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Abstract 

Electrostatic actuating bimorph beams are a MEMS device that can be used to control arrays of 

small micromirrors for optical beam scanning. Previous research has demonstrated that creating 

high-angle deflection using long repeating arms of bimorph beams is possible. The current 

devices lack precise control and measurement of the mirror deflection. A solution to improve 

control and measurement is by using segmented bias channels to control separate portions of the 

actuation arm. The amount of mirror deflection will vary depending on which segments of the 

arm are actuated. This thesis discusses the results of FEA modeling and testing. 
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1

SEGMENTED CONTROL OF ELECTROSTATICALLY 

ACTUATED BIMORPH MICROMIRRORS 

1.  Introduction 

Microelectromechanical systems (MEMS) are extremely small devices that are used as 

actuators or sensors.  MEMS have a great range of advantages including being extremely low-

power, small, and light-weight.  Because of these advantages, there is motivation by the U.S. Air 

Force to find new MEMS applications for aerospace vehicles and to replace legacy heavy and 

bulky components with MEMS type designs.  One such possible application is as a large angle 

beam-steering device.  A beam steering device is a device that has actuators to control a mirror.  

A laser or some other source of light incident onto the mirror can then be reflected in any 

direction by moving the mirrors with the actuators.  Current aerospace vehicle beam-steering 

devices often use a large gimbal system with electric motors to control the mirror.    

There are commercial MEMS micromirror beam-steering arrays currently offered on the 

market.  Most notably, the Digital Mirror Device (DMD) by Texas Instruments which is used in 

many video projectors.  Beam-steering arrays use a grid of micromirrors to control an incident 

beam and control the direction of the reflected beams.  Current limitations in commercial 

micromirror array devices result in a reduction in their applicability to other fields.  These 

limitations include insufficient maximum angle of beam-steering and limited fidelity of control 

of the beam.  The Air Force Research Lab (AFRL) and the Air Force Institute of Technology 

(AFIT) have recently worked on a new device to overcome these limitations.  The device uses a 

serpentine bimorph structure connected to a central platform to provide a large angle deflection.  

The actuation method of the micromirrors is often accomplished through electrostatic actuation 
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but may also be accomplished by electrothermal or some other actuation scheme.   Electrostatic 

actuation is preferred for its fast response rate and reliability.  However, a major limitation of 

electrostatic actuation is that they exhibit a phenomenon called pull-in. Because of pull-in, only a 

limited range of deflection values for an actuator have a stable static solution.  This research 

looks at using a segmented control scheme to increase the available stable solutions for a 

bimorph micromirror controlled by electrostatic actuation.    
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2. Background 

The following chapter provides details from a review of applicable literature for 

background on the segmented operation of MEMS beam-steering devices.  This section goes into 

detail on the fabrication techniques used, applicable physics principles, modeling techniques, and 

previous work that is related to this current research.   

2.1 MEMS Overview 

MEMS are a category of devices that use small-scale electrical and mechanical 

component interactions to accomplish a desired purpose. They typically have feature sizes on the 

µm scale [1].  This field developed out of the microelectronic and semiconductor industry by 

adapting the micro-scale semiconductor manufacturing techniques from creating electronics to 

building devices that take advantage of mechanical properties of the materials.  The following 

sections detail several available techniques. There are several subsets of MEMS currently, 

MEMS that are for optical application are microoptoelectromechanical systems (MOEMS), 

MEMS for radio frequency (RF) applications are called RF MEMS, and when components have 

sub-micron feature sizes are often referred to as nanoelectromechanical system (NEMS) [1]. 

2.1.1 MEMs History 

The concept of making smaller and smaller small electro-mechanical devices has been a 

goal of many researchers ever since Richard Feynman published his famous paper There’s 

Plenty of Room at the Bottom [2]. Fabrication processes that were developed for the 

manufacturing of microelectronics were adapted to create extremely small electro-mechanical 

devices for a variety of consumer applications.  One of the first major commercial success in 

which MEMS were found to be better than other available options was in the use for micro-
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machined inkjet print heads by Hewlett Packard and International Business Machines (IBM) in 

the 1970s [3], [4].  Research into MEMS continued and the next major application was in the use 

of accelerometers for vehicle airbags.  MEMS accelerometer sensors (Figure 1) could be made 

inexpensively and rugged enough to detect and respond to vehicle collision.  The accelerometer 

detects the large acceleration using a fixed mass and spring system and sends signal to the airbag 

control unit to inflate the airbags [5].  

 

Figure 1: BOSCH high-g accelerometer for vehicle airbag system from 1990s [5]. 

Additional research by Texas Instruments (TI) found optical applications for MEMS.  In 

1987, TI built and tested the first version of what would become the Digital Micromirror DMD 

[6].  This device was an array of micromirrors that each act as a pixel to reflect a light source 

onto a screen (Figure 2).  It is still used as a critical component of many Digital Light Processing 

(DLP) projectors such as those used in movie theaters.  The device functions by each mirror 

rotating to either the pixel ON or pixel OFF position.  Electrostatic actuation allows it to function 

extremely quickly in order to create frame rates of up to 16 milliseconds [6].  As shown in Figure 

3, the DMD features multiple layers of micro-machined materiel to create the electrode, springs, 

hinges, and mirror platform [7].  
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Figure 2: Texas Instruments Digital Mirror Device light beam diagram showing one pixel 
in ON position and one in OFF position [6]. 

 

Figure 3: 3D cross-section rendering of Texas Instruments Digital Mirror Device diagram 
showing each layer from substrate up to mirror [6] 

2.1.2 MEMS Uses  

MEMS primary purpose is as a transducer.  Transducers are devices that convert one 

form of energy to another. Transducers are divided into two categories: sensors and actuators 
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(Figure 4).  Sensors take energy often in the form of mechanical but could be any type (optical, 

thermal, etc.) and converts it to an electrical voltage signal to measure a physical quantity.  

Actuators do the opposite, they take an electrical voltage signal and convert it to a mechanical or 

other type of energy to move a physical being or to cause some other desired effect [8][9][10].   

 

Figure 4: Block diagram showing two types of transducers: sensors and actuators. It 
shows basic functionality of the exchange of energy from useful energy to a data signal 

and back [8].  

 

Examples of MEMS sensors and actuators are vibration sensors (Figure 5) for seismic 

activity and electrostatic motors (Figure 6), respectively [11], [12]. 

 

Figure 5: SEM image of an a vibrational seismic MEMS sensor [11]. 
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Figure 6: SEM Image of an example of an electrostatic rotational MEMS actuator [4]. 

 

2.1.3 Advantages of MEMS 

The use of MEMS has brought significant advantages as compared to previous 

technologies.  Major advantages of MEMS include but are not limited to being extremely small, 

lightweight, low power, and inexpensive.  Most of these advantages are a direct result of their 

size and scaling laws for different physical parameters [13].  The small size and weight make 

MEMS attractive devices for aerospace applications where size and weight constraints are 

critical [14].   MEMS can often be a less expensive alternative for many applications.  This is 

because MEMS are able to take advantage of economies of scale for when large chip batches are 

created using a single design similar to the advantages used by integrated circuit manufacturers 

[15].  

2.2 MEMs Materials 

MEMS manufacturing involves the patterning and machining of various layers of 

materials that include conductors, semi-conductors, and insulators.  The mechanical and 

electrical properties of these materials are adjusted as required and used to create the various 

structures and electrical circuits necessary for the MEMS devices to function.   
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2.2.1 Conductors, semi-conductors, and insulators 

Whether a material is a conductor, semi-conductor, or insulator depends on the location 

of the electrons within the atomic energy bands and ability to move about those bands.  

Conductors are materials such that either the outermost (valence) band is not fully occupied or 

the filled band overlaps with an empty conduction band.  In an insulator, there is a large gap 

between the valence band and the conduction band.  Finally, for semi-conductors a bandgap 

exists between the valence band and the conduction but it is small as compared to the insulator 

band gap.  Figure 7 shows a visual representation of the differences between the conduction and 

valence bands for insulators, semiconductors and conductors.  An example of a band gap for 

GaAs, a common semiconductor material is 1.4 eV [16].  

 

Figure 7: Band gap diagram showing valence and conduction bands for insulators, 
semiconductors, and conductors [17]. 

2.2.2 Important Materials for MEMS 

MEMS use a variety of different conductors, semi-conductors, and insulators.  A few 

examples of common materials are single crystalline silicon, poly-crystalline silicon, silicon 

oxide, silicon nitride, and gold [18].  The following paragraphs provide information of 

electronic, material, and chemical properties of these important materials.   
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2.2.3.1 Single-Crystal silicon 

Silicon is the most common semiconductor and forms a diamond crystal cubic structure 

(Figure 8). This type of structure is described as two interpenetrating face center cubic structures 

[19].  Single-crystal silicon is grown in ingots and sliced into thin wafers (usually less than 1 

mm) of varying diameters.  It has a band gap of 1.12 eV at 300K.   Most semiconductors and 

MEMS are based on a silicon wafer or a wafer of another semiconductor material.  After all 

layers are deposited and patterned, the wafer is usually diced into many separate devices [16].   

 

Figure 8: Diamond cubic crystal structure of silicon [19]. 

