7 research outputs found

    QR factorization equalisation scheme for mode devision multiplexing transmission in fibre optics

    Get PDF
    Optical communication systems play a major role in handling worldwide Internet traffic. Internet traffic has been increasing at a dramatic rate and the current optical network infrastructure may not be able to support the traffic growth in a few decades. Mode division multiplexing is introduced as a new emerging technique to improve the optical network capacity by the use of the light modes as individual channels. One of the main issues in MDM is mode coupling which is a physical phenomenon when light modes exchange their energy between each other during propagation through optical fiber resulting in inter-symbol interference (ISI). Many studies based on Least Mean Square (LMS) and Recursive Least Square (RLS) have taken place to mitigate the mode coupling effect. Still, most approaches have high computational complexity and hinders high-speed communication systems. Blind equalisation approach does not need training signals, thus, will reduce the overhead payload. On the other hand, QR factorization shows low computational complexity in the previous research in the radio domain. The combination of these two concepts shows significant results, as the use of low complexity algorithms reduces the processing needed to be done by the communication equipment, resulting in more cost effective and smaller equipment, while having no training signal saves the bandwidth and enhances the overall system performance. To the best knowledge of the researcher, blind equalisation based on QR factorization technique has been not used in MDM equalisation to date. The research goes through the four stages of the design research methodology (DRM) to achieve the purpose of the study. The implementation stage is taken two different simulators has been used, the first one which is the optical simulator is used to collect the initial optical data then, MATLAB is used to develop the equalisation scheme. The development starts with the derivation of the system’s transfer function (H) to be used as the input to the developed equalizer. Blind equalisation based on QR factorization is chosen as a way to introduce an efficient equalization to mitigate ISI by narrowing the pulse width. The development stages include a stage where the channel estimation is taken place. Statistical properties based on the standard deviation (STD) of the powers of the input and output signals has been used for the blind equalisation’s channel estimation part. The proposed channel estimation way has the ability in estimating the channel with an overall mean square error (MSE) of 0.176588301 from the initial transmitted signal. It is found that the worst channel has an MSE of 0.771365 from the transmitted signal, while the best channel has and MSE of 0.000185 from the transmitted signal. This is done by trying to avoid the issues accompanied with the development of the previous algorithms that have been utilized for the same goal. The algorithm mentioned in the study reduces the computational complexity problem which is one of the main issues that accompany currently used tap filter algorithms, such as (LMS) and (RLS). The results from this study show that the developed equalisation scheme has a complexity of O(N) compared with O(N2) for RLS and at the same time, it is faster than LMS as its calculation CPU time is equal to 0.005242 seconds compared with 0.0077814 seconds of LMS. The results are only valid for invertible and square channel matrices

    Improved Design Method for Nearly Linear-Phase IIR Filters Using Constrained Optimization

    No full text

    Digital Filter Design Using Multiobjective Cuckoo Search Algorithm

    Get PDF
    Digital filters can be divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters. Evolutionary algorithms are effective techniques in digital filter designs. One such evolutionary algorithm is Cuckoo Search Algorithm (CSA). The CSA is a heuristic algorithm which emulates a special parasitic hatching habit of some species of cuckoos and have been proved to be an effective method with various applications. This thesis compares CSA with Park-McClellan algorithm on linear-phase FIR Type-1 lowpass, highpass, bandpass and bandstop digital filter design. Furthermore, a multiobjective Cuckoo Search Algorithm (MOCSA) is applied on general FIR digital design with a comparison to Non-dominated Sorting Genetic Algorithm III (NSGA-III). Finally, a constrained multiobjective Cuckoo Search Algorithm is presented and used for IIR digital filter design. The design results of the constrained MOCSA approach compares favorably with other state-of-the-art optimization methods. CSA utilizes Levy flight with wide-range step length for the global walk to assure reaching the global optimum and the approach of local walk to orientate the direction toward the local minima. Furthermore, MOCSA incorporates a method of Euclidean distance combing objective-based equilibrating operations and the searching for the optimal solution into one step and simplifies the procedure of comparison

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods
    corecore