3,652 research outputs found

    Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code

    Full text link
    [EN] In this work, we present a new architecture for soft-decision Reed-Solomon (RS) Low-Complexity Chase (LCC) decoding. The proposed architecture is scalable and can be used for a high number of test vectors. We propose a novel Multiplicity Assignment stage that sorts and stores only the location of the errors inside the symbols and the powers of a that identify the positions of the symbols in the frame. Novel schematics for the Syndrome Update and Symbol Modification blocks that are adapted to the proposed sorting stage are also presented. We also propose novel solutions for the problems that arise when a high number of test vectors is processed. We implemented three decoders: a h = 4 LCC decoder and two decoders that only decode 31 and 60 test vectors of true h = 5 and h = 6 LCC decoders, respectively. For example, our h = 4 decoder requires 29% less look-up tables in Virtex-V Field Programmable Gate Array (FPGA) devices than the best soft-decision RS decoder published to date, while has a 0.07 dB coding gain over that decoder.This research was funded by the Spanish Ministerio de Economia y Competitividad and FEDER grant number TEC2015-70858-C2-2-RTorres Carot, V.; Valls Coquillat, J.; Canet Subiela, MJ.; GarcĂ­a Herrero, FM. (2019). Soft-Decision Low-Complexity Chase Decoders for the RS(255,239) Code. Electronics. 8(1):1-13. https://doi.org/10.3390/electronics8010010S11381Cideciyan, R., Gustlin, M., Li, M., Wang, J., & Wang, Z. (2013). Next generation backplane and copper cable challenges. IEEE Communications Magazine, 51(12), 130-136. doi:10.1109/mcom.2013.6685768Koetter, R., & Vardy, A. (2003). Algebraic soft-decision decoding of reed-solomon codes. IEEE Transactions on Information Theory, 49(11), 2809-2825. doi:10.1109/tit.2003.819332Sudan, M. (1997). Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity, 13(1), 180-193. doi:10.1006/jcom.1997.0439Guruswami, V., & Sudan, M. (1999). Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6), 1757-1767. doi:10.1109/18.782097Jiang, J., & Narayanan, K. R. (2008). Algebraic Soft-Decision Decoding of Reed–Solomon Codes Using Bit-Level Soft Information. IEEE Transactions on Information Theory, 54(9), 3907-3928. doi:10.1109/tit.2008.928238Jiangli Zhu, Xinmiao Zhang, & Zhongfeng Wang. (2009). Backward Interpolation Architecture for Algebraic Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(11), 1602-1615. doi:10.1109/tvlsi.2008.2005575Jiangli Zhu, & Xinmiao Zhang. (2008). Efficient VLSI Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3050-3062. doi:10.1109/tcsi.2008.923169Zhongfeng Wang, & Jun Ma. (2006). High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(9), 937-950. doi:10.1109/tvlsi.2006.884046Zhang, X. (2006). Reduced Complexity Interpolation Architecture for Soft-Decision Reed–Solomon Decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(10), 1156-1161. doi:10.1109/tvlsi.2006.884177Xinmiao Zhang, & Parhi, K. K. (2005). Fast factorization architecture in soft-decision Reed-Solomon decoding. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(4), 413-426. doi:10.1109/tvlsi.2004.842914Bellorado, J., & Kavcic, A. (2010). Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part I: An Algebraic Soft-In Hard-Out Chase Decoder. IEEE Transactions on Information Theory, 56(3), 945-959. doi:10.1109/tit.2009.2039073GarcĂ­a-Herrero, F., Valls, J., & Meher, P. K. (2011). High-Speed RS(255, 239) Decoder Based on LCC Decoding. Circuits, Systems, and Signal Processing, 30(6), 1643-1669. doi:10.1007/s00034-011-9327-4Zhang, W., Wang, H., & Pan, B. (2013). Reduced-Complexity LCC Reed–Solomon Decoder Based on Unified Syndrome Computation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(5), 974-978. doi:10.1109/tvlsi.2012.2197030Peng, X., Zhang, W., Ji, W., Liang, Z., & Liu, Y. (2015). Reduced-Complexity Multiplicity Assignment Algorithm and Architecture for Low-Complexity Chase Decoder of Reed-Solomon Codes. IEEE Communications Letters, 19(11), 1865-1868. doi:10.1109/lcomm.2015.2477495Lin, Y.-M., Hsu, C.-H., Chang, H.-C., & Lee, C.-Y. (2014). A 2.56 Gb/s Soft RS (255, 239) Decoder Chip for Optical Communication Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2110-2118. doi:10.1109/tcsi.2014.2298282Wu, Y. (2015). New Scalable Decoder Architectures for Reed–Solomon Codes. IEEE Transactions on Communications, 63(8), 2741-2761. doi:10.1109/tcomm.2015.2445759Garcia-Herrero, F., Canet, M. J., Valls, J., & Meher, P. K. (2012). High-Throughput Interpolator Architecture for Low-Complexity Chase Decoding of RS Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(3), 568-573. doi:10.1109/tvlsi.2010.210396

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    Decoding of Interleaved Reed-Solomon Codes Using Improved Power Decoding

    Get PDF
    We propose a new partial decoding algorithm for mm-interleaved Reed--Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1−Rmm+11-R^{\frac{m}{m+1}} at all code rates RR, in time polynomial in the code length nn. For m>2m>2, this is an asymptotic improvement over the previous state-of-the-art for all rates, and the first improvement for R>1/3R>1/3 in the last 2020 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius.Comment: 5 pages, accepted at IEEE International Symposium on Information Theory 201

    Some remarks on multiplicity codes

    Full text link
    Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation codes, and are based on evaluating polynomials and their derivatives. This small augmentation confers upon them better local decoding, list-decoding and local list-decoding algorithms than their classical counterparts. We survey what is known about these codes, present some variations and improvements, and finally list some interesting open problems.Comment: 21 pages in Discrete Geometry and Algebraic Combinatorics, AMS Contemporary Mathematics Series, 201

    Re-encoding reformulation and application to Welch-Berlekamp algorithm

    Full text link
    The main decoding algorithms for Reed-Solomon codes are based on a bivariate interpolation step, which is expensive in time complexity. Lot of interpolation methods were proposed in order to decrease the complexity of this procedure, but they stay still expensive. Then Koetter, Ma and Vardy proposed in 2010 a technique, called re-encoding, which allows to reduce the practical running time. However, this trick is only devoted for the Koetter interpolation algorithm. We propose a reformulation of the re-encoding for any interpolation methods. The assumption for this reformulation permits only to apply it to the Welch-Berlekamp algorithm
    • 

    corecore