2.2.3.2 Poly-crystalline silicon  

Poly-crystalline silicon (Figure 9) also known as polysilicon is a form of crystalline 

silicon. It is pure silicon and it has the same lattice structure as single-crystal silicon.  The 

difference between single-crystal and polysilicon is that polysilicon is composed of many 

different small crystal domains that point in all directions.  The individual crystals are joined to 

each other at several grain boundaries.  Because of the various small crystal structures, 

polysilicon has a less homogenous appearance[13].  Because it is difficult to deposit single-

crystal silicon onto a wafer in a thin layer to be patterned, polysilicon is often used as a deposited 

layer for structural layers for MEMS because it can be deposited using chemical vapor 
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deposition (CVD) techniques[18].  Like single-crystal silicon, polysilicon can be doped with 

both N and P type dopants to adjust its electronic properties.   

Table 1: Selected mechanical properties for PolyMUMPS polysilicon layers from design 
handbook [18]. 

Mechanical Property Value 
Young’s Modulus 158 +/- 10 GPa 

Poisson’s Ratio 0.22 +/- 0.01 
Fracture Strength 1.21 +/- 0.8 to 1.65 +/- 0.28 GPa* 

*Fracture Strength is dependent on specimen size, smaller specimens have higher strength 

 

Mechanical properties for polysilicon can vary depending on the parameters in which it 

was deposited.  For PolyMUMPS, the process that is used for this research, the measured 

mechanical properties from MEMSCAP are provided in Table 1[18] and Appendix A.   

 

Figure 9: Image of a 10cm x10cm polysilicon wafer.  This wafer was textured so that the 
grains show up as light and dark [20]. 

2.2.3.3 Silicon Dioxide 

Silicon dioxide (SiO2) is the native oxide of silicon when it is exposed to oxygen.  It acts 

as an insulator and dielectric with an energy band gap of 8.9 eV and a dielectric constant of 3.7-

3.9 [21].  It is often used in MEMS as a sacrificial layer or a layer that is deposited with the 
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ultimate intention of removing through an etch process to allow certain portions of a device to be 

able to move freely.  Silicon dioxide can be grown on the surface of silicon or it can be deposited 

through CVD [18].   

2.2.3.4 Silicon Nitride 

Silicon nitride (Si3N4) is an insulator and a dielectric materiel that is used in MEMS.  It 

can be used as a passivation layer covering a wafer because of its insulating properties and 

resistance to oxidation. It can also be used as part of the device layers itself because of its high 

strength. Table 2 provides relevant properties of silicon nitride [22].     

Table 2: Selected properties for LPCVD silicon nitride [22].  

Property Value 
Young’s Modulus 385 GPa 
Poisson’s Ratio 0.27 

Resistivity  1016 ߗ െ ܿ݉ 
Coefficient of Thermal Expansion 1.6 *10-6 K-1 

 

2.2.3.5 Metal 

Many different types of metals are used in MEMS. They are used for a variety of 

different reasons including thin film conducting layers, optical layers, and structural layers.  

Metals are conductors and therefore have low resistance.  Gold is a common layer and will be 

discussed in this research because it is used in the PolyMUMPS process [13], [18].   

2.3 Fabrication 

The following sections describe microfabrication techniques for the manufacture of 

MEMS.  Techniques that are highlighted are those that were used for the fabrication of devices 

for this research effort.  



 
 

12

2.3.1 Photolithography 

Photolithography is a critical part of the MEMS fabrication process. It is often the most 

complicated and expensive process in micro and nanoscale fabrication [23].  The purpose of 

photolithography is to transfer a design pattern from a mask to a photo-resist covered wafer to 

control the subsequent etch or deposition process.  It is a very useful process because it allows a 

single mask to be created that can replicated to create a great number of devices. The 

photolithography process (Figure 10) consists of coating a wafer with a photoresist such as SU-8 

or 1818 and using a mask and an optical source.  The mask is placed over the photoresist covered 

wafer and blocks the light from the optical source from reaching certain areas of the photoresist.  

Areas of photoresist that are exposed to light will react differently than those not exposed, 

transferring the pattern from the mask to the photoresist on the wafer.  

 

Figure 10: Diagram showing steps of photolithography and etch process for positive and 
negative photoresists.  The first step is exposing the photoresist to the mask pattern.  It is 
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followed by developing the photoresist, and finally, etching exposed device layer and 
removing remaining photoresist [24]. 

To accomplish this process, the design with all the required layers are designed in a 

computer aided drafting (CAD) program.  For the designs of this project, MEMS L-Edit v8.3 

was used.  Once all layers of the device have been finalized, the design file is used to create 

masks.  The total number of masks required for a fabrication will depend on the design because 

each mask only represents one device layer. Fabrication of commercial microelectronics can 

require over 20 different masks [23].  

Masks are made based on the category of photoresist.  The two categories of photoresist 

are positive and negative photoresists.  This means that for positive photoresist, areas of the 

photoresist that are exposed to the optical source become more soluble and the areas that are not 

exposed will remain on the wafer.  The reverse is true for negative photoresist.  In negative 

photoresists, areas exposed to the light become less soluble to the developing agent because the 

polymers become crosslinked [23].  When the photoresist is developed, unwanted areas of the 

photoresist is removed exposing areas of the underlying device layer for removal.  The exposed 

areas of the device layer are then able to be removed through any of several etching processes 

such as wet etching or reactive ion etching (RIE).  Once the etching is complete, the remaining 

photoresist is removed and the resulting device layer is a replication of the mask layer [15]. 

2.3.2 Surface Micromachining 

Surface micromaching is the process of additive manufacturing of patterned layers onto a 

wafer.  In other words, it is the process of adding layers of materials, as both structural and 

sacrificial layer, in different geometries to form a device.  Combinations of structural and 

sacrificial layers are typically polysilicon/silicon dioxide or metal/photoresist.  It is contrasted 

with bulk micromaching which involves removing layers of the substrate.  Figure 11 shows a 
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comparison of making a similar cantilever beam with both bulk and surface micromaching.  The 

first references of surface micromaching date to the 1960s with the fabrication of resonating-gate 

MOS devices [10]. Surface micromaching steps can be used to form both movable and non-

movable parts of a MEMS device.  To form a movable part, a sacrificial oxide such a phospho-

silicate glass (PSG) is layered onto a wafer, then a device layer such as polysilicon is deposited 

onto the PSG.  After all subsequent layers have been added, the PSG is removed leaving the 

polysilicon certain degrees of freedom to move [10].  There are many different processes that can 

be used in surface micromaching.  The following sections discuss a few of the major techniques 

that were used in fabrication for this research effort.  

 

 

Figure 11: Diagram providing a comparison of two micromaching techniques to form a 
cantilever beam (a) bulk micromachining which removes portions of the substrate and (b) 
surface micromaching which patterns and removes portions of the deposited layers [25].  

2.3.2.1 Metal Evaporation 

Metal evaporation was one of the earliest methods of deposition for the semiconductor 

industry [23].  It is still used in many integrated circuits (IC) and MEMS processes although it 

has been replaced by other methods such as sputtering and electroplating because evaporation 
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has poor step coverage and difficulty depositing a well-controlled alloy.  Figure 12 provides a 

diagram of a high-vacuum evaporation chamber showing to deposition of a metal. Metal 

evaporation functions by placing the sample wafer in a chamber, taking the chamber to a high 

vacuum, then the plating material or target is placed in the evaporator.  The evaporator is a 

crucible that gets to very high temperatures to melt the target metal and allow it to evaporate.  

The material then vaporizes and collects on the sample wafer creating the thin film[23].    

 

Figure 12: Diagram showing the deposition of a metal layer using evaporation.  The 
target material evaporates and coats the substrate above[26] 

2.3.2.2 Chemical Vapor Deposition (CVD) 

CVD is a process that uses a chemical reaction to deposit a thin film.  It is often preferred 

to physical deposition methods such as sputtering and evaporation for semiconductor and 

insulating materials [23].  The basic process of CVD is that a gaseous reactant species passes 

into a reaction chamber containing the wafer.  A chemical reaction occurs, often a decomposition 

reaction which leaves a thin film on the wafer. One specific type of CVD is Low Pressure 

Chemical Vapor Deposition (LPCVD).  There are two major types of LPCVD systems, the first 

is cold wall and the second is hot wall systems. Figure 13 shows a horizontal hot wall system 

LPCVD system.  It functions by filling the deposition chamber with an inert gas such as N2, then 
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the vacuum pump will pump the deposition chamber down to a medium vacuum.  The heating 

coils then heat up the side walls and then the gaseous reactant fill the deposition chamber.  The 

deposition then proceeds for the required amount of time for the desired thickness of coverage.  

Afterwards, the chamber is then filled again with a non-reactant species, brought to atmospheric 

pressure and the wafers are removed [23].  For silicon deposition, the most common reaction is 

provided in equation (1).  

 

Figure 13: A hot wall LPCVD horizontal deposition system.  This shows the ability to put 
four different types of gaseous reactants into the chamber. For polysilicon deposition 

SiH4 is used.   [27] 

 
ସሺ௚ሻܪ݅ܵ → ܵ݅ሺ௦ሻ ൅  ଶሺ௚ሻ (1)ܪ2	

An additional type of CVD is Plasma-Enhanced Chemical Vapor Deposition (PECVD).  

