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ABSTRACT 
We have carried out a receiver operating characteristics (ROC) study for the enhancement of mammographic features in 
digitized mammograms. The study evaluated the benefits of multi-scale enhancement methods in terms of diagnostic 
performance of radiologists. The enhancement protocol relied on multi-scale expansions and non-linear enhancement 
functions. Dyadic spline wavelet functions (first derivative of a cubic spline) were used together with a sigmoidal non-linear 
enhancement function [1], [2]. We designed a computer interface on a softcopy display and performed an ROC study with 
three radiologists, who specialized in mammography. Clinical cases were obtained from a national mammography database 
of digitized radiographs prepared by the University of South Florida (USF) and Harvard Medical School. 
Our study focused on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology 
(ACR) breast density rating, which are the most difficult cases in screening, were selected. To compare the performance of 
radiologists with and without using multi-scale enhancement, two groups of 30 cases each were diagnosed. Each group 
contained 15 cases of cancerous and 15 cases of normal mammograms. Conventional ROC analysis was applied, and the 
resulting ROC curves indicated improved diagnostic performance when radiologists used multi-scale non-linear 
enhancement. 
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1. INTRODUCTION 
Recently, research has focused on the development of digital displays and softcopy workstations for digital mammography. 
Limited spatial resolution, luminance, and dynamic range cannot be solved simply by hardware improvements or computer 
programming alone. A possible solution of these problems is the application of multi-scale contrast enhancement techniques 
derived from non-linear models.  
Radiologists are mostly familiar with films where the Modulation Transfer Function (MTF) is approximately equal to 28 gray 
levels of contrast resolution. However, images acquired with digital detectors can record at least 212 different gray levels of 
intensity and are now commercially available. The wealth of dynamic range within these digital acquisition systems provides 
strong evidence that the signal-to-noise-ratio (SNR) can be increased in digital mammography. For expert radiologists the 
human visual system can detect at most 27 shades of gray. These considerations motivate the need for judicious methods of 
processing of digital radiographs that can optimize the bandwidth of the human visual system. We have designed 
enhancement software that is well adapted for this purpose and provides a “data mining” tool to map and make visible 
selected “quantum levels” of information living within the wide range of contrast resolution provided by digital detectors. 
Medical imaging is a field in which quantitative accuracy and qualitative fidelity are paramount. In any image enhancement 
process distortion of the original image and artifacts are not affordable. Multidimensional feature enhancement via wavelet 
analysis has been previously demonstrated on mammograms [3], [4], [5], [6], [7], [8] and is a powerful tool for processing 
digital medical images without artifacts. The enhancement process adjusts multi-scale coefficients at some particular spatial-
frequency scale by increasing, decreasing or resetting their values. Each image is then reconstructed with modified 
coefficients. This simple enhancement technique relies on the idea that features of interest in a given radiograph are 
detectable at a particular scale and can be amplified, whereas noise and less clinically interesting features may live at other 
levels of analysis whose visual appearance can be diminished or eliminated in a reconstructed image. Further results and 
detailed descriptions of these methods can be found in [9], [10], [11], [12], [13], [14], [15].  
Surprisingly, there have been very few studies carried out to evaluate the benefits of multi-scale enhancement methods in 
terms of diagnostic performance. Our study aimed at providing quantitative evidence of these benefits. ROC analysis [16] is 
most commonly used in medical imaging for such purposes, though alternative statistical approaches can be found as well 
[17]. ROC curves have been compared to evaluate the visibility of malignancies [18], mass detection techniques [19] or 
algorithms for computer-aided diagnosis (CAD) that use neural networks [20]. 
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The chapter is organized as follows. In Section 2 we describe a protocol for multi-scale non-linear contrast enhancement. 
After a short overview of the use of multi-scale expansions for contrast enhancement we discuss the dyadic spline wavelet 
selected, its implementation, and how a non-linear enhancement function is applied to multi-scale coefficients. Section 3 
addresses the design of a graphical user interface (GUI) that was developed to carry out the ROC study including high-
performance displays and specialized hardware for softcopy display of digital mammograms. Next, the ROC study itself 
together with its results and subsequent data analysis is presented in Section 4. After a discussion of the results of the study, 
conclusions and possible directions of future research are presented in Section 5. 

2. ENHANCEMENT PROTOCOL 

2.1. Contrast Enhancement via Multi-scale Expansions: A Short Overview 
We summarize below, the advantages of the use of overcomplete multi-scale representations for adaptive contrast 
enhancement of digital mammograms. Critically sampled multi-scale representations are not suitable for detection and 
enhancement tasks because of aliasing effects introduced during downsampling of the analysis [21], [22]. However, 
overcomplete representations avoid such aliasing artifacts and have the desirable property of being shift invariant [23], [24]. 
Indeed, this property ensures that the spatial locations of any mammographic finding within in an image are preserved across 
all scales. Thus, in our approach the transform coefficient matrix size at each scale remains the same as the original spatial 
resolution of the digital mammogram, since there is no downsampling across each level of analysis. 
Overcomplete multi-scale analysis and reconstruction algorithms using dyadic scales previously developed in [25], [26], and 
[27] were used as an initial choice of analysis function for our enhancement protocol. The implementation was carried out 
using several lowpass and highpass filters with localized frequency support. At each level of the multi-scale expansion an 
input image is decomposed into a coarse approximation and detailed structures. The coarse approximation is the output from 
applying a lowpass filter, and the detailed structures are obtained from highpass filtering. The approximation image 
corresponds to scaling coefficients, whereas the details extracted from the approximation are wavelet coefficients at a 
particular scale. This procedure is successively repeated on the approximation image to obtain multiple levels of analysis. 
The coarsest approximation is often referred to as “dc-cap”. A gain or enhancement function modifies the matrices of 
coefficients that have been isolated by the filters at each level and may boost coefficients at some scales and/or attenuate 
others. If the filters meet a perfect reconstruction condition, the image can be reconstructed from its wavelet representation of 
scaling and wavelet coefficients [28]. The filter bank implementation of enhancement processing by an expansion-
reconstruction algorithm for 2 levels of analysis is schematically illustrated in Figure 1. Image reconstruction that is also 
accomplished by appropriate filtering operations is presented in a simplified manner in Figure 1.  
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Figure 1: Multi-scale analysis with non-linear contrast enhancement: Schematic of filter bank implementation. In the left part 

multi-scale expansion with enhancement for 2 levels of analysis is shown, and reconstruction is presented (in a simplified 
manner) in the right part. 

The modified matrices of coefficients are simply “plugged in” during reconstruction producing a “focused” subband 
enhancement. As shown above, the enhancement function can be implemented independently of a particular set of filters and 
easily incorporated into a filter bank to provide the benefits of multi-scale enhancement [1], [29].  



