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Abstract

The continued proliferation of affordable RF communication devices has greatly

increased wireless user exposure and the need for improved security to protect against

spoofing. This work addresses various Open Systems Interconnection (OSI) Physical

(PHY) layer mechanisms to extract and exploit RF waveform features (“fingerprints”)

that are inherently unique to specific devices and that may be used for reliable de-

vice classification to provide hardware specific identification (manufacturer, model,

and/or serial number). Automatically detecting, identifying and locating RF commu-

nication devices remains a challenging technical problem and consists of: 1) the selec-

tion and generation of fundamental signal characteristics (amplitude, phase, and/or

frequency), 2) the feasibility and repeatability of detecting and locating the start

of a burst using selected waveform feature(s) amidst channel noise, 3) the identi-

fication and robust extraction of distinguishable fingerprints–features that uniquely

characterize the unintentional modulation of a device, and 4) the performance of sig-

nal classification under varying channel conditions and Signal-to-Noise Ratio (SNR).

This challenge is addressed by applying a Dual-Tree Complex Wavelet Transform

(DT-CWT) to improve burst detection and RF fingerprint classification.

Two burst detection techniques are analyzed under varying channel SNR con-

ditions, the Fractal Bayesian Step Change Detector (Fractal-BSCD) and Traditional

Variance Trajectory (VT). Performance of both techniques are consistent with per-

fect burst location at higher SNRs (10 ≤ SNR ≤ 30 dB) but diverged at lower SNRs

(−3 ≤ SNR ≤ 10 dB). Traditional VT performance is most consistent with perfect

results for 6 ≤ SNR ≤ 30 dB, under performs perfect results for −3 ≤ SNR ≤ 6 dB,

and outperforms Fractal-BSCD considerably for −3 ≤ SNR ≤ 18 dB. A “De-

noised VT” technique is introduced to improve performance at lower SNRs, with

denoising implemented using a DT-CWT decomposition prior to Traditional VT pro-
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cessing. This proves to be effective and provides more robust burst detection for

−3 ≤ SNR ≤ 10 dB.

Performance of a newly developed Wavelet Domain (WD) fingerprinting tech-

nique is presented using statistical WD fingerprints with Multiple Discriminant Anal-

ysis/Maximum Likelihood (MDA/ML) classification. The statistical fingerprint fea-

tures are extracted from coefficients of a DT-CWT decomposition. Relative to pre-

vious Time Domain (TD) results, the enhanced WD statistical features provide im-

proved device classification performance. Improvement is characterized using a “gain”

metric defined as the difference in required SNR in dB (SNRWD − SNRTD) for

the two techniques to achieve a given classification performance. Accounting for

all intra-manufacturer and inter-manufacturer device discrimination scenarios, the

WD technique provides 2–7 dB of gain for 80% correct classification performance at

2 dB < SNRWD < 11 dB. Additional performance sensitivity results are presented

to demonstrate WD fingerprinting robustness for variation in burst location error,

MDA/ML training and classification SNRs, and MDA/ML training and classification

signal types. For all cases considered, the WD technique proves to be more robust

and exhibited less sensitivity when compared with the TD technique.

v
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Application of Dual-Tree Complex Wavelet Transforms

to Burst Detection and RF Fingerprint Classification

I. Introduction

This chapter introduces the dissertation research and its documentation. The moti-

vation for conducting the research is first provided in Section 1.1 which includes the

Operational Motivation factors in Section 1.1.1 and Technical Motivation factors in

Section 1.1.2. This is followed by a summary of Research Contributions in Section 1.2

which provides a relational mapping in Table 1.1 to highlight contributions of this

work relative to what had been previously accomplished. The chapter concludes with

a Dissertation Overview in Section 1.3.

1.1 Research Motivation

1.1.1 Operational Motivation. The continued proliferation of inexpensive

wireless Radio Frequency (RF) devices provides worldwide communication connec-

tivity to virtually every individual. Within a geographically localized region, the

fundamental emissions from these devices, i.e., the intentionally radiated emissions

designed to support the intended purpose, may be remotely intercepted by unintended

recipients. The intended communicators are generally unaware that this is occurring

and the intent of the unauthorized listener varies. The interceptor may remain pas-

sive and simply “listen” with the intent of monitoring, recording, analyzing, etc.,

the communication activity. This type of passive activity is very difficult to detect.

In other cases, the interceptor may become active and “join” in the communication

activity. This may take the form of “spoofing” or “man-in-the-middle” type attacks

whereby an identity compromise occurs and the unintended party is able to freely

inject traffic into the system. This activity is generally detectable given that inter-
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ceptor RF emissions are present. To mitigate this activity, there is a pressing need to

improve both pre-attack security and post-attack digital forensics.

1.1.2 Technical Motivation.

1.1.2.1 PHY Layer Network Security. Much research has focused on

traditional bit-level algorithmic approaches to improve network security and mitigate

spoofing. More recently consideration has been given to detecting and mitigating

spoofing near or at the bottom of the Open Systems Interconnection (OSI) network

stack. One such work includes the addition of a “lightweight security layer” hosted

within the Medium Access Control (MAC) layer to detect spoofing and anomalous

traffic [35]. Other recent efforts have focused on Physical (PHY) layer implementa-

tions with a goal of exploiting RF characteristics (radio and environmental) that are

difficult to mimic, thus minimizing the opportunity for spoofing. Two such efforts

investigated the use of Received Signal Strength (RSS) as a means for detecting the

presence of a spoofing node [5, 53]. Although related in their use of RSS, it is not

entirely clear that these works are comparable one-to-one given that the experiments

were conducted using different hardware being operated in different physical environ-

ments. Under dissimilar conditions such as these, it is expected that statistics of the

power-based RSS metric would vary. This variation is not unique to wireless com-

munications and is encountered in other applications employing power-based metrics,

especially when all system and environmental interactions are accounted for (antenna

patterns, multipath, background noise, etc.).

The authors in [53] introduce RF fingerprinting in [24] as an alternative tech-

nique to detect and mitigate spoofing through PHY layer mechanisms. However,

they readily dismiss this alternative for “scale” reasons. Assuming this conclusion is

based on the fact that RSS is currently supported and provided with most manufac-

tured devices, the authors’ position is supportable. This is particularly true when

constraining PHY layer anti-spoofing mechanisms to reside on PC-sized cards. How-

ever, there may be applications where the size constraints are much more relaxed

2



and RF fingerprinting becomes a viable alternative. Consistent with related work

in [54, 55], these applications were addressed through the fundamental research goal

that involved demonstrating radar-like Specific Emitter Identification (SEI) capability

similar to what is used to distinguish between radar emitters [6,9,11,12,34,40,46,60].

1.1.2.2 Specific Emitter Identification. Radar-based SEI research

spans nearly twenty years and has considered both conventional and non-conventional

parameters for identification. Conventional radar parameters generally include those

which are based on intentional modulation which may be applied across multiple

pulses (inter-pulse modulation) or within a given pulse (intra-pulse modulation).

These modulations are introduced to improve some aspect of overall radar perfor-

mance (tracking accuracy, ambiguity resolution, clutter suppression, etc.). There are

other unintentional modulations that may be induced by the hardware used to im-

plement the system [30, 34]. These unintentional modulations may result from any

number of hardware issues, including poor system design (device incompatibility),

improper operation (over/under voltage), physical device limitations (operating tem-

perature range), etc. When viewed at the waveform level, many of these features

are similar to what currently exist in modern wireless communication systems that

typically transmit burst-like waveforms representing various forms of digital informa-

tion (symbols, bits, packets, etc.). Communication researchers have recognized these

similarities and have begun to address the question: “Can existing SEI methods

be employed with wireless communication signals to achieve radar-like SEI

capability?”

1.1.2.3 RF Fingerprinting. The task of automatically detecting, iden-

tifying and locating commercial RF communication devices remains a challenging

technical problem. The work presented here addresses four main aspects of this

problem, including: 1) the selection and generation of fundamental signal charac-

teristics (amplitude, phase, and/or frequency), 2) the feasibility and repeatability

of detecting and locating the start of a burst using selected waveform feature(s)

3



amidst channel noise, 3) the identification and robust extraction of distinguishable

fingerprints–features that uniquely characterize the unintentional modulation of a

device, and 4) the performance of signal classification under varying channel con-

ditions and Signal-to-Noise Ratio (SNR). The ultimate goal is to demonstrate an

end-to-end process to accurately classify commercially-available RF communication

devices using signal features extracted from collected emissions. Relevant research in

wireless network security and RF fingerprinting suggests that information in funda-

mental emissions and unintentionally modulated regions provides the most effective

means for identifying transmitters. Collectively, related works in RF fingerprint-

ing, electromagnetic signatures, intrapulse modulation, and unintentional modula-

tion [11, 23, 24, 30, 34, 51, 64, 66, 68], form a solid basis for developing techniques that

may be applicable to commercial communication devices. If the inherent RF finger-

prints are repeatedly extractable and sufficiently unique, they are potentially useful

for determining the specific make, model, and/or serial number of a given device.

Previous work highlighted signal structure uniqueness and attributed inter-

device differences to various manufacturing, aging, and environmental factors [68].

While several processing steps are required to effectively exploit the unique RF fin-

gerprints, burst location is arguably the most important [23,66]. In this context, burst

location includes determining both the burst start time and the subsequent signal re-

gion(s) from which fingerprints are extracted. Burst detection, burst start location

and signal region(s) selection for fingerprint extraction are all important given that

improper determination of the burst start location and imprudent selection the signal

region(s) can adversely bias processing in favor of channel noise or undesired signal

features [68].

The most relevant published results to date for this research are found in [54,55]

and is based on experimentally collected 802.11A signals. As with this previous

work, the choice of using Orthogonal Frequency Division Multiplexing (OFDM)-based

signals for RF fingerprinting demonstration was driven by two factors: 1) consistency

with previous related 802.11A work that has been extensively published [42, 54, 55,

4



63,67], and 2) the continued emergence of OFDM-based signals as envisioned for 4G

Software Defined Radio (SDR) and Cognitive Radio (CR) communications [21,26,48,

72]. While the fundamental fingerprinting and classification techniques in this work

are believed to be broadly applicable to other signal types, the challenges posed by

OFDM-based signals is of near-term interest.

1.1.2.4 Signal Denoising. In some applications the desired level of

performance cannot be achieved due to inherent noise contributions in the environ-

ment. The effective mitigation of such adverse noise effects has been demonstrated

in numerous applications by “denoising” the signal of interest prior to processing

to remove undesired noise contributions. This can be accomplished using a Dis-

crete Wavelet Transform (DWT) by exploiting differences in the distribution of signal

burst energy and the Additive White Gaussian Noise (AWGN) in which it is embed-

ded [4,7,8,14,15,17–19,44,61]. The common approach to wavelet denoising includes:

1) transforming the input signal with the desired transform,2) comparing coefficient

magnitudes with a pre-defined threshold, 3) zeroing-out all coefficients having mag-

nitudes less than the threshold while retaining those above the threshold, 4) inverse

transforming the thresholded set of coefficients, and 5) processing the resultant de-

noised signal.

One distinct disadvantage of the DWT is the lack of shift invariance. i.e., for

a given time shift in the input signal the transformation yields a different set of co-

efficients. For burst detection, this problem has the consequence of complicating the

computation of reasonable thresholds for signal denoising. One shift invariant (when

properly implemented) alternative is the Short Time Fourier Transform (STFT) [13].

The STFT is a Fast Fourier Transform (FFT) done over a series of short contiguous

time intervals spanning the signal of interest [47]. Ideally, the intervals are short

enough to maintain piece-wise stationarity across the signal while at the same time

long enough to capture sufficient spectral energy. This trade-off represents a compro-

mise between achievable time resolution (better with a shorter interval) and achievable
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frequency resolution (better with a longer interval)–the Heisenberg inequality [44].

One drawback is that for a given STFT interval length, which generally remains fixed

throughout the signal duration, the resolution in both time and frequency is uniform

across the domains. This is illustrated in Figure 1.1(a) using Heisenberg uncertainty

boxes.

The DWT achieves non-uniform multi-resolution capability by effectively scal-

ing the time interval inversely proportional to frequency such that a relatively narrow

interval is used to capture high frequency content. This is illustrated in Figure 1.1(b)

which shows representative Heisenberg uncertainty boxes for an arbitrary DWT. As

indicated, the higher frequency content regions have higher time resolution (narrower

box widths across time) and lower frequency content regions have lower time reso-

lution (wider box widths across time). This type of multi-resolution time-frequency

decomposition works best if the signal is composed of high frequency components of

short duration plus low frequency components of long duration, characteristics which

most signals possess [47].

An alternative wavelet transform that possesses both the DWT’s multi-resolution

capability and the STFT’s shift invariance is the Dual-Tree Complex Wavelet Trans-

form (DT-CWT) [2, 50]. The DT-CWT is a DWT extension that is “nearly shift-

invariant,” i.e., the DT-CWT coefficients are independent of time domain shift and

more strongly dependent on inter-scale and intra-scale neighborhoods [50]. Further-

more, the DT-CWT magnitude response exhibits reduced ringing in the wavelet do-

main due to high-frequency noise and sharp discontinuities, which makes the denoising

process more reliable by ensuring consistent threshold calculations [50].

1.2 Research Contributions

Table 1.1 provides a list of various Technical Areas (concepts, techniques, at-

tributes, metrics, etc.) and the relational mapping between Previous related work

and the Current research presented in this dissertation. As summarized in the fol-
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Figure 1.1: Tiling of Heisenberg uncertainty boxes in the time-frequency plane for
STFT and DWT decompositions. The width and height of a given box is related to
its time and frequency resolution, respectively [47].
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lowing subsections, there have been contributions made to each of the technical areas

identified in the first five rows of the table.

1.2.1 Performance Criteria. Experimental setup and execution can differ

from one research activity to another, even when using identical or similar equipment

and processes. This can make direct comparison of new results with previous results

difficult and care must be taken to ensure that 1) previous contributions are fairly

represented and 2) new contributions are sufficiently supported–this is the case for

work presented here. For all previous AFIT-based works referenced in Table 1.1,

there were no firm performance goals or criteria in place at the time the work was

conducted. Rather, proof-of-concept demonstration was the main objective and “As

Achieved” performance was reported as noted in Table 1.1.

While as achieved results are presented in this document as well, and based on

many combinations of parameters and parameter values, specific performance criteria

was introduced to help highlight performance differences (poorer and better) across

the numerous scenarios considered. The “Reasonable” criteria used here and shown

in Table 1.1 is somewhat arbitrary and based on achieving 80% or better classification

accuracy at SNR ≤ 20 dB. Using this reasonable operating point of 80% classification

accuracy, performance comparisons are made throughout Chapter 4 based on the

“gain” provided by Wavelet Domain (WD) techniques relative to what is provided by

Time Domain (TD) techniques. This gain is defined here as the reduction in required

SNR, in dB, for the WD fingerprinting technique to achieve the same classification

performance as the TD fingerprinting technique.

1.2.2 TD Fingerprint Classification. Prior to assessing WD classification

performance, it was necessary to replicate TD results in [54] to form a baseline for

comparison. Upon replicating these earlier results, it became evident that the post-

collection filter bandwidth BWPC was a very important parameter and that all earlier

TD results were based on using a fixed value. While the fixed bandwidth approach was

sound and the selected bandwidth was reasonably based on sound engineering prac-
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Table 1.1: Relational mapping between Technical Areas in Previous related work
and Current research contributions.

Technical Area Previous Current

Addressed Ref # Addressed Ref #

TD Fingerprinting × [23, 24, 54, 55, 68] × [31–33]
WD Fingerprinting × [32]

SNR Sensitivity × [54, 55] × [31–33]
Burst Detection × [31, 33]

Signal Type / Modulation

802.11A / OFDM × [20, 42, 54, 55, 63, 67] × [31–33]
802.11B / DSSS × [24, 66, 68]

802.11G / OFDM ×
GSM / GMSK × [3]

Bluetooth / GFSK × [23, 71]

Instantaneous Signal Characteristics

Amplitude × [20, 24, 42, 51] × [31–33]
[63, 64, 66–68]

Phase × [20, 23, 24] × [31–33]
Frequency × [20, 24] × [31–33]

RF Fingerprint Features and Metrics

Std Deviation × [20, 24]
Variance × [20, 23] × [31–33]
Skewness × [54] × [31–33]
Kurtosis × [54] × [31–33]

Classification Method and Performance Criteria

Bayesian MDA/ML × [20, 54] × [31–33]
“As Achieved” × [23, 24, 51, 54, 68]
“Reasonable” × [32]
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tices, the earlier works provided no bandwidth sensitivity analysis. This analysis was

subsequently carried out under this research and a bandwidth of BWPC = 7.7 MHz

was used for generating all comparative TD and WD results. This particular value

enabled comparison of both techniques at their best overall performance levels, with

TD having an approximate 2% advantage in device classification at higher SNRs–

an advantage that rapidly diminishes at lower SNRs that are more consistent with

operational environments [31–33].

1.2.3 WD Fingerprint Classification. Relative to TD fingerprint classifica-

tion, enhanced fingerprint classification is demonstrated here using improved finger-

print features. Specifically, this work represents the first application of a DT-CWT

decomposition to enhance features of statistical RF fingerprints. Considerable per-

formance improvement or gain is realized using the enhanced WD feature set with

identical post-collection filter bandwidth and Multiple Discriminant Analysis/Maxi-

mum Likelihood (MDA/ML) processing [32].

1.2.4 SNR Sensitivity Analysis. With the exception of results generated

under this research and documented in [31–33], a majority of the works cited in

Section 1.1.2 lack any form of sensitivity analysis in terms of assessing burst detec-

tion and/or fingerprint classification performance under varying channel noise con-

ditions. The two exceptions are the most recent related works in [54, 55]. Noise

sensitivity analysis is imperative for determining acceptable SNR levels for achiev-

ing consistent and reliable classification results. Classification sensitivity to channel

noise and burst-to-burst detection variability has been analyzed using experimen-

tally collected 802.11A signals in [33]. With respect to burst location estimation,

both Fractal-Bayesian Step Change Detector (BSCD) and Traditional Variance Tra-

jectory (VT) techniques provided results that were consistent with “perfect” burst

location (a start location based on visual inspection of each collected burst) at higher

SNRs (10 ≤ SNR ≤ 30 dB). However, performance for both techniques diverged at

lower SNRs (−3 ≤ SNR ≤ 10 dB) [33]. With respect to the burst location esti-
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mation error impact to classification performance, the Traditional VT technique was

consistent with perfect estimation for 6 ≤ SNR ≤ 30 dB but underperformed for

−3 ≤ SNR ≤ 6 dB. Traditional VT also provided considerable improvement when

compared with the Fractal-BSCD technique at lower SNRs (−3 ≤ SNR ≤ 18 dB),

i.e., for a given classification accuracy in the range of 50%–80% the required SNR for

Traditional VT is 3-6 dB lower than what is required for Fractal-BSCD. This short-

fall provided an impetus for subsequent burst detection research aimed at improved

performance at low SNRs [31].

1.2.5 Burst Detection at Lower SNR. As published in [31] and presented in

this dissertation, signal denoising with the DT-CWT prior to Traditional VT burst

detection (introduced here as Denoised VT processing) is more effective and provides

more robust burst detection and location at lower SNRs (−3 ≤ SNR ≤ 10 dB).

Relative to results for perfect burst detection and location, the Denoised VT pro-

cess achieves nearly 34% of the available performance improvement–when used with

MDA/ML processing, there is little more to be gained in overall classification perfor-

mance by improving burst detection and location accuracy [31].

1.3 Dissertation Overview

This document is divided into five chapters and contains one appendix. Chap-

ter 2 presents relevant technical background information on major concepts and tech-

niques used to conduct the research. Sufficient technical detail is presented such that

the fundamental research approach is repeatable and the key contributions are verifi-

able. The major concepts and techniques are presented as functionally implemented

in the overall demonstration process.

Chapter 3 provides the overall demonstration process used for generating results

and conducting analysis. A detailed description is included for both the “Signal Col-

lection” hardware and “Post-Collection Processing” software processes. The primary

hardware used for signal collection was AFIT’s RF Signal Intercept and Collection
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System (RFSICS) with subsequent data processing accomplished exclusively in a

MATLABr environment.

Chapter 4 provides modeling, simulation and analysis results that were gener-

ated using the processes detailed in Chapter 3. The research involved hundreds of

simulations, each requiring tens of hours of processing time in some cases. For brevity

and to ensure succinctness, only a subset of representative results are presented from

selected scenarios to fully support key research findings and contributions.

Chapter 5 concludes the main document by providing an overall summary of

research activities, a summary of key findings, and recommendations for subsequent

research. This is followed by an appendix that provides some of the developmental

MATLABr code used to support the research.
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II. Background

This chapter presents relevant technical background information on major concepts

and techniques used to conduct the research. The material here supports subsequent

material presented in the methodology, results and conclusion chapters of the docu-

ment. This chapter is not presented as a complete tutorial, but rather, intended to

provide sufficient detail such that the fundamental research approach is repeatable

and the key contributions are verifiable. For convenience, the major concepts and

techniques are presented as functionally implemented in the overall demonstration

process. Burst Detection and Location is first presented in Section 2.1 which provides

details on the two specific techniques considered, including the Fractal-Bayesian Step

Change Detector (Fractal-BSCD) in Section 2.1.1 and the Traditional Variance Tra-

jectory (Traditional VT) technique in Section 2.1.2. Lastly, the Dual-Tree Complex

Wavelet Transform (DT-CWT) is presented in Section 2.3.

