107 research outputs found

    Bayesian Speaker Adaptation Based on a New Hierarchical Probabilistic Model

    Get PDF
    In this paper, a new hierarchical Bayesian speaker adaptation method called HMAP is proposed that combines the advantages of three conventional algorithms, maximum a posteriori (MAP), maximum-likelihood linear regression (MLLR), and eigenvoice, resulting in excellent performance across a wide range of adaptation conditions. The new method efficiently utilizes intra-speaker and inter-speaker correlation information through modeling phone and speaker subspaces in a consistent hierarchical Bayesian way. The phone variations for a specific speaker are assumed to be located in a low-dimensional subspace. The phone coordinate, which is shared among different speakers, implicitly contains the intra-speaker correlation information. For a specific speaker, the phone variation, represented by speaker-dependent eigenphones, are concatenated into a supervector. The eigenphone supervector space is also a low dimensional speaker subspace, which contains inter-speaker correlation information. Using principal component analysis (PCA), a new hierarchical probabilistic model for the generation of the speech observations is obtained. Speaker adaptation based on the new hierarchical model is derived using the maximum a posteriori criterion in a top-down manner. Both batch adaptation and online adaptation schemes are proposed. With tuned parameters, the new method can handle varying amounts of adaptation data automatically and efficiently. Experimental results on a Mandarin Chinese continuous speech recognition task show good performance under all testing conditions

    Adaptive speaker diarization of broadcast news based on factor analysis

    Get PDF
    The introduction of factor analysis techniques in a speaker diarization system enhances its performance by facilitating the use of speaker specific information, by improving the suppression of nuisance factors such as phonetic content, and by facilitating various forms of adaptation. This paper describes a state-of-the-art iVector-based diarization system which employs factor analysis and adaptation on all levels. The diarization modules relevant for this work are: the speaker segmentation which searches for speaker boundaries and the speaker clustering which aims at grouping speech segments of the same speaker. The speaker segmentation relies on speaker factors which are extracted on a frame-by-frame basis using eigenvoices. We incorporate soft voice activity detection in this extraction process as the speaker change detection should be based on speaker information only and we want it to disregard the non-speech frames by applying speech posteriors. Potential speaker boundaries are inserted at positions where rapid changes in speaker factors are witnessed. By employing Mahalanobis distances, the effect of the phonetic content can be further reduced, which results in more accurate speaker boundaries. This iVector-based segmentation significantly outperforms more common segmentation methods based on the Bayesian Information Criterion (BIC) or speech activity marks. The speaker clustering employs two-step Agglomerative Hierarchical Clustering (AHC): after initial BIC clustering, the second cluster stage is realized by either an iVector Probabilistic Linear Discriminant Analysis (PLDA) system or Cosine Distance Scoring (CDS) of extracted speaker factors. The segmentation system is made adaptive on a file-by-file basis by iterating the diarization process using eigenvoice matrices adapted (unsupervised) on the output of the previous iteration. Assuming that for most use cases material similar to the recording in question is readily available, unsupervised domain adaptation of the speaker clustering is possible as well. We obtain this by expanding the eigenvoice matrix used during speaker factor extraction for the CDS clustering stage with a small set of new eigenvoices that, in combination with the initial generic eigenvoices, models the recurring speakers and acoustic conditions more accurately. Experiments on the COST278 multilingual broadcast news database show the generation of significantly more accurate speaker boundaries by using adaptive speaker segmentation which also results in more accurate clustering. The obtained speaker error rate (SER) can be further reduced by another 13% relative to 7.4% via domain adaptation of the CDS clustering. (C) 2017 Elsevier Ltd. All rights reserved

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny’s variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. (1) Adding neighbor windows to extract more speaker information for each short segment. (2) Using a hidden Markov model to avoid frequent speaker change points. (3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00, and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Stacked transformations for foreign accented speech recognition

    Get PDF
    Nowadays, large vocabulary speech recognizers exist that are performing reasonably well for specific conditions and environments. When the conditions change however, performance degrades quickly. For example, when the person to be recognized has a foreign accent the conditions could mismatch with the model, resulting in high error rates. The problem in recognizing foreign accented speech is the lack of sufficient training data. If enough data would be available of the same accent, from numerous different speakers, a well performing accented speech model could be built. Besides the lack of speech data, there are more problems with training a complete new model. It costs a lot of computational resources and storage space to train a new model. If speakers with different accents must be recognized, these costs explode as every accent needs retraining. A common solution for preventing retraining is to adapt (transform) an existing model, such that it better matches the recognition conditions. In this thesis multiple different adaptation transformations are considered. Speaker Transformations are using speech data from the target speaker, Accent Transformations use speech data from different speakers, who have the same accent as the speech that needs to be recognized. Neighbour Transformations are estimated with speech from different speakers that are automatically determined to be similar to the target speaker. Novelty in this work is the stack wise combination of these adaptations. Instead of using a single transformation, multiple transformations are 'stacked together'. Because all adaptations except the speaker specific adaptation can be precomputed, no extra computational costs at recognition time occur compared to normal speaker adaptation and the adaptations that can be precomputed are much more refined as they can use more and better adaptation data. In addition, they need only a very small amount storage space, compared to a retrained model. The effect of Stacked Transformations is that the models have a better fit for the recognition utterances. When compared to no adaptation, improvements up to 30% in Word Error Rate can be achieved. In adaptation with a small number (5) of sentences, improvements up to 15% are gained

    Language modelling for speaker diarization in telephonic interviews

    Get PDF
    The aim of this paper is to investigate the benefit of combining both language and acoustic modelling for speaker diarization. Although conventional systems only use acoustic features, in some scenarios linguistic data contain high discriminative speaker information, even more reliable than the acoustic ones. In this study we analyze how an appropriate fusion of both kind of features is able to obtain good results in these cases. The proposed system is based on an iterative algorithm where a LSTM network is used as a speaker classifier. The network is fed with character-level word embeddings and a GMM based acoustic score created with the output labels from previous iterations. The presented algorithm has been evaluated in a Call-Center database, which is composed of telephone interview audios. The combination of acoustic features and linguistic content shows a 84.29% improvement in terms of a word-level DER as compared to a HMM/VB baseline system. The results of this study confirms that linguistic content can be efficiently used for some speaker recognition tasks.This work was partially supported by the Spanish Project DeepVoice (TEC2015-69266-P) and by the project PID2019-107579RBI00/ AEI /10.13039/501100011033.Peer ReviewedPostprint (published version
    corecore