7 research outputs found

    The study on using passive RFID tags for indoor positioning

    Get PDF
    Author name used in this publication: S. K. KwokAuthor name used in this publication: George T. S. Ho2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    RSS-based wireless LAN indoor localization and tracking using deep architectures

    Get PDF
    Wireless Local Area Network (WLAN) positioning is a challenging task indoors due to environmental constraints and the unpredictable behavior of signal propagation, even at a fixed location. The aim of this work is to develop deep learning-based approaches for indoor localization and tracking by utilizing Received Signal Strength (RSS). The study proposes Multi-Layer Perceptron (MLP), One and Two Dimensional Convolutional Neural Networks (1D CNN and 2D CNN), and Long Short Term Memory (LSTM) deep networks architectures for WLAN indoor positioning based on the data obtained by actual RSS measurements from an existing WLAN infrastructure in a mobile user scenario. The results, using different types of deep architectures including MLP, CNNs, and LSTMs with existing WLAN algorithms, are presented. The Root Mean Square Error (RMSE) is used as the assessment criterion. The proposed LSTM Model 2 achieved a dynamic positioning RMSE error of 1.73 m, which outperforms probabilistic WLAN algorithms such as Memoryless Positioning (RMSE: 10.35 m) and Nonparametric Information (NI) filter with variable acceleration (RMSE: 5.2 m) under the same experiment environment.ECSEL Joint Undertaking ; European Union's H2020 Framework Programme (H2020/2014-2020) Grant ; National Authority TUBITA

    Enhanced indoor positioning utilising wi-fi fingerprint and QR calibration techniques

    Get PDF
    The growing interest in location-based services (LBS), due to the demand for its application in personal navigation, billing and information enquiries, has expedited the research development for indoor positioning techniques. The widely used global positioning system (GPS) is a proven technology for positioning, navigation, but it performs poorly indoors. Hence, researchers seek alternative solutions, including the concept of signal of opportunity (SoOP) for indoor positioning. This research planned to use cheap solutions by utilizing available communication system infrastructure without the need to deploy new transmitters or beacons for positioning purposes. Wi-Fi fingerprinting has been identified for potential indoor positioning due to its availability in most buildings. In unplanned building conditions where the available number of APs is limited and the locations of APs are predesignated, certain positioning algorithms do not perform well consistently. In addition, there are several other factors that influence positioning accuracy, such as different path movements of users and different Wi-Fi chipset manufacturers. To overcome these challenges, many techniques have been proposed, such as collaborative positioning techniques, data fusion of radio-based positioning and mobile-based positioning that uses sensors to sense the physical movement activity of users. A few researchers have proposed combining radio-based positioning with vision-based positioning while utilizing image sensors. This work proposed integrated layers of positioning techniques, which is based on enhanced deterministic method; Bayesian estimation and Kalman filter utilising dynamic localisation region. Here, accumulated accuracy is proposed with distribution of error location by estimation at each test point on path movement. The error distribution and accumulated accuracy have been presented in graphs and tables for each result. The proposed algorithm has been enhanced by location based calibration with additional QR calibration. It allows not only correction of the actual position but the control of the errors from being accumulated by utilizing the Bayesian technique and dynamic localisation region. The position of calibration point is determined by analysing the error distribution region. In the last part, modification on Kalman filter step for calibration algorithm did further improve the location error compared to other deterministic algorithms with calibration point. The CDF plots have shown all developed techniques that provide accuracy improvement for indoor positioning based on Wi-Fi fingerprinting and QR calibration

    Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application

    Full text link
    [EN] The study presents some results of customer pathsÂż analysis in a shopping mall. Bluetooth-based technology is used to collect data. The event log containing spatiotemporal information is analyzed with process mining. Process mining is a technique that enables one to see the whole process contrary to data-centric methods. The use of process mining can provide a readily-understandable view of the customer paths. We installed iBeacon devices, a Bluetooth-based positioning system, in the shopping mall. During December 2017 and January and February 2018, close to 8000 customer data were captured. We aim to investigate customer behaviors regarding gender by using their paths. We can determine the gender of customers if they go to the menÂżs bathroom or womenÂżs bathroom. Since the study has a comprehensive scope, we focused on male and female customersÂż behaviors. This study shows that male and female customers have different behaviors. Their duration and paths, in general, are not similar. In addition, the study shows that the process mining technique is a viable way to analyze customer behavior using Bluetooth-based technology.Dogan, O.; Bayo-Monton, JL.; FernĂĄndez Llatas, C.; Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors. 19(3):1-20. https://doi.org/10.3390/s19030557S120193Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005Merad, D., Aziz, K.-E., Iguernaissi, R., Fertil, B., & Drap, P. (2016). Tracking multiple persons under partial and global occlusions: Application to customers’ behavior analysis. Pattern Recognition Letters, 81, 11-20. doi:10.1016/j.patrec.2016.04.011Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering, 47(2), 237-267. doi:10.1016/s0169-023x(03)00066-1Ou-Yang, C., & Winarjo, H. (2011). Petri-net integration – An approach to support multi-agent process mining. Expert Systems with Applications, 38(4), 4039-4051. doi:10.1016/j.eswa.2010.09.066Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., 
 Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Funkner, A. A., Yakovlev, A. N., & Kovalchuk, S. V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records. Procedia Computer Science, 119, 234-244. doi:10.1016/j.procs.2017.11.181Jans, M., Alles, M., & Vasarhelyi, M. (2013). The case for process mining in auditing: Sources of value added and areas of application. International Journal of Accounting Information Systems, 14(1), 1-20. doi:10.1016/j.accinf.2012.06.015Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047pDe Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & AlmazĂĄn, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015Kang, L., & Hansen, M. (2017). Behavioral analysis of airline scheduled block time adjustment. Transportation Research Part E: Logistics and Transportation Review, 103, 56-68. doi:10.1016/j.tre.2017.04.004Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040FernĂĄndez-Llatas, C., Benedi, J.-M., GarcĂ­a-GĂłmez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003M. Valle, A., A.P. Santos, E., & R. Loures, E. (2017). Applying process mining techniques in software process appraisals. Information and Software Technology, 87, 19-31. doi:10.1016/j.infsof.2017.01.004Juhaƈåk, L., Zounek, J., & RohlĂ­kovĂĄ, L. (2019). Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system. Computers in Human Behavior, 92, 496-506. doi:10.1016/j.chb.2017.12.015Sedrakyan, G., De Weerdt, J., & Snoeck, M. (2016). Process-mining enabled feedback: «Tell me what I did wrong» vs. «tell me how to do it right». Computers in Human Behavior, 57, 352-376. doi:10.1016/j.chb.2015.12.040Schoor, C., & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Computers in Human Behavior, 28(4), 1321-1331. doi:10.1016/j.chb.2012.02.016Werner, M., & Gehrke, N. (2015). Multilevel Process Mining for Financial Audits. IEEE Transactions on Services Computing, 8(6), 820-832. doi:10.1109/tsc.2015.2457907De Weerdt, J., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes—A case study in a financial services organization. Computers in Industry, 64(1), 57-67. doi:10.1016/j.compind.2012.09.010Herbert, L., Hansen, Z. N. L., Jacobsen, P., & Cunha, P. (2014). Evolutionary Optimization of Production Materials Workflow Processes. Procedia CIRP, 25, 53-60. doi:10.1016/j.procir.2014.10.010Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008Yoshimura, Y., Krebs, A., & Ratti, C. (2017). Noninvasive Bluetooth Monitoring of Visitors’ Length of Stay at the Louvre. IEEE Pervasive Computing, 16(2), 26-34. doi:10.1109/mprv.2017.33Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management, 51(2), 225-239. doi:10.1016/j.im.2013.11.007Larson, J. S., Bradlow, E. T., & Fader, P. S. (2005). An exploratory look at supermarket shopping paths. International Journal of Research in Marketing, 22(4), 395-414. doi:10.1016/j.ijresmar.2005.09.005Fernandez-Llatas, C., Martinez-Millana, A., Martinez-Romero, A., Benedi, J. M., & Traver, V. (2015). Diabetes care related process modelling using Process Mining techniques. Lessons learned in the application of Interactive Pattern Recognition: coping with the Spaghetti Effect. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318809Conca, T., Saint-Pierre, C., Herskovic, V., SepĂșlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Heyer, L. J. (1999). Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research, 9(11), 1106-1115. doi:10.1101/gr.9.11.1106Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.00

    Algorithmic Aspects of Communication and Localization in Wireless Sensor Networks