2.1 Burst Detection and Location

Discriminating a burst-like signal response from background noise can be a

difficult task as many burst responses can appear noise-like. In some respects, de-

tecting a burst response is akin to separating noise from noise [52]. Related research

has focused on exploiting two different properties to discriminate between signal and

background noise contributions, including inherent signal structure and instantaneous

signal characteristics. Inherent signal structure has been successfully exploited using

a Fractal-Bayesian Step Change Detector (Fractal-BSCD) while instantaneous signal

characteristics have been exploited using Traditional Variance Trajectory (VT). The

details for these approaches are provided in the following subsections.

2.1.1 Fractal-Bayesian Step Change Detector. The Fractal-Bayesian Step

Change Detector (Fractal-BSCD) has been used to exploit inherent signal structure to

discriminate between signal and channel background responses. As time progresses,
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random Additive White Gaussian Noise (AWGN) exhibits no structure amongst sam-

ples while a deterministic signal does. When a time series transitions from a region

containing only noise to a region containing both noise and signal its inherent struc-

ture changes. This change can be detected using fractal dimensions. However, a burst

response in such a region is non-stationary and therefore, not a pure fractal, i.e., its

fractality is a function of time and thus it cannot be self-similar [52]. Otherwise, the

calculated fractal dimension would yield the same value regardless of the signal time

and duration used, which does not describe a non-stationary signal. Yet on a smaller

scale, a transient can have local stationary fractality and can be modeled as a series

of piece-wise fractals through multi-fractality analysis. The local fractal dimensions

are calculated using a sliding window [52].

It has been demonstrated that burst start location can be accomplished using

the fractal dimension [64] measure followed by a Bayesian Step Change Detector [42,

63, 64, 67]. This process is denoted here as Fractal-BSCD. The fractal derivation can

be found in [27] and can be calculated using the following Higuchi method. Given a

windowed data time series {X(1), X(2), ..., X(Nx)}, the curve length is defined as:

Lm(k) =
X̄(Nx − 1)

k2NL
, (2.1)

X̄ =

NL
∑

i=1

|X (m+ ik) −X (m+ (i− 1) k)| ,

where NL = ⌊(Nx −m)/k⌋, ⌊•⌋ is the floor operator, k is the interval index number,

and m ∈ [1, k] is the start time index number.

The average of Lm (k) over m is denoted as 〈L (k)〉 and defines the curve length

for time interval k. By varying k over [1, kmax] and plotting 〈L (k)〉 versus k on a

log-log scale, the data ideally forms a straight line, with a proper selection of kmax.

The fractal dimension d is defined as the negative of the line slope, which can be

calculated using a least squares method. Furthermore, kmax is empirically chosen. If

it is too large, the data plotted on the log-log scale will not be linear. If it is too
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small, there will not be enough data points for an accurate linear fit. For this work,

a value of kmax = 10 is chosen for all fractal calculations.

Using the fractal dimension vector d formed across all data windows, BSCD

is applied to determine the a-posteriori probability that a given fractal dimension

dm ∈ d represents the data change point corresponding to the burst start. The

a-posteriori Probability Distribution Function (PDF) for m given d is [41]

p ({m} |d, I) ∝
[

√

m (NF −m) × d̄

(

NF −2

2

)

]

−1

, (2.2)

d̄ =

NF
∑

i=1

d(i)2 − 1

m

[

m
∑

i=1

d(i)

]2

− 1

NF −m

[

NF
∑

i=m+1

d(i)

]2

,

where NF is the length of d, ⌊•⌋ is the floor operator, I denotes prior information,

and m is the potential change point being evaluated. The value of m corresponding

to max[p ({m} |d, I)] establishes the burst start sample number. Representative re-

sponses for Fractal-BSCD processing are shown in Figure 2.1 where the circled region

highlights the burst start location at t = 0. As illustrated in the bottom a-posteriori

PDF response there is a distinct peak that corresponds to the burst start time.

Work in [23, 68] shows that abrupt, non-gradual feature changes are impor-

tant for the Fractal-BSCD process to work effectively. Signals having more gradual

ramp-like versus impulse-like responses are problematic and require alternate meth-

ods of detection. Similar BSCD-based methods have been considered to address the

increased challenge, e.g., Bayesian Ramp Change Detection [63, 67]. However, as de-

tailed in the next section there are alternatives to BSCD-based methods that have

proven effective as well.

2.1.2 Traditional Variance Trajectory. The Traditional Variance Trajectory

(Traditional VT) alternative to burst detection exploits instantaneous signal charac-

teristics to discriminate between signal and channel background responses. While

the Traditional VT process can be applied to any arbitrary sequence of data, it has
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Figure 2.1: Representative responses for Fractal-BSCD processing: (Top) Instan-
taneous Amplitude, (Middle) Fractal d, and (Bottom) A-Posteriori PDF. The circled
region highlights the burst start location at t = 0.

previously been used for burst detection with both instantaneous phase [23] and in-

stantaneous amplitude characteristics [55]. Given an arbitrary input sequence, the

Traditional VT process consists of 1) dividing the input sequence into sequential sub-

sequences, or windows of data, which may or may not overlap, 2) calculating the

variance over each window of data, and 3) forming the “trajectory” sequence as the

difference between consecutive window variances. Given arbitrary sequence {x(k)},
k = 1, 2, ..., Nx, the variance trajectory of {x(k)} is denoted as the sequence {V Tx(i)}
where the ith element is given by [55]

V Tx(i) = |Wx(i) −Wx(i+ 1)| , (2.3)

i = 1, 2, ..., Lw − 1 ,
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Wx(m) =
1

Nw

1+(m−1)Ns+Nw
∑

k=1+(m−1)Ns

[x(k) − µw]2 , (2.4)

m = 1, 2, ..., Lw ,

where Nw is the window extent, and Ns is the number of samples the window advances

between sequential calculations. The µw factor in (2.4) is the sample mean of {xw(k)}
which is the subsequence of consecutive elements from {x(k)} contained in window

w.

Figure 2.2 shows representative responses for Traditional VT processing where

the top plot is the magnitude response of {x(k)} and the other two plots are the

corresponding responses for Traditional VT at SNR = 40 dB and SNR = 0 dB. The

circled region highlights the burst start location at t = 0. As seen in the SNR =

40 dB response, there is a distinct peak corresponding to the burst start time near

t = 0. The sensitivity of Traditional VT processing to SNR variation is evident in the

SNR = 0 dB response where the peak response near the burst start time is virtually

indistinguishable from earlier (t < 0) peaks. As used here and in other previous

work with instantaneous signal characteristics, the degradation of Traditional VT

performance at lower SNRs directly impacts burst detection and location error and

subsequent classification performance.

2.2 RF Fingerprint Classification

There has been considerable work in previous years involving the exploitation

of RF signal characteristics to classify signals and identify the devices producing

them [23,54,55,64,66,68]. Collectively, these works embody the field of RF Fingerprint

Classification which fundamentally requires two processes, including: 1) fingerprint

generation and 2) fingerprint classification. Fingerprint generation requires the se-

lection and extraction of features that enable signal/device discrimination. Desirable

properties of the selected feature set include: 1) reduced dimensionality to minimize
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Figure 2.2: Representative responses for VT processing: (Top) Instantaneous Am-
plitude, (Middle) SNR = 40 dB, and (Bottom) SNR = 0 dB. The circled region
highlights the burst start location at t = 0.

processing and storage requirements, 2) intra-device repeatability, and 3) inter-device

uniqueness. For this work, the classification features are statistics of instantaneous

signal characteristics per the details provided in Section 2.2.1 and Section 2.2.2. The

resultant RF Statistical Fingerprints are then used for signal/device classification per

the details provided in Section 2.2.3.

2.2.1 Instantaneous Signal Characteristics. While there are many signal

characteristics that could be used for device identification (instantaneous responses,

peak responses, average responses, amplitude, phase, frequency, power, etc.), a ma-

jority of earlier related works have predominantly focused on instantaneous amplitude

and instantaneous phase characteristics [23, 64, 66, 68]. The most recent research has

exploited instantaneous frequency characteristics as well [54,55]. As adopted for con-

sistency with these previous work, the following development of instantaneous signal

characteristics is provided for completeness.
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Samples of a complex time domain (TD) signal having in-phase and quadrature

components of ITD(n) and QTD(n), respectively, can be expressed as

sTD(n) = ITD(n) + jQTD(n) , (2.5)

and have corresponding instantaneous amplitude, a(n), instantaneous phase, φ(n),

and instantaneous frequency, f(n), responses are given by

a (n) =
√

I2
TD (n) +Q2

TD (n) , (2.6)

φ (n) = tan−1

[

QTD (n)

ITD (n)

]

, (2.7)

f(n) =
1

2π

[

φ(n) − φ(n− 1)

∆n

]

. (2.8)

In practice, each characteristic response is “centered” (mean removed) to re-

move collection system biases that may unduly influence subsequent processing. The

instantaneous amplitude and frequency responses are simply centered using

ac(n) = a(n) − µa , (2.9)

fc(n) = f(n) − µf , (2.10)

where n = 1, 2, 3, . . . , NM , NM is the total number of samples in the sampled signal,

and µa and µf are amplitude and frequency means calculated across NM samples of

(2.6) and (2.8), respectively.

The phase centering process is somewhat more involved and includes removal of

a linear phase component prior to centering. This component may be due to collection
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receiver coloration or result from inexact frequency estimation during post-collection

down-conversion. Given the phase response in (2.7), the non-linear phase response is

given by

φnl(n) = φ(n) − 2πµf(n)∆t , (2.11)

where µf is the frequency mean used in (2.10) and ∆t is the time sample spacing. As

a final step, the mean of φnl is removed to yield the desired centered non-linear phase

which is given by

φcnl(n) = φnl(n) − µφnl
, (2.12)

where µφnl
is the mean of φnl(n) in (2.11). The centering of signal characteristics in

(2.9)–(2.12) is consistent with previous fingerprint classification work that successfully

employed similar procedures [54, 55].

2.2.2 Statistical Feature Metrics. Direct use of signal characteristics such

as those presented in Section 2.2.1 for classification features can be prohibitive in

terms of data storage memory requirements and computational processing time. The

computational burden can be eased by reducing the feature dimensionality used for

fingerprint classification. This was successfully accomplished in previous work using

inherent statistical behavior of the signal characteristics vice the signal characteristics

themselves [54, 55]. As adopted from this earlier work, the statistics of interest here

included the variance (σ2), skewness (γ), and kurtosis (κ). For arbitrary sequence

{x(k)}, k = 1, 2, ..., Nx, these statistics are defined as [36]:

σ2
x =

1

Nx

Nx
∑

k=1

[x(k) − x̄]2 , (2.13)
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γx =

1
Nx

Nx
∑

k=1

[x(k) − x̄]3

{

1
Nx

Nx
∑

k=1

[x(k) − x̄]2
}3/2

, (2.14)

κx =

1
Nx

Nx
∑

k=1

[x(k) − x̄]4

{

1
Nx

Nx
∑

k=1

[x(k) − x̄]2
}2 , (2.15)

where x̄ is the sample mean of {x(k)}. The final RF statistical fingerprints are

formed by calculating these statistics for the appropriate centered instantaneous signal

characteristic(s) in Section 2.2.1, i.e., setting {x(k)} equal to {ac(n)} with elements

from (2.9), setting {x(k)} equal to {fc(n)} with elements from (2.10), and/or setting

{x(k)} equal to {φcnl(n)} with elements from (2.12).

2.2.3 MDA/ML Classification. While many different techniques have been

researched and are available for classification, they all employ two fundamental pro-

cesses: training and classification. That is, they train the classifier using a subset

of the input data and then classify using the remaining data. For the most part,

these techniques are oblivious to what the input data actually represents and their

performance is predominantly driven by the statistical behavior of the data. With

regard to RF fingerprint classification, there has been little novelty in developing spe-

cialized classification techniques and most researchers have opted for well-established

techniques. The predominant techniques of choice have been based on neural net-

works [45,51,52,57–59,62,63,65], with some limited additional work based on Kalman

filtering and/or a Hotelling statistic [22, 28].

Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) classification

has emerged as a viable alternative and successfully used for RF fingerprint classifi-

cation [54]. Multiple Discriminant Analysis (MDA) is an extension of Fisher’s Linear

Discriminant (FLD) process for more than two classes [16]. For a 3-class problem, the
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MDA process projects higher-dimensional data onto a 2-dimensional “Fisher plane”

that maximizes inter-class distances while simultaneously minimizing intra-class dis-

tances. In principle, this method cannot improve classification potential. However, it

provides good class separation and visualization of data having input dimensionality

greater than three. Using this lower-dimensional data, decision boundaries calcu-

lated from ML distributions are determined assuming normally distributed input

data, equal costs and uniform prior probabilities. In general, to discriminate c classes

using d-dimensional input data, the input vector x is linearly projected onto a (d−1)-

dimensional space using

y = WTx , (2.16)

where y is the vector of projected values and W is a d × (c − 1) projection ma-

trix. Classification is performed using unknown data and the trained 2-dimensional

decision boundaries calculated from ML distributions. The process classifies each

“unknown” input data set by projecting it onto the trained Fisher plane according to

(2.16). Projected points falling within the correct region are correctly classified while

those falling outside the correct region are misclassified. The percentage of correct

classification is determined based on the total number of unknown trials. A more

complete description of the MDA/ML process is provided in [10].

2.3 Dual-Tree Complex Wavelet Transform

Device classification can be performed using a Discrete Wavelet Transform

(DWT), with one popular method using a subset of the largest DWT coefficient mag-

nitudes as the classification features [44]. As mentioned in Section 1.1.2.4, one distinct

disadvantage of DWT-based approaches is that the DWT is not shift invariant. As

with signal denoising, this presents a problem for RF fingerprinting applications given

that robust classification performance relies on the fingerprint features being unique,

repeatable and stable. These properties cannot be assured if the underlying features

(DWT coefficients) vary dramatically throughout the processing interval of interest.

For example, variation in burst detection and start location error generally translates
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Figure 2.3: Four Stage Dual-Tree Complex Wavelet Transform (DT-CWT) [2].

to greater variation in fingerprint features. To address the lack of shift invariance in

DWT processing, a Dual-Tree Complex Wavelet Transform (DT-CWT) is considered.

The DT-CWT is a DWT extension that is “nearly shift-invariant,” i.e., the

DT-CWT coefficients are independent of time domain shift and more strongly de-

pendent on interscale and intrascale neighborhoods [50]. This shift invariance has

been previously exploited to improve classification performance for hyperspectral im-

ages [38]. Furthermore, the DT-CWT magnitude response exhibits reduced ringing

that is generally induced by high-frequency noise and sharp discontinuities [50].

The DT-CWT is commonly implemented using two real-valued filter banks.

These are denoted as Tree1 and Tree2 in Figure 2.3 which shows one common ar-

chitecture for DT-CWT implementation [2]. The scaling and wavelet functions for

Tree1 are symmetric (even functions) while Tree2 has scaling and wavelet functions

that are anti-symmetric (odd functions). The wavelet and scaling functions, ψ(t) and

φ(t) respectively, for the Tree1 filter bank are given by [2, 50],

ψ(t) =
√

2
∑

n

h1(n)φ(2t− n) , (2.17)
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φ(t) =
√

2
∑

n

h0(n)φ(2t− n) , (2.18)

where the filter coefficients h1(n) and h0(n) are implemented directly as the Analysis

Filters (AF) given in [49] (see Section A.5). Ideally, the corresponding functions for

the Tree2 filter bank are the Hilbert transforms of (2.17) and (2.18), expressed as

ψ
′

(t) =
√

2
∑

n

h
′

1(n)φ′(2t− n) , (2.19)

φ
′

(t) =
√

2
∑

n

h
′

0(n)φ′(2t− n) , (2.20)

where the filter coefficients h
′

1(n) and h
′

0(n) are implemented directly as the Analysis

Filters (AF) given in [49] (see Section A.5).

As shown in Figure 2.3, the first stage filters for both Tree1 and Tree2 have dif-

ferent coefficients when compared to the later stage filters and are denoted as h
(1)
1 (n),

h
(1)
0 (n), h

′

1

(1)
(n), and h

′

0

(1)
(n), respectively. The first stage filter coefficients are im-

plemented directly as the First Analysis Filters (FAF) given in [49] (see Section A.5).

For real-valued input signals, the Tree1 and Tree2 filter banks yield real-valued

wavelet domain (WD) coefficients representing real (I l
WD) and imaginary (Ql

WD) com-

ponents of complex coefficients [50]. These components can be functionally combined

in a form similar to (2.5) and expressed as

sl
WD(n) = I l

WD(n) + jQl
WD(n) . (2.21)

Using sl
WD(n) elements from (2.21), the sequence {sWD(n)} of all elements

can be interpreted as what may be called a “complex sampled WD signal.” Given

the similar structure of this WD signal and the TD signal in (2.5), WD fingerprint

classification can be performed using the process in Section 2.2. In this case, the WD
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signal in (2.21) can be used in (2.6)–(2.12) to generate WD signal characteristics and

statistics calculated per (2.13)–(2.15) to form statistical WD fingerprints.

2.4 Denoising

Wavelet transforms, and in particular the DWT, have been used to denoise

signals by exploiting differences in the distribution of signal and embedded noise

contributions in the wavelet domain [4, 7, 8, 14, 15, 17–19, 44, 61]. In the case of an

AWGN channel, the noise contribution remains Gaussian in the wavelet domain and

thus uniformly distributed with respect to scale [43]. However, burst signal contri-

butions are non-uniformly distributed in the wavelet domain and significant signal

content is generally manifested in large wavelet coefficient magnitudes. Thus, one

common approach for denoising using wavelets involves 1) transforming the time

domain signal into the wavelet domain, 2) thresholding the wavelet coefficient mag-

nitudes, 3) zeroing-out all coefficients with magnitudes less than the threshold and

retaining the others, and 4) inverse transforming the thresholded coefficient set to

yield the denoised time domain signal [4,7,8,14,15,17–19,44,61]. The effectiveness of

this approach is based on selecting a threshold value that 1) retains coefficients con-

taining a majority of desired signal contributions while 2) zeroing-out coefficients that

are dominated by noise contributions. Due to the compaction property of the wavelet

transform, there are relatively few large magnitude coefficients. Thus, a majority of

the coefficients can be zeroed-out which minimizes the remaining noise contribution

in the denoised response.

Summary

This chapter presented the relevant technical background information on Burst

Detection and Location, RF Fingerprinting, DT-CWT, and Denoising. The informa-

tion here supports subsequent material presented in the document.
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III. Methodology

This chapter provides the overall demonstration process used for generating results

and conducting analysis. A detailed description is included for both the “Signal

Collection” (Section 3.2) hardware and “Post-Collection Processing” (Section 3.3)

software processes. The primary hardware used for signal collection was AFIT’s RF

Signal Intercept and Collection System (RFSICS) with subsequent data processing

accomplished exclusively in a MATLABr environment. Denoising using the DT-

CWT is described in Section 3.4. Threshold determination for the various processes

is described in Section 3.5.

3.1 Overall Demonstration Process

Figure 3.1 shows the overall demonstration process that was used for generating

all results presented in Chapter 4. The dashed boundaries denote the processes

that are primarily conducted in hardware and software. The “Signal Collection”

hardware process consisted of placing communication devices the RFSICS in a given

electromagnetic environment and making signal collections. The collected signal data

(a series of complex valued samples) is passed along for subsequent Post-Collection

Processing which was accomplished exclusively in a MATLABr environment. The

implementation and functionality of various processes in Figure 3.1 is discussed in

the following sections.

3.2 Signal Collection Process

Classification performance was demonstrated for two cases, including: 1) Intra-

manufacturer where all devices are from a given manufacturer and have different serial

numbers, and 2) Inter-manufacturer where at least one of the devices is from a dif-

ferent manufacturer. A summary of manufacturers, device serial numbers and signals

considered is provided in Table 3.1. Consistent with the overall research objective,

the table shows that results were not generated for all combinations of manufactur-
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Figure 3.1: Overall demonstration process for signal collection, analysis signal gen-
eration, burst detection and start location, fingerprint extraction, and classification.

ers, devices and signals. Rather, selected combinations were used to generate results

to sufficiently support final research conclusions–it is believed that results from an

exhaustive analysis would not fundamentally change these conclusions. From an op-

erational perspective, the potential number of combinations that may be of interest

to the broader technical community is nearly limitless and based on tens of man-

ufacturers, tens of device types per manufacturer, and hundreds of serial numbers

per device type. Considering various combinations of alternatives remains an area of

interest for future research and is subject to technical community interest.

For all results presented, the signals were collected with both the device under

test and the RFSICS in an anechoic chamber. Basic functionality of the RFSICS is

provided by Agilent’s E3238S system [1]. This includes an RF front-end collection

range of 20.0 MHz to 6.0 GHz from which a band of interest is selected using a
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Table 3.1: Device manufacturers, serial numbers, and signal types (802.11A and
802.11G) used for generating Chapter 4 results.

Manu Serial Number / Signal Type
Cisco N4U9 / A&G N4UD / A&G N4UW / A&G N4PX / A&G

Linksys 0306 / A&G 0307 / A
Netgear 0273 / A 0217 / A

Dell BTA4 / A
Airmag 2C01 / G

tunable RF filter with fixed bandwidth of 36.0 MHz. The selected RF band is down-

converted to an Intermediate Frequency (IF) of 70.0 MHz and passed to a digitizer.

The digitizing process consists of down-conversion (near baseband), 12-bit analog-

to-digital conversion at 95 M samples-per-second (sps), digital filtering (user defined

bandwidth), Nyquist compliant sub-sampling, and data storage as complex In-phase

(I) and Quadrature (Q) components. A digital filter bandwidth of 18.56 MHz was

selected for all 802.11A signals collected for this work. This resulted in the RFSICS

automatically applying a sub-sampling factor of four, for a final sample rate of fs =

23.75 Msps and corresponding sample interval of Ts = 1/fs ≈ 42.1 nsec per sample.

The typical collected SNR for the chamber collected signals is on the order of SNR =

40 dB.

