs 

(CC view and MLO view mammograms on the same side) both views of mammograms. We 

believe column-wise correspondence in the above geometric relationship is easier to extract 

and more effective than region-level correspondence that Liu et al. tried to find in their work. 
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Figure 3.1 Illustrations of the projection angels and geometric relationship of multi-view. 

3.2 Weakly Supervised Mass Detection Network Based on Multiview 

Enhancing 

In this chapter, we propose a multi-view enhancing mass detection network named 

MVMDNet based on the weakly supervised learning to utilize the above observation about 

the multi-view correspondence. In MVMDNet, the Multi-view Enhancing module consisted 

of Spatial Correlation Attention (SCA) and the Sigmoid Weighted Fusion (SWF) address the 

challenge that localization information is insufficient. SCA module can extract the 

localization information between the feature maps of ipsilateral pairs while SWF module can 

fuse this correspondence. CAM-based detection module provides precise bounding boxes for 

breast mass. Experiments results on both in-house and public datasets show MVMDNet 

achieves a robust generalization among weakly supervised methods and state-of-the-art. 

According to the comparison with fully supervised methods, the performance of MVMDNet 

can provide the precise detection for breast mass same as them. 

3.2.1 Overview 

In this chapter, we aim to develop a weakly supervised network trained only with the image-

level labels 𝑦, where 𝑦 ∈ {0, 1} indicates whether the mammogram contains a breast mass. 

MVMDNet is proposed to meet the above requirements to realize the detection of breast 

masses. The framework of MVMDNet is illustrated in Figure 3.2. Firstly, the ipsilateral pairs 

of mammograms of a single breast are preprocessed by cropping, alignment, and histogram 

specification. Then, both two-view mammograms are input to the feature extraction backbone 
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to generate the feature maps. Thirdly, Multi-view Enhancing modules generate the auxiliary 

feature map containing extra localization information by SCA and fuse auxiliary and 

diagnostic feature maps by SWF using the learnable Sigmoid weighted to generate the 

examined features. Binary classification is conducted on the examined features map in the 

training stage. Finally, mass detection on the CC view is provided by the CAM-based 

detection module in the inference stage.  

 

Figure 3.2 Framework of the proposed MVMDNet. 

3.2.2 Preprocessing  

Compared to random grayscale transformation and rotation in other related work, our 

preprocessing method aligns the localization information using the following three steps, 

which are more robust than traditional image augmentation.  

First, we remove the background and the pectoral muscle for the preparation of alignment. 

The threshold-based method is used to segment the region of the breast from the background 

while morphologic operations can smooth out the boundary of the breast and guarantee the 

integrity of segmentation. We extract the minimum circumscribed rectangle region of the 

breast and employ the Hough Transform-based method to detect the pectoral muscle line and 

remove the pectoral muscle[62].  

Second, different mammography projection views can give additional information. It's 

difficult to discover the region-level correspondences of CC and MLO views because of 

deformations and occlusions of breast tissue. In both projection views, the distance between 

the nipple and the chest wall is almost the same. Based on this fact, we assume that the 
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information of lesions provided by the CC view and the MLO view in a column of the breast 

is the same. The line perpendicular to the nipple to the chest wall is the direction of the breast 

column. We apply a column alignment to acquire the aligned MLO view pictures. The border 

after eliminating the pectoral muscle is considered the chest wall which is parallel to the 

breast column. Therefore, the image's breast region is rotated to make the pectoral muscle line 

vertical, and the new breast region is cropped following rotation. 

Third, we adopt the histogram specification method proposed in chapter 2 to mitigate the 

impact of multicenter biases. The whole preprocessing is shown in Figure 3.3. 

 

Figure 3.3 Illustration of the key steps in image preprocessing. 

3.2.3 Feature Extraction 

We propose a feature extraction backbone based on the EfficientNetV2 for feature 

extraction[63]. Table 3.1 shows components of the backbone including the Fused-MBConv 

and MBConv with Squeeze-and-Excitation block. Due to the consideration of dual input, we 

adopt a lightweight design for the backbone. Extracted features of CC view and MLO view 

are defined as 𝑋𝐶𝐶 and 𝑋𝑀𝐿𝑂, respectively, where 𝑋 ∈ ℝ𝐶×𝐻𝑊. 

Table 3.1 The architecture of our proposed feature extraction backbone. 

Stage Block Expand Ratio Channels Layers 

1 Fused-MBConv 1 24 1 

2 Fused-MBConv 4 48 1 

3 Fused-MBConv 4 64 2 

4 MBConv 4 128 2 

5 MBConv 6 160 3 

6 MBConv 6 272 7 

SA

A S Alignment Histogram Specification

C

C Cropping
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3.2.4 Multiview Enhancing Module 

As previously observed, localization information of lesion in the line perpendicular to the 

nipple to the chest wall is the same in two-view mammograms of the single breast. A set of 

multi-view enhancing modules is proposed to extract the correspondence in each column of 

the ipsilateral pairs. In our methods, the main diagnostic is conducted on the CC view while 

the MLO view is auxiliary. 

Multiview enhancing modules consist of two parts: Spatial Correlation Attention (SCA) 

extracts the correspondence between CC view and MLO view in the breast column and 

generate the auxiliary feature defined as 𝑋𝐴𝑢𝑥;  Sigmoid Weighted Fusion (SWF) generates an 

examined feature, which contains the precise localization information of breast mass, by 

fusing the feature map of diagnostic CC view and the auxiliary feature map of MLO view. 

 

a) Spatial Correlation Attention 

SCA consists of Spatial Column Maxpooling and Extending module (SCME) and Correlation 

Attention (CA) module as shown in Figure 3.4. Correspondences between ipsilateral pairs of 

mammograms are compressed by the former and enhanced by the latter. 

SCMESCME

Correlation

AttentionM

E
RS

E

M

EM Maxpooling Extending Point-wise Dot 

Auxiliary Feature

MLO 

CC

RS
Row-wise 

Softmax  

Figure 3.4 The architecture of the Spatial Correlation Attention module. 

After preprocessing, breast mass is on the same column axis of ipsilateral pairs. A Maxooling 

operation is adopted to compress the localization information on the line perpendicular to the 
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line which is from the nipple to the chest wall, where 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)  ∈  ℝ𝐶×1×𝑊, 

preserving the correspondences on the column axis. Extending operation, which repeats the 

one dimension vector of each channel, restores the same scale before Maxpooling. We define 

these two steps as Spatial Column Maxpooling and Extending (SCME) and firstly apply it on 

the CC view to compress the localization information, �̃�𝑐𝑐 =  𝑓𝑆𝐶𝑀𝐸(𝑋𝑐𝑐)𝑖. 

The CA module is designed inspired by correlation in signal processing, which highlights the 

most relevant column between the MLO view feature map and features after SCME. The CA 

module, as opposed to the convolutional-based technique, is more interpretable when it comes 

to obtaining the combined feature. A point-wise dot product on each of the corresponding 

channels 𝑋𝑖  ∈ ℝ𝐻𝑊 in feature maps, where 𝑖 ∈ (0, 𝐶], is applied to find the most relevant 

region. Each channel of correlation matrix 𝑅 ∈ ℝ𝐶×𝐻𝑊 of extracted main diagnosis view 

features �̃�𝑐𝑐 and auxiliary view features 𝑋𝑀𝐿𝑂 can obtain by Formula 3.1.  