2.2. High Speed Implementation to Support Interactive Processing 
Similar to orthogonal and biorthogonal discrete wavelet transforms [30], the discrete dyadic wavelet transform can be 
implemented within a hierarchical filtering scheme. Let an input signal x(n) be real, [ ]1( ) ( ),  0, 1x n l Z n N∈ ∈ − , i.e., x(n) is 
supported on the index interval [0, N-1], and let ( )X ω  be its Fourier transform. Depending on the length of each filter 
impulse response, filtering an input signal may be computed either by multiplying ( )X ω  by the frequency response of a 
filter or by circularly convolving x(n) with the impulse response of a filter. Of course, such a periodically extended signal 
may change abruptly at the boundaries and cause artifacts. A common remedy for such a problem is realized by constructing 
a mirror extended signal  
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where we chose the signal xme(n) to be supported in [-N, N-1]. In [1] it is shown how a mirror extension is a particularly 
elegant solution in conjunction with symmetric/anti-symmetric filters, since a signal is of a particular type of symmetry at 
each stage of the filter bank. The optimized circular convolution described in [1] was implemented in native “ANSI C” to 
speed up performance for multi-scale decomposition and image reconstruction. Parameters of this algorithm included number 
of levels of analysis, gain, and threshold. This algorithm was incorporated into a graphical user interface (GUI) developed 
during the preparation of the study.  

As a further goal, we envision developing feature specific enhancement protocols for each type of lesion. An enhancement 
protocol would consist of a multi-scale expansion of a mammogram by a specific basis and an associated non-linear 
enhancement function that is best matched to a specific type of lesion, e.g. microcalcifications. For the study under 
consideration, a dyadic spline wavelet function was used as the basis, and a non-linear sigmoidal function was applied as the 
enhancement function. Both are described in greater detail next. 

2.3. Dyadic Spline Wavelet Algorithm 

The wavelet transform of a signal f(x) at scale s and position x is defined by *
,
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where the function f is projected on a family of translated and dilated basis functions (wavelets) ,
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( )xψ  is the mother wavelet of zero average. Both, translation and dilation parameters u and s are continuous for the 
continuous wavelet transform. To allow fast numerical implementation of discrete wavelet transforms, Mallat and Zhong [31] 
introduced the dyadic wavelet transform, where the scale parameter varies only along the dyadic sequence {2j}, with j Z∈ . 
Extending this approach to two dimensions by the use of a tensor product yields the 2-D dyadic wavelet transform that 
partitions plane orientations into two bands. This means that there are two channels of analysis along orthogonal directions x 
and y. The wavelet transform of the 2-D signal f(x,y) at the scale 2j has two components defined by: 
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spline wavelet function ( )xψ  defined by Mallat and Zhong in [31] of compact support and continuously differentiable. Its 

Fourier transform can be derived as 
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case in Figure 2 below.  



 

  

 

 
 (a) (b) 
Figure 2: (a) Cubic spline smoothing function θ(x). (b) Quadratic spline wavelet ψ(x) of compact support defined as the first 

derivative of the smoothing function. 

Using a wavelet that is the derivative of a smoothing function it can be shown that the wavelet transform W of the signal f 
is proportional to the derivative of the signal smoothed at the scale 2

2 j
d f

j [32]. The coefficients of modulus maxima detection are 
then equivalent to an adaptive sampling that finds signal variation points in the two orthogonal directions x and y.  
As images represent finite energy signals measured at some finite resolution, we cannot compute the wavelet transform at 
scales below the limit set by this resolution. We applied this analysis at dyadic scales varying from 1 (original signal) to the 
limit imposed by acquisition (digitizer sampling rate). Figure 3 shows an example for one level of an overcomplete wavelet 
expansion of a region of interest (ROI) with a spiculated mass at a dyadic scale, and in Figure 4 wavelet coefficients of 
microcalcifications at the finest dyadic scale are presented.  
 

  (a) (b) (c) (d) 
Figure 3: Level 5 of an overcomplete dyadic wavelet expansion of a spiculated mass. (a) Original image. (b) Horizontal details.  

(c) Vertical details.(d) Approximation image.  
 

 (a) (b) (c) 
Figure 4: (a) Original ROI with microcalcifications. (b) Horizontal and (c) Vertical dyadic wavelet coefficients. 

2.4. Non-Linear Enhancement Function 
Modification of selected analysis coefficients within a certain scale can make more obvious indiscernible or barely seen 
mammographic features [14]. Contrast enhancement was achieved by applying an enhancement function to transform 
coefficients at selected scales. This operation results in local attenuation or amplification of coefficients. Enhancement or 
gain functions must be cumulative and monotonically increasing, in order to preserve the order of intensity information in the 
original image and to avoid artifacts [26]. Figure 5(a) provides a very simple example of a piecewise linear enhancement 
function. Multi-scale coefficients are denoted wij, which are modified by applying an enhancement function f(wij). T is the 
threshold of the function, and α the gain. The effect of the enhancement function depends on the value of the angle θ. For θ < 
45˚ there is an attenuation of the coefficients (α<1), at θ = 45˚ we have the identity function (α=1), and for θ > 45˚ there is a 
smooth amplification of the coefficients (α>1). The values of the two parameters, T and θ (or α), determine the final shape of 
the enhancement function. Figure 5(b) displays a hard-thresholding function for denoising, where coefficients with modulus 

ijw T≤ are set to zero. Unfortunately, these two particular functions have the disadvantage of being discontinuous at the 

threshold value ±T. This could result in an abnormal distribution of coefficient values in the output and may create sharp 



peaks on both ends of the histogram of a particular output mapping. For this reason, smoother functions, like sigmoids, are 
preferable and were used in this study. Figure 6 shows an example of such a function as described in [2]. 
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Figure 5: (a) A simple piecewise linear enhancement function, (b) Hard-thresholding function. 
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Figure 6: A sigmoidal non-linear enhancement function. 

The analytical formulation of the sigmoidal enhancement function as designed in [33], [2] is the following: 
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Parameters b and c control the threshold and the rate of enhancement (gain) respectively. This enhancement function is 
continuous, monotically increasing, and has a continuous first derivative. This ensures that the application of the function will 
not introduce any new discontinuities of coefficients in the transform domain. 
From Figure 6 we see that this enhancement function decreases the value of the coefficients around zero, which is equivalent 
to a denoising action, while it may increase values of the coefficients outside this range, equivalent to enhancement or 
amplification. This type of enhancement function, in ‘steps’, offers a very rich and flexible paradigm to carry out non-linear 
dynamic analysis of coefficients within a specific scale [34]. 
There are many criteria for the selection of the enhancement function applied to the coefficients of a particular level of 
analysis for contrast enhancement. One goal of the study described here was to develop a research tool for testing 
enhancement functions targeted for specific mammographic features. As this process requires specialized expertise and a 
substantial time investment, no systematic study of the problem of associating enhancement functions with target features in 
mammograms has been reported in the literature. 