3.3 Post-Collection Processing

Post-Collection Processing in Figure 3.1 is accomplished exclusively in a MATLABr

environment using the near-baseband, complex I-Q data from RFSIC collections.

Post-collection processing includes analysis signal generation, burst detection and

start location, statistical fingerprint generation and signal classification. The func-

tionality and implementation of each of these processes is discussed in the following

subsections.

3.3.1 Analysis Signal Generation. The first post-collection process of “Per-

fect” Burst Extraction uses the near-baseband, complex I-Q data from the RFSIC col-
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lections. Extraction is accomplished through a combination of automated amplitude

threshold detection followed by visual analysis and manual alignment to accurately

identify the sample number corresponding to the burst start. The extracted burst

responses are digitally filtered using a baseband filter and power-normalized. A 6th-

order Chebyshev digital filter was implemented having a –3 dB bandwidth of 7.7 MHz.

At this point, the sample frequency of the filtered signal is fs = 23.75 Msps which ef-

fectively represent oversampling by a factor of approximately 1.5 times Nyquist. Pro-

vided that the RFSICS collection and subsequent post-processing is identical for all

signals, it is reasonable to assume that “recording coloration” (variation in amplitude,

phase and/or frequency characteristics) induced by the RFSICS and post-processing

prior to burst start location, statistical fingerprint generation and signal classification

is approximately identical. This is important in the overall process and ensures that

final results are based on as received signal characteristics and features versus being

unduly influenced by signal-dependent collection and post-processing coloration.

The desired “Analysis Signal” is intended to simulate varying SNR conditions

that typically exist in an operational environments. This signal is generated by adding

like-filtered, power-scaled noise to the digitally filtered, power-normalized signal. This

is done by generating random complex AWGN that is filtered using the same digital

filter as used for the signal. The filtered noise signal is then power-scaled to achieve

the desired analysis SNR when added to the filtered signal. A representative instan-

taneous amplitude response from a collected 802.11A RF burst is shown in Figure 3.2

for analysis SNRs of SNR = 10 dB and SNR = 0 dB.

3.3.2 Burst Detection and Start Location. The sequential burst detection

and burst start location process is implemented relative to what may occur in an

operational collection system, i.e., a real-time system samples the environment, de-

tects the “presence” of bursts and locates the burst start point (sample number)

within the turn-on region. This process was functionally implemented in the Locate

Burst Start block in Figure 3.1. The specific burst detection and location techniques
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Figure 3.2: Instantaneous amplitude responses for collected 802.11A signal: (Top)
Collected Signal, (Middle) Filtered Signal-plus-AWGN at SNR = 10 dB and (Bot-
tom) Filtered Signal-plus-AWGN at SNR = 0 dB.

that were implemented in this block include Fractal-Bayesian Step Change Detector

(Fractal-BSCD) (Section 2.1.1), Traditional Variance Trajectory (VT) (Section 2.1.2)

and Denoised VT (Section 3.4). As presented in Chapter 4, results were generated us-

ing each of these techniques to characterize 1) their burst detection and location error

performance, 2) their performance relative to each other, and 3) their corresponding

error impact on subsequent fingerprint classification performance. It became evident

throughout the research that reliable comparison of error impact on classification

performance could only be accomplished if all the same bursts were used for classifi-

cation following detection and location. To ensure a fair comparison, the concept of

“dual-convergent” bursts was developed as explained next.

Undetected bursts are those which are actually received yet their presence is not

declared. Detected bursts are those which are received and their presence is declared.

The focus of this work is on detected bursts with subsequent algorithmic process-

ing used to determine burst start location. For those cases where the burst start
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location algorithm does not converge in accordance with prescribed criteria (num-

ber of iterations, parametric tolerance, etc.), the detected bursts are designated as

“non-convergent” and a default burst start location value assigned. When algorithm

convergence occurs, the bursts are designated as “convergent” and the estimated lo-

cation assigned. When algorithm convergence occurs for identical bursts with two

different burst location techniques, the bursts are designated as “dual convergent.”

3.3.2.1 Burst Detection. This process is similar to coarse burst de-

tection that is accomplished in an the RF environment to detect the presence of RF

bursts. The input analysis signal is first segmented into contiguous, non-overlapping

sub-sections or windows such that Ns = Nw in (2.4). While not a requirement, non-

overlapping windows are used to minimize processing time. This has the disadvantage

of producing coarser estimates of where the actual burst response starts, while at the

same time capturing more signal power within each window and improving detectabil-

ity. For all results presented in Chapter 4, a window size of Nw = 512 signal samples

(21.6 µsec) is used.

Two burst detection methods, Traditional VT and Denoised VT as described in

Section 2.1.2 and Section 3.4 respectively, are applied to the windowed signal data and

an a-priori coarse detection threshold tDet used to declare detection. Once a coarse

detection occurs, the corresponding segment of windowed signal data is passed on for

start location determination where it is assumed that an actual burst start occurs

within the window. However, as with all coarse signal detection approaches, false

alarms can occur with bursts falsely declared present. Coarse detection performance

results are provided in Section 4.2.1.

3.3.2.2 Burst Start Location. This process is similar to coarse burst

detection in that the Traditional VT and Denoised VT techniques are reapplied to

determine the final start location. In addition, the Fractal-BSCD technique in Sec-

tion 2.1.1 is considered as well. For the Traditional VT and Denoised VT techniques,

the precise start location is indicated by the time (sample number) at which an
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abrupt change occurs in the V Ta response of (2.3). For the Fractal-BSCD technique

the precise start time location corresponds to the time (sample number) at which

a maximum occurs in the a-posteriori PDF of (2.2). The effectiveness of these ap-

proaches is based on an implicit assumption that bursts of OFDM-based signals can

be modeled as having a step change response in/near the turn-on transient region.

This assumed response is consistent with 802.11A specifications [29] and has been

successfully exploited in related research [42, 63, 67].

For all three techniques, the segment of windowed data that is passed from the

coarse detection process is further sub-segmented using much narrower and highly

overlapped windows. The overlapping windows allow for better location accuracy at

the expense of increased processing time. For this work, a window size of Nw = 20

samples (0.84 µsec) is used with a shift of Ns = 2 samples (84.2 nsec) between

consecutive windows.

For demonstrating performance of the Traditional VT and Denoised VT tech-

niques, an a-priori location threshold tLoc (tLoc 6= tDet) is used to automatically

estimate the burst start location based on a significant peak response occurring in

V Ta of (2.3). When a significant peak is located the signal is passed on for sub-

sequent fingerprint generation. In some cases no significant peak is found and the

algorithm does not converge to a solution. This non-convergent condition can occur

if there is no burst present (coarse burst detection false alarm) or if the threshold is

set too high for the burst under evaluation. There are two options for dealing with

non-convergent bursts, including: 1) the burst can be discarded without subsequent

processing, or 2) a default start location value can be assigned and subsequent pro-

cessing performed. In an operational environment where the system has access to a

large number of bursts, discarding burst may be a reasonable choice and have minimal

impact on final system performance. For this work the probability of coarse detec-

tion is effectively 100% given that collected signals are first passed through “Perfect”

Burst Extraction (via a visual and manual inspection of each burst) according to Fig-

ure 3.1. Given this and data collection limitations, a default location is assigned to
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non-convergent bursts that produce no significant peak in the V Ta(i) response. The

default location time (sample number) is chosen to correspond with the last sample

in the window of data passed by the coarse detection process. In presenting results

in Chapter 4, non-convergent pulses are only included when characterizing detection

and start location error performance of the three techniques considered. As explained

earlier, they are not included when assessing the impact of this error on end-to-end

signal classification performance. A performance comparison of Traditional VT and

Denoised VT burst start location performance is presented in Section 4.2.2.4.

In assessing performance of the Fractal-BSCD technique in Section 2.1.1 it was

found that there were no non-convergent bursts. The 100% convergence of Fractal-

BSCD processing is ensured given the maximum operator in (2.2). Relative to the

Traditional VT and Denoised VT techniques, this could be an operational disadvan-

tage as there is no inherent back-up capability for detecting bad pulses (false alarms).

A performance comparison of Fractal-BSCD and Traditional VT burst start location

performance is presented in Section 4.2.2.

3.3.3 Statistical Fingerprint Generation. Following burst detection and

start location, the RF statistical fingerprints are generated using the process shown

in Figure 3.3. As indicated within the dashed lines, the Characteristics and Statistics

generating functions are identical for both the time domain (TD) and wavelet domain

(WD) techniques. A signal region of interest is selected from the input analysis signal

and parsed into a predefined number of sub-regions for fingerprint generation. For

the 802.11A/G signals considered here, the burst preamble is the region of interest.

This choice was based on 1) previous works which successfully exploited the preamble

[20,54,55], and 2) the preamble sequences being identical for all bursts per the 802.11

standard [29]. Figure 3.4 shows the modulated signal response for the standard

preamble comprised of 10 short followed by 2 long symbols. For all results presented

in Chapter 4, a total of Nr = 3 fingerprint regions were used as highlighted in

Figure 3.4. The three different fingerprint regions include 1) the first 8.0 µsec which
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corresponds to ten short OFDM symbols, 2) the last 8.0 µsec which corresponds to

two long OFDM symbols, and 3) the entire 16.0 µsec preamble (both short and long

symbols).

For TD feature classification, the centered subregion characteristics are calcu-

lated using (2.6)–(2.12) and statistical classification features calculated using (2.13),

(2.14), and (2.15) for each resultant characteristic response. The resultant TD RF

fingerprint (feature vector) consists of 27 total features per collected burst (3 subre-

gions × 3 signal characteristics × 3 statistics). The TD fingerprint for burst b, from

device (class) c, in subregion r is given by

Fb,c
r = [ σ2

r (a), σ
2
r(φ), σ2

r (f),

γr(a), γr(φ), γr(f), (3.1)

κr(a), κr(φ), κr(f) ] ,

where b = 1, 2, 3, . . . , Nb with Nb being the total number bursts, r = 1, 2, 3, . . . , Nr

with Nr being the total number of subregions, and c = 1, 2, 3 is the class index.

Considering the Nr = 3 subregions as used here, the composite TD classification

feature vector (1 × 27) is formed using (3.1) and is given by

Fb,c
TD =

[

Fb,c
1 Fb,c

2 Fb,c
3

]

. (3.2)

For WD feature classification, the processing is identical to TD processing ex-

cept that a Dual-Tree Complex Wavelet Transform (DT-CWT) decomposition is per-

formed in each subregion. As depicted in Figure 2.3, the DT-CWT decomposes each

subregion into five levels associated with different wavelet scales. The “complex WD

signal” samples are calculated using (2.21), followed by characteristic generation and

centering using (2.6)–(2.12). The statistical classification features are calculated using

(2.13), (2.14), and (2.15). The resultant WD RF fingerprint (feature vector) consists

of 135 total features per collected burst (3 subregions × 5 DT-CWT decomposition
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levels per subregion × 3 signal characteristics × 3 statistics). Paralleling the TD

development, the WD fingerprint for burst b, from device c, in subregion r which has

been decomposed into l DT-CWT levels is given by

Fb,c
r,l = [ σ2

r,l(a), σ
2
r,l(φ), σ2

r,l(f),

γr,l(a), γr,l(φ), γr,l(f), (3.3)

κr,l(a), κr,l(φ), κr,l(f) ] ,

where l = 1, 2, 3, . . . , Nl with Nl being the total number of DT-CWT decomposition

levels per subregion. Considering Nr = 3 subregions with Nl = 5 levels as used here,

the composite WD classification feature vector (1× 135) is formed using (3.3) and is

given by

Fb,c
WD =

[

Fb,c
1,1 Fb,c

1,2 Fb,c
1,3 Fb,c

1,4 Fb,c
1,5

Fb,c
2,1 Fb,c

2,2 Fb,c
2,3 Fb,c

2,4 Fb,c
2,5

F
b,c
3,1 F

b,c
3,2 F

b,c
3,3 F

b,c
3,4 F

b,c
3,5

]

.

(3.4)

3.3.4 MDA/ML Signal Classification. Signal classification is performed

using the Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) process

described in Section 2.2.3. For all MDA/ML classification results presented in Chap-

ter 4, a total of Nb = 2000 bursts were used from Nd = 3 different 802.11A/G devices,

with each device denoted as Class A, Class B, and Class C. Fingerprints from each

class (device) were used to form a single composite fingerprint matrix for classifica-

tion. As indicated in the following expressions, the composite matrix is formed by

vertically concatenating the feature vectors for either TD using (3.2) or WD using

(3.4). The formation of these matrices can be represented as

FTD =













[

F1,1
TD F2,1

TD . . .F
Nb,1
TD

]TV

[

F1,2
TD F2,2

TD . . .F
Nb,2
WD

]TV

[

F1,3
TD F2,3

TD . . .F
Nb,3
TD

]TV













, (3.5)
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FWD =













[

F1,1
WD F2,1

WD . . .F
Nb,1
WD

]TV

[

F1,2
WD F2,2

WD . . .F
Nb,2
WD

]TV

[

F1,3
WD F2,3

WD . . .F
Nb,3
WD

]TV













, (3.6)

where TV is used here to denote vector transposition, i.e., the vectors are transposed

with the order of elements within each vector maintained. For Nb = 2000 bursts per

class, the resultant composite FTD matrix has dimension 6000× 27 and the resultant

composite FWD matrix has dimension 6000×135. The composite fingerprint matrices

in (3.5) and (3.6) are column-wise (i.e. per feature) centered and normalized to unit

standard deviation. The centering and normalizing processes only aid in fingerprint

visualization and do not impact subsequent MDA/ML classification performance.

The impact of feature selection (TD and WD) on signal classification performance is

demonstrated using the resultant centered and normalized RF fingerprints input to

the MDA/ML process.

Monte Carlo simulation and K-fold cross validation processes are used with

MDA/ML signal classification. Monte Carlo simulation is used to ensure statistical

significance and K-fold cross validation is used to generalize the prediction error to

an independent data set [25]. While the required value of K can vary as a function

of data “behavior,” values of K = 5 and K = 10 are common choices for cross

validation [25]. Using K = 5 with Nb = 2000 bursts (fingerprints) per device, the

input fingerprints are partitioned into K = 5 equal subsets (400 each), with K−1 = 4

subsets (1600 fingerprints) used for training and the remaining “held-out” subset (400

fingerprints) used for classification [25].

The overall process for MDA/ML classification with K-fold cross validation

is shown in Figure 3.5. Accounting for a total of NMC independent Monte Carlo

noise realizations, the process for generating average classification results includes

the following steps. Note that the Fold Iteration Accumulator in Figure 3.5 is cleared

prior to the start of this process.
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Figure 3.5: MDA/ML classification process with K-fold cross validation [71].

1. Generating the analysis signal for a given SNR per Section 3.3.1

2. Performing burst detection and start location per Section 3.3.2

3. Generating statistical fingerprints per Section 3.3.3 for the technique under

evaluation (TD or WD)

4. Generating projection matrix W per (2.16) using K − 1 = 4 subsets (80%

of the fingerprints) from each device for training and ML classifier parameter

calculation
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5. Transforming the “held-out” subset (20% of the fingerprints) from each device

as “unknown” inputs using W and classifying each per ML criteria

6. Accumulating the current fold classification results

7. Selecting the next K − 1 = 4 blocks for the next fold

8. Repeating Step 4 – Step 7 for K − 1 = 4 additional folds

9. Repeating Step 1 – Step 8 a total of NMC times using different independent

AWGN realizations for each iteration (Fold Iteration Accumulator not cleared)

10. Averaging Fold Iteration Accumulator results to obtain average classification

performance (Accounting for all factors, the final average is based on a total of

NMC ×Nb × 3 independent classification decisions.)

11. Repeating the process for each desired analysis SNR

Representative MDA-transformed training fingerprints and trained decision bound-

aries calculated from ML distributions are shown in Figure 3.6(a) for 802.11A signals

at SNR = 40 dB. The corresponding projection of “unknown” MDA-transformed

fingerprints are shown in Figure 3.6(b) overlayed with trained decision boundaries

from Figure 3.6(a). Note that even under these high SNR conditions incorrect classi-

fication is possible. For example, one of the Class C (∗ markers) fingerprints is clearly

projected into the Class A (× markers) ML decision region and would be incorrectly

classified.

3.4 DT-CWT Denoising Process

Denoising is accomplished using the DT-CWT described in Section 2.3 with the

process illustrated in Figure 3.7. The complex input signal f(n) is transformed using

the DT-CWT which outputs complex-valued wavelet coefficients from the Tree1 and

Tree2 filter banks. These outputs are combined to form real-valued coefficients d(n)

according to

39



(a) MDA/ML Training: Decision Boundaries Calculated From ML
Distributions.

 

 

Class A Point
Class B Point
Class C Point

(b) MDA/ML Classification: Projected Fingerprints.

Figure 3.6: MDA/ML (a) Training and (b) Classification for 802.11A signals at
SNR = 40 dB. Lower surface of (a) shows MDA fingerprint projections and trained
decision boundaries.
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Figure 3.7: Denoising process using the DT-CWT in Section 2.3 [31].

d(n) =
√

|Tree1(n)|2 + |Tree2(n)|2 . (3.7)

The d(n) coefficients in (3.7) are compared with the denoising threshold tDN

and a punctured set of coefficients d′(n) produced by setting all coefficients below tDN

to zero and retaining those above tDN , i.e., ∀n′ where d(n′) < tDN , Tree1(n′) = 0 and

Tree2(n′) = 0. An Inverse DT-CWT (IDT-CWT) is then applied to d′(n) to produce

the denoised complex output signal g(n). The denoised coefficients are subsequently

processed using the Traditional VT technique in Section 2.1.2 to generate Denoised

VT results.

The impact of denoising is demonstrated by comparing Traditional VT results

with Denoised VT results in Figure 3.8. Note that the circled region highlights the

burst start location at t = 0. The representative amplitude response |f(n)| is from an

802.11A burst at SNR = 40 dB and is identical in both figures. As a side note, the

16.0 µsec preamble response is clearly evident in the amplitude response. This burst

was processed along with an SNR = 0 dB scaled version to generate the VT(n) results

shown for each technique. As indicated, both techniques produce nearly identical
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VT(n) responses at SNR = 40 dB with a clear distinct peak coinciding with the burst

start time at t = 0. The effect of denoising is most evident in the SNR = 0 dB results

by comparing the VT(n) responses just prior to t = 0, the actual burst start time.

The t < 0 region of collected signals only contains background noise contributions.

Upon close inspection of the SNR = 0 dB responses for t < 0, it is evident that

DT-CWT denoising has effectively reduced the background noise response. While

both VT(n) responses at SNR = 0 dB have a peak near t = 0, only the Denoised VT

response has the desired step change response that is required for effective threshold

detection and burst location.

3.5 Threshold Determination Process

Three distinct threshold values are required, including: 1) tDet for coarse burst

detection per Section 3.3.2.1, 2) tLoc for burst location per Section 3.3.2.2, and 3) tDN

for denoising per Section 3.4. All SNR dependent threshold values were determined

a-priori based on noise-only analysis using 100,000 AWGN realizations. The random

noise realizations were generated, filtered, and scaled for the desired analysis SNR.

For determining tDet and tLoc thresholds the resultant colored noise was analyzed

using appropriate window parameters for a given technique. In determining tDN for

DT-CWT denoising, the resultant colored noise was transformed by the DT-CWT

and coefficients retained for threshold determination. In all cases, results from the

100,000 noise-only iterations were histogrammed and the threshold value empirically

chosen.

In selecting a tLoc value for burst location, a trade-off is made between the

number of early burst location estimates and the number of non-convergent solutions

produced by the algorithm. The final tLoc values were selected to ensure that both of

these conditions are present and observable in the data. When comparing Traditional

VT and Denoised VT performance, the tLoc value is further constrained to provide a

similar number of early burst location (10%) for both techniques to illicit a more fair

comparison.
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(b) Denoised VT.

Figure 3.8: Instantaneous amplitude response of an 802.11A burst and (a) Tradi-
tional VT and (b) Denoised VT responses for SNR = 40 db and SNR = 0 dB. The
circled region highlights the burst start location at t = 0. [31].
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For DT-CWT denoising, the value of tDN is empirically chosen and based on

the histogram bin value below which 95% of the noise-only values occur. The value

of tDet is chosen using conventional noise-only analysis of Probability of False Alarm

(Pfa) and Probability of Detection (Pd) as represented on a Receiver Operating Char-

acteristic (ROC) curve. Results of this analysis are reported in Section 4.2.1.

Summary

This chapter provided implementation details for Signal Collection and Post-

Collection Processing, Statistical Fingerprint Generation, MDA/ML Signal Classifi-

cation, DT-CWT Denoising and Threshold Determination. The results from imple-

menting these processes are provided in Chapter 4.
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IV. Results

This chapter provides modeling, simulation and analysis results that were generated

using the processes detailed in Chapter 3. The research involved hundreds of sim-

ulations, requiring hundreds of hours of processing time in some cases. For brevity

and to ensure succinctness, only a subset of representative results are presented from

selected scenarios to fully support key research findings and contributions. Results

for each contribution area introduced in Section 1.2 are presented in the following

subsections: Bandwidth Sensitivity in Section 4.1, Burst Detection and Location

in Section 4.2, MDA/ML Classification in Section 4.3, and Performance Sensitivity

Analysis in Section 4.4.