    Get PDF

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization

    Full text link
    [EN] There are some studies and methods in the literature to understand customer needs and behaviors from the path. However, path analysis has a complex structure because the many customers can follow many different paths. Therefore, clustering methods facilitate the analysis of the customer location data to evaluate customer behaviors. Therefore, we aim to understand customer behavior by clustering their paths. We use an intuitionistic fuzzy c-means clustering (IFCM) algorithm for two-dimensional indoor customer data; case durations and the number of visited locations. Customer location data was collected by Bluetooth-based technology devices from one of the major shopping malls in Istanbul. Firstly, we create customer paths from customer location data by using process mining that is a technique that can be used to increase the understandability of the IFCM results. Moreover, we show with this study that fuzzy methods and process mining technique can be used together to analyze customer paths and gives more understandable results. We also present behavioral changes of some customers who have a different visit by inspecting their clustered paths.Dogan, O.; Oztaysi, B.; FernĂĄndez Llatas, C. (2020). Segmentation of indoor customer paths using intuitionistic fuzzy clustering: Process mining visualization. Journal of Intelligent & Fuzzy Systems. 38(1):675-684. https://doi.org/10.3233/JIFS-179440675684381Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557Dogan, O., & Oztaysi, B. (2019). Genders prediction from indoor customer paths by Levenshtein-based fuzzy kNN. Expert Systems with Applications, 136, 42-49. doi:10.1016/j.eswa.2019.06.029Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035De Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & AlmazĂĄn, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047pHwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769W.M. van der Aalst , Process mining: Data science in action, Springer, 2016.R.J.C. Bose and W.M. Van der Aalst , Context aware trace clustering: Towards improving process mining results, in: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, 2009, pp. 401–412.M. Song , C.W. GĂŒnther and W.M. Van der Aalst , Trace clustering in process mining, in: International Conference on Business Process Management, Springer, 2008, pp. 109–120.D. Ferreira , M. Zacarias , M. Malheiros and P. Ferreira , Approaching process mining with sequence clustering: Experiments and findings, in: International Conference on Business Process Management, Springer, 2007, pp. 360–374.O. Dogan , Heuristic Approaches in Clustering Problems, in: Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems, IGI Global, 2018, pp. 107–124.Kahraman, C., ÖztayƟi, B., Çevik Onar, S., & Doğan, O. (2018). INTUITIONISTIC FUZZY ORIGINATED TYPE-2 FUZZY AHP. International Journal of the Analytic Hierarchy Process, 10(2). doi:10.13033/ijahp.v10i2.538Zhexue Huang, & Ng, M. K. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446-452. doi:10.1109/91.784206Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015M.L. van Eck , N. Sidorova and W.M. van der Aalst , Enabling process mining on sensor data from smart products, in: Research Challenges in Information Science (RCIS), 2016 IEEE Tenth International Conference on, IEEE, 2016, pp. 1–12.Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005S. Chen , A. Fern and S. Todorovic , Multi-object tracking via constrained sequential labeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1130–1137.Marchetti, Y., & Zhou, Q. (2014). Solution path clustering with adaptive concave penalty. Electronic Journal of Statistics, 8(1). doi:10.1214/14-ejs934J. Evermann , T. Thaler and P. Fettke , Clustering traces using sequence alignment, in: International Conference on Business Process Management, Springer, 2016, pp. 179–190.D’Urso, P., & Massari, R. (2013). Fuzzy clustering of human activity patterns. Fuzzy Sets and Systems, 215, 29-54. doi:10.1016/j.fss.2012.05.009Jiang, S., Ferreira, J., & GonzĂĄlez, M. C. (2012). Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25(3), 478-510. doi:10.1007/s10618-012-0264-zA. Manzi , P. Dario and F. Cavallo , A human activity recognition system based on dynamic clustering of skeleton data, Sensors 17(5) (2017), 1100.FernĂĄndez-Llatas, C., Benedi, J.-M., GarcĂ­a-GĂłmez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434W.M. van der Aalst , How people really (like to) work, in: International Conference on Human-Centred Software Engineering, Springer, 2014, pp. 317–321.Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xSzmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518. doi:10.1016/s0165-0114(98)00244-9Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841-847. doi:10.1109/34.85677Yager, R. R. (2004). On some new classes of implication operators and their role in approximate reasoning. Information Sciences, 167(1-4), 193-216. doi:10.1016/j.ins.2003.04.001Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:10.1080/01969727308546046J.C. Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981.Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 11(2), 1711-1717. doi:10.1016/j.asoc.2010.05.00
    corecore