In general, non-linear estimators are signal dependent and behave differently for different realizations of each signal. In this 
context, Johnstone and Donoho have shown that by considering the signal as deterministic, thresholding of wavelet 
coefficients gives a nearly optimal estimation of piecewise smooth functions [35], [36]. More specifically, for a noisy signal 
of size N, thresholding of the wavelet coefficients with 2 ln( )σ=T , where σ is the standard deviation of the coefficients, 
provides an asymptotically optimal estimator of the original signal in the mini-max sense [36]. Thresholding of wavelet 
coefficients performs an adaptive smoothing of the image by averaging noisy areas and preserving or enhancing coefficients 
in areas of sharp transitions. Noise standard deviations can be estimated by determining the median wavelet coefficient value 
at the finest scale or with local discrete statistical estimation in the transform domain. Using extremely local variances for the 

N



estimation of a threshold leads to a very aggressive posturing of the enhancement function, and represents a high amount of 
intervention in adjusting the output, while global variance measurements are less noticeable. Superiority of either method 
depends on the screening protocol used by the radiologist and the kind of analysis to be performed. For example, fine 
microcalcifications represent high frequency information of the image. We would expect the local variance for such a feature 
to be high within a selected ROI. Consequently, smooth amplification of coefficients within this particular spatial frequency 
range (in combination with possibly decreasing the information of other spatial frequencies) will enhance these features of 
interest. Similar analysis can be done to enhance low spatial frequency features such as masses. A block diagram of the 
enhancement process for coefficients at selected scales, which are chosen with respect to the particular mammographic 
feature to be enhanced, is shown in Figure 7 below.  
Since the computation of the enhancement parameters uses data dependent information such as local or global coefficient 
variance, digital and digitized radiographs acquired under different imaging conditions are best processed independently to 
achieve optimal enhancement. Intrinsic properties of the radiograph are therefore incorporated in the setting of the 
parameters. In our work we used both coefficient variance computed with respect to a selected ROI and user input (see 
Section 3.2) to adapt the threshold and gain parameters.  
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Figure 7: Block diagram of modifying feature specific coefficients at selected scales by applying a non-linear enhancement function. 

3. DEVELOPMENT OF A GRAPHICAL USER INTERFACE (GUI) 

3.1. Motivation 
Running such an enhancement algorithm in a batch mode might be sufficient for single experiments. However, adjustment of 
parameters tied to a data dependent enhancement function is slow, because of the repeated need to decompose and 
reconstruct from modified coefficients. A more desirable situation would be to observe the results of modified multi-scale 
coefficients interactively and to continue the enhancement procedure, until results are visually satisfactory or the decision is 
made that no further improvement can be achieved. In addition, with introducing fixed enhancement protocols into a clinical 
screening paradigm, the algorithm must be simple, fast, and user-friendly, i.e. usage of the algorithm should be familiar to the 
radiologist and intuitive. Since each radiologist may have preferences with respect to contrast in mammograms, it must be 
possible to adjust parameter settings to individual preferences. Thus, we designed a graphical user interface (GUI) to 
facilitate carrying out such a study and to create a softcopy display prototype, whose successors might find entrance into 
clinical screening. We call this application a “test bed” softcopy display tool. Its first version was employed for the ROC 
study described in the next section.  

3.2. Design and Implementation 
The graphical user interface (GUI) developed for this study was written in Visual C++ 6.0. The code for the wavelet 
expansion and image reconstruction that was written in native “ANSI C” to speed up performance could be incorporated and 
executed in this environment without major modifications, thus shortening development time. Some of the guidelines and 
considerations for the design and implementation of the GUI are described next. 
The prototype interface was primarily designed to process raw 16-bit data. Data was obtained from a national mammography 
database of digitized radiographs provided by the University of South Florida (USF, “Digital Database for Screening 
Mammography” (DDSM)). Our database of digitized mammograms (stored on twenty-two 8mm tapes) at the time of the 
study contained 586 selected cases of malignant lesions, biopsy proven, and 437 cases of normal breasts. More specifically, 
different types of lesions are represented in the following proportions: 100 round and oval malignant masses, 216 spicular 
lesions and 248 microcalcifications. 559 cases of dense breasts (density of 3 and 4) with 266 normals and 293 cancerous, 
referred by radiologists as the most challenging cases, were included in the database.  
Images from the mammography database were digitized from film at resolutions of 40 to 50 µm. Image line lengths (# of 
columns) varied between 2000 and 3000 pixels, and number of rows from 4000 to 5900 pixels. Depending on the scanner 
utilized for digitization the contrast resolution was either 12 bits or 16 bits per pixel resulting in 15-50 megabytes per view. 
To handle this large amount of data and to provide the diagnosing radiologist as much information as possible, all four views 
(right and left medial-lateral (RMLO, LMLO) and right and left cranial-caudal (RCC, LCC) of a case were loaded into 
memory and displayed as downsampled images on display screen, which consisted of two high-resolution MegaScan 



monitors each with a screen size of 2048 by 2560 pixels. Specialized framebuffers allowed a display of 210 gray levels (see 
Section 3.3). The four views were aligned to assist the radiologist to look for asymmetries. In addition, one view could be 
selected, and a viewport could display a selected region of interest (ROI) at full (original) resolution from a selected 
mammogram. The size of the viewport could be chosen as 512 by 512, 1014 by 1024 or even 2048 by 2048. The center of the 
ROI was determined through the mouse pointer in a chosen window. Thus, the original mammogram could also be examined 
through the viewport, if desired. More importantly, suspicious areas could be captured in the viewport and processed through 
enhancement via the multi-scale expansion described in Section 2. For the enhancement procedure the user could adjust the 
number of subbands of the expansion as well. After selecting a ROI the image was decomposed onto dyadic wavelet basis 
functions yielding wavelet coefficients. Coefficients were modified by a sigmoidal non-linear enhancement function, and the 
image was reconstructed from these modified coefficients in nearly real-time.  
Figure 8(a) shows Dr. Koenigsberg, one of three radiologists who participated in this investigation, during the ROC study. 
Figure 8(b) depicts a typical screen display of the GUI showing additional viewports described above.  

  
  (a) (b) 
Figure 8: (a) Tova Koenigsberg, M.D., using the GUI during the preliminary ROC study described above. (b) Typical screen 

display used during the ROC study: four original digitized mammograms of one case on the right monitor, and a 
selected view, the GUI interface for parameter adjustments, original and enhanced ROI are shown on the left monitor.  