4.1 Bandwidth Sensitivity

Prior to assessing burst detection and device classification performance, there

was one important parameter that needed to be analyzed – the post-collection filter

bandwidth (BWPC). As shown in Figure 3.1 of Section 3.1, the collected burst re-

sponses and simulated noise are digitally filtered prior to forming the desired analysis

signal. In previous related works using 802.11 signals, this filter bandwidth was simply

fixed at a reasonable value based on common engineering practice [31, 33, 54, 55].

Intra-manufacturer classification accuracy using three Cisco devices is presented

versus post-collection filter bandwidth in Figure 4.1 for both TD and WD techniques

using 802.11A signals at SNR = 40 dB. While the best case WD classification perfor-

mance is approximately 2% poorer than best case TD performance, the WD technique

is more robust and classification performance varies by less than 2% over the range of

bandwidths considered. The TD technique is much more sensitive and exhibits classi-

fication variation of nearly 6%, with poorest TD classification performance occurring

at BWPC = 6.3 MHz.

To highlight one potential cause for increased TD sensitivity, a few filter re-

sponses for different bandwidths are shown overlayed with a representative 802.11A
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signal PSD in Figure 4.2. The three filter bandwidths chosen for illustration include

BWPC = 5.0 MHz, BWPC = 6.3 MHz (worst case TD classification performance), and

BWPC = 7.7 MHz. Of particular note is how each of the filters impact the 802.11A

OFDM subcarrier response that exists near 7.5 MHz. Clearly, the BWPC = 7.7 MHz

filter effectively passes this carrier unaltered while each of the other two filters in-

duce some degree of attenuation. This suggests there may be additional informa-

tion in the higher frequency components that the MDA/ML classification process

is more effectively exploiting. However, signal attenuation alone cannot account for

all the TD performance differences in Figure 4.1 given that the poorest performing

BWPC = 6.3 MHz filter actually attenuates the 7.5 MHz carrier component less than

the better performing BWPC = 5.0 MHz filter (-5.0 dB versus -16 dB). Thus, the

filter impact on noise (attenuation and spectral distribution) must be considered a

contributing factor as well.

To enable comparison of both techniques at their best performance levels, a

post-collection bandwidth of BWPC = 7.7 MHz was used for generating all the sub-

sequent burst detection and device classification results presented in Section 4.2 and

Section 4.3, respectively. This particular bandwidth choice gives the TD technique

an approximate 2% advantage in device classification. This will be considered when

presenting, comparing and analyzing subsequent results.

4.2 Burst Detection and Location

This section discusses how traditional burst detection and burst start location

techniques are sensitive to varying noise conditions and how this sensitivity impacts

overall classification performance. Analysis indicates that improving the accuracy of

burst detection and location can lead to improved device classification.

4.2.1 Burst Detection. Receiver Operating Characteristic (ROC) curves

were generated using the process in Section 3.3.2.1 to characterize performance dif-

ferences between the two burst detection techniques – Traditional VT and Denoised
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Figure 4.1: Intra-manufacturer classification accuracy versus post-collection filter
bandwidth for TD and WD techniques using 802.11A signals at SNR = 40 dB.
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VT. Results in Figure 4.3 show that at SNR = 6 dB and SNR = 0 dB, the Denoised

VT technique provides a higher probability of detection (Pd) for a given probability

of false alarm (Pfa). With a higher Pd for a given Pfa, the Denoised VT technique

detects and outputs more bursts for subsequent processing when compared with the

Traditional VT technique. With more bursts being detected and forwarded, it is pos-

sible to correctly classify the device in less time and have a higher confidence in the

classification.

4.2.2 Burst Start Location. To isolate the effects of burst location accu-

racy from the effects of burst detection error, the 802.11A RF bursts were manually

detected prior to burst location analysis. Thus, there is no noise-only data input to

this process to generate false alarms and Pd = 100%. All histogram results in this

section share two common attributes, including: 1) the correct burst locations occur

at t = 0 sec and 2) the default non-convergent solutions occur at t = 16 µsec (see

Section 3.3.2.2 for discussion on non-convergent solutions).

4.2.2.1 Channel Noise Variability. These results illustrate the effect

of channel noise variation for a given 802.11A RF burst and 200 AWGN realizations

that are generated, filtered, scaled and added to achieve the desired analysis SNRs.

Fractal-BSCD and Traditional VT estimation results are shown in Figure 4.4.

At higher SNRs the two methods perform similarly as the noise power varies,

with primary differences beginning at SNR = 9 dB. Fractal-BSCD degradation is

directly attributed to the a-posteriori PDF degradation, as calculated per (2.2) and

shown in Figure 2.1. The strong peak response in the PDF diminishes and becomes

more uniformly distributed as noise power increases. Traditional VT degradation

is attributed to, and affected by, threshold selection criterion. For the non-optimum

method implemented here, the threshold criterion is not always satisfied and a default

start value is assigned – a missed detection or non-convergent solution. This is shown

in Figure 4.4(b) as a peak forming at t = 16 µsec. The number of missed detections
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Figure 4.3: Probability of False Alarm (Pfa) versus Probability of Detection (Pd)
ROC curves for Traditional VT and Denoised VT techniques at (a) SNR = 6 dB
and (b) SNR = 0 dB. [31].

49



−3 0 3 6 9 12 15 18 21 24 27 30

−20
−15

−10
−5

0
5

10
15

20
0

50

100

150

200

SNR (dB)Error ( µsec)

B
in

 C
ou

nt

(a) Fractal-BSCD.
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Figure 4.4: Impact of Channel Noise Variation on burst location error using
(a) Fractal-BSCD and (b) Traditional VT. Histogram for 200 independently gen-
erated, filtered and scaled AWGN realizations with a given 802.11A RF burst [33].
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at lower SNRs can be reduced by changing the threshold. However, this also reduces

estimation accuracy and precision at higher SNRs.

4.2.2.2 Burst-to-Burst Variability. These results illustrate the effect

of burst-to-burst variation using a given AWGN realization that is generated, filtered

and scaled to achieve the desired analysis SNRs. Results for 200 collected 802.11A

bursts with Fractal-BSCD and Traditional VT estimation are shown in Figure 4.5.

As with the channel noise impact, the two methods perform similarly at higher

SNRs. Differences arise at lower SNRs, with the Traditional VT method degrading

as before and producing missed detections. The missed detections are shown in Fig-

ure 4.5(b) as a peak forming at t = 16 µsec. The Fractal-BSCD response degrades

differently than before, becoming multi-modal at lower SNRs and producing a sig-

nificant number of detections in the noise-only portion of the signal. The modes are

attributable to anomalous spikes in a specific noise realization. This is consistent with

results in [23] and [68] given that BSCD processing is most effective when non-gradual

parameter changes occur. At lower SNRs the amplitude change is too gradual in some

bursts for the BSCD method to reliably detect them.

4.2.2.3 Combined Noise-Signal Variability. These results illustrate

the combined effects of channel noise and burst-to-burst signal variability. In this

case, 200 AWGN realizations were generated, filtered and scaled for each SNR and

added to each of the 200 collected 802.11A bursts – a total of 40,000 unique AWGN

realizations per SNR. Results for Fractal-BSCD and Traditional VT estimation are

shown in Figure 4.6.

In this combined channel noise and burst-to-burst variability case, the channel

noise effects are dominant. This is evident in that channel noise effect results in

Figure 4.4 are nearly identical to the combined effects results Figure 4.6, including

the missed detections shown in Figure 4.6(b) as a peak forming at t = 16 µsec.

At higher SNRs the two methods perform similarly as the noise power varies, with

51



−3 0 3 6 9 12 15 18 21 24 27 30

−20
−15

−10
−5

0
5

10
15

20
0

50

100

150

SNR (dB)Error ( µsec)

B
in

 C
ou

nt

(a) Fractal-BSCD.

−3 0 3 6 9 12 15 18 21 24 27 30

−20
−15

−10
−5

0
5

10
15

20
0

50

100

150

SNR (dB)Error ( µsec)

B
in

 C
ou

nt

(b) Traditional VT.

Figure 4.5: Impact of RF Burst Variation on burst location error using (a) Fractal-
BSCD and (b) Traditional VT. Histogram for 200 collected 802.11A RF bursts and
one generated, filtered and scaled AWGN realization [33].
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Figure 4.6: Impact of Combined Channel Noise and RF Burst Variation on burst
location error using (a) Fractal-BSCD and (b) Traditional VT. Histogram for 200
independently generated, filtered and scaled AWGN realizations and 200 collected
802.11A bursts [33].
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primary differences beginning at SNR = 9 dB. Fractal-BSCD degradation is directly

attributed to the a-posteriori PDF degradation, as calculated per (2.2) and shown in

Figure 2.1. The strong peak response in the PDF diminishes and becomes more uni-

formly distributed as noise power increases. Traditional VT degradation is attributed

to, and affected by, threshold selection criterion.

Relative to Fractal-Bayesian Step Change Detector (Fractal-BSCD) technique,

burst detection and location performance was best using a Traditional Variance Tra-

jectory (Traditional VT) technique which provided results that were consistent with

perfect burst estimation performance at higher SNRs (10 ≤ SNR ≤ 30 dB). However,

performance for both techniques diverged at lower SNRs (−3 ≤ SNR ≤ 10 dB) [33].

This shortfall provided an impetus for subsequent burst detection research aimed at

improved performance at low SNRs [31].

4.2.2.4 Combined Noise-Signal Variability: Denoised VT. As demon-

strated in the previous sections, burst start location error for Fractal-BSCD and

Traditional VT becomes symptomatic at SNR ≤ 9 dB and there is room for im-

provement for the lower SNR range. In accordance with Section 3.4, the Denoised

VT process consists of denoising the bursts with a DT-CWT prior to calculating the

Traditional VT.

Unlike results in Section 4.2.2.1 through Section 4.2.2.3 which were presented as

3-dimensional histograms in Figure 4.4 through Figure 4.6, the discernable differences

in results of this section were not readily apparent when presented as 3-dimensional

histograms. Thus, the results in this section are presented as 2-dimensional his-

tograms for a given subset of SNRs considered. The results in Figure 4.7 show the

improvement achieved at SNR = 6 dB and SNR = 0 dB when denoising is employed.

For the SNR = 6 dB results, the Denoised VT technique outperforms the Tra-

ditional VT technique by 1) correctly locating 24% more of the burst start locations

while 2) experiencing a tighter distribution near the main peak response. Similar

improvement is demonstrated for the SNR = 0 dB results. While both techniques
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Figure 4.7: Probability Distribution Functions (PDF) for burst start location error
using Traditional VT and Denoised VT at (a) SNR = 6 dB and (b) SNR = 0 dB [31].

55



experience a main peak that is late, the Denoised VT technique correctly locates 3.7%

more of the burst start locations while also exhibiting a tighter distribution near the

main peak response.

4.2.3 Error Impact on Device Classification. In an operational implemen-

tation, only those bursts causing location convergence according to Section 3.3.2.2

would be used for further processing. Therefore, for comparing classification perfor-

mance only “dual convergent” bursts per Section 3.1 are used, i.e., only the bursts

that result in a converged location solution from both techniques being evaluated.

All other bursts that resulted in a converged location solution from only one of the

techniques are excluded from subsequent classification. This approach was adopted

based on early results which showed that singly convergent bursts unduly biased re-

sults in favor of the technique yielding the most converged solutions. The distribution

differences (and their associated fingerprints) account for the only differences between

the two techniques being processed by the classifier. Classification results in this sec-

tion were generated using a mix of manufactured devices, including two from Cisco

(N4U9 as Class A and N4UW as Class B) and one from Dell (BTA4 as Class C). Given

the two Cisco devices are very close in serial number their discrimination inherently

presents the greatest classification challenge.

4.2.3.1 Fractal-BSCD and Traditional VT Classification. Figure 4.8

shows average MDA-ML classification accuracy with the effects of Perfect, Fractal-

BSCD and Traditional VT burst detection error included. In this case, Perfect results

are obtained using a start location based on visual inspection of each collected burst.

To determine if perfect burst location provides best possible MDA-ML classification

accuracy, a uniform randomly distributed error was added to perfect start location es-

timates and results generated for comparison. As shown, the Perfect with Random Er-

ror results are consistent with Perfect results and marginally better/poorer for SNR

below/above approximately 14 dB, respectively. With respect to the burst location

estimation error impact to classification performance, the Traditional VT technique
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Figure 4.8: Average MDA-ML classification accuracy with Perfect, Fractal-BSCD
and Traditional VT burst detection error included. [33].

was consistent with Perfect estimation for 6 ≤ SNR ≤ 30 dB but under performed for

−3 ≤ SNR ≤ 6 dB. Traditional VT also provided considerable improvement when

compared with the Fractal-BSCD technique at lower SNRs (−3 ≤ SNR ≤ 18 dB),

i.e., for a given classification accuracy in the range of 50%–80% the required SNR

for Traditional VT is 3-6 dB lower than what is required for Fractal-BSCD.

Classification performance is commonly illustrated using a confusion matrix

that shows the percentage of time a particular input class is estimated as one of the

possible classes, with the diagonal entries representing correct classification. Table 4.1

shows the classification confusion matrix for perfect burst location results in Figure 4.8

at SNR = 30 dB. As indicated by off-diagonal entries, the greatest confusion exists

in intra-manufacturer classification with Class A and Class B inputs being mostly

confused with each other. The Class B input is errantly classified as Class C a small

percentage of the time and the Class C input experiences no confusion. Collectively,
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Table 4.1: Classification confusion matrix for perfect burst location results in Fig-
ure 4.8 at SNR = 30 dB.

Class Estimate
Input Class A B C

A 89.5% 10.5% 0.0%
B 10.0% 89.5% 0.5%
C 0.0% 0.0% 100.0%

these results illustrate that the most stressing classification challenge is posed for

intra-manufacturer discrimination (the two Cisco devices).

4.2.3.2 Traditional VT and Denoised VT Classification. To assess the

impact of DT-CWT denoising, Denoised VT classification results were generated for

comparison. These results are presented in Figure 4.9 which shows average MDA-

ML classification accuracy with the effects of Perfect, Traditional VT, and Denoised

VT burst detection error included. As before, the Perfect results provide an upper

bound on achievable performance. As indicated, Traditional VT and Denoised VT

performance is similar for SNR > 6 dB and SNR < −2 dB. For −1 < SNR < 5 dB,

the Denoised VT technique outperforms the Traditional VT technique and provides

an average improvement in classification accuracy of 1.75%. Relative to results for

perfect burst detection and location, the Denoised VT process achieves nearly 34% of

the available performance improvement–when used with MDA/ML processing, there

is little more to be gained in overall classification performance by improving burst

detection and location accuracy.

Confusion matrix results for the SNR = 3 dB data points in Figure 4.9 are

shown in Table 4.2. Two things are evident when comparing Traditional VT and

Denoised VT results, including: 1) minimal difference in Class A and Class B perfor-

mance, and 2) greatest improvement occurring in correctly classifying Class C which

exhibits a 6% increase. These results are consistent with what is expected when

considering “What level of improvement is achievable?” Assuming Perfect results

represent an upper bound, achievable improvement is determined by comparing di-
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Figure 4.9: Average MDA-ML classification accuracy with Perfect, Traditional
VT and Denoised VT burst detection error included. Results obtained for “dual
convergent” 802.11A bursts from a mix of Cisco-Cisco-Dell devices [31].

agonal entries in Table 4.2 for Perfect and Traditional VT techniques. For Class A

and Class B devices, there is only a 1%-2% margin for improvement in correct clas-

sification. However, there is a 12% margin for improvement in Class C classification.

Thus, the Denoised VT performance improvement of 6% for Class C represents 50%

of the possible improvement.

4.3 MDA/ML Device Classification

As concluded in Section 4.2.3.2 and highlighted by results in Figure 4.9, there is

minimal additional improvement that can be made in end-to-end device classification

by considering alternative burst location techniques. The reader is reminded here that

the focus of this research is on proof-of-concept demonstration without optimization

for real-time implementation. Thus, there may be alternate burst detection techniques

that are more computationally efficient than those considered here. However, their
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Table 4.2: MDA/ML classification confusion matrix for various burst detection
methods at SNR = 3 dB [31].

Perfect Class Estimate

Input Class A B C
A 68% 21% 11%
B 31% 44% 25%
C 14% 17% 69%

Traditional VT Class Estimate

Input Class A B C
A 67% 22% 11%
B 31% 42% 27%
C 22% 21% 57%

Denoised VT Class Estimate

Input Class A B C
A 67% 21% 12%
B 30% 43% 27%
C 18% 19% 63%

application to the RF fingerprinting process detailed in Figure 3.1 of Section 3.1 is

beyond the scope of this research and remains an area of future research.

Given the burst detection capability detailed in Section 4.2.3.2, and the inher-

ent robustness of the MDA/ML classification process described in Section 3.3.4, the

research emphasis shifted toward improving device classification by considering alter-

nate RF fingerprint features. More specifically, the DT-CWT process in Section 2.3,

that was used for Denoised VT burst detection, was next used for generating finger-

prints according to Section 3.3.3. The incorporation of a DT-CWT prior to statistical

feature calculation is functionally illustrated in the RF fingerprinting process depicted

in Figure 3.3. For comparative assessment and clarity of presentation in this section,

results based on DT-CWT fingerprints are referred to as Wavelet Domain (WD) re-

sults while all other results, including all those presented in previous sections, are

referred to as Time Domain (TD) results.
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Various combinations of device manufacturers (Cisco, Netgear, Linksys, and

AirMagnet) and signals (802.11A and 802.11G) are considered for demonstration

with specific stressing cases considered and analyzed. Using three Cisco devices,

classification results are generated and analyzed to demonstrate serial number dis-

crimination. This is the most stressing case considered and is denoted throughout

as “intra-manufacturer” discrimination. Using a combination of devices from various

manufacturers, classification results are generated and analyzed to demonstrate what

is denoted as “inter-manufacturer” discrimination. For comparative analysis, results

are generated using TD and WD fingerprints generated from identical collected sig-

nals with identical Monte Carlo noise realizations that are appropriately filtered and

scaled to achieve desired analysis SNRs. This enables a one-to-one comparison of TD

and WD classification results, with a performance “gain” defined as the difference

in required SNR, expressed in dB, at a given classification accuracy level. This is

analytically expressed as SNRWD − SNRTD at a given classification performance.

For tracking performance improvement and/or degradation throughout this section

of the document, the performance gain at an 80% classification accuracy level is used

per “reasonable” criteria detailed in Section 1.2.1 and is shown in the figures as a

circled region.

4.3.1 Statistical Fingerprint Features. The ability to visualize fingerprint

features can be insightful for both feature selection and performance analysis. Two

important properties that fingerprints should posses to increase overall classifica-

tion performance are uniqueness and temporal/spectral stability. Greater fingerprint

uniqueness across devices provides greater separability and improved classification

performance. Temporal and spectral stability of fingerprint features is also impor-

tant, especially for the MDA/ML training and classification process. Ideally, the

statistical fingerprint features used for MDA/ML training and classification do not

differ significantly. Given the signal collection conditions used for this research, the

temporal and spectral stability of fingerprint features is nearly the best that can be
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expected. The 2000 bursts used for all of the results presented here were collected

over a relatively short time interval (typically less than 0.5 sec) and in an anechoic

chamber void of multipath and channel fading effects. The uniqueness of fingerprint

statistical features and degree of temporal stability can be illustrated using what are

called “Distinct Native Attributes” (DNA) in RF Fingerprint DNA plots.

The uniqueness of fingerprint statistical features is illustrated in Figure 4.10

and Figure 4.11. These RF DNA plots were generated by randomly selecting 250 col-

lected bursts for each device, scaling them to achieve SNR = 20 dB, and averaging

the corresponding statistical fingerprints. For visual clarity, the average fingerprint

features are normalized within each segment where the y-axis segment numbers corre-

spond to the nine statistical measures defined in (3.1) and (3.3). The number of DNA

markers per segment is different for TD and WD fingerprints. For TD fingerprints,

the number markers is a function of the number of signal regions used for fingerprint

generation as expressed in (3.2). For WD fingerprints, the number of markers is

a function of the number of signal regions and DT-CWT levels used for fingerprint

generation as expressed in (3.4). The RF fingerprints in Figure 4.10 are from one man-

ufacturer (Cisco) and typical of what is used for intra-manufacturer discrimination.

The RF fingerprints in Figure 4.11 are from three different manufacturers (Cisco,

Linksys and Netgear) and are typical of what is used for inter-manufacturer discrim-

ination. Two conclusions are readily apparent by analyzing results in Figure 4.10

and Figure 4.11, including: 1) relative to intra-manufacturer fingerprint features,

the inter-manufacturer fingerprint features exhibit greater uniqueness across devices,

and 2) relative to TD fingerprints, the WD fingerprint features exhibit greater unique-

ness across devices. Subsequent results in this chapter show that greater uniqueness

translates to better overall classification performance.

The temporal stability of fingerprint features is demonstrated in Figure 4.12

through Figure 4.14. These RF DNA plots were generated by randomly selecting 25

collected bursts for each device, scaling them to achieve SNR = 20 dB, and gen-

erating the corresponding fingerprint for each. As before, the fingerprint features
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(a) TD Fingerprints.
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(b) WD Fingerprints.

Figure 4.10: Intra-manufacturer average RF fingerprint DNA plots showing (a) TD
and (b) WD fingerprints based on 250 randomly selected bursts at SNR = 20 dB.
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(a) TD Fingerprints.

13
5 

W
D

 D
N

A
 M

ar
ke

rs
 (

15
 p

er
 S

eg
m

en
t)

 

 

Cisco N4U9 Netgear 0273 Linksys 0306

1 

2 

3 

4 

5 

6 

7 

8 

9 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) WD Fingerprints.

Figure 4.11: Inter-manufacturer average RF fingerprint DNA plots showing (a) TD
and (b) WD fingerprints based on 250 randomly selected bursts at SNR = 20 dB.
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(a) TD Fingerprints.
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(b) WD Fingerprints.