 𝑅𝑖 = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦((�̃�𝐶𝐶)𝑖), ( 𝑋𝑀𝐿𝑂)𝑖), 𝑖 ∈ (0, 𝐶] (3.1) 

A non-normalized correlation matrix easily introduces instability. Therefore, to obtain a 

correlation distribution score matrix 𝑆 ∈ ℝ𝐶×𝐻𝑊, a Softmax operation is imposed on each row 

𝑗 ∈ (0, 𝐻] of each channel 𝑖 ∈ (0, 𝐶], 𝑅𝑖𝑗  ∈ ℝ𝑊, flowing Formula 3.2. 

 𝑆𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑅𝑖𝑗) (3.2) 

We directly multiply the score matrix considered as an attention map on the feature map of 

the MLO view to enhance the attention on localization of mass. The enhanced features are 

obtained following the Formula 3.3,  

 𝑋𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝑋𝑀𝐿𝑂, 𝑆) (3.3) 

SCME is applied on 𝑋𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 again to generate the auxiliary feature following the Formula 

3.4 due to the addition of 𝑋𝑀𝐿𝑂. 

 𝑋𝐴𝑢𝑥 = 𝑓𝑆𝐶𝑀𝐸(𝑋𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑) (3.4) 

b) Sigmoid Weighted Fusion 

The SWF module is proposed to fuse the main diagnosis view features 𝑋𝐶𝐶 and auxiliary 

feature 𝑋𝐴𝑢𝑥. The weights, which represent the importance, of the two feature maps are 

different as mentioned in chapter 2. We define the whole features 𝑍 as the concatenation of 
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𝑋𝐶𝐶 and 𝑋𝐴𝑢𝑥. Instead of simply using two trainable parameters like MCDNet, we aim to 

presents the weights as relationships between partial feature, 𝑋𝐶𝐶 and 𝑋𝐴𝑢𝑥, and the whole 

features 𝑍. First, the relationship is obtained by the convolution with Sigmoid applied on 𝑍 as 

shown in Figure 3.5, where Sigmoid is used to normalize the weights. Then, the weighted 

feature �̅�𝑐𝑐 and �̅�𝐴𝑈𝑋 is obtained by the point-wise dot product. Formula 3.5-3.7 demonstrates 

the process of weights acquisition and application. 

 𝑍 =  𝐶𝑎𝑡(𝑋𝐶𝐶 , 𝑋𝐴𝑈𝑋) (3.5) 

 �̅�𝑐𝑐 =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣(𝑍)) ∙ 𝑋𝐶𝐶 (3.6) 

 �̅�𝐴𝑢𝑥 =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣(𝑍)) ∙ 𝑋𝐴𝑢𝑥 (3.7) 

Concat and Conv are applied to fuse the weighted feature  �̅�𝑐𝑐 and �̅�𝐴𝑈𝑋 to generate the 

examined features following Formula 3.8.  

 𝑋𝑒 = 𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(�̅�𝑐𝑐 , �̅�𝐴𝑢𝑥)) (3.8) 
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Auxiliary Feature

WCC

WAUXC

C
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C

C Conv2d 1x1

Examined Feature

 

Figure 3.5 The architecture of Sigmoid Weighted Fusion module. 

3.2.5 CAM-Based Detection Module 

Two branches follow the examined feature map as shown in Figure 3.2. One is the 

classification branch that optimized by the loss between prediction �̂� the image-level labels 𝑦. 

Another is the detection branch including the CAM-Based Detection module which provides 

the bounding boxes to realize the detections of breast masses in the inference stage. As 
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mentioned before, CAM is a technique for visualization of the feature map, which can 

determine the attention regions of the network. Generally, these attention regions are the basis 

for network classification.  

The steps to achieve by CAM are as follows: Firstly, the CAM saliency map is generated on 

the specified feature map through different techniques, such as gradient-based CAM. 

Secondly, the CAM saliency map is scaled to a certain range, which is 0 to 255 in this thesis. 

Finally, a bounding box for the threshold-based segmentation of attention regions is generated 

for the localization of the object. Eigen-CAM is employed in CancerDNet because of its great 

performance[64]. 

3.3 Experiments 

3.3.1 Datasets and Implementation 

Considering the network inputs, we collect ipsilateral pairs, mammograms of CC view and 

MLO view, from the in-house and INbreast datasets to form the datasets used in this chapter. 

1460 ipsilateral pairs mammograms with the clinical diagnoses, which indicate whether there 

are masses in mammograms, are collected from the in-house dataset. The ratio of training, 

verification, and testing are 8:1:1. The ground truths of detection are labeled by radiologists. 

187 ipsilateral pairs are collected from INbreast dataset. The original masks contained in the 

dataset are considered as the training labels and ground truth. Model pre-trained on the in-

house dataset is fine-tuned on INbreast dataset. The experiments on INbreast dataset use a 5-

fold cross-validation strategy. 

Like chapter 2, the in-house dataset is the target mammograms while INbreast is the source 

mammograms in Histogram Specification. Input resolution of the network is 370 × 840. The 

threshold of the CAM-Based Detection module is 50.  

Models are implemented by PyTorch and trained on a platform with an NVIDIA Tesla V100 

SXM graphics processing unit (GPU) that is used in chapter 2. The initial learning rate is 0.1 

with a weight decay of 10−4. The batch size is 32 and the max number of epochs is 100. 

Cross-entropy loss is employed in the training stage. 
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3.3.2 Evaluation Metrics 

Correct localization (CorLoc) is defined as the percentage of targets correctly localized, which 

is a commonly used evaluation metric in weakly supervised studies[40]. In most studies, a 

mass is considered localized correctly if the IOU between prediction and the ground truth 

bounding box is above 0.2[65,69]. CorLoc is employed in the ablation study to evaluate the 

contributions of proposed methods for the weakly supervised network. The other metric is 

Recall@FPI used in chapter 2, which is commonly used in the studies of detection in 

mammography whether supervised or weakly supervised methods are adopted[67,70].  

3.3.3 Experiment Plan 

Firstly, the experiment is conducted on the in-house dataset to test the mass detection 

performance of MVMDNet. We reproduced some high-performance methods to compared: 

YOLOv5x is a popular detection network recently[71]. In this experiment, YOLOv5x is 

trained with different proportions of the dataset. GMIC is a weakly supervised localization 

network improved from the previous version and we convert the multi-classification to binary 

classification[72,39]. 

Secondly, MVMDNet is compared with some state-of-the-art methods experimented on 

INbreast dataset. Dhungel proposed a fully-supervised automatic mass detection network 

using a cascade of deep learning and random forest classifiers[66]. The two-stage design aims 

to further reduce the false positive detections. Agarwal designed a fully automated framework 

to detect masses using the Faster-RCNN models[37]. Then, the F-RCNN model that trained 

on their in-house dataset used transfer learning to detect masses in the INbreast dataset. Tardy 

proposed a weakly-supervised method trained on image-level labels[70]. They trained a 

reconstruction network using normal data to generate breast region without abnormal and 

perform detection relying on the difference between the origin abnormal image and image 

reconstructed from the former. In addition, we also conduct a GMIC model on the INbreast 

dataset for comparison.  

