1,219 research outputs found

    Micro-Resonators: The Quest for Superior Performance

    Get PDF
    Microelectromechanical resonators are no longer solely a subject of research in university and government labs; they have found a variety of applications at industrial scale, where their market is predicted to grow steadily. Nevertheless, many barriers to enhance their performance and further spread their application remain to be overcome. In this Special Issue, we will focus our attention to some of the persistent challenges of micro-/nano-resonators such as nonlinearity, temperature stability, acceleration sensitivity, limits of quality factor, and failure modes that require a more in-depth understanding of the physics of vibration at small scale. The goal is to seek innovative solutions that take advantage of unique material properties and original designs to push the performance of micro-resonators beyond what is conventionally achievable. Contributions from academia discussing less-known characteristics of micro-resonators and from industry depicting the challenges of large-scale implementation of resonators are encouraged with the hopes of further stimulating the growth of this field, which is rich with fascinating physics and challenging problems

    Nematic Liquid Crystal Carbon Nanotube Composite Materials for Designing RF Switching Devices

    Get PDF
    Radio frequency microelectromechanical systems (RF MEMS) devices are microdevices used to switch or modify signals from the RF to millimeter wave (mmWave) frequency range. Liquid crystals (LCs) are widely used as electro-optic modulators for display devices. An electric field-induced electrical conductivity modulation of pure LC media is quite low which makes it difficult to use for RF MEMS switching applications. Currently, RF MEMS devices are characterized as an excellent option between solid-state and electromechanical RF switches to provide high isolation, low insertion loss, low power usage, excellent return loss, and large frequency band. However, commercial usage is low due to their lower switching speed, reliability, and repeatability. This research presents an electrical conductivity enhancement through the use of carbon nanotube (CNT) doping of LCs to realize a high-performance RF LC-CNT switching device. This thesis presents simulations of an RF switch using a coplanar waveguide (CPW) with a LC-CNT composite called 4-Cyano-4’-pentylbiphenyl multi-walled nanotube (5CB-MWNT) that is suitable for RF applications. The electrical conductivity modulation and RF switch performance of the 5CB-MWNT composite is determined using Finite Element Analysis (FEA). The simulations will present data on the coplanar waveguide’s s-parameters at the input and output ports S11 and S21 to measure return and insertion loss respectively, two key parameters for determining any RF switch’s performance. Furthermore, this thesis presents applications for improving tunable phased antenna arrays using the LC-CNT composite to allow for beam steering with high-gain and directivity to provide a broad 3D scannable coverage of an area. Tunable antennas are an important characteristic for 5G applications to achieve an optimal telecommunication system to prevent overcrowding of antennas and reduce overall system costs. This research investigates various device geometries with 5CB-MWNT to realize the best performing RF device for RF applications and 5G telecommunication systems. This research presents return and insertion loss data for three waveguide device configurations: CPW, coplanar waveguide grounded (CPWG), and finite ground coplanar waveguide grounded (FG-CPWG). The best results are shown using the CPW configuration. The return loss for the LC-CNT device showed a 5 dB improvement from -7.5 dB to -12.5 dB when using the LC-CNT signal line device. The insertion loss for this configuration showed a much more consistent 0 to -0.3 dB insertion loss value with much less noise when using the LC-CNT device compared to the -0.3 to -1 dB insertion loss value with heavy noise when using the Au signal line device. For the other two configurations the return loss and insertion loss value stayed the same indicating there is no loss in performance when using the LC-CNT switching mechanism. This is ideal due to the benefits that the LC-CNT switching mechanism provides like device reliability and increased switching speeds

    Characterization Of Commercially Available Conductive Filament And Their Application In Sensors And Actuators

    Get PDF
    The primary aim of this study is to contribute to the field of additives that would enable the fabrication of electrical sensors and actuators completely via Material Extrusion based Additive Manufacturing (MEAM). The second aim of the study is to provide the necessary characterization to facilitate the development of applications that predicts electrical part performance. The electrical characterization of two conductive poly-lactic acid (PLA) filaments, namely, c-PLA with carbon black and graphene PLA was performed to study the temperature coefficient of the resistance. Resistivity of carbon black filament was compared to a printed single layer and with that of a cube. The raw and printed c-PLA showed a positive temperature coefficient of resistance (α) ranging from ~0.03-0.01 ℃-1 while its counterpart in the study, graphene PLA, did not exhibit significant (α). Parts from graphene PLA with multilayer MEAM exhibited a negative α to a certain temperature before exhibiting positive α. The resistivity of the printed parts was 300 times higher for c-PLA and 1500 times for graphene PLA. However, no microstructural or chemical compositional changes were observed between the raw filaments and the printed parts. Due to the high α of the c-PLA, it was deemed as the better material for constructing electro thermal sensors and actuators using MEAM. First, c-PLA was used to fabricate and package a completely 3D printed flow meter that operates on the principle of Joule heating and hotwire anemometry. When the designed flowmeter was simulated using a finite element package, a flow sensitivity of -2.33 Ω sccm-1 and a relative change in resistivity of 0.036 sccm-1 was expected. For an operating voltage of 12-15 V, the experimental results showed a flow sensitivity within the range of 0.014-0.032 sccm-1 and the relative change in resistivity ranged from 0.039 – 0.065 sccm-1. Thus, a completely 3D printed flowmeter was demonstrated. Second, using the same principle of Joule heating, an actuator inspired from MEMS chevron grippers was designed, simulated, and fabricated. Simulation showed the feasibility of the structure and further predicted a displacement of a few hundred microns with a potential as low as 3 V with a cooling time as little less than 120 seconds. Experimentally, a displacement of 120.04, 97.05, and 88.96 μm were achieved in 15, 10, and 5 seconds with actuation potentials of 12.7, 13.8, and 17.9 V, respectively. As predicted by the simulation results, it took longer for the gripper to cool (close to 180 seconds) when compared to actuation times. During the above studies, we discovered the printing parameters altered the part resistance. Our final study examined how extrusion temperature and printing speed affects the impedance of the MEAM printed parts. Further, anisotropy in the impedance was observed and the influence of the interface to it was examined. From the experimental results, the anisotropy was quantified with a Z/F ratio and was found to be nearly constant, ~2.15±0.23. Impedance scaling with the number of interfaces was measured and showed conclusively that the interlayer bonding was the sole source for the observed Z/F ratio. Scanning electron microscope images shows the absence of air gaps at the interface, and energy dispersion spectroscopy shows the absence of oxidation at the interface. By investigating the role of print parameters and scaling of impedance with interfaces, a framework to model and predict electrical behavior of electro thermal sensors and actuators made via MEAM can be realized