Figure 4.12: Temporal TD Fingerprint Stability: (a) TD and (a) WD Fingerprints
for 25 randomly selected bursts from Cisco N4U9 device at SNR = 20 dB.
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(a) TD Fingerprints.
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(b) WD Fingerprints.

Figure 4.13: Temporal TD Fingerprint Stability: (a) TD and (b) WD Fingerprints
for 25 randomly selected bursts from Linksys 0306 device at SNR = 20 dB.
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(a) TD Fingerprints.
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(b) WD Fingerprints.

Figure 4.14: Temporal TD Fingerprint Stability: (a) TD and (b) WD Fingerprints
for 25 randomly selected bursts from Netgear 0273 device at SNR = 20 dB.
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are normalized within each segment for visual clarity. The left-most “Ref” finger-

prints are the corresponding average reference fingerprints taken from Figure 4.10

and Figure 4.11 as appropriate. These are provided for comparison with the ran-

domly selected test “T” fingerprints which are presented sequentially with increasing

time order. Note that the 25 randomly selected test bursts are different than the 250

bursts used to generate the average reference fingerprint. The results in Figure 4.12

through Figure 4.14 clearly illustrate a dissimilar degree of stability among the fin-

gerprint features being used. Note that the effects of temporal stability on the overall

MDA/ML classification is outside the scope of this work and is reserved for future

research.

4.3.2 TD vs. WD Performance: 802.11A Signals. Intra-manufacturer clas-

sification is demonstrated using four Cisco devices transmitting an 802.11A signal,

with results presented for all permutations of devices as shown in Table 4.3. Subse-

quent intra-manufacturer discrimination is then demonstrated using Permutation #1

which presents the “most stressing” conditions for classification. As indicated in

Table 4.3 the most stressing permutation uses three Cisco devices having serial num-

bers that differ in only the last digit. Thus, it is assumed that these devices have

been manufactured using identical components, from identical lots, with identical

processes, under identical environmental conditions. Thus, discriminating between

these devices presents the most stressing case for classification.

Sensitivity to serial number variation is illustrated in Figure 4.15 which shows

intra-manufacturer classification results for all four permutations. The mean across

Table 4.3: 802.11A Cisco intra-manufacturer permutations.
Serial Number

Perm N4U9 N4UD N4UW N4PX
1 × × ×
2 × × ×
3 × × ×
4 × × ×
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all four permutations is shown by the filled markers. The resuls for both TD and WD

techniques show that Permutation #1 and Permutation #3, which both include Cisco

devices with serial numbers N4U9 and N4UW, present the most stressing cases and

yield the poorest results for nearly all SNR values considered. As with all previous

results, Permutation #1 is the most stressing case at 80% classification accuracy.

The mean classification results in Figure 4.15 are presented again in Figure 4.16

for closer inspection. While both techniques perform similarly at SNR ≥ 25 dB,

the WD fingerprinting technique outperforms the TD technique at the lower SNRs.

As highlighted in the circled region, the WD fingerprints achieve 80% classification

accuracy at SNR ≈ 11 dB. This represents a gain of approximately 7 dB with respect

to equivalent TD fingerprinting performance.

Classification confusion matrices are presented in Table 4.4 for Permutation #1

of the Cisco devices for signals at SNR = 11 dB. As indicated in the lower comparison

matrix, WD fingerprinting provides improved classification performance across all

three classes, with the greatest improvement of 28.1% obtained in correctly classifying

Class B. One common result with both fingerprinting techniques is that Class A and

Class C devices are more confused with each other and confused less often with

Class B. With respect to the device serial numbers, Class A and Class C are closer

to each other than either one is to Class B.

Inter-manufacturer classification is demonstrated using two devices each from

Cisco, Netgear, and Linksys transmitting an 802.11A signal, with results presented

for device permutations shown in Table 4.5. Average classification performance across

all device permutations are shown in Figure 4.17 for both TD and WD fingerprinting.

While both techniques perform similarly at SNR ≥ 20 dB, the WD fingerprinting

technique outperforms the TD technique at the lower SNRs. As highlighted in the

circled region, the WD fingerprints achieve 80% classification accuracy at SNR ≈
2 dB. This represents a gain of approximately 5 dB with respect to equivalent TD

fingerprinting performance.
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Figure 4.15: Intra-manufacturer MDA/ML classification: Average performance for
all four permutations of four Cisco devices transmitting 802.11A signals.
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Figure 4.16: Intra-manufacturer MDA/ML classification: Average performance
across four permutations of four Cisco devices transmitting 802.11A signals.
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Table 4.4: Intra-manufacturer confusion matrices for TD and WD fingerprinting:
Permutation #1 from Table 4.3 with 802.11A signals at SNR = 11 dB. The difference
in performance between the two techniques is provided for comparison.

TD Class Estimate
Input Class A B C

A 49.4% 17.3% 33.3%
B 18.5% 65.9% 15.6%
C 34.2% 12.1% 53.6%

WD Class Estimate
Input Class A B C

A 69.5% 5.9% 24.5%
B 5.3% 94.0% 0.7%
C 21.5% 1.3% 77.2%

WD – TD Class Estimate
Input Class A B C

A 20.1% -11.4% -8.8%
B -13.2% 28.1% -14.9%
C -12.7% -10.8% 23.6%

Classification confusion matrices are presented in Table 4.6 for Permutation #1

of the Cisco, Netgear and Linksys devices at SNR = 2 dB. Given similar results

were obtained for all permutations considered, only the results for one permutation

are presented given the conclusions drawn are generally applicable to the other per-

mutations. While the WD technique increases classification performance for Cisco

(Class A) and Netgear (Class B) devices, there is a decrease in Linksys (Class C)

classification performance as indicated by the negative diagonal entry in the lower ma-

trix. The greatest improvement of 30.2% is obtained in correctly classifying Class A.

Unlike the intra-manufacturer discrimination where the classes are similarly confused

regardless of the fingerprint technique, the inter-manufacturer cross-class confusion is

different. The TD fingerprints experienced the most confusion between Class A and

Class B, while the WD fingerprints showed the greatest confusion between Class B

and Class C. This difference accounts for the greater improvement that occurs with

Class A.
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Table 4.5: 802.11A Inter-manufacturer permutations.
Cisco Netgear Linksys

Perm N4U9 N4UD 0273 0217 0306 0307
1 × × ×
2 × × ×
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Figure 4.17: Inter-manufacturer MDA/ML classification: Average performance
across Cisco, Netgear and Linksys devices transmitting 802.11A signals.

4.3.3 TD vs. WD Performance: 802.11G Signals. To demonstrate that the

classification results presented up to this point are not unique to the 802.11A signal,

the RF fingerprinting and classification process was applied to an additional OFDM-

based signal to demonstrate broader applicability. This was easily accomplished using

the same serial-numbered devices as used previously by operating them in an 802.11G

signaling mode.

Using the same four Cisco devices (as in Section 4.3.2) transmitting an 802.11G

signal, intra-manufacturer discrimination is conducted with the two permutations

shown in Table 4.7. Figure 4.18 shows average intra-manufacturer classification per-

formance across the two permutations of Cisco devices for TD and WD fingerprinting.
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Table 4.6: Inter-manufacturer confusion matrices for WD and TD fingerprinting:
representative permutation of devices with 802.11A signals at SNR = 2 dB. The
difference in performance between the two techniques is provided for comparison.

TD Class Estimate
Input Class A B C

A 57.5% 30.9% 11.6%
B 34.7% 53.5% 11.7%
C 9.4% 9.2% 81.3%

WD Class Estimate
Input Class A B C

A 87.7% 9.0% 3.3%
B 7.5% 71.5% 20.9%
C 3.4% 19.4% 77.1%

WD – TD Class Estimate
Input Class A B C

A 30.2% -21.9% -8.3%
B -27.2% 18.0% 9.2%
C -6.0% 10.2% -4.2%

While both techniques perform similarly at SNR ≥ 20 dB, the WD fingerprints out-

perform the TD fingerprints at the lower SNRs. As highlighted in the circled region,

the WD fingerprints achieve 80% classification accuracy at SNR ≈ 11 dB. This rep-

resents a gain of approximately 3 dB with respect to equivalent TD fingerprinting

performance.

Inter-manufacturer classification is demonstrated using one device each from

Cisco, Linksys, and AirMagnet (shown in Table 4.8) transmitting an 802.11G signal

Figure 4.19 shows average classification performance for TD and WD fingerprinting.

While both techniques perform similarly at SNR ≥ 20 dB, the WD fingerprinting

technique outperforms the TD technique at the lower SNRs. As highlighted in the

circled region, the WD fingerprints achieve 80% classification accuracy at SNR ≈
2 dB. This represents a gain of approximately 2 dB with respect to equivalent TD

fingerprinting performance.
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Table 4.7: 802.11G Cisco intra-manufacturer permutations.
Serial Number

Perm N4U9 N4UD N4UW N4PX
1 × × ×
2 × × ×
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Figure 4.18: Intra-manufacturer MDA/ML classification: Average performance
across two permutations of four Cisco devices transmitting 802.11G signals.

4.3.4 Equivalent TD and WD Dimensionality. Based on the number of

classification features, the WD fingerprints represent an approximate 5-fold increase

in dimensionality over TD fingerprints. This may lead one to conclude that the

classification improvement with WD fingerprints is solely attributable to using an

increased number of features. It is possible that the performance improvement may

be the result of more exploitable features being generated from the DT-CWT decom-

position. Thus, it is reasonable to ask “Is the noted improvement in Section 4.3.2

attributable to increased feature dimensionality, more exploitable features, or both?”

To address this question, results were generated using a subset of 27 selected WD

features from the larger 135-feature WD fingerprints. The idea was to compare TD
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Table 4.8: 802.11G Inter-manufacturer permutations.
Cisco Linksys AirMagnet

Perm N4U9 0306 2C01
1 × × ×
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Figure 4.19: Inter-manufacturer MDA/ML classification: Average performance us-
ing Cisco, Linksys, and AirMagnet devices transmitting 802.11G signals.

and WD performance using an equivalent number of features. The subset of WD

features was selected using the output from a Generalized Relevance Learning Vector

Quantization Improved (GRLVQI) classifier [37–39]. The GRLVQI classifier jointly

selects features and classifies in order to optimize features for classification. During

this process, the algorithm calculates and outputs a relevance rating for each feature

considered, indicating feature importance.

Using WD fingerprints from bursts at SNR = 40 dB, the GRLVQI classifier

was implemented in the Waikato Environment for Knowledge Analysis (WEKA) en-

vironment [70] and used to determine relevance factors for all 135 WD features. The

features were sorted with respect to their relevance and the 27 most relevant features
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Table 4.9: Subset of 27 most relevant WD features from the original 135 features.
Relevance ranking (RR) based on GRLVQI classifier output.

RR Subregion WD LVL Signal Characteristic Statistic

1 Entire Preamble 4 Amplitude Kurtosis
2 Short Symbols 4 Amplitude Variance
3 Short Symbols 5 Frequency Variance
4 Entire Preamble 4 Amplitude Skewness
5 Short Symbols 1 Amplitude Kurtosis
6 Entire Preamble 5 Frequency Kurtosis
7 Short Symbols 3 Amplitude Kurtosis
8 Long Symbols 2 Phase Kurtosis
9 Entire Preamble 3 Phase Kurtosis
10 Entire Preamble 3 Phase Variance
11 Entire Preamble 1 Frequency Variance
12 Short Symbols 3 Amplitude Variance
13 Long Symbols 2 Phase Skewness
14 Entire Preamble 5 Amplitude Kurtosis
15 Entire Preamble 4 Amplitude Variance
16 Entire Preamble 3 Amplitude Kurtosis
17 Entire Preamble 4 Frequency Kurtosis
18 Short Symbols 1 Frequency Variance
19 Long Symbols 1 Amplitude Kurtosis
20 Entire Preamble 5 Phase Variance
21 Long Symbols 5 Amplitude Variance
22 Short Symbols 2 Amplitude Variance
23 Short Symbols 4 Frequency Kurtosis
24 Entire Preamble 1 Phase Variance
25 Entire Preamble 3 Phase Variance
26 Long Symbols 1 Phase Variance
27 Entire Preamble 1 Phase Kurtosis

retained for use as alternate WD fingerprints. A rank ordered listing of these features

is provided in Table 4.9. The table shows the final relevance ranking (RR), corre-

sponding preamble subregion, WD level (WD LVL), signal characteristic and statistic

for each ranked feature. It is interesting to note that a majority of the most relevant

features are based on the entire preamble region, followed by the variance statistic

and then a tie between the kurtosis statistic and the amplitude characteristic.
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Figure 4.20: Inter-manufacturer MDA/ML classification: Comparison of 27-feature
TD and 27-feature WD performance for most stressing case with devices transmitting
802.11A signals.

The 27 most relevant WD features in Table 4.9 were used for WD fingerprinting

and performance compared with 27-feature TD fingerprinting performance under the

most stressing 802.11A intra-manufacturer discrimination case. Figure 4.20 shows

overall classification results. As highlighted in the circled region, the 27-feature WD

fingerprints achieve 80% classification accuracy at SNR ≈ 19 dB. This represents a

gain of approximately 2 dB with respect to equivalent 27-feature TD fingerprinting

performance. Given equal dimensionality, these results suggest a clear increase in

exploitable feature information using the DT-CWT decomposition process.

4.4 Performance Sensitivity Analysis

This section provides results that address classification sensitivity. Overall ro-

bustness of the RF fingerprinting and classification process is assessed for three spe-

cific cases, including variation in burst location error, variation in MDA/ML training

and classification SNRs, and variation in MDA/ML training and classification signal

77



types. Consistent with the overall proof-of-concept research objective, the results here

were not generated with a goal toward achieving optimal performance. Rather, they

address a few of the most apparent “What if?” type questions that are of interest for

operational implementation and provide a basis for the next iteration of research.

4.4.1 Effect of Burst Location Error. The effect of burst location error

is demonstrated for TD and WD fingerprinting using random burst location error.

This variation addresses the operational situation where equipment used for collecting

training data and classification data, equipment which is not necessarily co-located,

may be operating in dissimilar environments that are less than ideal. The error

considered here is also consistent with what may be induced by laboratory equipment,

the fidelity of which can impact collected signal coloration and subsequent burst

location accuracy. Two specific random error distributions are considered, including:

1) a four-parameter discrete Beta distribution based on the actual observed error in

post-processed collected data, and 2) a uniform distribution having minimum and

maximum values that are consistent with the observed error. In both cases, the

location error is randomly applied on a burst-by-burst basis to the perfect burst

location data. This produces what is referred to here as randomly “jittered” burst

location data.

The first series of jittered burst results was generated using statistics from ob-

served location error. The error was determined on a burst-by-burst basis by com-

paring sample numbers of the -3 dB threshold detected bursts and the corresponding

manually detected perfect bursts. This was done during the data collection and

post-collection processing detailed in Section 3.2. The resultant histogram for ob-

served error in 9134 collected 802.11A bursts from the four Cisco devices is shown

in Figure 4.21. Based on statistics of the observed histogram data (mean, standard

deviation, skewness, and kurtosis), a four-parameter discrete Beta distribution gen-

erator was created to provide simulated location error similar to what was observed.
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Figure 4.21: Histogram of observed burst location error in 9134 collected 802.11A
bursts from four Cisco devices. Simulated error results for the four-parameter discrete
Beta distribution are overlayed for comparison.

Simulated error results for the four-parameter discrete Beta distribution are overlayed

in Figure 4.21 for comparison.

The random jitter error was applied to perfect burst location data prior to ex-

tracting the fingerprints used for both training and classification. This was function-

ally implemented within Step 2 and described in Section 3.3.4. Intra-manufacturer

classification results (for Permutation #2 in Table 4.3) using observed detection error

statistics are shown in Figure 4.22 for both WD and TD fingerprinting techniques.

For assessing sensitivity to burst location jitter, Figure 4.22 also shows performance

for perfect burst location – the WD technique is clearly more robust than the TD

technique. Considering the circled region around 80% classification accuracy, two

conclusions can be drawn: 1) The WD technique remains superior with 80% classifi-

cation accuracy achieved at SNR ≈ 9 dB for both jittered and perfect burst location

error. This represents gains of approximately 8 dB (jittered) and 6 dB (perfect)

with respect to equivalent TD fingerprinting performance; 2) The WD technique is

79



less sensitive to burst location error. The sensitivities are captured by considering

the SNR differences between jittered (SNRJ) and perfect (SNRP ) performance at

80% classification accuracy, where SNR∆ = SNRJ − SNRP . These differences are

SNR∆ ≈ 0 dB for WD fingerprints and SNR∆ ≈ −2.0 dB for TD fingerprints where

the negative sign indicates degradation. The near-zero degradation with WD finger-

prints clearly indicates the WD technique is more robust to burst location error.

The second series of jittered burst results was generated using uniformly dis-

tributed error of ±6 samples added to the perfect location data. This particular

range of values was chosen based on the maximum observed error in Figure 4.21 and

presents a more challenging case for classification (higher mean location error relative

to the observed statistics case). Results in Figure 4.23 once again demonstrate that

WD fingerprints are less sensitive to location error. Comparison of WD results here

with those in Figure 4.22 shows minimal additional degradation with uniformly jit-

tered error. However, comparison of TD results here with those in Figure 4.22 shows

considerably more degradation with uniformly jittered error.

The increased sensitivity is captured by considering the SNR difference SNR∆

between jittered and perfect performance at 80% classification accuracy. The differ-

ence for WD fingerprints is SNR∆ ≈ −1 dB which is marginally different from the

observed jitter case. The difference for TD fingerprints is SNR∆ ≈ −12 dB which is

twice the degradation as what occurred in the observed jittered case. These numbers

indicate that WD fingerprints are even more robust than previously demonstrated

with observed burst location error. This is an important finding for two reasons: 1) it

enables subsequent development, demonstration and analysis using a simple uniform

error model vice requiring a rigorous statistical model of observed location error, and

2) it paves the way for subsequent trade-off studies and analysis to support burst

detector selection (hardware, algorithm, etc.) for system implementation, while at

the same time addressing the question “How well does the burst detector need to

perform?”
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Figure 4.22: Average MDA-ML classification accuracy for 802.11A intra-
manufacturer discrimination using observed burst location error statistics.
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Figure 4.23: Average MDA-ML classification accuracy for 802.11A intra-
manufacturer discrimination using uniform burst location error statistics.
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The final series of results for jittered location error involves the use of dissimilar

burst location accuracies for MDA/ML training and classification bursts. The intent

is to represent a scenario where higher fidelity data is available for training and lower

fidelity data is used for classification. The assumption is that higher fidelity data

enables better, more accurate burst location while lower fidelity data yields poorer,

less accurate burst location. This situation may occur when bursts for training are

collected in a more ideal environment and/or with better equipment, while bursts for

classification are collected under poorer environmental conditions and/or with poorer

quality equipment. These conditions are simulated here by extracting training finger-

prints from bursts with perfect location and extracting classification fingerprints from

bursts having randomly jittered location error. In this case, the jittered classification

data is generated using the statistical distribution of the observed jitter in Figure 4.22

with a variable mean delay.

Classification accuracy for intra-manufacturer discrimination is shown in Fig-

ure 4.24 for a mean delay of 0 to 90 samples (0 to 3.79 µsecs). These results were

generated for the most stressing case, Permutation #1 in Table 4.3, for 802.11A sig-

nals at SNR = 40 dB. Note that performance for 0 mean delay represents an upper

bound. As indicated, intra-manufacturer discrimination is highly sensitive to dissim-

ilar burst start location error with performance for both techniques falling below 80%

accuracy for all non-zero mean delay values. However, the WD fingerprints remain

superior for a majority of the delay values.

Classification accuracy for inter-manufacturer discrimination is shown in Fig-

ure 4.25 for a mean delay of 0 to 90 samples (0 to 3.79 µsecs). These results were

generated for Permutation #1 in Table 4.5 for 802.11A signals at SNR = 40 dB.

As indicated, inter-manufacturer discrimination is sensitive to dissimilar burst start

location error, just not as sensitive as intra-manufacturer discrimination. In this case,

the WD fingerprint performance is relatively stable for mean delays below 14 samples

(0.59 µsecs) while the TD fingerprint performance immediately decreases over this

same range. Considering the circled region near 80% classification accuracy, the WD
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Figure 4.24: Average MDA-ML classification accuracy for 802.11A intra-
manufacturer discrimination using dissimilar burst location error.
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Figure 4.25: Average MDA-ML classification accuracy for 802.11A inter-
manufacturer discrimination using dissimilar burst location error.
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fingerprints can tolerate up to 55 samples (2.32 µsecs) more of induced mean delay

relative to the TD fingerprints.

4.4.2 Effect of Dissimilar Signal SNRs. A comparison is made here between

TD and WD fingerprinting performance using dissimilar analysis SNRs for MDA/ML

training and classification. Specifically, the training burst SNR is fixed at SNR =

40 dB while the classification burst is varied at SNR ≤ 40 dB. Fingerprint extraction

and classification is conducted using Permutation #1 in Table 4.3.

Results in Figure 4.26 are for intra-manufacturer classification for both WD and

TD fingerprints using dissimilar analysis SNRs for training and classification. Rela-

tive to performance using identical training and classification SNRs (filled markers),

the WD technique experiences a decrease in accuracy for all SNR < 30 dB while

the TD technique actually performs better at SNR > 18 dB and exhibits decreased

performance at SNR ≤ 18 dB. However, comparison of dissimilar SNR results shows

that WD performance is more robust for SNR < 20 dB. As highlighted in the circled

region, WD fingerprints achieve 80% classification accuracy at SNR ≈ 19 dB. This

represents a modest gain of approximately 1 dB with respect to equivalent TD fin-

gerprinting performance. This is approximately 7 dB less gain when compared with

performance using identical SNRs for training and classification.