Finally, we analyzed each component of the methods we proposed. We compare the results of 

different CAM techniques including Grad-CAM, Score-CAM, and Eigen-CAM to determine 

the localization ability[73-74]. We applied them on our backbone respectively and conduct 

training on the in-house dataset. Then, ablation studies were performed to evaluate the 

contribution of the SCA module and SWF module. 
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3.3.4 Result and Discussion 

a) Comparison on In-house Dataset 

The ratios (10%, 50%, 100%) in Table 3.2 indicate the proportions of the training set we used 

to train YOLOv5x. The experimental results demonstrate MVMDNet achieves the state-of-

the-art performance with Recall@FPI of 0.92@0.52. The results of YOLOv5x get 

improvement with the increase of labeled data ratio from a recall rate of 0.61 to 0.76, which 

demonstrates the importance of a large number of annotations in the supervised method. Even 

trained with 100% labeled data, YOLOv5x does not perform well on our in-house dataset. 

GMIC performs a little better than YOLOv5x trained by a 10% labeled training set but with a 

higher false positive.   

Table 3.2 Performance on In-house dataset. 

Methods Supervision Mode Recall@FPI 

YOLOv5x (10%labeled) Full 0.61@0.38 

YOLOv5x (50%labeled) Full 0.72@0.47 

YOLOv5x (100%labeled) Full 0.76@0.99 

GMIC Weak 0.63@0.70 

MVMDNet Weak 0.92@0.52 

 

As shown in Figure 3.6, we provide some detection examples from our in-house dataset to 

explain the high performance of MVMDNet demonstrated by the above results. Each row 

represents an example of a case. (a) and (b) are images of CC and MLO view, where green 

boxes indicate the masses. (c)-(e) are detection results of YOLOv5, GMIC, and MVMDNet, 

respectively. The example in the first row contains a mass with a clear border, which is easy 

to be distinguished from breast tissue.  The detection bounding box for this case generated by 

MVMDNet is the same as YOLOv5x. However, GMIC does not localize the mass correctly in 

the same case. One reason is that the non-end-to-end patch selection algorithm in GMIC does 

not catch the precise location of the target in the training stage, which results in a high false 

positive rate. The second example is one of the ‘hard samples’ that contain masses that are 

almost invisible in the CC view. Because these masses are occluded by healthy breast tissue, 

the information of one view features after extraction is insufficient for localization. 

MVMDNet localizes the masses precisely while both YOLOv5x and GMIC miss these 
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targets. According to the observation of the second example, this mass is visible in MLO view 

images as shown in (b) and the mass projected position on the row axis is the same as the CC 

View. This correspondence helps MVMDNet to find the correct location of mass in CC view 

and further improve the performance. This experiment demonstrates that information 

enhanced by multi-view training can provide more effective information than multi-instance 

learning in the absence of lesion labels.  

 

Figure 3.6 Examples of detection results. Green bounding boxes indicate the location of masses. 

b) Comparison with State-of-the-Art Methods 

The mass detection results on the INbreast dataset are shown in Table 3.3. MVMDNet 

achieved a Recall@FPI of 0.96±0.02@0.77 with a lower FPR than others. We also train 

GMIC with only image-level labels and catch the patch from saliency maps as detection 

results and MVMDNet performs better than it in both recall rate and false positive rate. The 

recall rate of our model is the same as Tardy’s methods, a weakly supervised method based 

on reconstruction, while false positive rate is lower than the latter. These results show our 

model is better than other weakly supervised methods. The fully supervised method proposed 

by Agarwal achieves the best recall rate of 0.99, which makes sense because of the training on 

 a  CC  iew  b  ML   iew  c    L v x  e  M MD et  f   T d   MIC
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lesion-level labels. However, their method introduces a high false positive rate (FPR). One 

possible reason is that they chose a lower IOU threshold of 0.1 than other methods, which is 

more inclined to recall ability. The caparison with supervised methods proves that MVMDNet 

gets close to the supervised methods. In addition, because MVMDNet is trained on our in-

house dataset and performed fine-tuning on the public INbreast dataset, the results also 

indicate that our proposals have robust generalization ability.  

Table 3.3 Performance on public INbreast dataset. 

Methods Supervision Mode Recall@FPI 

MVMDNet Weak 0.96±0.02@0.77 

GMIC Weak 0.92±0.02@1.44 

Tardy’s Weak 0.96±0.01@0.85 

Dhungel’s Full 0.90±0.02@1.30 

Agarwal’s Full 0.99±0.03@1.17 

 

c) Ablation study  

The results of several CAM techniques applied on the backbone are shown in Table 3.4. Both 

Eigen-CAM and Score-CAM achieve a high detection CorLoc of 0.725, but Score-CAM 

takes about 20 times longer than Eigen-CAM. In the example shown in Figure 3.7, Eigen-

CAM provides a bounding box that is more precise than bounding boxes generated by Score-

CAM and Grad-CAM. 

Table 3.4 Localization performance of different CAM techniques applied on In-house dataset. 

CAM Techniques CorLoc Time per Image (s) 

Eigen-CAM 0.725 0.43 

Score-CAM 0.725 10.8 

Grad-CAM 0.648 0.48 
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Figure 3.7 An example of the localization ability of different CAM techniques. 

In the ablation study, we consider the feature extraction backbone applied with only CAM-

Based Detection module as MDNet. We firstly focus on SCA module and replace SWF 

module with a set of Concat and Conv (Cat & Conv) to eliminate the effect of SWF. When 

SCA module is applied on MDNet, the results shown in Table 3.5 demonstrate a great 

improvement of CroLoc to 0.698. Analyzing the cases that are classified correctly after 

adding the SCA module, we find the masses in these cases are hard to be distinguished from 

breast tissue like the second example shown in Figure 3.6. This observation indicates the SCA 

module can extract extra mass localization information from MLO view, which is hard to be 

extracted from CC view, to enhance the network’s attention to the correct location of mass in 

the image. Then, we adopt the SWF module and the performance improves by reducing some 

wrong cases, where the mass is only present in MLO view images. The fusion strategy 

learned by the network itself is better than simply designing a general strategy. The best 

model of MVMDNet with all components achieves CroLoc of 0.725.  

Table 3.5 Effectiveness of each component on In-house dataset. 

Methods AUC CorLoc 

MDNet 0.730 0.591 

MDNet + SCA + Cat & Conv 0.836 0.698 

MDNet + SCME+ Cat & Conv + SWF 0.830 0.680 

MVMDNet 0.858 0.725 
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Especially, we replace the Correlation Attention module with a set of Concat and Conv (Cat 

& Conv) in the original SCA (SCME + Correlation Attention) to determine the contribution 

of the Correlation Attention module. The performance of the new combination reduces a lot 

from the CorLoc of 0.725 to 0.680. It proves that our design of the correlation attention 

module according to prior knowledge is better than learning itself by the Conv. It seems to be 

in contradiction with the previous that weights learned automatically result in a good 

performance, but it shows that we should make a trade-off between deep learning and human 

design according to the specific situation. 