PECVD uses a RF source to create a plasma that creates ion bombardment that adds necessary 

energy for the chemical reactions to occur for film deposition.  It has the advantages that PECVD 

can operate at lower temperatures than other CVD techniques and still obtain an even coating 

[23]. As shown in Figure 14, in the deposition chamber, the gaseous reactants are input, then the 
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RF energy creates a plasma between the cathode and anode regions.  This allows the requisite 

chemical reaction to take place for the thin film to be deposited [23].  

 

Figure 14: Cold wall PECVD chamber showing introduction of gaseous reactants and the 
plasma formation above the sample wafer.  [28] 

2.3.3 Bulk Micromaching and Etching 

Bulk micromaching is similar to surface micromaching except that instead of adding 

layers on top of a substrate, material from the wafer is selectively removed to create trenches, 

holes, or other structures [29].  Bulk micromachining can be used in conjunction with surface 

micromachining to create more complex devices.  To remove the material a variety of etching 

techniques can be employed including wet, vapor, and plasma.  Vapor and plasma etching are 

commonly referred to as ‘dry’ because it does not involve submerging or exposing the wafer to a 

liquid etchant such a Potassium Hydroxide (KOH).  The type of etchant used will depend on 

constraints of the device and the desired etch profile.  Some etching techniques will etch all 

directions of the wafer evenly, this is called isotropic etching and some will etch in one direction 

more than others, this is referred to as anisotropic etching [29][30].   
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Figure 15: Cross-section diagram showing difference between isotropic and anisotropic 
etch profiles [30].  

Wet etching is a chemical process in which the material is exposed to a liquid that reacts 

with different rates for the various layers of a device.   For example, HF reacts with the silicon 

dioxide layers at a much greater etch rate than it reacts with the polysilicon layers.  The main 

advantage of wet etching is that it is highly selective.  The drawbacks of most wet etching 

techniques is that it involves submersing in fluid which can be damaging to components and the 

etching is often isotropic [23].  One of the most popular types of dry etching is reactive ion 

etching (RIE).  RIE was originally developed to be a highly anisotropic etch process. As shown 

in Figure 16, it works by exciting a gas to an ion state and then bombarding the wafer sample 

with those ions.  When the ions encounter the sample wafer, they react and etch away the sample 

material.  The ions can be controlled with an electric field allowing the direction to be controlled 

increasing the anisotropy of the etch [23].  
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Figure 16: Diagram showing etching using RIE.  Ions from the plasma are accelerated by 
the electric field.  When the ions hit the substrate, material is removed [31]. 

 

2.3.4 PolyMUMPs 

PolyMUMPs is a commercial foundry fabrication process by MEMSCAP.  It is a type of 

Multi-User MEMS Processes or MUMPs and utilizes a standard surface micromachining 

fabrication process to create three-layer polysilicon devices with a top metal layer.   MEMSCAP 

runs multiple fabrication cycles each year and to have a device fabricated, a user uses a standard 

L-Edit design template with the different PolyMUMPs layers to design a 1cm2 x 1cm2 device.  

MEMSCAP collects all the designs and combines multiple designs into a single mask file to 

create the required masks to create many devices at once.  After all layers have been deposited, 

the large wafer containing many devices is diced into the individual devices and sent to the 

customer [18].   

Because of the combined fabrication of many devices at once, PolyMUMPs fabrication 

imposes a significant amount of constraints on what and how a device can be made.  A full list of 

the constraints and more in-depth description of the fabrication process is contained in the 

PolyMUMPs Design Handbook [18].  The major constraints of the process are that designs are 

limited to three poly-silicon device layers with a top metal layer, only the top two device layers 
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are releasable, the individual layer thicknesses and material properties are not changeable, and 

the design rules specify spacing for different desired features.  

PolyMUMPs devices (Figure 17) are built on a 150 mm n-type (100) silicon wafer of 1-2 

Ohm-cm resistivity.  The surface of the wafer is heavily n-type doped with phosphorus to 

prevent charge feedthrough.  The first layer is a 600 nm thick layer of LPCVD silicon nitride for 

passivation.  The second is a patterned 500 nm thick LPCVD poly-silicon layer (Poly0), 

followed by a patterned 2.0 µm LPCVD PSG sacrificial layer (1st Oxide).  A 750nm dimple layer 

is patterned and removed from the 1st Oxide layer using RIE.  Next, the second polysilicon layer 

(Poly1) is added and patterned to a thickness of 2.0 µm.  Following this a 750nm patterned PSG 

layer is added (2nd Oxide).  The final polysilicon layer is added as a 1.5 µm thick patterned layer 

(Poly2).  The final layer is an evaporated 500 nm thick gold layer (Metal).  It is patterned with a 

process called lift-off and can only be deposited on the Poly2 layer. The Poly1 and Poly2 layers 

are releasable.   

 

Figure 17: Cross-section of PolyMUMPs process showing available device layers [32]. 
Note: the dimple etch is not shown.     

2.3.5 PolyMUMPs Release 

Many MEMS devices must be released either through wet or dry etching in order to be 

functional.  During release (Figure 18) the sacrificial layer of silicon dioxide is removed to allow 
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portions of the fabricated device to move. PolyMUMPS uses two sacrificial layers of PSG that 

can be removed using either a wet etch in hydrofluoric acid (HF) or by using a gaseous HF 

release process.  Equation (2) provides the chemical reaction for HF etching silicon dioxide.  

This reaction can have a selectivity at room temperature of 100:1 [23].  

 
ܱܵ݅ଶ ൅ ܨܪ6 → ଶܪ ൅ ଺ܨ݅ܵ ൅ ଶܱܪ2  (2) 

 

Figure 18: Diagram showing how sacrificial PSG layers are removed during release etch 
[18]. 

2.3.6 Device Bonding and Packaging 

For a final device to be useful to an end user, it must be properly packaged.  The 

packaging provides mechanical support and resiliency to damage from environmental and 

handling damage and allows for a device to be integrated into a larger system.  For example, a 

fabricated MEMS device could be a single chip that is part of a larger circuit board that is itself 

part of a larger mechanical system such as an automobile.  In general, for MEMS there are three 

levels of packaging: die level, device level, and system (Figure 19) [13].  Die-level packaging as 

shown in Figure 20 protects the individual chips from damage.  Device layer packaging entails 

protecting the MEMS device as well as the chips and elements that share the same circuit board.  

Finally, system level packaging requires protecting the full system in use to minimize risk of 

damage from environmental considerations [33].   
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Figure 19: Three levels of microsystem packaging are shown: die, device and system 
packaging.  [22]  

 

 

Figure 20: Example of die level packaging for MEMS devices [34]. 

2.4 Electromechanics 

As the name implies, MEMS make use of both mechanical and electrical behaviors of 

micro-scale materials.  Therefore, a knowledge of the underlying electromechanical interactions 

and principles is important to understand how these devices function and how to design them.  

The following sections discuss a variety of important electromechanical physical concepts that 

are of interest to this research area.   

2.4.1 Electrostatic Actuation 

Electrostatic actuation was first demonstrated in the 1960s by using an AC voltage with a 

DC bias to move a cantilever beam. Electrostatic actuation is still a very common form of 
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actuation for MEMS because of the relative ease of fabrication and compatibility with other 

circuits and devices [1].  The elementary physics principle of electrostatic actuation is that the 

force causing actuation is from Coulomb’s force shown in Equation (3).  This equation states that 

the attractive force is proportional to the magnitude of the two charged particles and inversely 

proportional to the square of the distance between the two particles.  

 
ܨ ൌ

1
଴߳ߨ4

ଶݍଵݍ
ଶݎ

	 	 (3) 

 

 To simplify the electrostatic force and associated energy equations, it is common to 

model the situation as two parallel plates (Figure 21).  This simplification is done to find a closed 

form solution of the simplest case to understand the basic principles.  The potential energy of the 

parallel plates can be expressed as Equation (4) and associated electrostatic force can be 

expressed as Equation (5).  

 

Figure 21: Diagram of parallel plates with a voltage potential of V between them [22]. 
Used to model potential energy and force.   
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Equation (5) provides a simple design equation to understand the basic design parameters 

that can be tweaked in the design process.  They include the cross-sectional area of the plate or 

beam(ܹ ∗  ሻ, the applied potential (ܸ), the dielectric constant (߳௥), and the distance between theܮ

plates(݀) [22].  

2.4.2 Residual Stress and Bimorph Beams 

A second type of actuation is thermal actuation.  Thermal actuation is caused by the 

expansion or contraction of material as it changes temperatures.  The expansion or contraction is 

given by ߜ and is directly related to the Temperature (ܶ) and the linear coefficient of thermal 

expansion (ߙ).  When two materials are layered on top of each other with different coefficients 

of thermal expansion, this causes different expansion and contraction rates as the temperature is 

varied.  This results in surface strains (߳) at the interface of the materials and curvature of the 

beam as shown in Equation (6)[1]. This is often referred to as a bimorph beam.  The change in 

temperature required for actuation can be caused by Joule heating or by a change in temperature 

that results after a manufacturing process [22]. Actuation that occurs because of returning to 

room temperature after a manufacturing process is often called residual stress.  Using the surface 

strain, the radius of curvature for a bimorph beam with differing thicknesses (ݐଵ,  ଶ), and moduliݐ

,ଵܧ)   .ଶ) is given in Equation (7)[35]ܧ
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Figure 22: Bimorph beam showing displacement with radius of curvature of r. The top 
gold layer expands and contracts at a different rate when the temperature changes.  