Results in Figure 4.27 are for inter-manufacturer classification for both WD and

TD fingerprints using dissimilar analysis SNRs for training and classification. Unlike

intra-manufacturer results which exhibited marginal improvement with TD finger-

prints over a limited SNR region, there is only degradation in the inter-manufacturer

results.

Relative to performance using identical training and classification SNRs (filled

markers), the WD technique experiences a decrease in accuracy for all SNR < 12 dB

while the TD experiences a decrease in accuracy for all SNR < 20 dB. Comparison

of dissimilar SNR results shows that WD performance is more robust overall and

performs better for all SNRs considered. As highlighted in the circled region, WD
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Figure 4.26: Average MDA-ML classification accuracy for 802.11A intra-
manufacturer discrimination using dissimilar SNRs.
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Figure 4.27: Average MDA-ML classification accuracy for 802.11A inter-
manufacturer discrimination using dissimilar SNRs.
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fingerprints achieve 80% classification accuracy at SNR ≈ 6 dB. This represents a

gain of approximately 6 dB with respect to equivalent TD fingerprinting performance.

This is approximately 2 dB more gain when compared with performance using iden-

tical SNRs for training and classification.

4.4.3 Effect of Dissimilar Signal Types. The final comparison made be-

tween TD and WD fingerprinting performance involves using dissimilar signal types

for MDA/ML training and classification fingerprints. Specifically, training finger-

prints are generated using 802.11A (802.11G) signals with classification performed

using fingerprints generated from 802.11G (802.11A) signals. Recall that the col-

lected 802.11A and 802.11G signals are from the same physical devices operated in

two different modes. Thus, the purpose for considering dissimilar signal types is to see

if there are inherent signal features that remain unique to a given device as it changes

mode. Fingerprint extraction and classification is conducted using Permutation #1

in Table 4.3.

Results in Figure 4.28 are for intra-manufacturer classification for both WD

and TD fingerprints using dissimilar signal types for training and classification. For

comparison, classification performance is shown for intra-manufacturer discrimination

of 802.11A signals using similar signals for training and classification. As indicated

by the encircled data points at SNR = 40 dB, the intra-manufacturer discrimina-

tion capability is very poor (50% or less) using either WD and TD fingerprinting

techniques. As consistently demonstrated in previous sections, the WD technique

remains more robust and experiences less degradation in accuracy when compared to

the TD technique. Given these intra-manufacturer results were so poor, there were

no additional results generated for inter-manufacturer discrimination. A detailed in-

vestigation into the cause(s) of such poor performance was not within the scope of

this research. However, there are two issues that could be considered a good starting

point for such an investigation: 1) The same hardware devices were used to produce

the 802.11A and 802.11G signals which fundamentally operate at two different carrier
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Figure 4.28: Average MDA-ML classification accuracy for intra-manufacturer dis-
crimination using dissimilar signal types (802.11A and 802.11G) for MDA/ML train-
ing and classification.

frequencies. Without knowing the exact device details, it can reasonably be assumed

that there is at least one component in the RF transmission chain that is either dif-

ferent, or operated differently, between the two modes to place each of the signals at

their operating frequencies. Thus, there is perhaps dissimilar coloration that impacts

signal features such that they are not the same across the two operating modes; and

2) The same RFSICS was used to collect the two signals. Given the two signals are at

different RF carrier frequencies, the internal RFSICS parameters for filtering, down-

conversion, etc., are necessarily different to ensure collected signal responses reside at

baseband. Thus, there is perhaps additional coloration due to RF/IF collection chain

differences in the RFSICS that can further impact signal features. Collectively, the

RF transmission chain of the devices and the RF/IF collection chain of the RFSICS

could be inducing unremovable biases in collected signals.
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Summary

This chapter provided modeling, simulation and analysis results that were gen-

erated using the processes detailed in Chapter 3. A subset of representative results

were presented for Bandwidth Sensitivity, Burst Detection and Location, MDA/ML

Classification, and Performance Sensitivity Analysis. Relative to corresponding time-

domain (non-wavelet) methods and results, application of the DT-CWT provided

improvement for all burst detection and RF fingerprint classification scenarios.
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V. Conclusion

This chapter concludes the main document by providing an overall summary of re-

search activities, a summary of key findings, and recommendations for subsequent

research. This is followed by an appendix that provides some of the developmental

MATLABr code used to support the research.

5.1 Research Summary

The continued proliferation of affordable Radio Frequency (RF) communica-

tion devices has greatly increased wireless user exposure and the need for improved

security to protect against spoofing. Historically, research has focused on the detec-

tion and mitigation of spoofing using bit-level algorithmic approaches. More recently,

there has been a shift toward providing added security within the Physical (PHY)

layer of the Open Systems Interconnection (OSI) reference model by exploiting RF

features that are 1) inherently unique to a specific device, and 2) are difficult to repli-

cate by an unintended party. This work addresses the extraction and exploitation of

RF “fingerprints” to classify emissions and provide hardware specific, serial number

identification–Specific Emitter Identification (SEI). The related SEI concepts that

formed the foundation for this research are collectively embodied in previous work

on RF fingerprinting, electromagnetic signatures, intrapulse modulation, and unin-

tentional modulation [11, 23, 24, 30, 34, 51, 64, 66, 68],

Radar systems have been identified using SEI techniques that exploit inherent

signal features that are unique to a given system [9, 40, 60]. The set of exploitable

inherent features may contain unintentional modulation contributions that can be

influenced by any number of environmental and/or hardware issues, some of which

include poor system design (device incompatibility), improper operation (over/under

voltage), and physical device limitations (operating temperature range) [30, 34, 68].

Many of the observed unintentional radar modulation effects are similar to what exist

in modern wireless communication systems using burst-like waveforms. This begs
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the question: “Can existing SEI methods be employed with wireless communication

signals to achieve radar-like SEI capability?” Answering this provided the motivation

for applying a Dual-Tree Complex Wavelet Transform (DT-CWT) to improve burst

detection and RF fingerprint classification.

Despite the wealth of previous work that forms the basis for this research [23,

24, 42, 54, 55, 63, 64, 66, 67], the task of automatically detecting, identifying and lo-

cating RF communication devices remains a challenging problem. The work here

addressed four main aspects of this problem, including: 1) the selection and gen-

eration of fundamental signal characteristics (amplitude, phase, and/or frequency),

2) the feasibility and repeatability of detecting and locating the start of a burst using

selected waveform feature(s) amidst channel noise, 3) the identification and robust

extraction of distinguishable fingerprints–features that uniquely characterize the un-

intentional modulation of a device, and 4) the performance of signal classification

under varying channel conditions and Signal-to-Noise Ratio (SNR). As summarized

below, various contributions were derived from the research while addressing each of

these aspects.

1. SNR Sensitivity Analysis [33]: Except for the two most relevant earlier

works [54, 55], prior works lacked a detailed sensitivity analysis of burst de-

tection and fingerprint classification performance under varying channel SNR

conditions. To address this deficiency, this work analyzed performance of two

burst detection techniques, including the Fractal-Bayesian Step Change De-

tector (Fractal-BSCD) and Traditional Variance Trajectory (Traditional VT).

With respect to burst location estimation, both Fractal-BSCD and Traditional

VT techniques provided results that were consistent with perfect burst location

at higher SNRs (10 ≤ SNR ≤ 30 dB). However, performance for both tech-

niques diverged at lower SNRs (−3 ≤ SNR ≤ 10 dB). With respect to the burst

location estimation error impact to classification performance, the Traditional

VT technique was consistent with perfect estimation for (6 ≤ SNR ≤ 30 dB)
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but under performed for (−3 ≤ SNR < 6 dB). Traditional VT also pro-

vided considerable improvement relative to the Fractal-BSCD at lower SNRs

(−3 ≤ SNR ≤ 18 dB), i.e., for a given classification accuracy in the range of

50%–80% the required SNR for Traditional VT is 3–6 dB lower than what is

required for Fractal-BSCD.

2. Burst Detection at Lower SNR [31]: To improve burst detection and lo-

cation capability at lower SNRs, the DT-CWT was used to “denoise” signals

prior to applying Traditional VT burst detection. Results for this new Denoised

VT technique are more effective and provide more robust burst detection and

location at lower SNRs (−3 ≤ SNR ≤ 10 dB). Relative to results for perfect

burst detection and location, the Denoised VT process achieves nearly 34% of

the available performance improvement–when used with Multiple Discriminant

Analysis/Maximum Likelihood (MDA/ML) processing, there is little more to

be gained in overall classification performance by improving burst detection and

location accuracy.

3. TD Fingerprint Classification: Given demonstrated improvements in burst

detection and location, the research emphasis shifted to improving upon pre-

vious Time Domain (TD) RF fingerprinting performance using the newly de-

veloped Wavelet Domain (WD) RF fingerprinting technique. To assess relative

TD–WD classification performance, it was necessary to replicate previous TD

processing. Given that all previous TD work was based on a fixed post-collection

bandwidth BWPC ≈ 9 MHz, an appropriate value based on sound engineering

practice versus best or optimal criteria, a sensitivity analysis for varying BWPC

was conducted to determine the best choice. For collected 802.11A signals at

SNR = 40 dB, this analysis indicated that TD performance was very sensitive

and exhibited classification variation of nearly 6% for 5 MHz< BWPC < 9 MHz,

with best case near 100% accuracy realized for BWPC = 7.7 MHz and poorest

performance realized for BWPC = 6.3 MHz. Thus, BWPC = 7.7 MHz was used
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for all results obtained here which are generally better than previous TD results

in [54, 55] based on BWPC ≈ 9 MHz.

4. WD Fingerprint Classification [31–33]: The newly developed WD RF fin-

gerprinting technique uses coefficients from a DT-CWT decomposition to en-

hance statistical fingerprint features and improve overall device classification

performance. Its performance was demonstrated in four stages:

(a) A BWPC sensitivity analysis was conducted similar to what was done for

TD classification. This analysis revealed that WD performance was nearly

insensitive to BWPC , with nearly 98% accuracy achieved for all 5 MHz <

BWPC < 9 MHz. For comparative TD–WD assessment, BWPC = 7.7 MHz

was used for both techniques (best case).

(b) Using BWPC = 7.7 MHz (best case for both techniques), improved WD

classification performance was demonstrated using perfect burst location

for both intra-manufacturer (all devices from the same manufacturer) and

inter-manufacturer (a mix of devices from different manufacturers) sce-

narios with both 802.11A and 802.11G signals. TD and WD classification

performance was compared under identical scenarios (devices, signal types,

SNRs, etc.) using a “gain” metric defined as the reduction in required SNR

for the WD technique to achieve the same classification performance as the

TD technique. For 80% correct classification performance, the WD tech-

nique provided 2−7 dB gain at 2 dB< SNRWD < 11 dB. The approximate

2% best case TD advantage at higher SNRs rapidly diminishes at lower

SNRs that are more consistent with operational environments [31, 33].

(c) The previous perfect burst location results were based on 27 TD and

135 WD fingerprint features. To address the question, “Is the noted

improvement attributable to increased feature dimensionality, more ex-

ploitable features, or both?,” results were generated using a subset of 27

selected WD features and compared with 27 feature TD results. For an
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80% classification level, the WD fingerprints provided a gain of 2 dB at

SNRWD = 19 dB, suggesting a clear increase in exploitable feature infor-

mation in the DT-CWT coefficients.

(d) Lastly, WD classification performance sensitivity was assessed for variation

in burst location error, variation in MDA/ML training and classification

SNRs, and variation in MDA/ML training and classification signal types.

For all cases considered, the WD technique proved to be more robust and

less sensitive when compared to TD technique.

5.2 Recommendations for Future Research

As noted in Section 1.1.2, the choice of demonstrating WD fingerprinting with

OFDM-based signals was motivated by two factors, including 1) consistency with

previously published TD work [42, 54, 55, 63, 67] and 2) the continued emergence

of OFDM-based signals as envisioned for 4G software defined and cognitive radio

(SDR/CR) communications [21, 26, 48, 72]. Relative to earlier TD work, the appli-

cability and benefits of DT-CWT fingerprint features has been clearly demonstrated

and well-received within the technical community [31–33]. However, there remains

additional topics of interest that could be investigated. Some of the most evident

include:

1. Optimization of Processes or Parameters: As used for demonstrating DT-

CWT applicability to burst detection and RF fingerprinting, there are numer-

ous processes and parameters that impact performance. Given demonstration

versus optimization was the goal for this research, the degree to which any

given factor, parameter and/or combination thereof impacts performance was

not assessed. As developed, implemented and demonstrated, the RF finger-

printing process is well-suited for more rigorous optimization using a Design of

Experiments (DOE) methodology with Analysis of Variance (ANOVA). The op-

timization process could consider any number of conventional techniques, with
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two of the most common being Genetic Algorithms (GA) and Response Surface

Methodology (RSM).

2. Demonstration Using Different Signals: Demonstration results in this

research were based on collected 802.11A and 802.11G OFDM-based signals.

There are additional OFDM-based signals that are emerging for 4G applications.

For example, the Worldwide Interoperability for Microwave Access (WiMax)

signal has emerged and is rapidly becoming popular for establishing “last mile”

communication connectivity. In this case, the designated WiMax base station

serves a similar role as a GSM cellular base station and controls user activity

within a defined geographic region. Additional work could be performed to

address the use of RF fingerprinting to provide intra-cellular WiMax security.

3. Demonstration of Cross-Mode Independence: There is some potential

operational benefit if “cross-mode” device discrimination could be reliably ac-

complished, i.e., achieving serial number SEI based on fingerprint features that

are common across multiple operating modes of a given hardware device. For

example, there are IEEE 802.11 compliant devices that support multiple modes

(signal types) such as an 802.11A/B/G/N device. While less than favorable, the

dissimilar signal type results in Section 4.4.3 using 802.11A and 802.11G suggest

that the specific features considered here are not robust enough for cross-mode

classification. Thus, additional cross-mode work could be performed to deter-

mine if there are exploitable underlying RF features for a given device that are

independent of operating mode.

4. Fused Soft-Decision Classification: All device classification results pre-

sented in this work are based on averaging what may be called “hard decision”

burst-by-burst classification decisions, i.e., every burst input to the MDA/ML

process is associated with a given device class (Class A, Class B, or Class C)

independent of how other input bursts are classified. In many applications it is

often possible to improve performance by averaging out undesired background

noise effects. This can be accomplished in various system processing stages, e.g.,

94



RF, IF, pre-detection, post-detection, pre-classification, post-classification, etc.

Given the communication signals of interest here are burst-like, with hundreds

or thousands of burst generated in relatively short time intervals, it is reason-

able to assume that device classification may be improved using what may be

called “soft-decision” device classification. Additional work could consider using

knowledge gained by analyzing a collection of multiple burst-by-burst classifi-

cation decisions before making a final device classification.
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Appendix A. MATLABr Code

The appendix provides the main MATLABr files used to functionally implement the

processes detailed in Chapter 3 and used for obtaining results presented in Chapter 4.

As provided below, the code included is for Burst Detection in Section A.1, Preamble

Location in Section A.2, Feature Extraction in Section A.3, Device Classification in

Section A.4 and DT-CWT Transformation in Section A.5.

A.1 Burst Detection

Listing A.1: Code/Detect/PulseDetectV2.m

1 % =============================================================

% Pulse Detection via Amplitude Thresholding

% =============================================================

%

5 % Performs Threshold Amplitude Detection of Pulses and Ouputs

% a Matrix Containing One Pulse Per Row. Amplitude Detection

% is Accomplished Using a Simple Leading Edge Detector Opera -

% tingon a Smoothed Magnitude Response of the Input Signal

% %

10 % function [PlsMat,PlsWdth ,PlsDb] = PulseDetectV2(Z,MaxPul ,...

% AddSamp ,NumSmth ,PlsMin,PlsMax,Thresh,NScr ,NPlot)

%

% Created: 4 Nov 2008

% By: Dr. Michael A. Temple

15 % Modified: 8 May 2009

% By: Dr. Michael A. Temple

%

% Inputs%

% Z = Complex Sampled Input Signal (Column or Row Vector).%

20 % MaxPul = Desired Maximum # of Pulses to be Detected. Actual

% Number in Output May be Less Depending on the

% the Number of Detected Pulses Satisfying PlsMin

% and PlsMax Criteria%
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% AddSamp = Additional # of Input Samples Included Before

25 % & After Threshold Points at Edges of Pulse .%

% NumSmth = # Samples Smoothed/Averaged Across%

% PlsMin = Min # Samples in Desired Output Pulse Width

% PlsMax = Max # Samples in Desired Output Pulse Width%

% Thresh = Desired Detection Threshold Value in dB

30 % Thresh < 0 REQUIRED !%

% NScr = Output Waitbar Progress/Status to the Screen?

% 1 = Yes 0 = No%

% NPlot = Produce Output Plots?

% 1 = Yes 0 = No%

35 % Guide for Selecting Initial Parameter Values%

% AddSamp: Some Number <= # Samples Between Two Closest Spaced

% Bursts Divided by 2.

% NumSmth: 2%-5% of SHORTEST Pulse Duration. Note that poorer

% SNR generally requires a larger NumSmth value .%

40 %

% Outputs

% PlsMat = Output Pulse Matrix with One Detected Pulse Per Row.

% When Variable Width Pulses are Detected , ALL

% Non -MaxWidth Pulses are Zero -Padded in last Columns.%

45 % PlsWdth = Pulse Width (# Samples) Between Leading & Trailing

% of Detected Pulse Edges: EstBetween Leading and

% Trailing Edges of the Smoothed Response.%

% PlsDb = ACTUAL Relative Power Level (dB) of Output Pulses at

% Leading Edge Detection Point of SMOOTHED Magnitude.%

50

function [PlsMat,PlsWdth ,PlsDb] = PulseDetectV2(Z,MaxPul ,...

AddSamp ,NumSmth ,PlsMin ,PlsMax ,Thresh ,NScr ,NPlot)

LengthZ=length(Z);

PlsMat =[];

55 PlsWdth=[];

PlsDb =[];

% Ensure / Make Z a Row Vector

Dim = size(Z);
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if Dim(2)==1 % Column Vector Input ... Change to Row Vector

60 Z = Z.’; % Use Non -Conjugate Transpose

end

% Pad/Extend length of processed ’TmpZ ’ by 2*PlsMax to help

% mitigate pulse detection issues the end of input Signal ’Z’

ExtZ=round (2*PlsMax);

65 TmpZ = [Z ones(1,ExtZ)*min(Z)];

% Note: Matlab’s SMOOTH Function ALWAYS returns a Column Vector.

% A Transponse is Used on Smooth Func to Restore a Row Vector

SmthZmag = 20*log10(smooth(abs(TmpZ),NumSmth)’);

TmpZmag = SmthZmag;

70 LenTmpZmag = length(TmpZmag);

MinZ_Db=min(SmthZmag); % Min Value of Input Signal

MaxZ_Db=max(SmthZmag); % Max Value of Input Signal

if NScr==1

BurstCons = waitbar(0,’Starting Burst Detection Loop’);

75 end

% Begin Main While Loop

% Initialize Pulse Detection While Loop Variables

PulseMatrix = [];

PulseVec = [];

80 MaxWidth = 0;

NumDet = 0;

PlsWdth=0;

NPlsDet=0; % Intialize Pulses Detection Counter

WhileMax=2*MaxPul; % Set Max # of "While Loop" Iterations

85 WhileCnt=0;

while NPlsDet < MaxPul % Maximum # of Pulses to be Detected

WhileCnt=WhileCnt+1;

if WhileCnt >= WhileMax

break

90 end

% Find Smoothed Peak Response

[MaxVal ,MaxLoc] = max((TmpZmag));

LowDex = MaxLoc;
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for k = 1:2*PlsMax % Search Left to Leading Edge

95 if(LowDex -1) < 1 % First Sample Reached

break % Stop Search !

else % Continue Searching

if TmpZmag(LowDex -1) > MaxVal + Thresh;

LowDex=LowDex -1; % Index # at Threshold

100 else

break;

end

end

end

105 PlsLow = LowDex -AddSamp;

if PlsLow < 1

PlsLow =1;

end

HghDex=MaxLoc;

110 for k = 1:2*PlsMax % Search Right to Trailing Edge

if(HghDex +1) > LenTmpZmag % Last Sample Reached

break % Stop Search !

else % Continue Searching

if TmpZmag(HghDex +1) > MaxVal + Thresh;

115 HghDex=HghDex +1; % Index # at Threshold

else

break

end

end

120 end

PlsHgh = HghDex+AddSamp;

if PlsHgh > LengthZ

PlsHgh = LengthZ;

end

125 TmpWdth=HghDex -LowDex; % Width Between Pulse Edges

% Check: PlsMin < Temp Width < PlsMax

% Not Satisfied -> Do NOT Include Current Pulse

% Satisfied -> INCLUDE Current Detected Pulse
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if TmpWdth > PlsMin % Include Current Pulse

130 % Decrement While Loop Counter For EVERY Detected Pulse

WhileCnt=WhileCnt -1;

if TmpWdth < PlsMax

NumDet=NumDet +1;

TmpDb(NumDet)=SmthZmag(LowDex)-MaxVal;

135 PlsWdth(NumDet)=TmpWdth;

PulseLoc(NumDet)=PlsLow; % Store Pls Location Index

PlsDet=TmpZ(PlsLow:PlsHgh);

PlsDur(NumDet)=length(PlsDet); % Store Pls Duration

PulseVec = [PulseVec ,PlsDet ]; % Unsorted Pulse Vector

140 NPlsDet=NPlsDet+1; % Update Detected Pulse Counter

if NScr==1 % Update Status to Screen ?

waitbar(NPlsDet/MaxPul ,BurstCons ,

[’Burst Number ’, num2str(NPlsDet),’ of ’ ,...

num2str(MaxPul), ’ Detected.’])

