102 research outputs found

    A Machine Learning-Based Framework for Clustering Residential Electricity Load Profiles to Enhance Demand Response Programs

    Full text link
    Load shapes derived from smart meter data are frequently employed to analyze daily energy consumption patterns, particularly in the context of applications like Demand Response (DR). Nevertheless, one of the most important challenges to this endeavor lies in identifying the most suitable consumer clusters with similar consumption behaviors. In this paper, we present a novel machine learning based framework in order to achieve optimal load profiling through a real case study, utilizing data from almost 5000 households in London. Four widely used clustering algorithms are applied specifically K-means, K-medoids, Hierarchical Agglomerative Clustering and Density-based Spatial Clustering. An empirical analysis as well as multiple evaluation metrics are leveraged to assess those algorithms. Following that, we redefine the problem as a probabilistic classification one, with the classifier emulating the behavior of a clustering algorithm,leveraging Explainable AI (xAI) to enhance the interpretability of our solution. According to the clustering algorithm analysis the optimal number of clusters for this case is seven. Despite that, our methodology shows that two of the clusters, almost 10\% of the dataset, exhibit significant internal dissimilarity and thus it splits them even further to create nine clusters in total. The scalability and versatility of our solution makes it an ideal choice for power utility companies aiming to segment their users for creating more targeted Demand Response programs.Comment: 29 pages, 19 figure

    DCNFIS: Deep Convolutional Neuro-Fuzzy Inference System

    Full text link
    A key challenge in eXplainable Artificial Intelligence is the well-known tradeoff between the transparency of an algorithm (i.e., how easily a human can directly understand the algorithm, as opposed to receiving a post-hoc explanation), and its accuracy. We report on the design of a new deep network that achieves improved transparency without sacrificing accuracy. We design a deep convolutional neuro-fuzzy inference system (DCNFIS) by hybridizing fuzzy logic and deep learning models and show that DCNFIS performs as accurately as three existing convolutional neural networks on four well-known datasets. We furthermore that DCNFIS outperforms state-of-the-art deep fuzzy systems. We then exploit the transparency of fuzzy logic by deriving explanations, in the form of saliency maps, from the fuzzy rules encoded in DCNFIS. We investigate the properties of these explanations in greater depth using the Fashion-MNIST dataset

    Clustering algorithm for D2D communication in next generation cellular networks : thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

    Get PDF
    Next generation cellular networks will support many complex services for smartphones, vehicles, and other devices. To accommodate such services, cellular networks need to go beyond the capabilities of their previous generations. Device-to-Device communication (D2D) is a key technology that can help fulfil some of the requirements of future networks. The telecommunication industry expects a significant increase in the density of mobile devices which puts more pressure on centralized schemes and poses risk in terms of outages, poor spectral efficiencies, and low data rates. Recent studies have shown that a large part of the cellular traffic pertains to sharing popular contents. This highlights the need for decentralized and distributive approaches to managing multimedia traffic. Content-sharing via D2D clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. Different studies have established that D2D communication in clusters can improve spectral and energy efficiency, achieve low latency while increasing the capacity of the network. To achieve effective content-sharing among users, appropriate clustering strategies are required. Therefore, the aim is to design and compare clustering approaches for D2D communication targeting content-sharing applications. Currently, most of researched and implemented clustering schemes are centralized or predominantly dependent on Evolved Node B (eNB). This thesis proposes a distributed architecture that supports clustering approaches to incorporate multimedia traffic. A content-sharing network is presented where some D2D User Equipment (DUE) function as content distributors for nearby devices. Two promising techniques are utilized, namely, Content-Centric Networking and Network Virtualization, to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multi-factor clustering algorithm is proposed for grouping the DUEs sharing a common interest. Various performance parameters such as energy consumption, area spectral efficiency, and throughput have been considered for evaluating the proposed algorithm. The effect of number of clusters on the performance parameters is also discussed. The proposed algorithm has been further modified to allow for a trade-off between fairness and other performance parameters. A comprehensive simulation study is presented that demonstrates that the proposed clustering algorithm is more flexible and outperforms several well-known and state-of-the-art algorithms. The clustering process is subsequently evaluated from an individual user’s perspective for further performance improvement. We believe that some users, sharing common interests, are better off with the eNB rather than being in the clusters. We utilize machine learning algorithms namely, Deep Neural Network, Random Forest, and Support Vector Machine, to identify the users that are better served by the eNB and form clusters for the rest of the users. This proposed user segregation scheme can be used in conjunction with most clustering algorithms including the proposed multi-factor scheme. A comprehensive simulation study demonstrates that with such novel user segregation, the performance of individual users, as well as the whole network, can be significantly improved for throughput, energy consumption, and fairness

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    SELEKSI FITUR CHI-SQUARE PADA ALGORITMA UNSUPERVISED LEARNING UNTUK PENGUKURAN INDIKATOR KINERJA UTAMA DI PROVINSI RIAU