We also provide a visualization of how the multi-view enhancing modules work as shown in 

Figure 3.8. (a) and (c) are images of CC and MLO view. (b) and (e) are saliency maps of 

MDNet and MVMDNet, respectively. Comparing (b) and (e), it is obvious that the presents of 

localization information are on the same row axis positions of ipsilateral pairs while uncertain 

is on the column axis. The auxiliary features after extending in Spatial Correlation Attention 

are shown in (d) and it shows that localization information in the column is successfully 

preserved in auxiliary features. The saliency maps in (b) and (e) show the attention of the 

network without and with the SCA module, respectively. We can observe the effectiveness of 

the impact by the multi-view enhancing module. It is like applying the dot product on the 

auxiliary feature map to the CC view feature map. The multi-view enhancing modules 

effectively restrict the wrong localization information as shown in the example of the first row 

and provide correct localization information on CC view as shown in the example of the 

second row. 
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Figure 3.8 Visualization of the effectiveness of multi-view enhancing modules. (b), (d) and (e) have 
been mixed with saliency maps. 

3.4 Conclusion 

In this chapter, a weakly-supervised network MVMDNet is proposed to realize the detection 

of mass. MVMDNet can be trained on the dataset that only contains lesion-level labels on 

mammograms, and successfully solve the problem of insufficient localization information 

faced by the weakly supervised detection network. MVMDNet aligns the ipsilateral pairs and 

reduces the bias from multicenter datasets by image preprocessing. The Multi-view 

Enhancing module extracts the correspondence of ipsilateral pairs and enhances the 

localization feature by a fusion of diagnostic and auxiliary features. The CAM-based 

detection module converts the feature map optimized by the classification task to provide 

precise localization for breast masses. On both in-house and INbreast datasets, results show 

that MVMDNet achieves state-of-the-art performance when compared to other weakly-

supervised methods and has the same accurate localization capabilities as supervised methods. 

The results of the fine-tuned model conducted on INbreast further show that MVMDNet has 

strong generalization. 
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In the works of the above two chapters, the detections of common lesions in breasts are 

completed. In the next chapters, we will explore the cancer diagnosis based on the detection 

works. 
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4 Chapter 4: Breast Cancer Diagnosis in Mammography Based on 

Multi-instance Learning 

4.1 Introduction 

The goal of the breast cancer diagnosis in mammography is to provide radiologists an 

indication of the presence or absence of cancer in a set of mammography images for a case. 

Transforming into deep learning-related problems, the cancer diagnosis is a classification 

task. The idea of this thesis is to develop a binary classification network for the whole breast 

mammograms of one case, which is a more comprehensive approach compared with the 

methods that focus only on binary classification of macrocalcification or mass in previous 

related work mentioned in chapter 1[47,49]. 

However, the features of lesions that indicate the presence of cancer are complicated, which 

introduces a low performance if directly using the whole images for classification. For 

example, the feature extreme tiny microcalcifications are easy to be ignored, especially when 

the network compresses the resolution of images limited by computing resources. Recently, 

some works mentioned in chapter 1 try to classify the whole image with lesion information 

and achieve impressive results. Shanms et al. utilize the GAN network trained on lesion patch 

to optimize the feature extraction of the whole image classification network[54]. McKinney et 

al provide an AI system that consists of three deep learning networks for lesion level, breast 

level, and case level classification respectively, which diagnose according to the average 

score of three networks[59]. Benefitting from the works in previous chapters, we propose a 

deep learning approach for cancer diagnosis based on whole image classification, which drops 

the common method that calculates the average score of different network outputs. 

4.2 Multi-instance Learning Network CancerDNet for Cancer Diagnosis 

In this chapter, we proposed a multi-instance learning network for breast cancer diagnosis 

named CancerDNet to solve the problem of whole image classification, which realizes the 

precise classification for the whole case to help radiologists diagnose cancer in mammograms. 

In previous chapters, the trained models including MCDNet and MVMDNet could provide 

precision detection results or classification vectors for the cancer diagnosis network that we 

would explore. Firstly, the idea of multi-view enhancing is continued to be used to integrate 

the multi-view features extracted from the designed backbone. Both two sides of breast 

feature maps are concatenated after feature extraction because the diagnosis is based on the 
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whole case. Then, we divide the detection results of the MCDNet and MVMDNet into two 

types considering the contribution of information and precision of results: Results of the mass 

detection are considered as the low-capacity lesion instances, which are used as masks to 

make the classification network pay more attention to the regions where breast masses exist; 

Results of the microcalcification are considered as the high-capacity lesion instances, of 

which the classification vectors are concatenated to the vectors of cancer classification to 

make the network. 

4.2.1 Overview 

In this chapter, we will describe the multi-instance learning network CancerDNet in detail. As 

shown in Figure 4.1, CancerDNet consists of MCDNet, MVMDNet, and a classification 

network. Firstly, the image preprocessing integrated from works of previous chapters adjusts 

the multicenter data input. Secondly, the different sets of preprocessed images are input to the 

different components of the multi-instance learning stage, including MCDNet, MVMDNet, 

and the feature extraction backbone of classification, to generate the microcalcification 

detection vector, mass localization, and feature map of each view. Thirdly, Whole Case Bag 

Learning (WCBL) fuses the four-view feature maps on which Low-capacity Instance 

Learning (LCIL) adds the mass localization information from MVMDNet before fusion, and 

then High-capacity Instance Learning (HCIL) integrates the microcalcification information 

from MCDNet into the classification vector generated from the fused feature map. Finally, the 

network provides cancer diagnosis through a binary classification that indicates whether 

cancer is found in the case.  

 

Figure 4.1 Framework of CancerDNet. 
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4.2.2 Whole Case Bag Learning 

As shown in Figure 4.1, the input of the CancerDNet is a set of mammography images for one 

case including the four views, LCC, LMLO, RCC, and LMLO, which is considered as the 

whole case bag. Compared with the diagnosis according to single view mammography image, 

the models trained by the whole case will learn the correspondence between the multi-view, 

which is proved by the works of previous chapters. The preprocessing method for four view 

images before sending to the classification backbone is the same as the method proposed in 

chapter 3 consists of cropping, alignment, and histogram specification. This operation makes 

the weakly supervised detection results of the masses easy to align with the feature extracted 

by the classification backbone. 

Here, we conduct the structure named Whole Case Bag Learning (WCBL) shown in Figure 

4.2 to realize the whole case bag learning. Firstly, the backbone we used to extract features 

has the same structure as MVMDNet, which is finetuned on the trained MVMDNet models 

and shared weights for all four views images. This design can reduce training and inference 

time consumption. Then, the extracted features for mammography images of one breast are 

concatenated to expand the channel. One Conv that keeps the size of features squeezes the 

number of channels to find the correspondences between ipsilateral pairs. Unlike the Spatial 

Correlation Attention employed in MVMDNet, we adopt a lighter structure here to pay more 

attention to optimizing consumption efficiency. Thirdly, the Sigmoid Weighted Fusion we 

proposed in chapter 3 is employed to fusion the feature maps for each breast produced by 

former concatenation and convolution. This operation works like a radiologist: they compare 

the symmetrical structure of the two breasts and derive a final score based on both sides.  