2.4.3 Electrothermal Actuation 

Electrothermal actuation is an actuation method that uses Joule heating to create a 

differential thermal expansion between a ‘hot arm’ and a ‘cold arm’[1] (Figure 23).   Joule 

heating is the heating that occurs in materials as an electric current is passed through them [36].  

As shown in the previous section on bimorph beams, a change in temperature will cause a 

contraction or expansion based on the coefficient of thermal expansion.  As shown in Equation 

(8), the amount of heating (Q) increases with the square of the electric current density (j).  The 

current density is dependent on the total electric current of the circuit (I) and the cross-sectional 

area (A), so in a circuit, the localized amount of Joule heating will be determined by the cross-

sectional area of the circuit element[37].  By varying the cross-sectional area, a ‘hot arm’ and 

‘cold arm’ can be created.  The hot arm will expand more than cold arm creating the actuation.   
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Figure 23: FEA diagram of a simple electrostatic actuation showing the larger relative 
expansion of the 'hot arm' vs the 'cold arm'. When a current passes through, the hot arm 

expands more than the cold arm.  

2.4.4 Doping Effects on Dielectric Constant 

In a semiconductor, doping is used to inject charge carriers either electrons (n-type or 

holes (p-type) into the crystal lattice [16].  The presence of dopants can change a number of 

electronic qualities of the semiconductor material including its dielectric constant.  For silicon in 

particular, the addition of donor atoms ( ஽ܰ) will increase the dielectric constant from its undoped 

value.  Equation (9) provides a relationship for n-type doping of silicon at room temperature 

using phosphorous [38].  Additional information on doping is provided in Appendix B.  

 
߳௥ሺ ஽ܰሻ ൌ 	11.688 ൅ 1.635 ∗

10ିଵଽ ஽ܰ

1 ൅ 1.172 ∗ 10ିଶଵ ஽ܰ
 (9) 

2.5 Beam Theory 

To understand the mechanical behavior of the MEMS especially as it relates to the 

cantilever and serpentine beams mechanics, the fundamentals of static and dynamic beam theory 

Cold Arm 

Hot Arm 
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is relevant.  This section discusses concepts critical to the discussion of the function and 

understanding of MEMS.  

2.5.1 Euler-Bernoulli Beam Theory 

The governing equation to solve beam problem in MEMS is the Euler-Bernoulli beam 

equation. Equation (10) provides the Euler-Bernoulli equation for the one dimensional case [1].  

 
ܫܧ
݀ସݕ
ସݔ݀

ൌ ݍ  (10) 

The Euler-Bernoulli equation can be expanded from the static case to incorporate 

dynamic time effects.  This is commonly referred to as the Euler-Lagrange Equation and is 

shown in Equation (11). 
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While both equations appear straight-forward and are applicable to a wide variety of 

situations, solving Equation (10) and (11) into a closed form solution for a specific case can be 

extremely complicated.  Each specific case will have a particular geometry, boundary, and 

loading conditions.   

2.5.2 Spring Theory and Young’s Modulus 

Hooke’s Law shown in Equation (13) describes a linear force-displace relationship in 

simple springs.  The concept is also used to describe and characterize the stiffness of structures 

as shown in subsequent sections [1].   Hooke’s law is only applicable if the material is being 

used in the linear and elastic region.  In this region, a material will return to its original state 

when an applied force is removed.  A material property called the Young’s modulus (E) as 

defined in Equation (12) is a measurement of the stress-strain relationship in the elastic region as 
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shown in Figure 24. If a material is in the non-elastic region, then permanent deformation will 

remain even after an applied force is removed [39].  

 

Figure 24: Stress and strain plot for an example showing elastic and nonelastic (plastic) 
regions [40].  
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2.5.3 Resonance and Modal Harmonics 

Mechanical resonance in a structure is the frequency at which a non-rigid structure will 

naturally vibrate when perturbed with an excitation force.   Many simple MEMS structures can 

be modeled as a single degree of freedom damped oscillator with a spring restoring force for 

single mode analysis [41].  Figure 25 shows a depiction of a model for a single degree of 

freedom damped oscillator.  The major components are a mass (m), spring constant (k) based on 

the structure stiffness, time dependent driving force (u(t)), and dampening constant (c).  The 

differential equation describing the behavior of this system is given in equation (14) .  The 

natural frequency (݂) for the system is described as equation (15) [42].   

Plastic Region 
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Figure 25: Diagram for a simple single degree of freedom damped oscillator with mass m 
and spring constant k [41]. 

 
ሷݑ݉ ሺݐሻ ൅ ሶݑܿ ሺݐሻ ൅ ሻݐሺݑ݇ ൌ ሻݐሺܨ  (14) 
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MEMS structures will also display modal harmonics.  Modal harmonics is when a 

structure does not vibrate at a single frequency but can be excited at different modes based on the 

shape of the excitation. Modal harmonics are highly dependent on the structure shape and 

boundary conditions and are therefore difficult to solve analytically [41].  One closed form 

solution is for the free response of a micro-cantilever (similar to the cantilever shown in Figure 

28). The free response natural frequency ሺ߱௡ሻ and corresponding mode shape or eigenshape 

ሺ߶௡ሺߞሻሻ  is dependent on differential equation and boundary conditions for a cantilever provided 

in Equation (15).   

 
߶௡ᇱᇱᇱᇱሺߞሻ െ ሻߞସ߶௡ሺߣ ൌ 0,				߶௡ሺ0ሻ ൌ ߶௡ᇱ ሺ0ሻ ൌ ߶ᇱᇱሺ1ሻ ൌ ߶ᇱᇱᇱሺ1ሻ ൌ 0     (16) 

In the above equation,  ߣ௡ is the associate mode eigenvalue and relates to the associated 

natural frequency.   ߞ	is the dimensionless lateral location on the cantilever as shown in equation 
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(17). Solving for the differential equation provides the mode shape for the first three modes 

shown in Figure 26[41].  

ߞ  ൌ 	 ൬
ݔ
଴ܮ
൰  (17) 

 

Figure 26: Plot showing first three harmonic mode displacements for the free vibration of a 
cantilever beam using the eigenshape [41] 

 
2.5.4 Pull-In 

Electrostatic actuators using cantilevers like what is shown in Figure 28, demonstrate a 

phenomenon called pull-in.  Pull-in is a saddle-node bifurcation that results in instability and 

occurs when the electrostatic attractive force from Coulomb’s law as shown in Equation (3)  

increasing at a greater rate than the Hooke’s law force shown in Equation (13) [43].  For a 

cantilever, as the voltage between the beam and the electrode increases, the beam will begin to 

bend toward the electrode.  However, once a voltage above the pull-in voltage is reached, the 

beam will then suddenly snap into place.   Pull-in limits the usability of electrostatic actuators 

because it severely reduces the stable displacement solutions for a given configuration (Figure 
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27)[44].  In addition to reducing the available deflection angles, the dynamics of pull-in can 

cause failures in the MEMS structure.  Failures can be caused by sudden electrical 

discharge/static discharge between the beam and electrode, dielectric charging, or stiction[43].  

 

Figure 27: (a) shows the potential energy diagram and phase portrait when in a stable 
configuration at a voltage under pull-in and (b) shows the potential energy and phase 

portrait at an unstable voltage greater than the pull-in voltage [43]. 

2.5.5 Electrostatic Cantilever Beam  

To solve for the case of a cantilever beam actuator (Figure 28) that is actuated by 

electrostatic force across the length of the beam, the boundary conditions are at ݔ ൌ 	ݕ  :0 ൌ 0 

and 
ௗ௬

ௗ௫
ൌ 0 and at ݔ ൌ ݈: ௗ

మ௬

ௗ௫మ
ൌ 	0	and 

ௗయ௬

ௗ௫య
ൌ 	0.	 The force is similar to that which was found in 

Equation (18) [1].   

 

Figure 28: Diagram of electrostatically actuated cantilever beam used for derivation pull 
in voltage [1]. 
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Solving for the spring stiffness (݇) results in Equation (19).  

 
݇ ൌ

16
5
ܫܧ
݈ଷ
	  (19) 

By balancing the spring force with the electrostatic force the pull-in voltage is found in 

Equation (20)[1].  

 

௣ܸ௜ ൌ 0.5297ඨ
ଷ݄଴ݐܧ

ଷ

߳௥߳଴݈ସ
	  (20) 

2.6 FEA Modeling 

Closed form solutions of the Euler-Bernoulli equation for complicated design geometries 

are extremely difficult to derive.  The previous section describing modal harmonics and pull-in 

get complicated even just for a simple cantilever beam.  Because of this, finite element analysis 

(FEA) and modeling is used.  FEA is usually accomplished using a computer program such as 

Coventorware or ANSYS [39][45].   FEA is accomplished through discretization.  Each surface 

or volume of structure is divided into a finite number of elements connected at nodes.  This can 

cause a loss of fidelity depending on the size of elements and number of nodes.  After the 

discretization, known load conditions {ܳ} such as heat, rigid boundaries, and voltage are applied 

to the model.  The shape of the geometry effects the element coefficient matrix [ܭ] and the 

computer solves Equation (21) to find the unknown quantity at the nodes {ݍ}[22].  This equation 

looks simple, but FEA models get larger and more complex, it creates larger and larger 

coefficient matrices to solve resulting in large computational demand.  