As mentioned in Section 2.4 the shape of the enhancement function can be changed through modification of the two 
parameters gain and threshold. Therefore, each parameter could be adjusted through sliders for each level (subband) of the 
multi-scale expansion (see Figure 9(b)). On release of the slider button, a reconstruction “event” was “triggered”, and a 
resulting image presented in an output window. For example, reconstruction of a 512 by 512 matrix for five levels of 
decomposition (5 subbands) took 5 to 6 seconds. For four subbands reconstruction time shortened to 4 to 5 seconds. 
Reconstruction times trecon for different sizes of the ROI and different number of levels of analysis are presented in Table 1. 
However, reconstruction time can certainly be improved to achieve true real-time performance, by employing faster 
algorithms. 

Size of Region of Interest (ROI) trecon for 4 Levels of Analysis trecon for 5 Levels of Analysis 
512 x 512 4-5 seconds 6-7 seconds 

1024 x 1024 19-20 seconds 24-25 seconds 
Table 1: Reconstruction times trecon for two different levels of analysis and two sizes of ROI. 

After processing, enhanced images could be saved together with information about the location of the ROI (the position of 
the ROI was marked in its corresponding downsampled view) to facilitate evaluation of a particular diagnosis for each case in 
comparison with the “ground truth” provided in the USF database. All suspicious areas in a case could be carefully examined 
by sequentially choosing different views and multiple ROIs. 
Figure 9(b) shows the test bed interface as an illustration. Interactive (real-time) enhancement was accomplished via sliders 
shown in the graphical user interface (GUI). The enhancement operation relied on the optimality of parameters derived from 
their non-linear models and on the strategy employed for the type of enhancement applied to each subband of coefficients 
(amplification, preservation or diminution). Selected subband coefficients at a particular level could be strongly suppressed 
by choosing large thresholds (> 2) and small gains (< 1), which can be desirable for the elimination of (structured and 
acquisition) noise, or normal benign anatomical (fibroglandular) structures. 
Since the size of digital mammograms is quite large, an ROI (fixed at either 512 x 512 or 1024 x 1024) within the original 
image was chosen to avoid computing over regions that do not contain suspicious areas. This is also shown in Figure 9, 
where Figure 9(a) exhibits an original digitized mammogram with a 512 x 512 ROI that contains a possible mass.  



Figure 9(c) and Figure 9(d) display this ROI before and after enhancement via non-linear modification of multi-scale 
coefficients, respectively.  
 

(c)

 (a) (b) (d) 
Figure 9: (a) Original mammogram with selected ROI containing a mass, (b) Multi-Scale Contrast Enhancement (MSCE) GUI,  

(c) Original ROI, and (d) Enhanced ROI. 

3.3. Display and Hardware Settings 
The enhancement protocol was executed on an IBM IntelliStation Z Pro Professional Workstation Type 6865. This machine 
had two Intel Pentium II Xeon microprocessors (450 MHz), 512 Mbytes of RAM and was equipped with 36 Gbytes of hard 
disk space. Windows NT 4.0 with service pack 4 was the operating system. 
To explore the richness of information quantized at 16-bit per pixel (bpp) grayscale data (65536 shades of gray), the IBM 
IntelliStation workstation was equipped with two BARCOMed 5MP1H Graphics controllers. These are high-resolution 
display subsystems for the PCI bus with a resolution of 2048×2560 pixels each, a digital-to-analog converter (DAC) capable 
of 1024 shades of gray, and real time window leveling. With the BARCO framebuffers, an extended hardware palette of 
nearly 16,000 entries could be accessed through specialized “C” function calls that were part of a library provided to us as 
developers for BARCO/Metheus. Using these library functions, the extended palette was loaded with a ramp of 4096 shades 
of gray corresponding to 12-bit resolution. Images stored in 16-bit per pixel format, were rescaled to 12 bpp, if necessary 
(most of the mammograms were digitized at a resolution of 12 bpp), and then displayed at full resolution. Direct access to the 
video framebuffer also sped up the display process useful for updating and refreshing the different views on the screen.  
Two high-resolution MegaScan monitors were attached to this workstation providing dual headed display on a single logical 
framebuffer or virtual desktop of 4000×2048 pixels, respectively with Windows NT 4.0. To ensure the accurate depiction of 
the same image quality on both screens, a BARCO P1500 luminance photometer was used. It recognized the 1024 shades of 
gray displayed by a monitor and had a range of 0-450ft-L. Both monitors were calibrated to correct for non-linearity of 
display properties through gamma correction. 
Lighting conditions were controlled for the ROC study to model reading room conditions. The ambient light intensity was 
measured with the luminance photometer to be 12.802659 candelea/m2. It is worthwhile to note that the optimality of 
enhancement parameters is independent of the CRT display quality and the image acquisition quality. As their computation is 
data driven, they are adapted to signal content and its characteristics. As our radiologists gave us feedback on the quality of 
the enhancement, we can adjust these initial default settings in future studies.  

4. DESCRIPTION OF THE RECEIVER OPERATING CHARACTERISTICS (ROC) STUDY 
The first receiver operating characteristics (ROC) study focused on overcomplete dyadic wavelets for enhancement of 
mammographic features in digitized mammograms. Specifically, dyadic spline wavelet functions were used together with a 
sigmoidal non-linear enhancement function explicitly described in Section 2. The ROC study included three radiologists 



specialized in mammography. The Director of the Breast Imaging Center at Columbia-Presbyterian Medical Center, Dr. 
Suzanne Smith, assisted in the selection of cases. 

4.1. Selection of Cases 
To measure the benefits of diagnosing digitized mammograms with enhancement through multi-scale expansions, we focused 
on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology (ACR) breast density 
rating, which are the most difficult cases in screening. In general, the enhancement protocol aimed at improving the detection 
and localization of mammographic features, such as microcalcifications, masses, and spicular lesions without introducing 
“false-positives”. 
To compare the performance of radiologists with and without using the enhancement tool, two groups of 30 cases each were 
presented. Each group contained 15 cases of cancerous and 15 cases of normal mammograms. As mentioned above, a 
national mammography database of the University of South Florida provided “ground truth” (mostly through biopsy) for the 
selected cases. The selection was carried out very carefully under the guidance of a mammographer (Dr. Smith), in order to 
find rather challenging cases of similar difficulty for each group. Images showing metal markers (“bibis”) to indicate 
suspicious regions of breast tissue were avoided as well as obvious malignancies. Due to time constraints the number of cases 
was limited for this initial study.  