4.2.3 Low-capacity Instance Learning 

Unlike the AI system proposed by McKinney, we believe that the detection results from 

MVMDNet contain insufficient information. Because the results of the MVMDNet only 

indicate the location of the masses in the breast rather than the classification of masses. 

Therefore, we do not directly convert the detection result to a classification result. Like a team 

of radiologists, the classification networks should pay more attention to the regions where 

other models consider lesions present. Our idea is to convert the localization of mass to a 

mask, which is presented by 1 and 0. As shown in Figure 4.2, concatenation and convolution 

are used to fuse the mask and the corresponding mammograms instead of using the dot 
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product because the former is more stable than directly using the mask to remove the non-

attention region.  

 

Figure 4.2 Structures of LCIL and WCBL. 

4.2.4 High-capacity Instance Learning 

The results of MCDNet include more precise information of localization and classification, 

which we consider as the high-capacity lesion instance. Thus, the detection results of a 

standard set of mammography screening images could be directly involved in the whole case 

bag classification of the final cancer diagnosis in CancerDNet.  

The demonstration of HCIL is shown in Figure 4.3. Because the types and quantities of 

microcalcifications detected in the standard set of four images are different, the ranking 

mechanism is employed to select the results of detection. Considering the average number of 

the malignant microcalcification detections, two detections with the highest scores among all 

four mammography images are selected. Firstly, an average pooling is applied on the 

classification vectors of these two detections are extracted from the classification branch of 

MCDNet and are reduced to the same length as the vector in CancerDNet classification 

backbone by linear operation. An average pooling is conducted on these two vectors to 

generate the high-capacity lesion instance classification vector. Then, this vector is 

concatenated on the classification vector generated from the fully connected layer of the 
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backbone. Finally, the new vector is sent to an MLP to generate the classification result. The 

size of the patch shown in Figure 4.3 demonstrates the rank of scores. 

 

Figure 4.3 Demonstration of HCIL. The sizes of lesion patches indicate the scores of detections. 

4.3 Experiments 

4.3.1 Datasets and Implementation 

We conduct the cancer diagnosis experiments both on the in-house dataset and the public 

dataset INbreast. We collect 688 cases with the full set of standard mammography images, a 

total of 2752 images from in-house datasets. The origin clinical diagnoses from biopsy results 

are regarded as the ground truth. The ratio of training, verification, and testing set are 8:1:1. 

Due to the lack of ground truth like our in-house dataset in the reports of INbreast, we 

assigned all images with BI-RADS 4, 5, and 6 as positive while all images with BI-RADS 1, 

2 as negative. Because BI-RADS 3 means probably benign without a definitive diagnosis, we 

exclude some cases that at least have one image diagnosed as BI-RADS 3. Therefore, we 

finally select 82 cases with four images, a total of 328 images, for two side breasts in the 

experiments of this chapter. All cases collected from INbreast are used in testing. 

The experiments of CancerDNet are implemented on the platform with an NVIDIA Tesla 

V100 SXM GPU and developed by PyTorch like the previous models MVMDNet we 

proposed. Gradient descent with momentum is used to optimize the model. The momentum is 

0.9 and the learning rate is 0.1 with the weight decay 10−4. The max number of training 

epochs is 100 and the best model is selected when training. The input setting for MVMDNet 
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and MCDNet are same as the before while the resolution input of the classification backbone 

is the same as MVMDNet. 

4.3.2 Evaluation Metrics 

In this chapter, the receiver operating characteristic curve (ROC) and the area under the curve 

(AUC) is used to evaluate the performance of the model in experiments. The x-axis of ROC is 

the false positive rate while the y-axis is the true positive rate, and each point on the ROC 

represents a different threshold for the binary classification. Thus, ROC indicates how the 

models trade off false positive rates and the true positive rate at different operating points. 

AUC is to evaluate the classification performance of the model quantitatively by calculating 

the area under the roc and the higher AUC indicates the better classification performance. 

4.3.3 Results and Discussion 

a) Ablation Studies 

In this section, we conduct the ablation studies on the in-house dataset to determine the 

effectiveness of the architectures we proposed for the multiple lesions. 

Compared to the CancerDNet, the baseline mentioned in Table 4.1 replaces the WCBL with a 

direct concatenation of the four-view image and demolishes LCIL and HCIL. According to 

the results shown in Table 4.1 and the ROC curves shown in Figure 4.4, each module we 

proposed contributes to the improvement of the performance of the cancer diagnosis. As 

shown in Table 4.1, the application of WCBL improves the AUC from 0.764 to 0.795, which 

is used in subsequent ablation studies by default.  

Table 4.1 Results of ablation study. 

Methods In-house dataset (AUC) 

Baseline 0.764 

Baseline + WCBL 0.795 

Baseline + WCBL + LCIL 0.835 

Baseline + WCBL + HCIL 0.883 

CancerDNet 0.907 
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Figure 4.4 ROC curves of ablation study. 

By examining the classification results of different methods, we could analyze the 

relationship between cases that are correctly classified and the methods applied in the 

network. Some masses that are indistinguishable from the background tissue get the attention 

of the network with the application of LCIL, which connects the MVMDNet and 

classification backbone. Therefore, the AUC increased from 0.795 to 0.835. A huge 

improvement of AUC, an increase of 0.088 from 0.795 to 0.883, occurs in the application of 

the HCIL, which connects the MCDNet and classification backbone. Due to the consideration 

for the efficiency of models, the backbone of CancerDNet implements the same setting as the 

MVMDNet, which has the strong ability to extract the features of a normal size object rather 

than an extremely tiny object such as microcalcification. Thus, the classification vectors of 

HCIL help the CancerDNet improve the ability to consider the presence of the extreme tiny 

microcalcification when classifying the whole case from the final stage of classification.  

b) Compare with Other Methods 

To verify the performance of the CancerDNet proposed in this chapter for cancer diagnosis, a 

comparison with other whole image classification methods is performed in this chapter. Table 

4.2 demonstrates the results of the AI system proposed by McKinney et al. and CancerDNet.  

As shown in Table 4.2, the results of CancerDNet achieve the state-of-the-art performance in 

the whole case classification in public INbreast datasets and are better than the AI system 

proposed by McKinney et al. conducting on our in-house dataset. The improvement of 
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CancerDNet compared to the AI system is reflected in some cases in which averaging the 

three models' risk scores resulted in a reduction of sensitivity. This experiment proves that 

using a deep learning model to integrate the multi-instance learning is a better choice than 

simply calculating the scores to combine the multiple models.  

Table 4.2 Results of comparison. 