 
ሾܭሿሼݍሽ ൌ ሼܳሽ  (21) 

In practical terms, FEA allows designers to build a computer model of a design and 

simulate how that design will perform based on various inputs to a much higher fidelity than 
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calculating by hand allows.  Both Coventorware and ANSYS provide a multiphysics platform 

that allow for the calculation of various quantities for MEMS designs such as electrostatics, 

electrothermomechanics, harmonics, and transient behavior.   One way to control the 

computational requirements for solving is to change the mesh.  The mesh determines the location 

and number of nodes.  Increasing the mesh density can increase accuracy, but it will reduce 

computational efficiency [46].    

2.7 Previous Work 

This research is focused on developing segmented control for an electrostatically actuated 

high-displacement micro-mirror for use in a future micro-mirror array.  There is several previous 

technologies and research efforts that this current research builds off.  The first large scale 

commercial application of micro-mirror arrays was by the Texas Instrument corporation and 

their DMD technology.  It uses up to two million individual micromirrors for each of its display 

chips.  Each acts as an individual pixel for a display.  The DMD uses electrostatic actuation and 

has shown fast actuation and high reliability for mirror actuation with reliability demonstrated at 

5.30 x 1012 cycles for each mirror in an array and actuation rates shown at 16 milliseconds [47].   

The DMD demonstrated the feasibility of a similar technology to what is proposed in this 

research, the major limitation of the DMD was that it had a small actuation angle of +/-12 and 

did not have any intermediate step locations, the pixels were either on or off.   

Research has previously shown the ability to control a single electrostatically actuated 

beam piecewise with unique electrode shapes [48].  In their research, they demonstrated that with 

a single electrode that has unique geometries allows for multiple stable pull-in configurations.  

They did not show their design with a serpentine cantilever and did not attempt multiple 

electrodes.  
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For the design that is used in this research effort, its effectiveness was first demonstrated 

by Walton and Starman [49]–[51].  They demonstrated the effectiveness of using the serpentine 

bimorph design for a high-angle mirror deflection. They have demonstrated significant 

improvement in increasing the deflection angle from other similar beam steering arrays using 

similar geometries [52], [53] by the use of bimorph serpentine beams.  Further improvements to 

increase the maximum deflection of the bimorph design from 50 microns to 400 µm has been 

recently demonstrated by applying a high-stressed (-2GPa) nitride layer with an opposite residual 

stress of the metal compression force.  This was demonstrated to force an inflection point in the 

bimorph beam, greatly increasing the initial deflection [51].   
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3. Methodology 

The following sections provide a description of the methodology used to come up with 

the design, modeling, and testing of the devices.  The concept of the devices is based on micro-

mirror actuator arrays previously built and tested by AFRL and AFIT researchers.  The design 

uses bimorph serpentine beams located around a base to provide a platform for electrostatically 

driven large deflections [49], [50], [51].  The final desired design will include an array of the 

bimorph serpentine beam platform with post and mirrors attached for beam-steering (Figure 30).   

 

Figure 29: SEM of previously tested AFRL and AFIT devices [50].  

This novel device has shown quite a promise for large angular deflections.  One major 

limiter to the design was that a method of controlling the angular platform over a wide margin of 

displacement angle had not yet been demonstrated.  This work investigates a method that could 

be used independently or together to control the micro-mirrors using segmented channels. 
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Figure 30: 3D model of 10-beam electrostatically actuated mirror, post and bimorph 
beam platform. This is a rendering of a single mirror for the proposed prototype high-

angle beam-steering micromirror array.  

3.1 Design 

The segmented electrode design consists of multiple individual electrodes that are 

geometrically designed to be electrically isolated from the actuating beam instead of a single 

actuation electrode that can come into contact of the beam.  The segmented electrodes are 

intended to allow for improved control with the actuation of the device.  Two approaches were 

taken to electrically isolate the electrodes from the serpentine beam structure: electrode covers 

and electrode posts. Additionally, there are two ways in which the device was operated and 

tested in: electrostatic and capacitive sensing mode.  A further explanation of what is meant for 

each of these modes is provided in future sections. Figure 31 provides a top view of the 

segmented electrodes and how the segmented electrodes are integrated with the full mirror 

structure and Figure 32 provides an SEM of one of the fabricated devices.   

Mirror 

Bimorph Beams 
Platform 

Post 
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Figure 31: MEMS structural concept of the covered segmented channels with individual 
electrodes. (a) illustrates a five-channel segmented channel individual electrode design.  
(b) illustrates the design integrated underneath a five-arm serpentine bimorph mirror. 

 

Figure 32: An SEM image of a two-channel electrode cover fabricated device. (a) depicts 
the entire device with the invention integrated underneath a two-arm serpentine bimorph 
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beam.  (b) depicts an enlargement of a portion of the invention depicting the segmented 
changes and electrodes.  

3.1.1 Electrode Cover Design 

The first design to be built and tested was the covered electrode design. It consists of the 

individual electrodes that are created out of the PolyMUMPs Poly0 layer.  To isolate the 

electrodes from contact with the serpentine beam structure, they are covered by the Poly1 layer.  

The serpentine beam consists of the Poly2 and metal layers (Figure 32).   

3.1.2 Electrode Post Design 

The second design style consists of using electrically isolated posts throughout the 

electrode and have them protrude up (Figure 33).  In this design, the individual electrodes are 

patterned out of the Poly0 layer, however, small rectangles are cut out of the electrodes and 

Poly1 posts protrude out of the holes.  The Poly1 posts are anchored to the nitride layer.  The 

purpose of these posts is to contact the serpentine beam as it actuates to keep the beam from 

contacting the actual electrodes.  The electrode cover design was modified to this because of 

concerns of using the Poly1 layer as the separation layer between the serpentine beam.  This is 

because the Poly1 layer is a doped polysilicon layer and could potentially behave like a 

conductor in ways that are not desirable.   
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Figure 33: 3D Rendering of a two-channel electrode post design.  

3.1.3 Operation in Electrostatic Actuation Mode 

The first mode of operation is that a voltage can be applied to individual electrodes 

causing portions of a serpentine beam to actuate.  To operate in this mode, a voltage difference 

must be applied to one or multiple electrodes and the beam that is sufficient to cause enough 

electrostatic force to cause actuation.  Multiple configurations were tested and was not limited to 

two electrodes as shown in Figure 32.  Five-segment designs were also fabricated as shown in 

Figure 34.  

3.1.4 Operation in Capacitive Sensing Mode 

The second operational mode of the device is the capacitive sensing mode.  To operate in 

this mode, the beam must be actuated with an actuation method such as electrostatic or 

electrothermal actuation.  The bending of the beam causes a measurable change in capacitance 

between the beam and each individual electrode.  This difference can be measured and could be 

used to create a closed loop control system.   

Poly0 Electrodes 

Poly1 Posts 

Nitride Layer 
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Figure 34: 3D cross-section of the individual electrodes encased in segmented channels 
for a five-channel design 

3.1.5 Electrostatic vs Electrothermal actuation 

This research effort focuses on segmented control using electrostatic actuation.  

However, electrothermal actuation is a valid way of actuation for this of bimorph serpentine 

beam type of structure [51].  Advantages of electrostatic actuation are faster actuation rates and 

less possibility of thermal creep as compared to electrothermal actuation[6].  Disadvantages of 

electrostatic actuation are pull-in instability effects and higher actuated voltage requirements[36]. 

These designs for testing focus on a design that can be electrostatically actuated.  Another 

method of actuating these devices could be through electrothermal actuation. The possible future 

advantage of the segmented control design would be when in capacitive sensing mode.  That 

future design could use electrothermal actuation while using the segmented channels as 

capacitive sensing electrodes to determine position for a feedback controller.  

3.2 Modeling 

To predict the performance of the designs and to better understand the behavior of the 

devices, modeling was used before the fabrication of the devices.  On the basic level, design 
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equations such as those listed in Chapter 2 provided a foundational understanding of what were 

the key variable that should guide the design to get a desired performance.  Next, FEA modeling 

was used as a way for a proof of concept or to ensure that what the device design was based on 

sound physics principles.  Next, FEA analysis was used to give an approximation of what values 

could be expected from the device during actual testing and characterization.  Following this 

approach, initial models were simple and had minimal design details, however with progressive 

iterations, model increased in detail and size to increase the fidelity of the results but also 

requiring much longer computation time. Figure 35 shows an early FEA analysis used to 

demonstrate the proof of concept that by adding a voltage to a single electrode, displacement of 

the beam could be controlled.  

 

Figure 35: FEA modeling of electrostatic actuation of a two-arm serpentine bimorph 
beam by an individual electrode on a two-channel design.  For the model a voltage of 

25V was applied to electrode 2 while no voltage was applied to electrode 1.   

3.3 Device Fabrication 

After design and modeling, the devices were fabricated to provide a prototype for testing 

and characterization.  Both commercial and in-house processing was used to create the device.  

The following sections provide further details with regards to device fabrication.  
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3.3.1 PolyMUMPs 

The PolyMUMPs foundry process by MEMSCAP as detailed in Chapter 2 was used for 

the majority of the fabrication.  PolyMUMPs was chosen because of its fast turnaround for 

manufacturing and it provided an adequate process with enough layers for the fabrication of a 

prototype. As shown in Figure 36 and Figure 37, two PolyMUMPs designs were submitted the 

first was for run #119 and the second was for run #121.  