4.2. Paradigm of Diagnosis of Study 
For each case presented to the radiologist, the enhancement procedure followed was the following: 

Paradigm A: Without Enhancement: 
The radiologist made a diagnosis based only on the four original displays and the viewport. No processing of ROIs was 
allowed. 

Paradigm B: With Enhancement: 
The radiologist selected an ROI in one of the views and could apply multi-scale enhancement. Four levels of coefficients 
were computed. The radiologist then evaluated the quality of an enhanced ROI and adjusted the equalizer sliders of a channel 
to improve the visual quality of suspicious regions. Once he/she was satisfied with the visual result or if he/she judged that 
additional benefit could not be achieved, he/she made a diagnostic decision. 

A diagnosis included specifying all lesions found and assigning a BI-RAD scale to each breast and the case. In addition, the 
radiologist was asked to choose a level of confidence (LOC) for each positive diagnosis, i.e. cancer is present, on an integer 
scale from 1 (definitely negative, i.e. total confidence that there are no malignant lesions) to 5 (definitely positive, i.e. total 
confidence that there is a malignant lesion). The value for the LOC was used in the analysis of data to decide whether a lesion 
was classified as malignant or benign (please see discussion of LOC ratings in Section 4.4). 

4.3. ROC Data 
Table 2 and Table 3 summarize the data acquired during the study. Group1 comprises the set of cases, where the radiologists 
were allowed to take advantage of the enhancement protocol, whereas Group 2 contains those cases, where no processing 
could be applied. Each of the tables shows the case numbers, the case designation and total number (#) of lesions for each 
case according to the mammography database (DB), and for each of the three mammographers the BI_RAD rating and level 
of confidence (LOC) values. The BI_RAD rating could be chosen from the standard categories 0-5 with 0 meaning that 
additional information for a more confident diagnosis was needed. In such cases, the radiologists were asked to also select a 
BI_RAD rating different from 0, if they were asked to make a diagnosis without any additional information. This number is 
shown in parentheses for such cases. 

In each table both groups are sorted into actually-negative cases (normals with “0” lesions) and actually-positive cases 
(cancers with, at least “1” malignant lesion), since this is required for subsequent analysis of the data. 



Group1 (with Enhancement)
Mammographer 1 Mammographer 2 Mammographer 3

Case # Database DB Total # of Lesions BI RAD LOC BI RAD LOC BI RAD LOC
2 A 0058 0 4 3 1 1 3 2
5 A 0069 0 1 2 1 1 1 1
6 A 0041 0 3 2 1 1 1 1
7 A 0077 0 3 2 2 1 2 1
9 A 0064 0 2 2 2 1 2 2

13 A 0067 0 0(3) 2 1 1 0(3) 3
15 A 0080 0 0(3) 3 2 1 2 1
16 A 0089 0 3 3 1 1 1 2
19 A 0062 0 2 2 1 1 2 1
21 A 0057 0 2 2 1 1 0(3) 3
24 A 0072 0 1 2 1 1 1 1
25 A 0070 0 1 2 0(3) 2 1 2
26 A 0068 0 1 2 1 1 2 1
28 A 0039 0 3 2 1 1 0(4) 3
30 A 0092 0 3 2 1 1 1 1

1 B 3044 1 4 4 4 4 4 3
3 B 3073 1 3 2 3 2 4 3
4 B 3006 1 5 5 5 5 5 5
8 B 3032 1 0(3) 2 5 4 4 4

10 B 3107 1 5 4 4 4 5 4
11 C 0060 1 0(3) 3 0 3 0(4) 3
12 B 3057 1 4 4 5 4 4 4
14 B 3078 1 5 4 5 4 0(4) 3
17 B 3033 1 0(3) 2 0 2 0(3) 3
18 B 3031 1 0(4) 4 5 4 0(3) 3
20 B 3076 1 0(3) 3 0 3 0(5) 4
22 B 3058 1 5 5 5 5 4 4
23 B 3079 1 2 2 1 1 1 1
27 B 3047 1 3 2 0(4) 3 0(4) 3
29 C 0008 1 0(3) 3 3 3 0(4) 3

Table 2: ROC data for three mammographers for Group 1, i.e. with Enhancement enabled. 
 
Group2 (without Enhancement)

Mammographer 1 Mammographer 2 Mammographer 3
Case # Database DB Total # of Lesions BI RAD LOC BI RAD LOC BI RAD LOC

3 A 0015 0 2 2 1 1 1 1
4 A 0034 0 2 2 0(3) 2 0(3) 3
5 A 0112 0 2 1 1 1 0(4) 3
8 A 0020 0 2 2 1 1 2 2
9 A 0003 0 3 2 1 1 1 1

13 A 0030 0 2 2 1 1 0(3) 2
15 A 0009 0 2 2 1 1 2 2
16 A 0037 0 2 2 1 1 1 2
17 A 0099 0 0(3) 2 1 1 2 1
18 A 0116 0 0(3) 3 1 1 1 1
21 A 0035 0 0(3) 2 0(4) 3 0(3) 3
23 A 0018 0 2 2 1 1 1 1
24 A 0022 0 2 2 1 1 0(3) 3
27 A 0005 0 0(3) 2 0(3) 2 1 2
30 A 0016 0 2 2 1 1 1 2

1 B 3003 1 1 2 1 1 5 5
2 B 3389 1 2 2 1 1 1 1
6 B 3009 1 0(4) 4 0(3) 2 0(4) 3
7 C 0309 1 4 4 1 1 0(4) 3

10 C 0142 1 0(3) 3 0(3) 2 1 2
11 B 3016 1 0(4) 4 0(3) 2 4 4
12 B 3382 1 2 2 1 1 3 2
14 B 3134 1 5 4 4 4 5 5
19 B 3005 3 0(3) 3 3 3 0(4) 4
20 C 0127 1 0(3) 3 0(4) 3 0(4) 4
22 C 0015 1 0(4) 4 0(4) 4 5 5
25 B 3007 1 3 3 4 3 4 4
26 B 3012 1 5 5 5 5 0(4) 3
28 B 3380 1 0(4) 4 4 4 0(4) 4
29 C 0358 1 5 5 5 4 0(4) 4

Table 3: ROC data for three mammographers for Group 2, i.e. without enhancement. 



4.4. ROC Analysis: General Principles 
The most widely used method to objectively evaluate the performance of a diagnostic system or the difference in 
performance between two diagnostic systems is ROC analysis. It compares radiologists’ image-based diagnoses with known 
states of disease and health. In ROC analysis, performance of a diagnostic system is described by the indices of “sensitivity” 
and “specificity”, where “sensitivity” can be expressed as the true-positive fraction (TPF) and “specificity” by the true-
negative fraction (TNF) of a diagnosis [16]. In a complimentary way, the false-negative fraction (FNF) and the false-positive 
fraction (FPF) can be defined as FNF = 1-TPF and FPF = 1-TPF, respectively, with a similar interpretation. Due to this 
dependence, it is only necessary to measure one pair of indices, and frequently TPF and FPF are used (as in our study). 