Methods In-house dataset (AUC) INbreast (AUC) 

AI system 0.880 0.886 

CancerDNet 0.907 0.925 

 

The results on INbreast show that the CancerDNet has a stronger generalization than the AI 

system on multicenter datasets. According to the difference between the two datasets, the 

multicenter bias generally affects the performance of a deep learning model trained on a 

single dataset. In the experiment, the model is only trained on our in-house dataset and the 

whole INbreast is used to test the generalization on multicenter datasets. As shown in Table 

4.2, the AUC of CancerDNet is 0.039 higher than the AI system when testing on INbreast, 

which is higher than the increase, 0.027, testing on our in-house dataset. We believe it 

benefits from the preprocess method we proposed. Thus, CancerDNet is more suitable for 

multicenter datasets.  

4.4 Conclusion 

To solve the problem that the lesion features are complex in mammography images faced by 

the whole image classification, a multi-instance learning network CancerDNet is proposed in 

this chapter based on the works and detection results of previous chapters. CancerDNet 

employs the Whole Case Bag Structure to realize the classification of each case, which 

imitates the diagnosis procedure of a radiologist. In addition, the implementation of Low-

capacity Instance Learning and High-capacity Instance Learning improves the classification 

precision by helping the network take into account information of multiple lesions. 

CancerDNet can provide higher performance of cancer classification in mammography 

images compared with other full image classification models.        
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5 Chapter 5: Conclusion and Perspective 

5.1 Conclusion 

Breast cancer is the most diagnosed cancer in women all over the world. The use of CAD 

based on deep learning to assist radiologists in lesion detection and cancer diagnosis in 

mammography screening is effective. However, the existing CADs do not perform well 

because face the difficulties caused by the characteristics of mammography images. This 

thesis aims to utilize deep learning approaches which consider the characteristics of 

mammography images to realize the high-performance cancer diagnosis system based on the 

multiple lesions detection in mammograms, and the achievements on research are as follow: 

In exploring the precision detection of microcalcification in mammograms, we conduct 

studies on deep learning networks based on multi-feature fusion. MCDNet is proposed to 

overcome the problems of multicenter data bias, the low resolution of network inputs, and 

scale differences between microcalcifications. AIA mitigates the impact of multicenter biases 

and maximizes the input effective pixels. SCPN improves the detection ability of the network 

for multiscale objects by enhancing the propagation of critical features; WFF is proposed to 

improve the detection performance of both scale objects. The experiments show that MCDNet 

is more precise and robust than other methods in microcalcification detection, which can 

effectively help radiologists identify two types of microcalcifications and provide precise 

localization for CancerDNet.  

In exploring the detection of breast masses in mammograms, a weakly supervised multi-view 

enhancing mass detection network named MVMDNet is proposed in chapter 2 to solve the 

lack of lesion-level labels. The image preprocessing mitigates the biases and aligns the multi-

view of mammograms. The Multi-view Enhancing module extracts localization information 

between different views and enhances this information in a fusion, which solves the lack of 

localization information in weakly supervised training with only image-level labels. CAM-

based detection module provides detections for mass based on the enhanced localization 

information. The results of experiments demonstrate that MVMDNet achieves state-of-art 

performances and a robust generalization among weakly supervised methods.  

In exploring the cancer diagnosis in mammography, a breast cancer diagnosis network based 

on Multi-instance Learning named CancerDNet is proposed in chapter 4. CancerDNet 

successfully solves the problem that the features of lesions are complex in whole image 
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classification, utilizing the lesion detection results from the previous chapters. WCBL 

combines the features extracted from four-view and works as a radiologist to realize the 

classification of each case. LCIL and HCIL integrate the detections of multiple types of 

lesions so that the model can fully consider lesions with complex features in the classification 

task. The experiments conducted on both in-house and public datasets show that CancerDNet 

achieves a high-performance cancer diagnosis and can help radiologists reduce the workload.  

5.2 Perspective 

Future work of this thesis would be further studied in the following two aspects： 

Here, a multi-stage network is proposed to realize the cancer diagnosis where the MCDNet 

and MVMDNet directly provide the results. In future work, three parts would be constructed 

into an end-to-end multi-task learning network to further improve the performance for each 

task and the efficiency of optimization, and clinical reports can be automatically generated 

based on detection and diagnosis results. 

The weakly supervised method is applied to breast mass detection, which is a tough task. In 

future work, the application of weakly supervised and unsupervised learning on lesions 

detection including microcalcification and mass would be further explored to solve the 

increasingly severe problem of the lack of annotations.     



56 
 

Reference 

[1] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2022[J]. CA: a cancer journal 

for clinicians, 2022. 

[2] Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, 

trends, and determinants[J]. Chinese Medical Journal, 2022. 

[3] Tabár L, Vitak B, Chen T H H, et al. Swedish two-county trial: impact of mammographic 

screening on breast cancer mortality during 3 decades[J]. Radiology, 2011, 260(3): 658-

663. 

[4] Marmot M G, Altman D G, Cameron D A, et al. The benefits and harms of breast cancer 

screening: an independent review[J]. British journal of cancer, 2013, 108(11): 2205-2240. 

[5] Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 

2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients 

diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. 

The Lancet, 2018, 391(10125): 1023-1075. 

[6] Sree S V, Ng E Y K, Acharya R U, et al. Breast imaging: a survey[J]. World journal of 

clinical oncology, 2011, 2(4): 171. 

[7] Bevers T B, Helvie M, Bonaccio E, et al. Breast cancer screening and diagnosis, version 

3.2018, NCCN clinical practice guidelines in oncology[J]. Journal of the National 

Comprehensive Cancer Network, 2018, 16(11): 1362-1389. 

[8] Flobbe K, Bosch A M, Kessels A G H, et al. The additional diagnostic value of 

ultrasonography in the diagnosis of breast cancer[J]. Archives of internal medicine, 2003, 

163(10): 1194-1199. 

[9] Berg W A, Blume J D, Cormack J B, et al. Combined screening with ultrasound and 

mammography vs mammography alone in women at elevated risk of breast cancer[J]. 

Jama, 2008, 299(18): 2151-2163. 

[10] Bahl M, Baker J A, Greenup R A, et al. Evaluation of pathologic nipple discharge: what 

is the added diagnostic value of MRI?[J]. Annals of surgical oncology, 2015, 22(3): 435-

441. 

[11] China Anti-Cancer Association. Breast cancer screening guideline for Chinese women[J]. 

Cancer Biology & Medicine, 2019, 16(4): 822-824. 

[12] Boyd N F, Guo H, Martin L J, et al. Mammographic density and the risk and detection of 

breast cancer[J]. New England journal of medicine, 2007, 356(3): 227-236. 



57 
 

[13] Posso M C, Puig T, Quintana M J, et al. Double versus single reading of mammograms in 

a breast cancer screening programme: a cost-consequence analysis[J]. European 

radiology, 2016, 26(9): 3262-3271. 

[14] Posso M, Carles M, Rué M, et al. Cost-effectiveness of double reading versus single 

reading of mammograms in a breast cancer screening programme[J]. PloS one, 2016, 

11(7): e0159806. 

[15] Balleyguier C, Kinkel K, Fermanian J, et al. Computer-aided detection (CAD) in 

mammography: does it help the junior or the senior radiologist?[J]. European journal of 

radiology, 2005, 54(1): 90-96. 

