3,505 research outputs found

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    M-GEAR: Gateway-Based Energy-Aware Multi-Hop Routing Protocol for WSNs

    Full text link
    In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Narrowband delay tolerant protocols for WSN applications. Characterization and selection guide

    Get PDF
    This article focuses on delay tolerant protocols for Wireless Sensor Network (WSN) applications, considering both established and new protocols. We obtained a comparison of their characteristics by implementing all of them on an original platform for network simulation, and by testing their behavior on a common test-bench. Thereafter, matching the requirements linked to each application with the performances achieved in the test-bench, allowed us to define an application oriented protocol selection guide

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Improved NOVSF-TM based Addressing and Energy Efficient Routing in ETR Protocol

    Get PDF
    A small WSN is a collection of micro-sensors. Sensors send or receive data to a sink node, which collect and processes it. The Tree-Routing (TR) protocol was initially designed for such network. TR uses strict parent-child links for data forwarding. Hence, it saves bandwidth and energy by preventing network from flooding path search messages. For a large network TR shows large hop-count and more energy consumption. The Enhanced-Tree-Routing (ETR) protocol implemented over TR has structured node address assignment scheme. It considers other one-hop neighbor links, along with parent-child links, for packet forwarding if, it is found to be the shortest path to sink. Such decision in ETR involves minimum computation energy. Instead ETR, the emerging demand for data intensive and energy2013;efficient applications, needs new or improved routing protocols. In this paper we have proposed Non-Blocking-Orthogonal-Vector Spreading- Factor-Time-Multiplexing (NOVSF-TM) technique for sensor node addressing and Mobile Sinks placement so as to improve ETR protocol. The addressing scheme of NOVSF TM is shorter than ETR. Mobile Sinks positioning, at feasible sites, helps reducing excessive hop-count. This eliminate excessive multi-hoping and save energy. Simulation result shows that NOVSFTM technique is more energy-efficient than ETR protocol
    • …
    corecore