The underlying model for ROC analysis is the use of probability density distributions of a radiologist’s confidence in a 
positive diagnosis for a particular diagnostic task for true positive and true negative patients [16]. It is currently accepted that 
based on a confidence threshold, i.e. a particular level of confidence (LOC) in a positive diagnosis, a diagnosis is considered 
to be positive, if it exceeds this threshold, and a diagnosis is considered to be negative, if it falls below the threshold. TPF and 
FPF are then calculated from the probability density distributions as areas under the curves delimited by the confidence 
threshold (see Figure 10). If the confidence threshold is varied continuously, an ROC curve can be generated from the pair 
values for TPF and FPF. ROC curves that indicate better decision performance are positioned higher in the unit square 
spanned by FPF and TPF (higher TPF values for the same FPF values). The area under the ROC curve, Az, provides a useful 
summary index for the inherent discrimination performance of a diagnostic system. Thus, Az is the average value of 
sensitivity of a corresponding ROC curve, if the specificity of the system is selected randomly between 0.0 and 1.0. 
Conversely, it can be considered as the average value specificity of a corresponding ROC curve, if the sensitivity of the 
system is selected randomly between 0.0 and 1.0 [16].  

Figure 10: Schematic example of the model that underlies ROC analysis. The bell-shaped curves represent probability density 
distributions of a radiologist's confidence in a positive diagnosis. A confidence threshold, represented by a vertical line, 
separates “positive” decisions from “negative” decisions (This figure was reprinted from [16]). 

In practice, data for an ROC analysis is obtained by providing a set of rating categories to the radiologist. For a rating scale 
we chose discrete values from 1 to 5 for the level of confidence (LOC) in a positive diagnosis. The meaning of these values 
was as follows: (1) definitely or almost definitely negative, (2) probably negative, (3) possibly positive, (4) probably positive, 
and (5) definitely or almost definitely positive. With this choice the value for the LOC is similar to the standard BI_RAD 
rating scale used in screening. 
To generate an ROC curve from discrete data requires assumptions about the functional form of the curve. The “binormal” 
model has been widely used in medical imaging. This model includes two adjustable parameters, and it is assumed that each 
conventional ROC curve has the same functional form as that implied by two “normal” (i.e., Gaussian) decision variable 
distributions with generally different means and standard deviations [37], [38]. 
The two adjustable parameters of the binormal ROC curve can be taken to be the y-intercept and the slope of the straight line 
that represents the ROC curve, when it is plotted on normal-deviate axes. These two parameters, denoted as “a” and “b”, can 
be interpreted as an effective pair of underlying Gaussian distributions as the distance between the means of the two 
distributions and the standard deviation of the actually negative distribution, respectively with both expressed in units of the 
standard deviation of the actually positive distribution [16]. With the binormal model, a maximum-likelihood parameter 
estimation scheme is then used to generate an ROC curve that best represents the data. 
If two different diagnostic systems are to be evaluated, the statistical difference of an apparent difference between measured 
ROC curves is of interest. Testing differences between ROC curves is well described in the literature [39], [40]. 



4.5. Results from ROC Analysis 
In our study, ROC analysis was possible, since the “ground truth” for each case was provided by the mammography database. 
In general, any enhancement protocol should increase sensitivity, i.e. fraction of true-positives (TPF), without decreasing 
specificity, i.e. essentially without increasing the fraction of false-positives (FPF) [41]. An initial analysis of the data counted 
the number of false-positives and true-positives in each group of cases. Before a lesion was considered being diagnosed as 
malignant or benign, the LOC value was thresholded [16]. The threshold value influences the shape of the ROC curve and its 
interpretation. For example, if the threshold for the level of confidence was chosen to be 3, meaning that lesions with a LOC 
greater or equal 3 were considered as malignant, then the average TPF was found to be 0.667 with enhancement, and TPF = 
0.569 without enhancement. This observed increase in sensitivity is encouraging, though it was accompanied by a slight 
increase in the fraction of false-positives (0.222 compared to 0.178). The latter is not too surprising, since the applied 
enhancement protocol only used dyadic spline wavelets with the non-linear sigmoidal enhancement function, which is 
certainly not optimal for all types of lesions. We believe that dyadic spline wavelet expansions are best used to enhance 
microcalcifications. If the analysis of the data only focused on microcalcifications, then we observed TPF = 0.417 with 
enhancement compared to TPF = 0.222 without enhancement. No increase or decrease in FPF was noticed! The last finding 
supports the promise for future research to design specific enhancement protocols for each mammographic feature. Table 4 
summarizes initial results of the ROC study using the single basis function described earlier in Section 2.3. 

With Enhancement (all Types of Lesions)  Without Enhancement (all Types of Lesions)  
TPF FPF TPF FPF 
0.667 0.233 0.569 0.178 

    
With Enhancement (Micros only)  Without Enhancement (Micros only)  
TPF FPF TPF FPF 
0.417 0.0 0.222 0.0 

Table 4: Results of preliminary ROC study. TPF refers to the fraction of true-positives and FPF to the fraction of false-positives. 

A more thorough analysis of the data was undertaken by using the ROCKIT software developed by a research group led by 
Charles Metz at the University of Chicago [42], [43]. This software package was written to analyze data from ROC studies 
and to generate corresponding ROC curves. More specifically, the purpose of ROCKIT is to calculate maximum-likelihood 
estimates of the parameters of a conventional “binormal” model for the input data, to calculate maximum-likelihood 
estimates of the parameters of a “bivariate binormal” model for data from two potentially correlated diagnostic tests and, 
thus, to estimate the binormal ROC curves implied by those data and their correlation; and to calculate the statistical 
significance of the difference between two ROC curve estimates using any one of three distinct statistical tests:  

1. The Bivariate Test: A bivariate Chi-square test of the simultaneous differences between the “a” parameters and 
between the “b” parameters of the two ROC curves. (Null hypothesis: the data sets arose from the same binormal 
ROC curve.) 

2. The Area Test: A univariate z-score test of the difference between the areas under the two ROC curves. (Null 
hypothesis: the data sets arose from binormal ROC curves with equal areas beneath them.) 

3. The TFP Test: A univariate z-score test of the difference between the true-positive fractions (TPFs) on the two ROC 
curves at a selected false-positive fraction (FPF). (Null hypothesis: the data sets arose from binormal ROC curves 
having the same TPF at the selected FPF.) 

