340 research outputs found

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    Indoor Planning in Broadband Cellular Radio Networks

    Get PDF
    The capacity requirements of cellular networks continue to grow. This has forced cellular operators to seek new ways of improving the availability and transmission rate experienced by users. The majority of cellular network data users are located inside buildings, where coverage is difficult to ensure due to high penetration loss. Indoor users also cause high load to outdoor networks, reducing the quality and availability for outdoor users. This has given rise to a growing need for implementing dedicated indoor systems, and further optimizing their performance to provide high capacity. It was estimated that in 2011 there were 5.37 billion mobile subscriptions in 3GPP-supported GSM, UMTS/HSPA and LTE networks, of which 890.7 million were using UMTS/HSPA. Currently, UMTS is the leading standard for providing mobile broadband, although LTE is becoming increasingly popular. The planning of radio networks is well known and documented. However, the planning and optimization of indoor networks has not been widely studied, although clear improvements in both coverage and capacity can be achieved by optimizing cell- and antenna line configuration. This thesis considers the special characteristics of the indoor environment with regard to radio propagation and radio network planning. The aspects of radio network planning are highlighted especially for WCDMA radio access technology. The target is to provide guidelines for indoor radio network planning and optimization using an outdoor-to-indoor repeater or a dedicated indoor system with various antenna and cell configurations. The studies conducted here are intended to provide better understanding of the indoor functionality and planning of WCDMA radio access, and UMTS cellular system including the latest HSPA updates. The studies show that the indoor performance of a high data rate WCDMA system can be improved by increasing the antenna density in the distributed antenna system, or by utilizing uplink diversity reception. It is also shown how system capacity can be further improved by adding more indoor cells to a single building. The inter-cell interference is analyzed, and the limits for cell densification are discussed. The results show that compared to dedicated indoor systems, similar indoor performance can be provided by extending macrocellular coverage inside buildings using an outdoor-to-indoor repeater. However, good performance of repeater implementation needs careful repeater antenna line and parameter configuration. Nevertheless, capacity is in any case borrowed from an outdoor mother cell. Sharing frequencies between outdoor and indoor systems is often necessary due to high capacity demand and limited available frequency band. A co-channel indoor system was measured to affect both uplink and downlink performance of an outdoor cell. In the uplink, a clear increase in uplink intercell interference was observed. Throughput degradation was also measured in downlink, but the affect is limited to the area close to the indoor system. However, the added high capacity of an indoor network usually justifies performance degradation. The results can help mobile operators design their networks to provide better coverage, higher capacity and better quality for indoor users. After taking into account the implementation costs, the results also help operators to reach a techno-economic trade-off between the various deployment options

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    Techniques for Efficient Spectrum Usage for Next Generation Mobile Communication Networks. An LTE and LTE-A Case Study

    Get PDF

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    Wireless Cellular Technologies and Convergence

    Get PDF
    Mobile communication technologies have gone through with several innovative improvements by developing various multiple-access procedures like TDMA, FDMA, CDMA, WCDMA, EDGE etc., which are used for wireless communication. But a big challenge is to select the right technology for the applications. Common wireless technologies are using radio waves. With radio waves distances can be short, such as a few meters for television or thousands or even millions of kilometres for deep-space radio communications. Wireless communications also use other electromagnetic wireless technologies, such as light, magnetic or electric fields or sound. Mobile wireless technologies have experienced 4 or 5 generations of technology revolution and evolution in the past few decades, namely from 1G to 4G. Current research in mobile wireless technologies concentrates on high level implementation of 4G technology and 5G technology. The architecture of future 5G systems, their performance, and mobile services are requiring to be clearly define. Expectations we can set for 5G technology are, the convergence of maximum of current mobile communication networks with other complementary radio access technologies. As a result, 5G technology will not be a single radio access interface but rather a ??network of networks??
    corecore