272 research outputs found

    A Hybrid Approach with Multi-channel I-Vectors and Convolutional Neural Networks for Acoustic Scene Classification

    Full text link
    In Acoustic Scene Classification (ASC) two major approaches have been followed . While one utilizes engineered features such as mel-frequency-cepstral-coefficients (MFCCs), the other uses learned features that are the outcome of an optimization algorithm. I-vectors are the result of a modeling technique that usually takes engineered features as input. It has been shown that standard MFCCs extracted from monaural audio signals lead to i-vectors that exhibit poor performance, especially on indoor acoustic scenes. At the same time, Convolutional Neural Networks (CNNs) are well known for their ability to learn features by optimizing their filters. They have been applied on ASC and have shown promising results. In this paper, we first propose a novel multi-channel i-vector extraction and scoring scheme for ASC, improving their performance on indoor and outdoor scenes. Second, we propose a CNN architecture that achieves promising ASC results. Further, we show that i-vectors and CNNs capture complementary information from acoustic scenes. Finally, we propose a hybrid system for ASC using multi-channel i-vectors and CNNs by utilizing a score fusion technique. Using our method, we participated in the ASC task of the DCASE-2016 challenge. Our hybrid approach achieved 1 st rank among 49 submissions, substantially improving the previous state of the art

    MCE 2018: The 1st Multi-target Speaker Detection and Identification Challenge Evaluation

    Full text link
    The Multi-target Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on real-world telephone conversations. Data recordings are generated from call center customer-agent conversations. The task is to measure how accurately one can detect 1) whether a test recording is spoken by a blacklisted speaker, and 2) which specific blacklisted speaker was talking. This paper outlines the challenge and provides its baselines, results, and discussions.Comment: http://mce.csail.mit.edu . arXiv admin note: text overlap with arXiv:1807.0666

    Experimenting with Additive Margins for Contrastive Self-Supervised Speaker Verification

    Full text link
    Most state-of-the-art self-supervised speaker verification systems rely on a contrastive-based objective function to learn speaker representations from unlabeled speech data. We explore different ways to improve the performance of these methods by: (1) revisiting how positive and negative pairs are sampled through a "symmetric" formulation of the contrastive loss; (2) introducing margins similar to AM-Softmax and AAM-Softmax that have been widely adopted in the supervised setting. We demonstrate the effectiveness of the symmetric contrastive loss which provides more supervision for the self-supervised task. Moreover, we show that Additive Margin and Additive Angular Margin allow reducing the overall number of false negatives and false positives by improving speaker separability. Finally, by combining both techniques and training a larger model we achieve 7.50% EER and 0.5804 minDCF on the VoxCeleb1 test set, which outperforms other contrastive self supervised methods on speaker verification.Comment: accepted at INTERSPEECH 2023, 20th-24th August 2023, Dublin, Irelan

    Label-Efficient Self-Supervised Speaker Verification With Information Maximization and Contrastive Learning

    Full text link
    State-of-the-art speaker verification systems are inherently dependent on some kind of human supervision as they are trained on massive amounts of labeled data. However, manually annotating utterances is slow, expensive and not scalable to the amount of data available today. In this study, we explore self-supervised learning for speaker verification by learning representations directly from raw audio. The objective is to produce robust speaker embeddings that have small intra-speaker and large inter-speaker variance. Our approach is based on recent information maximization learning frameworks and an intensive data augmentation pre-processing step. We evaluate the ability of these methods to work without contrastive samples before showing that they achieve better performance when combined with a contrastive loss. Furthermore, we conduct experiments to show that our method reaches competitive results compared to existing techniques and can get better performances compared to a supervised baseline when fine-tuned with a small portion of labeled data.Comment: accepted to INTERSPEECH 202
    • …
    corecore