Three types of input data are allowed for statistical testing of the differences between ROC curves: 

1. Unpaired (uncorrelated) test results. The two “conditions” are applied to independent case samples — for example, 
from two different diagnostic tests performed on the different patients, from two different radiologists who make 
probability judgments concerning the presence of a specified disease in different images, etc.; 

2. Fully paired (correlated) test results, in which data from both of two conditions are available for each case in a single 
case sample. The two “conditions” in each test-result pair could correspond, for example, to two different diagnostic 
tests performed on the same patient, to two different radiologists who make probability judgments concerning the 
presence of a specified disease in the same image, etc.; and 

3. Partially-paired test results — for example, two different diagnostic tests performed on the same patient sample and 
on some additional patients who received only one of the diagnostic tests. 



ROCKIT assumes that the population ROC curve for each condition plots as a straight line on “normal-deviate” axes, or 
equivalently, that the input data follow normal distributions after some unknown monotonic transformation [16]. ROC curves 
measured in a broad variety of fields demonstrate this “binormal” form [44], [45], and [46]. The assumption may be satisfied 
even when the raw data have multimodal and/or skewed distributions [43], [42]. 
Using the ROCKIT software the analysis was first applied independently to the datasets for Group1 and Group 2 for each of 
the three radiologists. Unfortunately, this approach did not allow us to compare the diagnostic performance for the two 
diagnostic systems (softcopy display with and without enhancement). The reason for that was that the analysis for, at least 
one group of cases could not be completed, since the data was found to be degenerate [41]. In this case, the result of the ROC 
analysis would be a straight line with a constant value for TPF, and, therefore the software aborts processing to avoid 
meaningless output. According to the authors of the software, a degenerate data distribution can be found, if the number of 
samples is too small or in datasets with many tied values [43]. 
Since the number of cases could not be increased after conducting the study, and in order to obtain more complete results, we 
decided to apply the analysis to the union of data from all three radiologists. This was justified by the fact that all three 
radiologists came from the same population with a similar level of experience. Thus, their performance should be similar 
under the same conditions, and the data could be treated as independent samples (unpaired data). If the data did not have to 
be pooled, it would have been unpaired, since the two different conditions were applied to different sample cases. 
Nevertheless, we are well aware that the statistical significance of the results must be interpreted carefully. For future ROC 
studies we plan to increase the number of cases, in order to avoid such a problem. To check on our assumption of 
independent samples (unpaired data) and for completion we also repeated the analysis with the input as paired data. These 
results are included in this chapter as well. 
For the analysis Group 1 (with enhancement) was set as Condition 1 and Group 2 (without enhancement) was considered as 
Condition 2. The resulting ROC curves for data analyzed as unpaired are shown in Figure 11. Their corresponding values for 
FPF and TPF are given in Table 5. Finally, the most important results of ROC analysis, the binormal parameters a, b, and the 
area under the ROC curve Az with their corresponding standard errors, 95% confidence intervals, and correlation of a and b 
are summarized for unpaired data in Table 6. Note that the 95% confidence intervals are symmetric for the binormal 
parameters a and b, but asymmetric for the area index Az. The corresponding results from the analysis as paired data follow 
directly afterwards. ROC curves are shown in Figure 12, FPF and TPF values in Table 7, and parameters a, b, and Az together 
with their corresponding standard errors, 95% confidence intervals, and correlation of a and b in Table 8. 
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Figure 11: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as 

unpaired data (independent analysis). 



FPF TPF 1 TPF 2 FPF TPF 1 TPF 2 
0.005 0.4886 0.4989 0.13 0.8155 0.7282
0.01 0.5521 0.5407 0.14 0.8232 0.7346 
0.02 0.6199 0.5859 0.15 0.8304 0.7406 
0.03 0.6612 0.614 0.2 0.86 0.7665 
0.04 0.6911 0.6347 0.25 0.8825 0.7874 
0.05 0.7145 0.6514 0.3 0.9003 0.8053 
0.06 0.7338 0.6653 0.4 0.9274 0.8352 
0.07 0.7501 0.6773 0.5 0.9472 0.8602 
0.08 0.7642 0.6879 0.6 0.9625 0.8825 
0.09 0.7767 0.6974 0.7 0.9746 0.9035 
0.1 0.7878 0.7061 0.8 0.9845 0.9244 

0.11 0.7979 0.714 0.9 0.9926 0.9475 
0.12 0.8071 0.7213 0.95 0.9962 0.9619 

Table 5: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for Condition 1 (with enhancement, TPF 1) and 
Condition 2 (without enhancement, TPF 2) analyzed as unpaired data (independent analysis). 

Condition 1(With Enhancement)   Condition 2 (Without Enhancement)  
Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve Az 
Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve Az 
1.6183 0.6393 0.9136 1.0813 0.4208 0.8405 

      
      

Standard Error a Standard Error b Standard Error Az Standard Error a Standard Error b Standard Error Az 
0.3162 0.2093 0.0325 0.2329 0.1307 0.0475 

      
      

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for Az 

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for Az 

(0.9986, 2.2381) (0.2291, 1.0495) (0.8312, 0.9615) (0.6247, 1.5379) (0.1647, 0.6770) (0.7301, 0.9162) 
      
      
 Correlation(a, b)   Correlation(a, b)  
 0.6544   0.4989  

Table 6: Binormal parameters a, b, area under ROC curve Az with their corresponding standard errors, 95% confidence intervals, 
and correlation(a, b) for Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as unpaired 
data (independent analysis). 
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Figure 12: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as paired 

data (correlated analysis). 

FPF TPF 1 TPF 2 FPF TPF 1 TPF 2 
0.005 0.494 0.5036 0.13 0.8155 0.7304 
0.01 0.5565 0.5451 0.14 0.8232 0.7367 
0.02 0.6232 0.5898 0.15 0.8303 0.7426 
0.03 0.6638 0.6176 0.2 0.8595 0.7682 
0.04 0.6932 0.6381 0.25 0.8817 0.7889 
0.05 0.7162 0.6545 0.3 0.8994 0.8066 
0.06 0.7351 0.6683 0.4 0.9263 0.8361 
0.07 0.7512 0.6801 0.5 0.9461 0.8608 
0.08 0.7651 0.6906 0.6 0.9614 0.8829 
0.09 0.7774 0.7 0.7 0.9737 0.9036 
0.1 0.7883 0.7086 0.8 0.9838 0.9244 

0.11 0.7982 0.7164 0.9 0.9922 0.9472 
0.12 0.8073 0.7236 0.95 0.9959 0.9617 

Table 7: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for Condition 1 (with enhancement, TPF 1) and 
Condition 2 (without enhancement, TPF 2) analyzed as paired data (correlated analysis). 