[16] Gómez S S, Tabanera M T, Bolivar A V, et al. Impact of a CAD system in a screen-film 

mammography screening program: A prospective study[J]. European journal of 

radiology, 2011, 80(3): e317-e321. 

[17] Houssein E H, Emam M M, Ali A A, et al. Deep and machine learning techniques for 

medical imaging-based breast cancer: A comprehensive review[J]. Expert Systems with 

Applications, 2021, 167: 114161. 

[18] D’ rsi C, Bassett L, Feig S. Breast imaging reporting and data system  BI-RADS)[J]. 

Breast imaging atlas, 4th edn. American College of Radiology, Reston, 2018. 

[19] Tot T, Gere M, Hofmeyer S, et al. The clinical value of detecting microcalcifications on a 

mammogram[C]//Seminars in Cancer Biology. Academic Press, 2021, 72: 165-174. 

[20] Nunes F L S, Schiabel H, Goes C E. Contrast enhancement in dense breast images to aid 

clustered microcalcifications detection[J]. Journal of Digital Imaging, 2007, 20(1): 53-66. 

[21] Henriksen E L, Carlsen J F, Vejborg I M M, et al. The efficacy of using computer-aided 

detection (CAD) for detection of breast cancer in mammography screening: a systematic 

review[J]. Acta Radiologica, 2019, 60(1): 13-18. 

[22] Njeh I, Sassi O B, Chtourou K, et al. Speckle noise reduction in breast ultrasound images: 

SMU (SRAD median unsharp) approch[C]//Eighth International Multi-Conference on 

Systems, Signals & Devices. IEEE, 2011: 1-6. 

[23] Bai Y, Zhang Y, Ding M, et al. Sod-mtgan: Small object detection via multi-task 

generative adversarial network[C]//Proceedings of the European Conference on 

Computer Vision (ECCV). 2018: 206-221. 

[24] Kim D W, Jang H Y, Kim K W, et al. Design characteristics of studies reporting the 

performance of artificial intelligence algorithms for diagnostic analysis of medical 



58 
 

images: results from recently published papers[J]. Korean journal of radiology, 2019, 

20(3): 405-410. 

[25] Davies D H, Dance D R. Automatic computer detection of clustered calcifications in 

digital mammograms[J]. Physics in Medicine & Biology, 1990, 35(8): 1111. 

[26] Oliver A, Torrent A, Lladó X, et al. Automatic microcalcification and cluster detection 

for digital and digitised mammograms[J]. Knowledge-Based Systems, 2012, 28: 68-75. 

[27] Karahaliou A, Skiadopoulos S, Boniatis I, et al. Texture analysis of tissue surrounding 

microcalcifications on mammograms for breast cancer diagnosis[J]. The British journal 

of radiology, 2007, 80(956): 648-656. 

[28] Yassin N I R, Omran S, El Houby E M F, et al. Machine learning techniques for breast 

cancer computer aided diagnosis using different image modalities: A systematic 

review[J]. Computer methods and programs in biomedicine, 2018, 156: 25-45. 

[29] Phadke A C, Rege P P. Fusion of local and global features for classification of 

abnormality in mammograms[J]. Sādhanā, 2016, 41 4 : 38 -395. 

[30] Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image 

analysis[J]. Medical image analysis, 2017, 42: 60-88. 

[31] Zhang F, Luo L, Sun X, et al. Cascaded generative and discriminative learning for 

microcalcification detection in breast mammograms[C]//Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 2019: 12578-12586. 

[32] Xi P, Shu C, Goubran R. Abnormality detection in mammography using deep 

convolutional neural networks[C]//2018 IEEE International Symposium on Medical 

Measurements and Applications (MeMeA). IEEE, 2018: 1-6. 

[33] Akselrod-Ballin A, Karlinsky L, Hazan A, et al. Deep learning for automatic detection of 

abnormal findings in breast mammography[M]//Deep learning in medical image analysis 

and multimodal learning for clinical decision support. Springer, Cham, 2017: 321-329. 

[34] Cao Z, Yang Z, Zhuo X, et al. Deeplima: Deep learning based lesion identification in 

mammograms[C]//Proceedings of the IEEE/CVF International Conference on Computer 

Vision Workshops. 2019: 0-0. 

[35] Anwar S M, Majid M, Qayyum A, et al. Medical image analysis using convolutional 

neural networks: a review[J]. Journal of medical systems, 2018, 42(11): 1-13. 

[36] Cheplygina V, de Bruijne M, Pluim J P W. Not-so-supervised: a survey of semi-

supervised, multi-instance, and transfer learning in medical image analysis[J]. Medical 

image analysis, 2019, 54: 280-296. 



59 
 

[37] Agarwal R, Díaz O, Yap M H, et al. Deep learning for mass detection in Full Field 

Digital Mammograms[J]. Computers in biology and medicine, 2020, 121: 103774. 

[38] Shen L, Margolies L R, Rothstein J H, et al. Deep learning to improve breast cancer 

detection on screening mammography[J]. Scientific reports, 2019, 9(1): 1-12. 

[39] Shen Y, Wu N, Phang J, et al. Globally-aware multiple instance classifier for breast 

cancer screening[C]//International Workshop on Machine Learning in Medical Imaging. 

Springer, Cham, 2019: 18-26. 

[40] Shao F, Chen L, Shao J, et al. Deep Learning for Weakly-Supervised Object Detection 

and Object Localization: A Survey[J]. arXiv preprint arXiv:2105.12694, 2021. 

[41] Liang G, Wang X, Zhang Y, et al. Weakly-supervised self-training for breast cancer 

localization[C]//2020 42nd Annual International Conference of the IEEE Engineering in 

Medicine & Biology Society (EMBC). IEEE, 2020: 1124-1127. 

[42] Samulski M, Karssemeijer N. Optimizing case-based detection performance in a 

multiview CAD system for mammography[J]. IEEE Transactions on Medical Imaging, 

2011, 30(4): 1001-1009. 

[43] Bekker A J, Shalhon M, Greenspan H, et al. Multi-view probabilistic classification of 

breast microcalcifications[J]. IEEE Transactions on medical imaging, 2015, 35(2): 645-

653. 

[44] Ma J, Li X, Li H, et al. Cross-view relation networks for mammogram mass 

detection[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 

2021: 8632-8638. 

[45] Liu Y, Zhang F, Zhang Q, et al. Cross-view correspondence reasoning based on bipartite 

graph convolutional network for mammogram mass detection[C]//Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 3812-3822. 

[46] Arevalo J, González F A, Ramos-Pollán R, et al. Representation learning for 

mammography mass lesion classification with convolutional neural networks[J]. 

Computer methods and programs in biomedicine, 2016, 127: 248-257. 

[47] Qiu Y, Yan S, Tan M, et al. Computer-aided classification of mammographic masses 

using the deep learning technology: a preliminary study[C]//Medical Imaging 2016: 

Computer-Aided Diagnosis. SPIE, 2016, 9785: 511-516. 

[48] Sun W, Tseng T L B, Zhang J, et al. Enhancing deep convolutional neural network 

scheme for breast cancer diagnosis with unlabeled data[J]. Computerized Medical 

Imaging and Graphics, 2017, 57: 4-9. 