 

Figure 36: Image of PolyMUMPs L-Edit design for run #119.  For this run, only .33 cm2 
was available for use.  This design include 2 two-beam covered electrode designs, 2 four-

beam covered electrode designs, and 1 six-beam covered elecrode design.  

 

 

Figure 37: Image of PolyMUMPS L-Edit design for run #121.  It included two-beam, 
four-beam, and ten-beam covered electrode and electrode post designs.   
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3.3.2 Post Fabrication Processing 

After the completion of the PolyMUMPs, the devices were received unreleased to the 

AFIT cleanroom.  Post fabrication processing involved an HF wet etch release with a CO2 

critical point dryer as described to minimize malfunction of devices due to stiction.  

3.4 Device Characterization and Testing 

Characterization was completed in the AFIT characterization lab.  To test the device and 

measure surface deflection, we used a 3D optical surface profiler, ZYGO® NewView™ 7300 

white light interferometer with probe test stations as shown in Figure 38. It allowed us to provide 

a voltage to the individual electrodes while measuring the deflection of the beam.  Figure 39 

shows an example readout from the Zygo during testing.  The Zygo provided the required 

measurements of vertical displacement and angular tilt for all three dimensions by providing a 

topographical measurement of the entire device.   

 

Figure 38: Zygo interferometer with micro-actuating probe testers.  The probe testers are 
used to conduct a voltage from the power supply to the conduct pads.   
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Figure 39: Zygo interferometer readout showing a serpentine beam structure at 0V.  

Testing was completed by connecting the micromanipulators from probe station to the 

positive and negative leads of the DC power source.  The micromanipulators were then 

maneuvered so that they would contact the appropriate and required pads.  The power source was 

then adjusted to the desired voltage for the test point.  After application of the voltage, the 

measurement was made using the Zygo to measure topography, vertical displacement, and 

angular displacement of the micro-mirror.   

3.4.1 Test Variables  

For laboratory testing of the structures there were two main control variables: voltage and 

type of structure and one response variable displacement.  The following sections detail the 

definition of these main control variables.  
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3.4.1.1 Voltage – Control Variable 

This is defined as the voltage of the serpentine beam structure with reference to the 

electrodes. It is applied by the probe station to the device. A DC power source is used to create 

the voltage. This is a numerical and continuous with values from 0 to 100V.  

3.4.1.1 Type of Structure – Control Variable 

This is a categorical variable and there are two characteristics that vary with the structure.  

The first is the type of structure (post electrode or covered electrode) and number of serpentine 

segments on each side of the mirror platform (2, 4, or 10).   

3.4.1.1 Height Displacement – Response Variable 

The height displacement is the measured height of the platform. The platform is actuated 

using electrostatic force from the electrodes and the height is measured using the interferometer. 

Height displacement is a numerical and continuous variable. 
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4. Data 

4.1 Chapter Overview 

The following sections provide collected data from modeling and testing. Modeling was 

conducted using simplified closed form solutions and FEA computer simulations.  Testing was 

conducted using released PolyMUMPs devices in the AFIT characterization lab.  

4.2 Analytic Modeling Results for two segment section 

The following sections detail estimations for calculating various parameters associated 

with the segmented control of the electrostatically actuated mirror.  In order to be able to solve 

closed forms of the following equations, assumptions and simplifications of the geometries were 

made.  When such assumptions and simplifications were made, they are stated what and why 

they were chosen.   

4.2.1 Estimation of Spring Constant (k) 

To estimate the spring constant of a two-segment section, the two segments of the 

bimorph beam were assumed to be extended to create one long segment as shown in Equation 

(22).  Additionally, to simulate the effects of the other bimorph beams attached to the platform 

for when only a single beam is actuated, the other bimorph beams were treated as springs in 

parallel as shown in Equation (23).  The curvature of the beam due to the bimorph is not taken 

into consideration for the calculation of the spring constant. Additional information for 

calculations is provided in Appendix C.  
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4.2.2 Calculation of pull-in for single section 

To estimate the required pull-in voltage for the first two single sections of the bimorph 

beam when voltage is applied to a single electrode. To calculate this, it is modeled as a single 

cantilever beam using the closed form solution for a cantilever beam with a single electrode.    

The midpoint of the curvature is estimated as the constant distance for the electrode to cantilever 

beam distance for simplification.  The height of the midpoint used for the calculation is the 

height of the midpoint of the two-beam FEA (4.7 µm and 9.4 µm).   

 

௣ܸ௜ ൌ 0.5297ඨ
ଷ݄଴ݐܧ

ଷ

߳௥߳଴݈ସ
ൌ 14.7ܸ, 41.6ܸ  (24) 

4.2.3 Resonant Frequency  

To estimate the resonant frequency two methods were used.  The first method used was 

to find an estimation of the first mode resonant frequency ଴݂ using the simple harmonic oscillator 

equation and the effective spring constant found in a prior section shown in Equation (25)  .  The 

second method employed was to use the estimation of the first three modes as shown in 

Equations (26)-(29), [41-42]. 
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4.3 Finite Element Modeling Results 

The following sections detail FEA results.  All analysis was completed using an AFIT 

MEMS lab workstation with Coventorware software licensed to AFIT.  Models were completed 

using at first simple models followed by more complex models.   

4.3.1 Two Segment Mirror Section 

FEA was completed on a two-segment mirror section.  In this simulation, the platform is 

not modeled.  Pull-in and capacitance analyses were completed and are shown below in Figure 

40 and Table 3.  This model is expected to give an underestimate of the pull-in voltage because 

stiffening effects from the other three bimorph beams connected to the central platform are not 

accounted for when doing the pull-in analysis.  Additional analysis was complete (Table 3-Table 

5) to determine if capacitive sensing using actuation with one electrode and measuring changes 

in capacitance with another was feasible.  
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Figure 40: FEA modeling of electrostatic actuation of a two-section bimorph beam by an 
individual electrode on a two-channel design.  For the model a voltage was applied to 

electrode 1 while no voltage was applied to electrode 2.  Figure (a) depicts 0V applied to 
electrode 1. Figure (b) depicts 18V applied to electrode 1 before pull-in. Figure (c) 
depicts 24V applied to electrode and shows pull-in of single section of the beam. 

Table 3: FEA model results for response of two-beam covered structure when a voltage is 
applied to electrode #1.  This table shows a change in beam vertex height  

Electrode #1 
Voltage (V) 

Height of Beam Vertex 
(µm) 

0 18.54 
6 18.32 
12 17.38 
18 11.78 
24 4.72 

 

Table 4: FEA analysis data for response of two-beam covered structure when a voltage is 
applied to electrode #1 and the capacitance between electrode #2 and beam.  

Height of Beam Vertex 
(µm) 

Capacitance Electrode #2 
to beam (fF) 

18.98 18.65 
18.12 18.79 
17.41 19.41 
16.72 20.11 
16.03 20.90 
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Table 5: FEA analysis data for response of two-beam covered structure when a voltage is 
applied to electrode #2 and the capacitance between electrode #1 and beam. 

Height of Beam 
Vertex (µm) 

Capacitance Electrode 
#1 to beam (fF) 

19.01 36.22 
18.84 36.43 
18.36 37.88 
18.14 38.32 

 

4.3.2 Two Segment Mirror 

FEA analysis as was completed on a full two-segment mirror to determine behavior of 

the electrostatic actuation and pull-in when pull-in (Figure 43) is conducted on different 

selections of mirrors.  Additional simulation was performed to determine thermomechanical 

(Figure 41) and harmonic behavior (Figure 42). The thermomechanical analysis was performed 

to determine the effect of change in temperature on the vertical displacement of the mirror 

structure.    

 

 (a) (b) (c) 

Figure 41: Thermomechanical FEA results at (a) 100K, (b) 273K, (c) 500K. The 
maximum amount platform displacement was dependent on the temperature.   
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Figure 42: Two-segment mirror harmonic analysis.  Plot of FEA data showing two peaks 
of harmonic energy at 2014 Hz and 3621 Hz.  

 

 

Figure 43: Electrostatic actuation image of two-beam mirror model with pull-in actuation 
voltage applied to four electrode segments. The mirror deflection is 0.477 degrees. 

 

4.3.3 Two Segment Mirror – Nitride Layer 

FEA analysis was completed on a full two-segment mirror to determine behavior of the 

modal harmonics (Figure 44) and pull-in when a -2GPa layer of nitride is added to increase 

displacement.  

Actuation Voltage Applied to Four Electrodes 

2014 Hz Peak 

3621 Hz Peak 
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Figure 44: Harmonic response of two-beam mirror with added -2GPa residual stress 
nitride layer. 

 

4.3.4 Ten Beam No Nitride 

The following analysis (Figure 45) is a 300K thermomechanical analysis completed with 

the AFRL design ten-beam bimorph beam.  The -2GPa nitride layer was not added.  The 

maximum displacement was 3.8 µm.   

 

Figure 45:Thermomechanical analysis at 300K for a ten-beam bimorph single side.  This 
does not have the -2GPa nitride layer.  

