37 research outputs found

    Application of Wavelet Denoising to Improve OFDM‐based Signal Detection and Classification

    Get PDF
    The developmental emphasis on improving wireless access security through various OSI PHY layer mechanisms continues. This work investigates the exploitation of RF waveform features that are inherently unique to specific devices and that may be used for reliable device classification (manufacturer, model, or serial number). Emission classification is addressed here through detection, location, extraction, and exploitation of RF [fingerprints] to provide device‐specific identification. The most critical step in this process is burst detection which occurs prior to fingerprint extraction and classification. Previous variance trajectory (VT) work provided sensitivity analysis for burst detection capability and highlighted the need for more robust processing at lower signal‐to‐noise ratio (SNR). The work presented here introduces a dual‐tree complex wavelet transform (DT‐ℂWT) denoising process to augment and improve VT detection capability. The new method\u27s performance is evaluated using the instantaneous amplitude responses of experimentally collected 802.11a OFDM signals at various SNRs. The impact of detection error on signal classification performance is then illustrated using extracted RF fingerprints and multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. Relative to previous approaches, the DT‐ℂWT augmented process emerges as a better alternative at lower SNR and yields performance that is 34% closer (on average) to [perfect] burst location estimation performance. Abstract © 2009 John Wiley & Sons, Ltd

    Application of Dual-Tree Complex Wavelet Transforms to Burst Detection and RF Fingerprint Classification

    Get PDF
    This work addresses various Open Systems Interconnection (OSI) Physical (PHY) layer mechanisms to extract and exploit RF waveform features (”fingerprints”) that are inherently unique to specific devices and that may be used to provide hardware specific identification (manufacturer, model, and/or serial number). This is addressed by applying a Dual-Tree Complex Wavelet Transform (DT-CWT) to improve burst detection and RF fingerprint classification. A ”Denoised VT” technique is introduced to improve performance at lower SNRs, with denoising implemented using a DT-CWT decomposition prior to Traditional VT processing. A newly developed Wavelet Domain (WD) fingerprinting technique is presented using statistical WD fingerprints with Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) classification. The statistical fingerprint features are extracted from coefficients of a DT-CWT decomposition. Relative to previous Time Domain (TD) results, the enhanced WD statistical features provide improved device classification performance. Additional performance sensitivity results are presented to demonstrate WD fingerprinting robustness for variation in burst location error, MDA/ML training and classification SNRs, and MDA/ML training and classification signal types. For all cases considered, the WD technique proved to be more robust and exhibited less sensitivity when compared with the TD Technique

    Underwater target detection using multichannel subband adaptive filtering and high-order correlation schemes

    Get PDF
    Includes bibliographical references.In this paper, new pre- and post-processing schemes are developed to process shallow-water sonar data to improve the accuracy of target detection. A multichannel subband adaptive filtering is applied to preprocess the data in order to isolate the potential target returns from the acoustic backscattered signals and improve the signal-to-reverberation ratio. This is done by estimating the time delays associated with the reflections in different subbands. The preprocessed results are then beamformed to generate an image for each ping of the sonar. The testing results on both the simulated and real data revealed the efficiency of this scheme in time-delay estimation and its capability in removing most of the competing reverberations and noise. To improve detection rate while significantly minimizing the incident of false detections, a high-order correlation (HOC) method for postprocessing the beamformed images is then developed. This method determines the consistency in occurrence of the target returns in several consecutive pings. The application of the HOC process to the real beamformed sonar data showed the ability of this method for removing the clutter and at the same time boosting the target returns in several consecutive pings. The algorithm is simple, fast, and easy to implement.This work was supported by the Office of Naval Research (ONR 321TS) under Contract N61331-94-K-0018

    Time series forecasting using wavelet and support vector machine

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Electromyographic Signal Processing With Application To Spinal Cord Injury

    Get PDF
    An Electromyogram or Electromyographic (EMG) signal is the recording of the electrical activity produced by muscles. It measures the electric currents generated in muscles during their contraction. The EMG signal provides insight into the neural activation and dynamics of the muscles, and is therefore important for many different applications, such as in clinical investigations that attempt to diagnose neuromuscular deficiencies. In particular, the work in this thesis is motivated by rehabilitation for patients with spinal cord injury. The EMG signal is very important for researchers and practitioners to monitor and evaluate the effect of the rehabilitation training and the condition of muscles, as the EMG signal provides information that helps infer the neural activity in the spinal cord. Before the work in this thesis, EMG analysis required significant amounts of manual labeling of interesting signal features. The motivation of this thesis is to fully automate the EMG analysis tasks and yield accurate, consistent results. The EMG signal contains multiple muscle responses. The difficulty in processing the EMG signal arises from the fact that the transient muscle response is a transient signal with unknown arrival time, unknown duration, and unknown shape. In addition, the EMG signal recorded from patients with spinal cord injury during rehabilitation is very different from the EMG signal of normal healthy people undergoing the same motions. For example, some of the muscle responses are very weak and thus hard to detect. Because of this, general EMG processing tools and methods are either not applicable or insufficient. The primary contribution of this thesis is the development of a wavelet-based, double-threshold algorithm for the detection of transient peaks in the EMG signal. The application of wavelet transform in the detection of transient signals has been studied extensively and employed successfully. However, most of the theories assume certain knowledge about the shapes of the transient signals, which makes it hard to be generalized to the transient signals with arbitrary shapes. The proposed detection scheme focuses on the more fundamental feature of most transient signals (in particular the EMG signal): peaks, instead of the shapes. The continuous wavelet transform with Mexican Hat wavelet is employed. This thesis theoretically derived a framework for selecting a set of scales based on the frequency domain information. Ridges are identified in the time-scale space to combine the wavelet coefficients from different scales. By imposing two thresholds, one on the wavelet coefficient and one on the ridge length, the proposed detection scheme can achieve both high recall and high precision. A systematic approach for selecting the optimal parameters via simulation is proposed and demonstrated. Comparing with other state-of-the-art detection methods, the proposed method in this thesis yields a better detection performance, especially in the low Signal-to-Noise-Ratio (SNR) environment. Based on the transient peak detection result, the EMG signal is further segmented and classified into various groups of monosynaptic Motor Evoked Potentials (MEPs) and polysynaptic MEPs using techniques stemming from Principal Component Analysis (PCA), hierarchical clustering, and Gaussian mixture model (GMM). A theoretical framework is proposed to segment the EMG signal based on the detected peaks. The scale information of the detected peak is used to derive a measure for its effective support. Several different techniques have been adapted together to solve the clustering problem. An initial hierarchical clustering is first performed to obtain most of the monosynaptic MEPs. PCA is used to reduce the number of features and the effect of the noise. The reduced feature set is then fed to a GMM to further divide the MEPs into different groups of similar shapes. The method of breaking down a segment of multiple consecutive MEPs into individual MEPs is derived. A software with graphic user interface has been implemented in Matlab. The software implements the proposed peak detection algorithm, and enables the physiologists to visualize the detection results and modify them if necessary. The solutions proposed in this thesis are not only helpful to the rehabilitation after spinal cord injury, but applicable to other general processing tasks on transient signals, especially on biological signals.</p

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems
    corecore