    Get PDF
    Proses pengurusan berkas kependudukan yang masih memakan waktu menyebabkan instansi kependudukan perlu menemukan pola kepuasan masyarakat sebagai peningkatan pelayanan Indeks Kepuasan Masyarakat yang telah diatur oleh Men. PAN memiliki 14 unsur pelayanan yang harus diperhatikan, dengan banyaknya unsur tersebut menyebabkan sulitnya menemukan sebuah pola data dan dapat menurunkan nilai akurasi serta kinerja sebuah algoritma. Pada penelitian ini diterapkan seleksi fitur menggunakan Chi-Square dan menerapkan algoritma K-Means, K-Medoid, FCM, SOM dan DBSCAN untuk menemukan pola unsur yang harus diprioritaskan dalam peningkatkan kepuasan masyarakat. Setelah pemrosesan algoritma tersebut, diperoleh cluster validity terbaik pada algoritma DBSCAN yang menggunakan seleksi fitur Chi-Square dengan nilai 0,47 dan didapatkan 5 fitur yang sangat berpengaruh pada pengukuran kepuasan masyarakat khususnya pada penerapan Sistem Informasi Administrasi Kependudukan di instansi kependudukan Kota Dumai

    Data clustering using the Bees Algorithm and the Kd-tree structure

    Get PDF
    Data clustering has been studied intensively during the past decade. The K-means and C-means algorithms are the most popular of clustering techniques. The former algorithm is suitable for 'crisp' clustering and the latter, for 'fuzzy' clustering. Clustering using the K-means or C-means algorithms generally is fast and produces good results. Although these algorithms have been successfully implemented in several areas, they still have a number of limitations. The main aim of this work is to develop flexible data management strategies to address some of those limitations and improve the performance of the algorithms. The first part of the thesis introduces improvements to the K-means algorithm. A flexible data structure was applied to help the algorithm to find stable results and to decrease the number of nearest neighbour queries needed to assign data points to clusters. The method has overcome most of the deficiencies of the K-means algorithm. The second and third parts of the thesis present two new clustering algorithms that are capable of locating near optimal solutions efficiently. The proposed algorithms combine the simplicity of the K-means algorithm and the C-means algorithm with the capability of a new optimisation method called the Bees Algorithm to avoid local optima in crisp and fuzzy clustering, respectively. Experimental results for different data sets have demonstrated that the new clustering algorithms produce better performances than those of other algorithms based upon combining an evolutionary optimisation tool and the K-means and C-means clustering methods. The fourth part of this thesis presents an improvement to the basic Bees Algorithm by applying the concept of recursion to reduce the randomness of its local search procedure. The improved Bees Algorithm was applied to crisp and fuzzy data clustering of several data sets. The results obtained confirm the superior performance of the new algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Data clustering using the Bees Algorithm and the Kd-tree structure

    Get PDF
    Data clustering has been studied intensively during the past decade. The K-means and C-means algorithms are the most popular of clustering techniques. The former algorithm is suitable for 'crisp' clustering and the latter, for 'fuzzy' clustering. Clustering using the K-means or C-means algorithms generally is fast and produces good results. Although these algorithms have been successfully implemented in several areas, they still have a number of limitations. The main aim of this work is to develop flexible data management strategies to address some of those limitations and improve the performance of the algorithms. The first part of the thesis introduces improvements to the K-means algorithm. A flexible data structure was applied to help the algorithm to find stable results and to decrease the number of nearest neighbour queries needed to assign data points to clusters. The method has overcome most of the deficiencies of the K-means algorithm. The second and third parts of the thesis present two new clustering algorithms that are capable of locating near optimal solutions efficiently. The proposed algorithms combine the simplicity of the K-means algorithm and the C-means algorithm with the capability of a new optimisation method called the Bees Algorithm to avoid local optima in crisp and fuzzy clustering, respectively. Experimental results for different data sets have demonstrated that the new clustering algorithms produce better performances than those of other algorithms based upon combining an evolutionary optimisation tool and the K-means and C-means clustering methods. The fourth part of this thesis presents an improvement to the basic Bees Algorithm by applying the concept of recursion to reduce the randomness of its local search procedure. The improved Bees Algorithm was applied to crisp and fuzzy data clustering of several data sets. The results obtained confirm the superior performance of the new algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Enhanced Ai-Based Machine Learning Model for an Accurate Segmentation and Classification Methods

    Get PDF
    Phone Laser Scanner becomes the versatile sensor module that is premised on Lamp Identification and Spanning methodology and is used in a spectrum of uses. There are several prior editorials in the literary works that concentrate on the implementations or attributes of these processes; even so, evaluations of all those inventive computational techniques reported in the literature have not even been performed in the required thickness. At ToAT that finish, we examine and summarize the latest advances in Artificial Intelligence based machine learning data processing approaches such as extracting features, fragmentation, machine vision, and categorization. In this survey, we have reviewed total 48 papers based on an enhanced AI based machine learning model for accurate classification and segmentation methods. Here, we have reviewed the sections on segmentation and classification of images based on machine learning models
    corecore