60 
 

[49] Morrell S, Wojna Z, Khoo C S, et al. Large-scale mammography CAD with deformable 

conv-nets[M]//Image Analysis for Moving Organ, Breast, and Thoracic Images. Springer, 

Cham, 2018: 64-72. 

[50] Carneiro G, Nascimento J, Bradley A P. Unregistered multiview mammogram analysis 

with pre-trained deep learning models[C]//International Conference on Medical Image 

Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 652-660. 

[51] Dhungel N, Carneiro G, Bradley A P. Fully automated classification of mammograms 

using deep residual neural networks[C]//2017 IEEE 14th International Symposium on 

Biomedical Imaging (ISBI 2017). IEEE, 2017: 310-314. 

[52] Zhao X, Yu L, Wang X. Cross-view attention network for breast cancer screening from 

multi-view mammograms[C]//ICASSP 2020-2020 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 1050-1054. 

[53] Shen L, Margolies L R, Rothstein J H, et al. Deep learning to improve breast cancer 

detection on screening mammography[J]. Scientific reports, 2019, 9(1): 1-12. 

[54] Shams S, Platania R, Zhang J, et al. Deep generative breast cancer screening and 

diagnosis[C]//International Conference on Medical Image Computing and Computer-

Assisted Intervention. Springer, Cham, 2018: 859-867. 

[55] Hu T, Zhang L, Xie L, et al. A multi-instance networks with multiple views for 

classification of mammograms[J]. Neurocomputing, 2021, 443: 320-328. 

[56] McKinney S M, Sieniek M, Godbole V, et al. International evaluation of an AI system for 

breast cancer screening[J]. Nature, 2020, 577(7788): 89-94. 

[57] Moreira I C, Amaral I, Domingues I, et al. Inbreast: toward a full-field digital 

mammographic database[J]. Academic radiology, 2012, 19(2): 236-248. 

[58] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object 

detection[C]//Proceedings of the IEEE conference on computer vision and pattern 

recognition. 2017: 2117-2125. 

[59] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint 

arXiv:1804.02767, 2018. 

[60] Lu Z, Carneiro G, Dhungel N, et al. Automated detection of individual micro-

calcifications from mammograms using a multi-stage cascade approach[J]. arXiv preprint 

arXiv:1610.02251, 2016. 



61 
 

[61] Liu X, Mei M, Liu J, et al. Microcalcification detection in full-field digital mammograms 

with PFCM clustering and weighted SVM-based method[J]. EURASIP Journal on 

Advances in Signal Processing, 2015, 2015(1): 1-13. 

[62] Illingworth J, Kittler J. A survey of the Hough transform[J]. Computer vision, graphics, 

and image processing, 1988, 44(1): 87-116. 

[63] Tan M, Le Q. Efficientnetv2: Smaller models and faster training[C]//International 

Conference on Machine Learning. PMLR, 2021: 10096-10106. 

[64] Muhammad M B, Yeasin M. Eigen-cam: Class activation map using principal 

components[C]//2020 International Joint Conference on Neural Networks (IJCNN). 

IEEE, 2020: 1-7. 

[65] Lotter W, Diab A R, Haslam B, et al. Robust breast cancer detection in mammography 

and digital breast tomosynthesis using an annotation-efficient deep learning approach[J]. 

Nature Medicine, 2021, 27(2): 244-249. 

[66] Dhungel N, Carneiro G, Bradley A P. A deep learning approach for the analysis of 

masses in mammograms with minimal user intervention[J]. Medical image analysis, 

2017, 37: 114-128. 

[67] Agarwal R, Diaz O, Lladó X, et al. Automatic mass detection in mammograms using 

deep convolutional neural networks[J]. Journal of Medical Imaging, 2019, 6(3): 031409. 

[68] Yang Z, Cao Z, Zhang Y, et al. MommiNet-v2: Mammographic multi-view mass 

identification networks[J]. Medical Image Analysis, 2021, 73: 102204. 

[69] Tang Y, Cao Z, Zhang Y, et al. Leveraging Large-Scale Weakly Labeled Data for Semi-

Supervised Mass Detection in Mammograms[C]//Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 2021: 3855-3864. 

[70] Tardy M, Mateus D. Looking for abnormalities in mammograms with self-and weakly 

supervised reconstruction[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 

2711-2722. 

[71] Ultraytics. YOLOV5[CP/OL]. 2020. https://github.com/ultralytics/YOLOv5.  

[72] Shen Y, Wu N, Phang J, et al. An interpretable classifier for high-resolution breast cancer 

screening images utilizing weakly supervised localization[J]. Medical image analysis, 

2021, 68: 101908. 

[73] Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep 

networks via gradient-based localization[C]//Proceedings of the IEEE international 

conference on computer vision. 2017: 618-626. 

https://github.com/ultralytics/YOLOv5


62 
 

[74] Wang H, Wang Z, Du M, et al. Score-CAM: Score-weighted visual explanations for 

convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition workshops. 2020: 24-25. 


	1 Chapter 1: Introduction
	1.1 Background
	1.2 Features of Mammography
	1.3 Related Works
	1.3.1 Microcalcification Detection
	1.3.2 Mass Detection
	1.3.3 Cancer Diagnosis

	1.4 Our Work and Contributions
	1.5 Datasets and Implementation
	1.6 Thesis Structure

	2 Chapter 2: Microcalcification Detection in Mammography Based on Multiscale Features Fusion
	2.1 Introduction
	2.2 Detection Based on Multiscale Features Fusion
	2.2.1 Overview
	2.2.2 Adaptive Image Adjustment
	2.2.3 Shortcut Connection Pyramid Network
	2.2.4 Trainable Weighted Feature Fusion

	2.3 Experiments
	2.3.1 Dataset and Implementation
	2.3.2 Compared Methods
	2.3.3 Evaluation Metrics
	2.3.4 Results and Discussion

	2.4 Conclusion

	3 Chapter 3: Weakly Supervised Mass Detection in Mammography Based on Multi-view Enhancing
	3.1 Introduction
	3.2 Weakly Supervised Mass Detection Network Based on Multiview Enhancing
	3.2.1 Overview
	3.2.2 Preprocessing
	3.2.3 Feature Extraction
	3.2.4 Multiview Enhancing Module
	3.2.5 CAM-Based Detection Module

	3.3 Experiments
	3.3.1 Datasets and Implementation
	3.3.2 Evaluation Metrics
	3.3.3 Experiment Plan
	3.3.4 Result and Discussion

	3.4 Conclusion

	4 Chapter 4: Breast Cancer Diagnosis in Mammography Based on Multi-instance Learning
	4.1 Introduction
	4.2 Multi-instance Learning Network CancerDNet for Cancer Diagnosis
	4.2.1 Overview
	4.2.2 Whole Case Bag Learning
	4.2.3 Low-capacity Instance Learning
	4.2.4 High-capacity Instance Learning

	4.3 Experiments
	4.3.1 Datasets and Implementation
	4.3.2 Evaluation Metrics
	4.3.3 Results and Discussion

	4.4 Conclusion

	5 Chapter 5: Conclusion and Perspective
	5.1 Conclusion
	5.2 Perspective

	Reference