 

Max Displacement 
3.8 s 
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4.3.5 Ten Beam with Nitride 

The following thermomechanical, modal harmonic, and electrostatic pull-in analysis 

(Figure 46-Figure 53: Harmonic response of first mode for ten-beam structure with nitride 

showing an increase in resonant frequency when three sections of the ten-beam structure are 

pulled-in.Figure 53) was completed with the AFRL designed ten-beam bimorph beam.   The 

maximum displacement was 490 µm and the resonant frequency for the first harmonic was 2.3 

kHz.   

 

Figure 46: Thermomechanical analysis at 250K for a ten-beam bimorph single side.  This 
does have the -2GPa nitride layer. The displacement is much higher than a comparable 

analysis performed without the additional nitride layer.  

 

Max Displacement 
390 µm 

Max Displacement 
490 microns 
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Figure 47: Thermomechanical analysis at 300K for a ten-beam bimorph single side.  This 
does have the -2GPa nitride layer. The displacement is much higher than a comparable 

analysis performed without the additional nitride layer. 
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Figure 48: Thermomechanical analysis for a ten-beam bimorph single side.  This does 
have the -2GPa nitride layer. The platform displacement is 370 µm.  

 

Figure 49:  Harmonic modal analysis for ten-beam bimorph. Clockwise from top left, 
mode 1, 2, 3, and 4. Exaggeration is used to show shapes.  



 
 

56

 

Figure 50: Harmonic response showing spikes at the first four modes of resonant 
frequency at 2.3 kHz, 2.56kHz, 2.56kHz, and 3.26kHz. This is model of a 10 beam 

structures with a -2GPa Nitride layer added to increase displacement. 

 

 (a) (b) 

Figure 51: Electrostatic pull-in analysis for ten-beam with nitride and single large 
electrode under the structure showing (a) 0V and (b) 316V at point right before pull-in.  

The maximum displacement at 0V is 355.3 µm and is 335.88 at 316V.  
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Figure 52: FEA of electrostatic pull-in of segment 3 of a single side of a ten-beam with 
nitride. Image shows the platform at an angle of 8.89.  The image shown is after the 

pull-in of segment 2.  

 

Figure 53: Harmonic response of first mode for ten-beam structure with nitride showing 
an increase in resonant frequency when three sections of the ten-beam structure are 

pulled-in.  

4.4 Test Results Two Segment Covered 

Figure 54 and Table 6 show data from testing of PolyMUMPs devices from run #119.  

All measurements were made using released PolyMUMPs devices and used equipment in the 

Resonant frequency 
increases when 

segments pulled in 
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AFIT characterization lab.  Measurements to detect the change in capacitance for an actuating 

electrode were conducted. However, because of limitations on the sensitivity of equipment in the 

lab, a proper setup to determine the change in capacitance between an non-actuating electrode 

and the beam structure was not able to be realized.  It was found that the attempted setup using a 

multimeter had a residual capacitance from wiring and equipment of 139 pF which is four orders 

of magnitude greater than the desired sensitivity for the anticipated change in capacitance of 

~10fF.  Additional attempts at measuring the change using an oscilloscope and change response 

to a signal also failed to provide a detectable change in signal.  Literature shows that sensors 

operating in the fF range usually require specially built circuitry to adequately amplify and detect 

the signal [54]. 
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Figure 54: Image of two-beam covered electrode test device using optical microscope of 
the Zygo white light interferometer. 

Table 6: Data measured from applying voltage to (a) electrode 1 and (b) electrode 2 
individually and measuring edge of mirror displacement.  

 

*Voltage causes pull-in of beam 
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5. Analysis 

The following chapter provides analysis of data collected for this research effort.  It 

compares analytic, FEA, and measured data.   

5.1 Two-Beam Segment  

The first FEA modeling (Figure 55) that was completed with the two-beam segment.  

This modeled only a single two-section serpentine bimorph beam.  The purpose of this analysis 

was to provide a proof of concept and guide further research.  Analysis of the model as shown in 

Figure 55 demonstrated that when using literature provided parameters [38] for the dielectric 

constant for the doped Poly1 layer to model its dielectric behavior, it is possible to individually 

control each section of the serpentine arms.   

 

 

Figure 55: Two-beam individual bimorph beam structure with two independent 
electrodes made of Poly0 covered by Poly1 layer.  

5.2 Analysis of Thermomechanical Modeling  

Thermomechanical modeling as shown in Table 7 and Figure 56 showed that as 

temperature changed, the displacement height of the platform changed.  This is expected 

behavior due to the nature of differential coefficients of thermal expansion present in the 
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multiple materials of the bimorph beam section.  It showed that for both the two-beam structure 

and the ten-beam structure, a relative minimum for the platform displacement was found around 

300K.  This may be caused because room temperature residual stress values for the models are 

input as material parameters because they are process specific.  The stress values that were used 

were provided by the PolyMUMPS foundry and/or by AFRL.   

Table 7: Maximum displacement values for a ten-beam with nitride single side showing 
differential expansion and contraction of the bimorph beams as temperature increases and 

decreases. 

Temperature (K) Maximum Displacement (m) 
250 390 
300 144 
350 149 

 

 

Figure 56: Results for electrothermal FEA modeling showing a relative minimum in 
vertical displacement for a two-beam structure. 

 

5.3 Modal Analysis 

 Modal analysis showed the presence of multiple modal harmonics in the kHz range for 

the modeled devices.  As shown in Table 8, comparing different analytic methods wi provide 

Relative minimum at 
300 K 
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different anticipated values for the resonant frequency.  The Eigen shape method is shown to be 

a closer proximity to the FEA modeled resonant frequency.   Resonant frequency tests of the 

PolyMUMPs fabricated two-segment structure were not completed.  A comparison between the 

resonant frequency of the two-segment beam structure with and without the addition of the -

2GPa nitride layer shows that the resonant frequencies as shown in Table 9. 

 The ten-beam with nitride structure showed resonant frequency behavior as shown in 

Figure 50.  The anticipated final design of the mirror structure involves the addition of a large 

post and mirror (Figure 30).  The post and mirror add a significant amount of mass (~1.47x10-7 

kg) to the structure.  By using analytical methods of resonant frequency changes with mass and 

assuming a constant stiffness (k = 0.361 N/m) when the mirror and post is added, the resonant 

frequency with post and mirror is estimated to be 0.249 kHz (Table 10).   The resonant behavior 

showed an increase for the first mode resonant frequency of 6% when the first three segments of 

one arm of the ten-beam with nitride was pulled-in indicating an increase in the k value.  

 
Table 8: Comparison of Resonant Frequencies from Analytical Methods and FEA for 

two-beam structure. 

Mode Simple Harmonic Oscillator  ቆ ૚

૛࣊
ට࢑

࢓
ቇ Eigen Shape FEA 

1 300 Hz 1042 Hz 2014 Hz 
2 N/A 6534 Hz 3621 Hz 
3 N/A 18296 Hz 3651 Hz 

 

Table 9: Comparison of resonant frequencies of two-segment with and without additional 
-2GPa residual stress nitride layer. 

Mode Two-Beam No Nitride Two-Beam Nitride 

1 2014 Hz 2294 Hz 

2 3621 Hz 3798 Hz 
3 3651 Hz 3997 Hz 
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Table 10: Anticipated change in resonant frequency using constant stiffness and change 
of mass when post and mirror are added to the ten-beam structure.  

Model k (N/m) Mass (kg)  Frequency (kHz) 

Base Structure 0.361 1.73*10-9 2.3 
Base Structure with Post 

and Mirror 
0.361 1.47*10-7 0.249 

 

5.4 Comparison of FEA and measured performance for two-beam 

A comparison of the pull-in voltages for single electrode actuation of the two-beam 

structure shows that the analytic and FEA models provided an underestimate of the pull-in 

voltage (Table 11).  The analytic model may have given an underestimate because the geometry 

of the beam was simplified to a single cantilever beam.  Additionally, the actuation voltage is 

highly dependent on the height of the cantilever and the analytic model assumes a constant 

height across the beam.  Because of the characteristic curvature of a bimorph beam, the height is 

not constant and was estimated as the mid-point of the beam for the analytic model.  The FEA 

provided a closer value to the measured pull-in value. Differences in this value can partially be 

explained by differences in the initial displacement of the platform caused by a larger amount of 

residual stress caused bimorph displacement.  As shown in Figure 57, the initial displacement of 

the fabricated mirror platform was 24 µm, the anticipated initial displacement of the FEA model 

mirror platform was 12 µm.  This would lead to differences in actuation and pull-in voltages.   

Figure 58 and Figure 59 show a comparison of the measured height of the mirror 

platform structure versus the anticipated height of the displacement mirror platform from an FEA 

model.  As discussed above, the model predicted a much lower initial displacement than was 

observed by the fabricated device.  Because of the difference, normalized values of platform 

height to the initial platform height are provided in Figure 60 and Figure 61.  As expected, the 
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general shape of the measured and anticipated are similar.  Both lines decrease as voltage 

increases and accelerate in the rate of decrease as pull-in voltage is approached.  

Table 11: Comparison of pull-in voltages for analytic, FEA, and measured values for 
two-beam covered electrode structure.  All values are for single electrode actuation. 

Model Analytic (V) FEA (V) Measured (V) 

Electrode 1 14.7  21.6 25-50 

Electrode 2 41.6 35.6 >50 
 

 

Figure 57: Plot of height of platform for a two-segment covered electrode mirror as a 
voltage is applied to electrode 1 and electrode 2. 