 



Condition 1(With Enhancement)   Condition 2 (Without Enhancement)  
Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve Az 
Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve Az 
1.6084 0.6302 0.9132 1.0839 0.4172 0.8414 

      
      

Standard Error a Standard Error b Standard Error Az Standard Error a Standard Error b Standard Error 
Az 

0.3137 0.2072 0.0327 0.233 0.1302 0.0474 
      
      

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for Az 

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for Az 

(0.9936, 2.2232) (0.2240, 1.0363) (0.8304, 0.9613) (0.6272, 1.5407)) (0.1620, 0.6724) (0.7311, 0.9169) 
      
      
 Correlation(a, b)   Correlation(a, b)  
 0.6506   0.4995  

Correlation of Az for Condition 1 and Az for Condition 2: -0.0922 
Table 8: Binormal parameters a, b, area under ROC curve Az with their corresponding standard errors, 95% confidence intervals, 

and correlation(a, b) for Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as paired data 
(correlated analysis). 

4.6. Discussion 
As seen from the analysis for unpaired data, the value for the area under the ROC curve Az was by 8.7% larger for Condition 
1 (with enhancement) than it was for Condition 2 (without enhancement). In all cases the standard error for Az was between 
0.03 and 0.05, which was rather small. Though the 95% confidence intervals for Az overlapped, there was a clear tendency 
that diagnostic performance improved with enhancement in comparison with diagnosis without enhancement. All ROC 
curves lay high in the unit square of FPF and TPF, which corresponded to accurate diagnostic performances in general, but 
the curve for Condition 1 was positioned slightly higher (see Figure 11).  
Similar results were generally obtained for the analysis as paired data. The increase in Az for Condition 1 with respect to 
Condition 2 was 8.5 %, but there was an overlap of the 95% confidence intervals for Az as well. The ROC curve for 
Condition 1 was also positioned slightly higher than the one for Condition 2 (see Figure 12). Values for a, b, and Az were 
very similar for both types of analysis. Hence, the same tendency of improved diagnostic performance with enhancement 
compared to diagnosis without enhancement can be inferred.  
The observed increase of the summary index Az within statistical errors and the higher position of the ROC curve for 
diagnosis with enhancement encourage us to further pursue the application of enhancement protocols for mammographic 
screening. We are aware of the fact that there always are inherent sources of variability in the index Az, such as a “case-
sample” component due to random variations in the difficulty of the cases included in an ROC experiment, a “between-
reader” component due to random variations in the skills of the observers participating in the experiment, and a “within-
reader” component associated with each reader’s inability to reproduce her/his diagnosis of every case on repeated readings 
[16]. In addition, we were not able to analyze the data for each radiologist separately due to data degeneracy as mentioned 
above. The latter has diminished the statistical significance of our results obtained from the analysis of all data combined, 
since not all samples were completely independent. 
Hence, for future ROC studies we plan to increase the number of cases to avoid degenerate datasets for the analysis and to 
increase the statistical power of the experiment. 

Aside from statistical considerations and the cautious interpretation of the results of this study we know that our prototype 
test bed software tool can be further optimized. To improve multi-scale contrast enhancement the idea is to develop feature 
specific enhancement protocols with different bases and associated non-linear functions for each distinct mammographic 
feature, such as microcalcifications, masses, and spicular lesions. The enhancement protocol used for this experiment, dyadic 
spline wavelets with non-linear sigmoidal function, was suggested to work best for microcalcifications according to our 
previous work with multi-scale expansions [2], [25]. The results of this first ROC experiment seem to confirm our 
expectations. 



5. CONCLUSIONS AND FUTURE WORK 
We have reported on the successful completion of the first receiver operating characteristics (ROC) study to evaluate the 
benefits of contrast enhancement via overcomplete multi-scale expansions of mammograms. The study was carried out in 
collaboration with radiologists at the Breast Imaging Center in Columbia-Presbyterian Medical Center and the Biomedical 
Imaging Laboratory of Columbia University. 
In continuation of our previous work in digital mammography, an enhancement protocol using a dyadic spline wavelet as the 
basis for multi-scale expansion and an associated non-linear sigmoidal enhancement function was designed. Suspicious areas 
(ROIs) of digitized mammograms were decomposed onto a multi-scale basis to obtain coefficients at distinct subbands. 
Coefficients were modified by applying a non-linear sigmoidal function. Two parameters could be adjusted to change the 
nature of enhancement. Image reconstruction from modified coefficients occurred in nearly real time through an interactive 
interface running on a high-resolution digital mammography workstation. To visualize raw data of digitized mammograms at 
the highest possible contrast and spatial resolutions, 16-Bit BARCO/Metheus framebuffers together with a dual headed high-
resolution MegaScan grayscale monitor were utilized in hardware. We incorporated specialized software function calls to 
directly access the video framebuffer for fast/smooth image display and update.  
To quantify the performance of our multi-scale based processing technique in terms of overall sensitivity and specificity, an 
ROC study was designed and conducted with three radiologists from Columbia-Presbyterian Medical Center specialized in 
mammography. Conventional ROC curves were generated and significant statistical parameters determined. The area under 
the ROC curve Az was used as a summary index to quantify overall specificity and sensitivity of the two diagnostic systems 
[16]. Unfortunately, it was not possible to analyze datasets for each of three mammographers separately due to data 
degeneracy. Nevertheless, analyzing all the data together yielded a slight increase (8.7%) in the area Az for diagnosis with 
enhancement compared to diagnosis without. Despite the limited statistical significance of this result, it encourages us to 
further investigate the application of multi-scale methods for contrast enhancement of mammograms. More extensive ROC 
studies with a larger number of cases are planned to further evaluate the benefits of such processing techniques. 
Ancillary to statistical results, we received very positive feedback from the participating radiologists, who expressed great 
interest in using the interactive display tool and acknowledged a marked improvement in image quality, when enhancement 
was applied. 
The current enhancement protocol works best for the detection/enhancement of microcalcifications. Future directions of work 
include the expansion of the choice of enhancement protocols to a menu of feature specific enhancement algorithms tailored 
for each mammographic feature, such as microcalcifications, masses, and spicular lesions, e.g. the application of brushlet 
functions [47], [48] to mammograms with spicular lesions. In addition, the investigation of a range of optimal enhancement 
parameters and the optimization of our interface software tool comprise further projects. Our “dream” is to present a clinical 
interface, where specific enhancement protocols can be selected by a physician by only “pushing a button on the screen”. We 
envision that through such a clinical interface the diagnostic performance of radiologists in screening digital mammograms 
could be substantially improved, both in terms of cost and quality. 
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