145 end

end

end

TmpZmag(PlsLow:PlsHgh)=MinZ_Db; % Remove Current Det Pls

end % Detection While Loop ... Detect Next Pulse%

150 % End Main While Loop%

if NScr==1 % Update Waitbar Screen Status?

close (BurstCons)

display([’ ’])

display([’ A Total of ’,num2str(NumDet) ,...

155 ’ Pulses Satisfied Pulse Width Constraints.’])

display([’ ’])

end

% Put Detected Pulses in Matrix Form with ONE pulse per row.

if NumDet > 0

160 TmpVec = PulseVec; % Unsorted Pulse Vector

MaxWidth = max(PlsDur);

PulseMatrix=zeros(NumDet ,MaxWidth);

for k=1:NumDet
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PulseMatrix(k,1:PlsDur(k))=TmpVec (1:PlsDur(k));

165 TmpVec (1:PlsDur(k))=[];

end

% Reorder Pulses to Original Collection Time Order

PlsMat =[];

[SortVal ,SortLoc]=sort(PulseLoc);

170 PlsMat=zeros(NumDet,MaxWidth);

TmpWdth=PlsWdth;

for k=1:NumDet

PlsMat(k,:)=PulseMatrix(SortLoc(k) ,:);

PlsWdth(k)=TmpWdth(SortLoc(k)); % Reorder Pulse Widths

175 PlsDb(k)=TmpDb(SortLoc(k)); % Reorder Det Point Db

end

else

if NScr==1 % Update Waitbar Screen Status?

display([’ ’])

180 display([’No Detected Pulses Satisfy Pulse Width ...

Constraint’])

end

end

%Begin Plotting Code

if NPlot ==1 % Satisfied -> Produce Plots

185 figure (1) % Magnitude of Input Signal Plot

subplot(3,1,1)

plot(abs(Z))

grid

axis tight

190 title(’Magnitude of Input Signal Z’)

ylabel(’|Z|’)

xlabel(’Sample Number ’)

%

subplot(3,1,2)

195 plot(SmthZmag)

grid

axis tight
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title ([’UN -NORMALIZED Smoothed |Z| for NumSmth = ’ ,...

num2str(NumSmth)])

200 ylabel(’|Z| (dB)’)

xlabel(’Sample Number ’)

%

subplot(3,1,3)

plot(SmthZmag - MaxZ_Db)

205 grid

axis tight

title ([’NORMALIZED Magnitude of Z for NumSmth = ’ ,...

num2str(NumSmth)])

ylabel(’|Z| (dB)’)

210 xlabel(’Sample Number ’)

if NumDet > 0 % Only Generate Plots If Pulses Are Detected

% Create Sorted ’VECTOR’ of Final Pulses for Plotting

SortVec=reshape(PlsMat.’,1,NumDet*MaxWidth);

figure (2) % Magnitude of Input Signal Plot

215 subplot(3,1,1)

plot(abs(Z))

axis tight

grid

title(’Magnitude of Input Signal Z’)

220 xlabel(’Sample Number ’)

ylabel(’|Z|’)

%

subplot(3,1,2)

plot(abs(PulseVec))

225 axis tight

grid

title ([’ABS [Unsorted Pulses ]: ’,num2str(NumDet) ,...

’ Pulses Detected’])

xlabel(’Sample Number ’)

230 ylabel(’|Z|’)

%

subplot(3,1,3)
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plot(abs(SortVec))

axis tight

235 grid

title ([’ABS [Sorted Pulses ]: ’,num2str(NumDet) ,...

’ Pulses Detected’])

xlabel(’Sample Number ’)

ylabel(’|Z|’)

240 %

figure (3) % Relative Pulse Amplitude Plot

subplot(3,1,1)

plot(PlsDb ,’*’)

if Thresh < 0

245 title([’Rel Pulse Amp at AddSamp + 1 = ’ ,...

num2str(AddSamp+1),’ for Input Threshold = ’ ,...

num2str(Thresh),’ dB’])

else

title(’Rel Pulse Amp at Threshold Pt: No Input ...

Threshold’)

250 end

axis tight

set(gca ,’XLim’ ,[.98 1.01* NumDet ])

xlabel(’Pulse Number ’)

ylabel(’dB’)

255 grid

%

subplot(3,1,2)

hold

for k=1:NumDet

260 plot(abs(PlsMat(k,:)));

end

grid

title ([’Overlay of ABS [PlsMat ]: ’ ,...

num2str(NumDet),’ Pulses, ’, ...

265 ’NumSmth = ’,num2str(NumSmth)])

xlabel(’Sample Number ’)
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ylabel(’ABS’)

axis tight

%

270 subplot(3,1,3)

plot(mean(abs(PlsMat)));

grid

axis tight

title ([’Column -Wise Mean of ABS [PlsMat ]: ’ ,...

275 num2str(NumDet),’ Pulses ’])

xlabel(’Sample Number ’)

ylabel(’Mean’)

end

end

280 % End Pulse Detect Function

A.2 Preamble Location

Listing A.2: Code/Locate/LocatePreamble.m

1 function [Index ,Preamble] = LocatePreamble(Signal,LocMeth ,VtThresh...

,Threshold ,SNRdb ,StateI,StateQ ,IndFlag ,Index ,F_BW)

dir = ’F:\ Chamber\’;

% Hard code to speed up execution

FilterFreqsHardCode;

5 [B,S] = size(Signal);

B_range = 1:B;

P = 380;

Preamble = zeros(B,P);

if IndFlag ~= 1

10 Index = zeros(B,1);

end

Buffer = 500;

C = S+Buffer;

trans_truth = Buffer +1;

15 RandDataStart = trans_truth + 475; % After Symbol region

wind = 20;

s = 2;
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win_start = 1 : s : s*floor(( 2^11 -wind)/s);

W = length(win_start);

20 f_RandDataStart = find(win_start <RandDataStart , 1, ’last’ );

[Faf , Fsf] = FSfarras;

[af, sf] = dualfilt1;

% Set Chebyshev type I filter parameters:

N = 6; % Order of filter -- change to 6

25 Rp = 0.01; % Passband ripple in dB

Tsig = XDelta*S;

Nsig = round(Tsig/XDelta);

% Set up more filter parameters

Fs2 = 1/(2* XDelta);

30 Wn = F_BW/Fs2;

[num den] = cheby1(N,Rp,Wn); % Filter coefficients

for b = B_range % burst

Data = Signal(b,:);

Data = [zeros (1 ,1000),Data ,zeros (1 ,1000)]; % Zero pad data ...

prior to filtering

35 Data = filtfilt(num ,den ,Data); % Filter data

Data = Data (1001:1000+Nsig); % Un-Zero pad data after ...

filtering

Data = Data - mean(Data);

Spow = sum(abs(Data).^2)/S;

Data = Data./(sqrt(Spow/2)*(1+j));

40 Spow = sum(abs(Data).^2)/S;

nz_rz_I = randn(1,C);

nz_rz_Q = randn(1,C);

nz = (nz_rz_I+j*nz_rz_Q);

% Filter Noise

45 Nlen = length(nz);

Noise = [zeros (1 ,1000),nz,zeros (1 ,1000)]; % Zero pad noise ...

prior to filtering

Noise = filtfilt(num ,den ,Noise); % Filter noise

Noise = Noise (1001:1000+Nlen); % Un -Zero noise data after ...

filtering
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Noise = Noise -mean(Noise);

50 NP = sum(abs(Noise).^2)/C;

Npow = (Spow)/(10^( SNRdb /10));

noise = sqrt(Npow/NP) * Noise;

sig = [zeros(1,C-S),Data] + noise;

sig = sig(1: 2^11 );

55 if IndFlag ~= 1

% Feature Extraction

windowed = zeros(W,wind+1);

if strcmp(LocMeth ,’DenVt ’) | strcmp(LocMeth ,’Vt’)

if strcmp(LocMeth ,’DenVt’)

60 max_level = 4;

sig = sig -mean(sig);

y = dualtree(sig ,max_level ,Faf ,af);

for p = 1: max_level

aa = abs(y{p}{1});

65 bb = abs(y{p}{2});

cc = sqrt((aa).^2 + (bb).^2);

Y{p}=y{p};%

% Zeroes coeffs that don ’t represent enough of...

value

[m2,n2] = find(abs(cc)<Threshold(p));

70 Y{p}{1}(n2) = 0;

Y{p}{2}(n2) = 0;

end

Y{p+1}{1} = y{p+1}{1};

Y{p+1}{2} = y{p+1}{2};

75 Sig = (idualtree(Y,max_level ,Fsf ,sf));

elseif strcmp(LocMeth ,’Vt’)

sig = sig -mean(sig);

Sig = sig;

end

80 for w = 1:W

windowed(w,1:wind+1) = Sig(win_start(w):win_start(...

w)+wind); % windowing the total Signal
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x = (Sig(win_start(w):win_start(w)+wind -1));

x = x-mean(x);

V(w) = var(abs(x));

85 end

VT = abs(V(1:end -1)-V(2:end));

[f_index_vt]=DetThresh(VT(1:f_RandDataStart),V(1:...

f_RandDataStart),VtThresh);

Index(b) = win_start(f_index_vt) + wind - s;

elseif strcmp(LocMeth ,’Fractal’)

90 sig = sig -mean(sig);

Sig = sig;

for w = 1:W

windowed(w,1:wind+1) = Sig(win_start(w):win_start(...

w)+wind); % windowing the total Signal

end

95 k = 1:wind/2; % repeat k from 1 to kmax

fractal_mag = CalcFractals(abs(windowed),k)’;

% Detect Transient

[f_index_mag_frac_pdf ,prob_mag_frac]=Bscd(fractal_mag ...

,3);

Index(b) = win_start(f_index_mag_frac_pdf) + wind/2+s;

100 elseif strcmp(LocMeth ,’Perf’)

Index(b) = trans_truth;

elseif strcmp(LocMeth ,’PerfJitter’)

Jitter = 6;

x = round(Jitter + (-Jitter-Jitter) * rand(1));

105 Index(b) = trans_truth + x;

end

end

Preamble(b,:) = sig(Index(b):Index(b)+P-1);

end

Listing A.3: Code/Locate/FilterFreqsHardCode.m

1 FreqValidMax = 5.189169766750000e+009;

FreqValidMin = 5.170615079250000e+009;
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XDelta = 4.210526315789474e-008;

Fs = 23750000;

Listing A.4: Code/Locate/CalcFractals.m

1 function [d] = CalcFractals(windowed ,k)

%Calculates the fractal dimension , d

index = 1;

[M,N] = size(windowed);

5 L = zeros(length(k),length(k),M); % initialize for sum over i

for a = 1:length(k) % k new time series

m = 1:k(a); % m ranges from 1 to k

for b = 1:length(m)

if (m(b)+k(a))<= (N)

10 L(b,a,:) = sum(abs(windowed(:,m(b)+k(a):k(a):end)-...

windowed(:,m(b):k(a):end -k(a))) ,2);

L(b,a,:) = (L(b,a,:)*(N-1)/(floor ((N-m(b))/k(a))* k(a)...

))/ k(a);

end

if isnan(L(b,a,:))

temp = 0;

15 end

end

end

L = sum(L,1); % average over m

k = repmat(k,[1,1,M]); % repmat k to polyfit

20 L=squeeze(L);

k=squeeze(k);

for i = 1:M

p = polyfit(log(k(:,i)),log(L(:,i)) ,1); %least square line fit...

for log -log

d(i) = -p(1);

25 end

Listing A.5: Code/Locate/Bscd.m

1 function [index ,prob_density]=Bscd(fractals ,w)
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N = length(fractals);

prob_density = zeros(1,N);

m = ceil(w/2);

5 N = w;

for a = 1:N-w

% Piecewise fractals for computer precision sake

d = fractals(a:a+w);

p = 1/( sqrt(m*(N-m)))/((sum(d.^2) -(1/m)*sum(d(1:m))^2 -(1/N-...

m)*sum(d(m+1:N))^2)^((N-2)/2));

10 [prob_density(a+m)] = p;

end

[nothing , index] = max(prob_density);

Listing A.6: Code/Locate/DetThresh.m

1 function [index]= DetThresh(trajectory ,support ,threshold)

N=length( trajectory);

w_index = 0;

W=N;

5 w_index = 0;

n=4.5;

m=200;

trigger = mean(trajectory(1:m))+n*std(trajectory(1:m));

ensure = max(support(1:m));

10 trigger = threshold(1);

ensure = threshold(2);

for i = 1+5:W

detect = trajectory(i-5);

verify = mean(support(i-4:i));

15 if detect > trigger && verify > ensure

w_index=i-4;

break

end

end

20 if w_index == 0

w_index = W;
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end

index = w_index;

A.3 Feature Extraction

Listing A.7: Code/Extract/ExtractFeatures.m

1 function Features = ExtractFeatures(Signal ,FtrMeth)

[Faf , Fsf] = FSfarras;

[af, sf] = dualfilt1;

[B,S] = size(Signal);

5 B_range = 1:B;

switch FtrMeth

case ’Td’

Features = zeros(B,3,9);

case {’Wd’}

10 Features = zeros(B,3,5,9);

end

Region = {’pre1’,’pre2’,’all’};

trans_length.pre1 = 190;

trans_length.pre2 = 190;

15 trans_length.all = 380;

for b = B_range % burst

sig = Signal(b,:);

for x = 1:length(Region)

if x == 2 %pre2 - must bypass all of pre1

20 index_start = 1+ trans_length.pre1;

else

index_start = 1;

end

index_end = index_start+trans_length.(Region{x}) - 1;

25 Sig = sig(index_start:index_end);

Sig = Sig - mean(Sig);

switch FtrMeth

case ’Td’

Features(b,x,:) = InstFeatures(Sig);

30 case {’Wd’}
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max_level = 4;

zp = 2.^ceil(log2(length(Sig))) - length(Sig);

switch FtrMeth

case ’Wd’

35 SIG = real(Sig);

end

Coeffs = dualtree([SIG , zeros(1,zp)],max_level ,Faf...

,af);

for p = 1: max_level+1

if p == max_level+1

40 IndTemp = ceil(length(SIG)/(2^ max_level));

else

IndTemp = ceil(length(SIG)/(2^p));

end

switch FtrMeth

45 case {’Wd’,’WdC’}

aa = Coeffs{p}{1}(1:IndTemp);

bb = Coeffs{p}{2}(1:IndTemp);

Features(b,x,p,:) = InstFeatures(aa + ...

j*bb);

end

50 end

end

end

end

Listing A.8: Code/Extract/InstFeatures.m

1 function [Inst_Features]= InstFeatures(signal)

i = [1:length(signal)]’;

Fs = 23.75E6;

Tsamp = 1/Fs;

5 I = real(signal);

Q = imag(signal);

Unwrap_Phase = unwrap(atan2(Q,I)’);

Inst_Freq = gradient(Unwrap_Phase ,Tsamp)/(2*pi) ’;
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Inst_Amp = abs(signal) ’;

10 mu_f = mean(Inst_Freq);

Inst_Phase = Unwrap_Phase - 2*pi*i*mu_f/Fs;

Inst_Freq = Inst_Freq - mu_f;

Inst_Phase = Inst_Phase - mean(Inst_Phase);

Inst_Amp = Inst_Amp - mean(Inst_Amp);

15 % Calculate variance of sub - segment

Amp_var = var(Inst_Amp);

Pha_var = var(Inst_Phase);

Fre_var = var(Inst_Freq);

% Calculate skewness of sub - segment

20 Amp_skew = skewness(Inst_Amp);

Pha_skew = skewness(Inst_Phase);

Fre_skew = skewness(Inst_Freq);

% Calculate kurtosis of sub - segment

Amp_kurtosis = kurtosis(Inst_Amp);

25 Pha_kurtosis = kurtosis(Inst_Phase);

Fre_kurtosis = kurtosis(Inst_Freq);

Inst_Features = [Amp_var , Pha_var , Fre_var , Amp_skew , Pha_skew , ...

Fre_skew , Amp_kurtosis , Pha_kurtosis , Fre_kurtosis];

A.4 Device Classification

Listing A.9: Code/Classify/ClassifyDevices.m

1 function ClassAcc = ClassifyDevices(Dvc1 ,Dvc2 ,Dvc3)

[B,dim] = size(Dvc1);

k_fold = 5;

if k_fold == 1

5 n_class = 1:B;

n_train = 1:B;

else

n_class = 1:ceil(1/k_fold*B);

n_train = n_class(end)+1:B;

10 end

N_class = length(n_class);

% Initialize Confusion Matrix Variables within the SNR loop
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AA = 0;

AB = AA;

15 AC = AA;

Aerr = AA;

BB = AA;

BA = AA;

BC = AA;

20 Berr = AA;

CC = AA;

CA = AA;

CB = AA;

Cerr = AA;

25

class1data = reshape(Dvc1 ,[B,dim]);

class2data = reshape(Dvc2 ,[B,dim]);

class3data = reshape(Dvc3 ,[B,dim]);

% % Relevant Features

30 % f27=[102 ,10 ,43,57,91 ,135 ,97 ,110 ,114 ,24,33 ,7,65 ,105 ,12 ,99,132,...

%31 ,92 ,30 ,14 ,4 ,130,18 ,39 ,17,108];

% class1data = class1data(:,f27);

% class2data = class2data(:,f27);

% class3data = class3data(:,f27);

35 class1train = class1data;

class2train = class2data;

class3train = class3data;

% Scramble data

scramble = randperm(B);

40 class1data = class1data(scramble ,:);

class2data = class2data(scramble ,:);

class3data = class3data(scramble ,:);

class1train = class1train(scramble ,:);

class2train = class2train(scramble ,:);

45 class3train = class3train(scramble ,:);

ave_k = zeros(1,k_fold);

for k = 1: k_fold
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i = n_class;

class1data_k = class1data(i,:);

50 class2data_k = class2data(i,:);

class3data_k = class3data(i,:);

i = n_train;

class1train_k = class1train(i,:);

class2train_k = class2train(i,:);

55 class3train_k = class3train(i,:);

class1data = circshift(class1data ,[N_class ,0]);

class2data = circshift(class2data ,[N_class ,0]);

class3data = circshift(class3data ,[N_class ,0]);

class1train = circshift(class1train ,[N_class ,0]);

60 class2train = circshift(class2train ,[N_class ,0]);

class3train = circshift(class3train ,[N_class ,0]);

% Training the MDA Projection Matrix and ML paramters

[X1,X2,x1,x2,R1,R2 ,R3 ,data_mean ,data_std ,W,Fishclass1 ,...

Fishclass2 ,Fishclass3]= Train_class2(class1train_k ,...

class2train_k ,class3train_k ,class1data_k ,class2data_k ,...

class3data_k);

% Classifying

65 [Tot_err ,N_tot ,A_in_A ,A_in_B ,A_in_C,A_err ,B_in_B,B_in_A,B_in_C...

,B_err ,C_in_C ,C_in_A ,C_in_B ,C_err , Fishclass1 , Fishclass2 , ...

Fishclass3]...

=Classify_class(class1data_k ,class2data_k ,class3data_k ,X1 ,...

X2,x1,x2,R1,R2 ,R3 ,data_mean ,data_std ,W);

ave_k(k) = (N_tot -Tot_err)./N_tot ;

% % Confusion Matrix

% AA = AA+A_in_A;

70 % AB = AB+A_in_B;

% AC = AC+A_in_C;

% Aerr = Aerr+A_err;

% BB = BB+B_in_B;

% BA = BA+B_in_A;

75 % BC = BC+B_in_C;

% Berr = Berr+B_err;
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% CC = CC+C_in_C;

% CA = CA+C_in_A;

% CB = CB+C_in_B;

80 % Cerr = Cerr+C_err;

end

ClassAcc = ave_k;

Listing A.10: Code/Classify/Train.m

1 function [X1 X2 x1 x2 R1 R2 R3 data_mean data_std , W, Fishclass1 , ...

Fishclass2 , Fishclass3]=Train_class2(class1data ,class2data ,...

class3data ,grid1 ,grid2 ,grid3)

Limit = 3;

Res = .01;

ResPts = 400;

5 Dis = 2;

N_rec = length(class1data(:,1)) ;

N_tot = N_rec *3;

N_recg = length(grid1(:,1)) ;

N_totg = N_recg *3;

10 %%%%%%%%%%

% PART I %

%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Globally normalize emission records

15 training_data = [class1data;class2data;class3data];

data_mean = ones(N_tot ,1)*mean(training_data);

data_std = ones(N_tot ,1)*std(training_data ,1);

training_data_norm = (training_data -data_mean)./data_std;

class1data = training_data_norm(N_rec *0+1: N_rec *1,:);

20 class2data = training_data_norm(N_rec *1+1: N_rec *2,:);

class3data = training_data_norm(N_rec *2+1: N_rec *3,:);

%%%%%%%%%%%

% PART II %

%%%%%%%%%%%
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25 % Compute the within class covariance matrixes S_k , where k = ...

1,2,3

S1 = cov( class1data);

S2 = cov( class2data);

S3 = cov( class3data);

% Compute the SW matrix by summing the S_k matrixes

30 SW = S1 + S2 + S3;

% Compute the within class and total means

m1 = mean(class1data) ’;

m2 = mean(class2data) ’;

m3 = mean(class3data) ’;

35 mtot = (1/N_tot)*(N_rec*m1 + N_rec*m2 + N_rec*m3);

% Compute the SB matrix

SB = N_rec*(m1 - mtot)*((m1 - mtot)’) +...