 

 

Figure 58: Comparison of measured and FEA data for electrode 1 actuation for two-
segment mirror. 
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Figure 59: Comparison of measured and FEA data for electrode 2 actuation for two-
segment mirror. 

 

 
 

Figure 60: Comparison of measured and FEA normalized data for electrode 1 actuation 
for two-segment mirror. 
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Figure 61: Comparison of measured and FEA normalized data for electrode 2 actuation 
for two-segment mirror. 

 
5.5 Comparison of Actuation with Different Actuation Excitement Schemes 

As shown in Figure 62, the behavior of the actuation of the beam varies depending on 

which electrodes are being used to apply the actuating voltages. The initial deflections are 

similar, however the pull-in voltages are different for electrode #1 and #2..  The anticipated 

function would be to apply a voltage electrode #1 until pull-in is reached, at that point, begin 

applying a voltage to electrode #2 until pull-in is reached for electrode #2.  If additional 

segments are available, continue until all electrodes have been pulled-in.   Figure 62 shows that 

by simultaneously actuating electrodes on multiple sides, actuation is also possible.  This is 

advantageous because it provides a rotation of the platform about a different axis than a single 

side actuation.   
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Figure 62: Comparison of different application schemes of voltages and effects to 
platform deflection. 

Pull-in analysis of the ten-beam nitride structure (Figure 63) showed a required pull-in 

voltage of 316 V for a single large electrode.  This pull-in is for a single large electrode under the 

entire beam structure.  According to this analysis, the pull-in occurs when the platform is at a 

height of 336 µm.  This is not much lower than the maximum height of 355 µm.  With a single 

electrode, this provides stable solutions to just 5.4% of the full displacement of the beam 

structure.  When a segmented electrode approach is used as shown in Figure 64 and Figure 65, 

this adds additional intermediate states for both displacement and angular deflection.  Each of the 

intermediate steps adds a small amount of stable displacement values.      
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Figure 63: Plot of electrostatic pull-in analysis for ten-beam with nitride and single large 
electrode under the structure 

 

Figure 64: FEA pull-in analysis for a single ten-beam with nitride using ten segmented 
electrodes.  This plot shows gaps between the static stable displacement regions after 

each segment pull-in. 

 

Pull-in at 316V 

Gap 
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Figure 65:  FEA pull-in analysis for the ten-beam with nitride. This plot shows additional 
stable angular deflections states are added during the pull-in of additional electrodes. 

 

  

5.6 Capacitive actuation sensing.  

The model as shown in Figure 55 was used to determine the feasibility of using only 

some electrodes for actuation and using other electrodes to measure the beam structure 

displacement through variable capacitive sensing.  The intention is that the signal from the 

variable capacitive sensing could then be used for a closed-loop controller to accurately control 

mirror vertical and angular displacement.  As shown in Figure 66, the FEA modeling shows that 

change in capacitance is measurable between the non-actuating electrode and the beam.  The 

change in capacitance is very small and as shown is in the fF range.  This small level of 

capacitance change is challenging to measure.  However, there are currently available sensors 

that operate in the fF range and circuitry is available to detect such a small signal [55].  

Gap 
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Additionally, FEA shows that the closer electrode (electrode #1) creates a greater change in 

capacitance per change in vertex height or in other words, it is more sensitive.   

 

Figure 66: Plot of FEA model results for the change in capacitance between each 
electrode and the beam on the vertical axis and the change in the vertex height on the 

horizontal axis.  This shows a measureable change in capacitance as the vertical 
displacement of a beam changes. 

5.7 Summary 

In summary, analytic modeling, FEA simulation and prototype measuring were used to 

demonstrate and characterize methods for controlling an electrostatic bimorph beam structure 

through segmented electrodes.  Analysis looked at proof-of-concept, thermomechanical 

modeling, harmonic responses, pull-in and electrostatic deflection behavior.  Analytic modeling 

and FEA simulation showed anticipated performance and lab measurement of a prototype 

demonstrate real performance of segmented control schemes.    
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6. Conclusions and Recommendations 

6.1 Conclusion of Research 

The work provided in this thesis provides a summary of background, methodology, 

design, modeling, fabrication, and testing of a novel control scheme for segmented control of 

electrostatically actuated bimorph beam structures (Figure 67).  The first analysis showed a 

proof-of-concept for the design and further analysis showed the anticipated performance and 

behavior of such control structures, and finally, the prototype demonstration demonstrated the 

basic functionality of the device.  

 

Figure 67: SEM of released PolyMUMPS fabricated two-beam micromirror structure. 

6.2 Significance of Research 

This research looked at improving the current state of the art for electrostatically actuated 

bimorph micro arrays.  The following main conclusions were found. 

6.2.1 Resonant modal analysis of structures 

FEA resonant modal analysis showed that by increasing the displacement of the beam 

structure by adding the nitride layer, the resonant frequency of the device increased.  

Additionally, theory and FEA analysis show that the anticipated change first mode harmonic 
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frequency for the ten-segment beam structure should change from 2.3 kHz to 0.249 kHz when 

the post and mirror are added to the central beam structure.  This large change could be offset by 

reducing the mass of the post and mirror.  Finally, when segments were pulled-in, the resonant 

frequency of the structure increased indicating a stiffening of the k value.  

6.2.2 Segmented electrode architecture effect on pull-in 

FEA and prototype testing showed that the pull-in behavior is different for the different 

electrodes.  In other words, the pull-in voltage and pull-in displacement for electrode 1 is not the 

same as the pull-in voltage and pull-in displacement for when electrode 2.  This was shown 

increase the range of available static stable angular and vertical displacement solutions for the 

micromirror platform.   

6.2.3 Function in capacitive sensing mode 

FEA analysis indicates that use of individual electrodes as a variable capacitor to detect 

the displacement of the beam structure is a feasible design.  Modeling indicates that the change 

in capacitive to be on the order of fF.  This is quite small, but may be able to be used as a 

measurement signal for a closed loop control system.  The use of the segmented design for 

change in capacitance was unable to be demonstrated in the lab using the prototype because of 

limitations to detect such a small change in capacitance.  

6.3 Recommendations for Future Research 

To continue this research effort, demonstration of segmented control beyond a two-

segment prototype device should be shown.  Included in this thesis are descriptions and L-edit 

design of such devices.  Future research should focus on finding the expanded range of possible 

static stable displacement solutions and work to minimize any unstable regions.  Additionally, as 
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discussed in the methodology section, an alternative design that uses posts instead of fully 

covered electrode pads may show additional benefits and should be researched.   

To be able to feasibly use the segmented electrodes in capacitive sensing mode, an entire 

closed loop feedback control and capacitance measurement circuitry would need to be designed 

and implemented.  This could be more of a final last step before implementation of a 

micromirror array.   

6.4 Summary 

In conclusion, this thesis presented analytical, FEA modeling, and prototype testing of a 

segmented control of electrostatically actuated bimorph beam for use in a micromirror array.  

This research found that the pull-in and displacement behavior of a bimorph beam changes as the 

electrode configuration changes and that this could increase the range of static stable solutions 

for beam structure displacement.   
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Appendix A. PolyMUMPS Run Data 

The following data tables (Table 12 and Table 13) are the measured material properties 

from PolyMUMPs run 119 and run 121.  

Table 12:  Material properties measured from PolyMUMPs run 119. 

 

Table 13:  Material properties measured from PolyMUMPs run 121 
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Appendix B. Additional Background on Doping 

One of the properties of semiconductors that make it extremely useful for 

microelectronics and MEMS is the ability to change the electronic band structure of the material 

through doping. Doping is done through adding impurities into the crystal structure to add either 

additional electrons or holes (absences of electrons); the former is called N-type and the latter is 

called P-type.  By adjusting the level of holes and electrons, the fermi level can be adjusted.  

This is extremely useful for the design of many microelectronic components such as diodes.  

Two important properties for MEMS devices that doping is able to change is the resistivity and 

dielectric constant of a material [16], [38].  Resistivity is the measurement of a materials ability 

to resist electrical conductivity.  It is usually measured in units of ohm/centimeters (ߗ/݉). 

Metals and other conductors typically have a small resistivity while semiconductors and 

insulators have larger levels of resistivity [56].  Figure 68 shows the relationship for crystalline 

silicon between the resistivity and the dopant density.  

 

Figure 68: Resistivity for silicon as a function of N and P type dopants [56]. 

In addition to the resistivity, doping has an effect on the dielectric constant. 
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The dielectric constant is the ratio of the relative permittivity of a material to the 

permittivity of a vacuum.  To change the dielectric constant, for silicon in particular the addition 

of donor atoms ( ஽ܰ) will increase the dielectric constant from its undoped (intrinsic) value.  

Equation (30) provides a relationship for n-type doping of silicon at room temperature using 

phosphorous [38].   

 
߳௥ሺ ஽ܰሻ ൌ 	11.688 ൅ 1.635 ∗

10ିଵଽ ஽ܰ

1 ൅ 1.172 ∗ 10ିଶଵ ஽ܰ
 (30) 
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Appendix C. Additional Information for Analytical Work 

 

Figure 69: Calculation of (k) for two-segment design 

 

 

Figure 70: Calculation of stiffness Vpi for Electrode 1. 
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