    Improved Fabrication for Micromirror Arrays

    Get PDF
    Micromirror devices which consisted of one SU-8 2050 layer, two different exposures, and a series of metal depositions were constructed and evaluated. By varying the exposure, a micromirror structure was fabricated with different thicknesses, a ratio of 1.083 µm/(mJ/cm2) was found. The initial design consisted of four layers. The pillar was made of one SU-8 layer, and the top portion had three layers in the following order: gold, SU-8, and gold. This design could not be released and did not have characteristics of a flat and conformal reflective surface. Several variations of the initial design were explored and all of them lacked a flat and conformal top reflective surface. Both interferometric and statistical software showed that using a 60 mJ/cm2 mirror exposure dosage and a 370 mJ/cm2 square pillar exposure dosage yields a micromirror with a conformal top reflective surface. The length and width of the pillars are 200µm by 200µm, with a height of 75 µm. The mirror’s length and width are 1 mm by 1 mm, and the thickness is 65 µm. The average step height difference from the pillar to the side of the mirror, pillar to each corner of the mirror, and pillar to initial dip in the mirror is 4.53, 9.22, and 1.51 µm, respectively

    Segmented Control of Electrostatically Actuated Bimorph Micromirrors

    Get PDF
    Electrostatic actuating bimorph beams are a MEMS device that can be used to control arrays of small micromirrors for optical beam scanning. Previous research has demonstrated that creating high-angle deflection using long repeating arms of bimorph beams is possible. The current devices lack precise control and measurement of the mirror deflection. A solution to improve control and measurement is by using segmented bias channels to control separate portions of the actuation arm. The amount of mirror deflection will vary depending on which segments of the arm are actuated. This thesis discusses the results of FEA modeling and testing

    Microfluidics and Bio-MEMS for Next Generation Healthcare.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Electrostatic Radio Frequency (RF) Microelectromechanical Systems (MEMS) Switches With Metal Alloy Electric Contacts

    Get PDF
    RF MEMS switches are paramount in importance for improving current and enabling future USAF RF systems. Electrostatic micro-switches are ideal for RF applications because of their superior performance and low power consumption. The primary failure mechanisms for micro-switches with gold contacts are becoming stuck closed and increased contact resistance with increasing switch cycles. This dissertation reports on the design, fabrication, and testing of micro-switches with sputtered bi-metallic (i.e., gold (Au)-on-Au-(6.3at%)platinum (Pt)), binary alloy (i.e., Au-(3.7at%)palladium (Pd) and Au-(6.3at%)Pt), and ternary alloy (i.e., Au-(5at%)Pt-(0.5at%)copper (Cu)) contact metals. Performance was evaluated, in-part, using measured contact resistance and lifetime results. The micro-switches with bi-metallic and binary alloy contacts exhibited contact resistance between 1 - 2 ohms and, when compared to micro-switches with sputtered gold contacts, showed an increase in lifetime. The micro-switches with tertiary alloy contacts showed contact resistance between 0.2-1.8 and also showed increased lifetime. Overall, the results presented in this dissertation indicate that micro-switches with gold alloy electric contacts exhibit increased lifetimes in exchange for a small increase in contact resistance

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined

    Master of Science

    Get PDF
    thesisContact surfaces in micromechanical pin joints, hinges, and sliders introduce stiction and friction that disrupt motion in micro-electromechanical systems (MEMS). This thesis presents compliant design alternatives that move both in-plane and out-of-plane without introducing contact interference. This document correlates experimental results from fabricated devices to numeric models developed to predict key mechanical responses. The microsystems include the following: • A spiral cantilever spring (shaped like a watch spring) deflects out-of-plane 70% of its largest in-plane dimension. The deflection occurs because of force imparted by injected charge from a scanning electron microscope. • Compliant beams in torsion enable motion that is similar to that of a bushing-style substrate or scissor hinge. • A manual torsion load turns an elastic hoop inside-out as an example of a compliant bistable threshold hinge. • A compliant linkage symmetrically translates in-plane rotary motion to radial motion, similar to a blade aperture mechanism in a camera. These devices exemplify microsystems that avoid failure-inducing surface contact by exploiting an increase in component compliance that occurs as a result of lower bending and torsion stress response in beams with microscale cross-sections
    corecore