N_rec *(m2 - mtot)*((m2 - mtot) ’) +...

N_rec *(m3 - mtot)*((m3 - mtot) ’);

40 % Solve for x

x = SW\SB;

% Find Fisher plane matrix W (eig vectors corresponding to the two...

largest eig values)

[V,D] = eig(x);

lamda = sum(D);

45 max1 = find(lamda == max(lamda));

lamda(max1) = NaN;

max2 = find(lamda == max(lamda));

W = [V(:,max1) ’;V(:,max2) ’];

% Normalize each emission record using the parameters calculated ...

during training

50 training_datag = [grid1;grid2;grid3];

data_meang = ones(N_totg ,1)*data_mean(1,:);

data_stdg = ones(N_totg ,1)*data_std(1,:);

training_data_normg = (training_datag -data_meang)./data_stdg;

class1datag = training_data_normg(N_recg *0+1: N_recg *1,:);

55 class2datag = training_data_normg(N_recg *1+1: N_recg *2,:);

class3datag = training_data_normg(N_recg *2+1: N_recg *3,:);
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Fishclass1g = W * class1datag ’;

Fishclass2g = W * class2datag ’;

Fishclass3g = W * class3datag ’;

60 %%%%%%%%%%%

% PART II %

%%%%%%%%%%%

% Project each class using the Fisher plane calculated during ...

training

Fishclass1 = W * class1data ’;

65 Fishclass2 = W * class2data ’;

Fishclass3 = W * class3data ’;

LoLimit1 = min([ Fishclass1g(1,:),Fishclass2g(1,:),Fishclass3g(1,:)...

,Fishclass1(1,:),Fishclass2(1,:),Fishclass3(1,:)]);

LoLimit2 = min([ Fishclass1g(2,:),Fishclass2g(2,:),Fishclass3g(2,:)...

,Fishclass1(2,:),Fishclass2(2,:),Fishclass3(2,:)]);

HiLimit1 = max([ Fishclass1g(1,:),Fishclass2g(1,:),Fishclass3g(1,:)...

,Fishclass1(1,:),Fishclass2(1,:),Fishclass3(1,:)]);

70 HiLimit2 = max([ Fishclass1g(2,:),Fishclass2g(2,:),Fishclass3g(2,:)...

,Fishclass1(2,:),Fishclass2(2,:),Fishclass3(2,:)]);

ResPts = 400;

x1 = linspace(LoLimit1 ,HiLimit1 ,ResPts);

x2 = linspace(LoLimit2 ,HiLimit2 ,ResPts);

%%%%%%%%%%%%

75 % PART III %

%%%%%%%%%%%%

% Find the mean vector for each class

mean1 = mean(Fishclass1 ’);

mean2 = mean(Fishclass2 ’);

80 mean3 = mean(Fishclass3 ’);

% Find the covariance matrix for each class

K1 = cov(Fishclass1 ’);

K2 = cov(Fishclass2 ’);

K3 = cov(Fishclass3 ’);

85 % Find the inverted covariance matrix for each class

Q1 = inv(K1);
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Q2 = inv(K2);

Q3 = inv(K3);

[X1 X2] = meshgrid(x1 ,x2);

90 K1det = (1/(2* pi*sqrt(det(K1))));

K2det = (1/(2* pi*sqrt(det(K2))));

K3det = (1/(2* pi*sqrt(det(K3))));

px1 = zeros(length(x2),length(x1));

px2 = px1;

95 px3 = px1;

for i = 1:length(x1)

for k = 1:length(x2)

px1(k,i) = [(x1(i)-mean1 (1)) ,(x2(k)-mean1 (2))]*Q1...

*[(x1(i)-mean1 (1));(x2(k)-mean1 (2))];

px2(k,i) = [(x1(i)-mean2 (1)) ,(x2(k)-mean2 (2))]*Q2...

*[(x1(i)-mean2 (1));(x2(k)-mean2 (2))];

100 px3(k,i) = [(x1(i)-mean3 (1)) ,(x2(k)-mean3 (2))]*Q3...

*[(x1(i)-mean3 (1));(x2(k)-mean3 (2))];

end

end

px1 = K1det * exp( -.5*(px1));

px2 = K2det * exp( -.5*(px2));

105 px3 = K3det * exp( -.5*(px3));

% Initialize the regions

R1 = zeros(size(px1));

R2 = R1;

R3 = R1;

110 % Define the Bayesian decision regions

R1(px1 >=px2 & px1 >px3) = 1;

R2(px2 >px1 & px2 >=px3) = 1;

R3(px3 >=px1 & px3 >px2) = 1;

[DD,LL] = bwdist(R1+R2+R3);

115 R1(find(R1(LL))) = 1;

R2(find(R2(LL))) = 1;

R3(find(R3(LL))) = 1;
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% figure

120 % hold on

% colormap([1 0 0;0 1 0;0 .5 1])

% plot(-10,-10,’s’,’MarkerFaceColor ’,’r’,’MarkerEdgeColor ’,’r’)

% plot(-10,-10,’s’,’MarkerFaceColor ’,’g’,’MarkerEdgeColor ’,’g’)

% plot(-10,-10,’s’,’MarkerFaceColor ’,’b’,’MarkerEdgeColor ’,’b’)

125 % plot(-10,-10,’.’,’MarkerFaceColor ’,’k’,’MarkerEdgeColor ’,’k’)

% plot(-10,-10,’o’,’MarkerFaceColor ’,’k’,’MarkerEdgeColor ’,’k’)

% Floor_level = -(max([max(max(px1)) max(max(px2)) max(max(px3))])...

);

% %Combine and plot 3D Gaussians with mean and covariance equal to...

the class mean and covariance

% px_sum = px1.*R1 + px2.*R2 + px3.*R3;

130 % Gousians = surf(X1 ,X2 ,px_sum,’LineStyle ’,’none ’);

% for i = 1:(min(size(X1)) -1)/24:min(size(X1)) -1

% i = round(i);

% plot3(X1(:,i),X2(:,i),px_sum(:,i),’k’);

% plot3(X1(i,:),X2(i,:),px_sum(i,:),’k’);

135 % end

% set(Gousians ,’Cdatamapping ’,’direct ’)

% set(Gousians ,’Cdata ’,1*R1+2*R2+3*R3)

% %Plot the projected points from each class

% scatter3(Fishclass1(1,1: Dis:end),Fishclass1(2,1:Dis:end),...

Floor_level*ones(1,ceil(size(Fishclass1 ,2)/Dis)),’r.’)

140 % scatter3(Fishclass2(1,1: Dis:end),Fishclass2(2,1:Dis:end),...

Floor_level*ones(1,ceil(size(Fishclass2 ,2)/Dis)),’g.’)

% scatter3(Fishclass3(1,1: Dis:end),Fishclass3(2,1:Dis:end),...

Floor_level*ones(1,ceil(size(Fishclass3 ,2)/Dis)),’b.’)

% %Plot the means of the projected points from each class

% scatter3(mean1 (1),mean1 (2),Floor_level ,’ko’,’filled ’)

% scatter3(mean2 (1),mean2 (2),Floor_level ,’ko’,’filled ’)

145 % scatter3(mean3 (1),mean3 (2),Floor_level ,’ko’,’filled ’)

% %Plot the Bayesian decision regions for the classes

% contour3(X1 ,X2 ,(R1 + Floor_level -.5) ,1,’r’)

% contour3(X1 ,X2 ,(R2 + Floor_level -.5) ,1,’g’)
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% contour3(X1 ,X2 ,(R3 + Floor_level -.5) ,1,’b’)

150 % %Set axis parameters

% xlabel(’Y1 ’)

% ylabel(’Y2 ’)

% legend(’Class A’,’Class B’,’Class C’,’Class Point ’,’Class Mean ’)

% axis([min(x1) max(x1) min(x2) max(x2) Floor_level -Floor_level])

155 % view(45 ,22.5)

% lightangle(45 ,22.5)

% light(’Style ’,’infinite ’);

% material shiny

% lighting phong

160 % grid on

% hold off

Listing A.11: Code/Classify/Classify.m

1 function [Tot_err ,N_tot ,A_in_A,A_in_B ,A_in_C ,A_err ,B_in_B ,B_in_A ,...

B_in_C,B_err ,C_in_C,C_in_A,C_in_B,C_err , Fishclass1 , Fishclass2 ...

, Fishclass3]=...

Classify_class(class1data ,class2data ,class3data ,X1 ,X2 ,x1 ,x2,R1...

,R2 ,R3,data_mean ,data_std ,W)

Dis = 1;

N_rec = length(class1data(:,1)) ;

5 N_tot = N_rec *3;

%%%%%%%%%%

% PART I %

%%%%%%%%%%

% Normalize each emission record using the parameters calculated ...

during training

10 training_data = [class1data;class2data;class3data];

data_mean = ones(N_tot ,1)*data_mean(1,:);

data_std = ones(N_tot ,1)*data_std(1,:);

training_data_norm = (training_data -data_mean)./data_std;

class1data = training_data_norm(N_rec *0+1: N_rec *1,:);

15 class2data = training_data_norm(N_rec *1+1: N_rec *2,:);

class3data = training_data_norm(N_rec *2+1: N_rec *3,:);
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%%%%%%%%%%%

% PART II %

%%%%%%%%%%%

20 % Project each class using the Fisher plane calculated during ...

training

Fishclass1 = W * class1data ’;

Fishclass2 = W * class2data ’;

Fishclass3 = W * class3data ’;

% %%%%%%%%%%%%

25 % % PART III %

% %%%%%%%%%%%%

% Round and rescale data for confusion matrix calculations

scale1 = size(R1 ,2) -1;

scale2 = size(R1 ,1) -1;

30 X1_shift = min(min(X1));

X2_shift = min(min(X2));

X1_scale = max(max(X1)) - X1_shift;

X2_scale = max(max(X2)) - X2_shift;

X1_1 = 1 + round (((Fishclass1(1,:) - X1_shift) / X1_scale ) * ...

scale1 );

35 X2_1 = 1 + round (((Fishclass1(2,:) - X2_shift) / X2_scale ) * ...

scale2 );

X1_2 = 1 + round (((Fishclass2(1,:) - X1_shift) / X1_scale ) * ...

scale1 );

X2_2 = 1 + round (((Fishclass2(2,:) - X2_shift) / X2_scale ) * ...

scale2 );

X1_3 = 1 + round (((Fishclass3(1,:) - X1_shift) / X1_scale ) * ...

scale1 );

X2_3 = 1 + round (((Fishclass3(2,:) - X2_shift) / X2_scale ) * ...

scale2 );

40 % Initialize the individual classification terms

A_in_A = 0;

A_in_B = 0;

A_in_C = 0;

A_err = 0;
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45 B_in_A = 0;

B_in_B = 0;

B_in_C = 0;

B_err = 0;

C_in_A = 0;

50 C_in_B = 0;

C_in_C = 0;

C_err = 0;

n=find(X2_1 > 0 & X1_1 > 0 & X2_1 < scale2 & X1_1 < scale1);

A_in_A = sum(diag(R1(X2_1(n),X1_1(n))));

55 A_in_B = sum(diag(R2(X2_1(n),X1_1(n))));

A_in_C = sum(diag(R3(X2_1(n),X1_1(n))));

A_err = N_rec -length(n);

n=find(X2_2 > 0 & X1_2 > 0 & X2_2 < scale2 & X1_2 < scale1);

B_in_A = sum(diag(R1(X2_2(n),X1_2(n))));

60 B_in_B = sum(diag(R2(X2_2(n),X1_2(n))));

B_in_C = sum(diag(R3(X2_2(n),X1_2(n))));

B_err = N_rec -length(n);

n=find(X2_3 > 0 & X1_3 > 0 & X2_3 < scale2 & X1_3 < scale1);

C_in_A = sum(diag(R1(X2_3(n),X1_3(n))));

65 C_in_B = sum(diag(R2(X2_3(n),X1_3(n))));

C_in_C = sum(diag(R3(X2_3(n),X1_3(n))));

C_err = N_rec -length(n);

% Count total misclassifications

Tot_err = A_in_B + A_in_C + A_err + B_in_A + B_in_C + B_err + ...

C_in_A + C_in_B + C_err;

70 % figure

% X1 = 1 + ((X1 - X1_shift) / X1_scale ) * scale1 ;

% X2 = 1 + ((X2 - X2_shift) / X2_scale ) * scale2 ;

% hold on

% plot(-10,-10,’x’,’MarkerFaceColor ’,’r’,’MarkerEdgeColor ’,’r’)

75 % plot(-10,-10,’+’,’MarkerFaceColor ’,’g’,’MarkerEdgeColor ’,’g’)

% plot(-10,-10,’*’,’MarkerFaceColor ’,’b’,’MarkerEdgeColor ’,’b’)

% % Plot the Baysian decision regions

% contour(X1 ,X2 ,R1 ,1,’r’)
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% contour(X1 ,X2 ,R2 ,1,’g’)

80 % contour(X1 ,X2 ,R3 ,1,’b’)

% % Plot the test points

% scatter(X1_1(1:Dis:end),X2_1(1:Dis:end),’x’,’r’)

% scatter(X1_2(1:Dis:end),X2_2(1:Dis:end) ,’+’,’g’)

% scatter(X1_3(1:Dis:end),X2_3(1:Dis:end) ,’*’,’b’)

85 % % Set axis paramiters

% xlabel(’Y1 ’)

% ylabel(’Y2 ’)

% legend(’Class A Point ’,’Class B Point ’,’Class C Point ’)

% axis([1 scale1 1 scale2 ])

90 % set(gca ,’XTick ’ ,(1:(scale1 -1)/4:scale1))

% set(gca ,’YTick ’ ,(1:(scale2 -1)/4:scale2))

% set(gca ,’XTickLabel ’,{min(x1) ,((min(x1))+(min(x1)+max(x1))/2 )...

/2 ,...

% (min(x1)+max(x1))/2 ,(((min(x1)+max(x1))/2)+max(x1))/2, max(x1...

)})

% set(gca ,’YTickLabel ’,{min(x2) ,((min(x2))+(min(x2)+max(x2))/2 )...

/2 ,...

95 % (min(x2)+max(x2))/2 ,(((min(x2)+max(x2))/2)+max(x2))/2, max(x2...

)})

% axis square

% grid on

% hold off

A.5 DT-CWT Transformation

Listing A.12: Code/DualTree/dualtree.m

1 function w = dualtree(x, J, Faf , af)

% Dual -tree Complex Discrete Wavelet Transform

% USAGE:

5 % w = dualtree(x, J, Faf , af)

% INPUT:

% x - N-point vector

% 1) N is divisible by 2^J
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% 2) N >= 2^(J-1)*length(af)

10 % J - number of stages

% Faf - filters for the first stage

% af - filters for the remaining stages

% OUTPUT:

% w - DWT coefficients

15 % w{j}{1}, j = 1..J - real part

% w{j}{2}, j = 1..J - imaginary part

% w{J+1}{d} - lowpass coefficients , d = 1,2

% EXAMPLE:

% x = rand(1, 512);

20 % J = 4;

% [Faf , Fsf] = FSfarras;

% [af, sf] = dualfilt1;

% w = dualtree(x, J, Faf , af);

% y = idualtree(w, J, Fsf , sf);

25 % err = x - y;

% max(abs(err))

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

% http://taco.poly.edu/WaveletSoftware/

% normalization

30 x = x/sqrt(2);

% Tree 1

[x1 w{1}{1}] = afbDT(x, Faf{1});

for j = 2:J

[x1 w{j}{1}] = afbDT(x1 , af{1});

35 end

w{J+1}{1} = x1;

% Tree 2

[x2 w{1}{2}] = afbDT(x, Faf{2});

for j = 2:J

40 [x2 w{j}{2}] = afbDT(x2 , af{2});

end

w{J+1}{2} = x2;
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Listing A.13: Code/DualTree/afbDT.m

1 function [lo , hi] = afbDT(x, af)

% Analysis filter bank

% USAGE:

5 % [lo, hi] = afb(x, af)

% INPUT:

% x - N-point vector, where

% 1) N is even

% 2) N >= length(af)

10 % af - analysis filters

% af(:, 1) - lowpass filter (even length)

% af(:, 2) - highpass filter (even length)

% OUTPUT:

% lo - Low frequecy output

15 % hi - High frequency output

% EXAMPLE:

% [af, sf] = farras;

% x = rand(1 ,64);

% [lo, hi] = afb(x, af);

20 % y = sfb(lo , hi , sf);

% err = x - y;

% max(abs(err))

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

% http://taco.poly.edu/WaveletSoftware/

25

N = length(x);

L = length(af)/2;

x = cshift(x,-L);

% lowpass filter

30 lo = upfirdn(x, af(:,1), 1, 2);

lo(1:L) = lo(N/2+[1:L]) + lo(1:L);

lo = lo(1:N/2);

% highpass filter

hi = upfirdn(x, af(:,2), 1, 2);
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35 hi(1:L) = hi(N/2+[1:L]) + hi(1:L);

hi = hi(1:N/2);

Listing A.14: Code/DualTree/idualtree.m

1 function y = idualtree(w, J, Fsf , sf)

% Inverse Dual -tree Complex DWT

% USAGE:

5 % y = idualtree(w, J, Fsf , sf)

% INPUT:

% w - DWT coefficients

% J - number of stages

% Fsf - synthesis filters for the last stage

10 % sf - synthesis filters for preceeding stages

% OUTUT:

% y - output signal

% See dualtree

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

15 % http://taco.poly.edu/WaveletSoftware/

% Tree 1

y1 = w{J+1}{1};

for j = J:-1:2

20 y1 = sfbDT(y1, w{j}{1}, sf{1});

end

y1 = sfbDT(y1, w{1}{1} , Fsf{1});

% Tree 2

y2 = w{J+1}{2};

25 for j = J:-1:2

y2 = sfbDT(y2, w{j}{2}, sf{2});

end

y2 = sfbDT(y2, w{1}{2} , Fsf{2});

% normalization

30 y = (y1 + y2)/sqrt(2);
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Listing A.15: Code/DualTree/sfbDT.m

1 function y = sfbDT(lo , hi , sf)

% Synthesis filter bank

% USAGE:

5 % y = sfb(lo , hi , sf)

% INPUT:

% lo - low frqeuency input

% hi - high frequency input

% sf - synthesis filters

10 % sf(:, 1) - lowpass filter (even length)

% sf(:, 2) - highpass filter (even length)

% OUTPUT:

% y - output signal

% See also afb

15 % WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

% http://taco.poly.edu/WaveletSoftware/

N = 2*length(lo);

L = length(sf);

20 lo = upfirdn(lo , sf(:,1), 2, 1);

hi = upfirdn(hi , sf(:,2), 2, 1);

y = lo + hi;

y(1:L-2) = y(1:L-2) + y(N+[1:L-2]);

y = y(1:N);

25 y = cshift(y, 1-L/2);

Listing A.16: Code/DualTree/FSfarras.m

1 function [af , sf] = FSfarras

% Farras filters organized for the dual -tree

% complex DWT.

5 % USAGE:

% [af, sf] = FSfarras

% OUTPUT:
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% af{i}, i = 1,2 - analysis filters for tree i

% sf{i}, i = 1,2 - synthesis filters for tree i

10 % See farras, dualtree , dualfilt1.

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

% http://taco.poly.edu/WaveletSoftware/

af{1} = [

15 0 0

-0.08838834764832 -0.01122679215254

0.08838834764832 0.01122679215254

0.69587998903400 0.08838834764832

0.69587998903400 0.08838834764832

20 0.08838834764832 -0.69587998903400

-0.08838834764832 0.69587998903400

0.01122679215254 -0.08838834764832

0.01122679215254 -0.08838834764832

0 0

25 ];

sf{1} = af{1}(end:-1:1, :);

af{2} = [

30 0.01122679215254 0

0.01122679215254 0

-0.08838834764832 -0.08838834764832

0.08838834764832 -0.08838834764832

0.69587998903400 0.69587998903400

35 0.69587998903400 -0.69587998903400

0.08838834764832 0.08838834764832

-0.08838834764832 0.08838834764832

0 0.01122679215254

0 -0.01122679215254

40 ];

sf{2} = af{2}(end:-1:1, :);
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Listing A.17: Code/DualTree/dualfilt1.m

1 function [af , sf] = dualfilt1

% Kingsbury Q-filters for the dual -tree complex DWT

% USAGE:

5 % [af, sf] = dualfilt1

% OUTPUT:

% af{i}, i = 1,2 - analysis filters for tree i

% sf{i}, i = 1,2 - synthesis filters for tree i

% note: af{2} is the reverse of af{1}

10 % REFERENCE:

% N. G. Kingsbury , "A dual -tree complex wavelet

% transform with improved orthogonality and symmetry

% properties", Proceedings of the IEEE Int. Conf. on

% Image Proc. (ICIP), 2000

15 % See dualtree

% WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY , BROOKLYN , NY

% http://taco.poly.edu/WaveletSoftware/

% These cofficients are rounded to 8 decimal places.

20 af{1} = [

0.03516384000000 0

0 0

-0.08832942000000 -0.11430184000000

0.23389032000000 0

25 0.76027237000000 0.58751830000000

0.58751830000000 -0.76027237000000

0 0.23389032000000

-0.11430184000000 0.08832942000000

0 0

30 0 -0.03516384000000

];

af{2} = [

0 -0.03516384000000
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35 0 0

-0.11430184000000 0.08832942000000

0 0.23389032000000

0.58751830000000 -0.76027237000000

0.76027237000000 0.58751830000000

40 0.23389032000000 0

-0.08832942000000 -0.11430184000000

0 0

0.03516384000000 0

];

45

sf{1} = af{1}(end:-1:1, :);

sf{2} = af{2}(end:-1:1, :);
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