262 research outputs found

    Intelligent Luminaire based Real-time Indoor Positioning for Assisted Living

    Full text link
    This paper presents an experimental evaluation on the accuracy of indoor localisation. The research was carried out as part of a European Union project targeting the creation of ICT solutions for older adult care. Current expectation is that advances in technology will supplement the human workforce required for older adult care, improve their quality of life and decrease healthcare expenditure. The proposed approach is implemented in the form of a configurable cyber-physical system that enables indoor localization and monitoring of older adults living at home or in residential buildings. Hardware consists of custom developed luminaires with sensing, communication and processing capabilities. They replace the existing lighting infrastructure, do not look out of place and are cost effective. The luminaires record the strength of a Bluetooth signal emitted by a wearable device equipped by the monitored user. The system's software server uses trilateration to calculate the person's location based on known luminaire placement and recorded signal strengths. However, multipath fading caused by the presence of walls, furniture and other objects introduces localisation errors. Our previous experiments showed that room-level accuracy can be achieved using software-based filtering for a stationary subject. Our current objective is to assess system accuracy in the context of a moving subject, and ascertain whether room-level localization is feasible in real time

    Grid-based localization and local mapping with moving object detection and tracking

    Get PDF
    International audienceWe present a real-time algorithm for simultaneous localization and local mapping (local SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor environments from a moving vehicle equipped with a laser scanner, short-range radars and odometry. To correct the vehicle odometry we introduce a new fast implementation of incremental scan matching method that can work reliably in dynamic outdoor environments. After obtaining a good vehicle localization, the map surrounding of the vehicle is updated incrementally and moving objects are detected without a priori knowledge of the targets. Detected moving objects are finally tracked by a Multiple Hypothesis Tracker (MHT) coupled with an adaptive Interacting Multiple Model (IMM) filter. The experimental results on datasets collected from different scenarios such as: urban streets, country roads and highways demonstrate the efficiency of the proposed algorithm

    Grid-based Localization and Online Mapping with Moving Object Detection and Tracking

    Get PDF
    In this paper, we present a real-time algorithm for local simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor environments from a moving vehicle equipped with laser sensor, radar and odometry. To correct vehicle location from odometry we introduce a new fast implementation of incremental scan matching method that can work reliably in dynamic outdoor environments. After a good vehicle location is estimated, the surrounding map of the vehicle is updated incrementally and moving objects are detected without a priori knowledge of the targets. Detected moving objects are finally tracked by a Multiple Hypothesis Tracker (MHT) coupled with an adaptive Interacting Multiple Models filter. The experimental results on datasets collected from different scenarios such as: urban streets, country roads and highways demonstrate the efficiency of the proposed algorithm

    A framework for digitisation of manual manufacturing task knowledge using gaming interface technology

    Get PDF
    Intense market competition and the global skill supply crunch are hurting the manufacturing industry, which is heavily dependent on skilled labour. Companies must look for innovative ways to acquire manufacturing skills from their experts and transfer them to novices and eventually to machines to remain competitive. There is a lack of systematic processes in the manufacturing industry and research for cost-effective capture and transfer of human skills. Therefore, the aim of this research is to develop a framework for digitisation of manual manufacturing task knowledge, a major constituent of which is human skill. The proposed digitisation framework is based on the theory of human-workpiece interactions that is developed in this research. The unique aspect of the framework is the use of consumer-grade gaming interface technology to capture and record manual manufacturing tasks in digital form to enable the extraction, decoding and transfer of manufacturing knowledge constituents that are associated with the task. The framework is implemented, tested and refined using 5 case studies, including 1 toy assembly task, 2 real-life-like assembly tasks, 1 simulated assembly task and 1 real-life composite layup task. It is successfully validated based on the outcomes of the case studies and a benchmarking exercise that was conducted to evaluate its performance. This research contributes to knowledge in five main areas, namely, (1) the theory of human-workpiece interactions to decipher human behaviour in manual manufacturing tasks, (2) a cohesive and holistic framework to digitise manual manufacturing task knowledge, especially tacit knowledge such as human action and reaction skills, (3) the use of low-cost gaming interface technology to capture human actions and the effect of those actions on workpieces during a manufacturing task, (4) a new way to use hidden Markov modelling to produce digital skill models to represent human ability to perform complex tasks and (5) extraction and decoding of manufacturing knowledge constituents from the digital skill models

    Simultaneous Target and Multipath Positioning

    Get PDF
    <p>In this work, we present the Simultaneous Target and Multipath Positioning (STAMP) technique to jointly estimate the unknown target position and uncertain multipath channel parameters. We illustrate the applications of STAMP for target tracking/geolocation problems using single-station hybrid TOA/AOA system, monostatic MIMO radar and multistatic range-based/AOA based localization systems. The STAMP algorithm is derived using a recursive Bayesian framework by including the target state and multipath channel parameters as a single random vector, and the unknown correspondence between observations and signal propagation channels is solved using the multi-scan multi-hypothesis data association. In the presence of the unknown time-varying number of multipath propagation modes, the STAMP algorithm is modified based on the single-cluster PHD filtering by modeling the multipath parameter state as a random finite set. In this case, the target state is defined as the parent process, which is updated by using a particle filter or multi-hypothesis Kalman filter. The multipath channel parameter is defined as the daughter process and updated based on an explicit Gaussian mixture PHD filter. Moreover, the idenfiability analysis of the joint estimation problem is provided in terms of Cramér-Rao lower bound (CRLB). The Fisher information contributed by each propagation mode is investigated, and the effect of Fisher information loss caused by the measurement origin uncertainty is also studied. The proposed STAMP algorithms are evaluated based on a set of illustrative numeric simulations and real data experiments with an indoor multi-channel radar testbed. Substantial improvement in target localization accuracy is observed.</p>Dissertatio

    Digital twin and its implementations in the civil engineering sector

    Get PDF
    Digital Twin (DT) concept has recently emerged in civil engineering; however, some problems still need to be addressed. First, DT can be easily confused with Building Information Modelling (BIM) and Cyber-Physical Systems (CPS). Second, the constituents of DT applications in this sector are not well-defined. Also, what the DT can bring to the civil engineering industry is still ambiguous. To address these problems, we reviewed 468 articles related to DT, BIM and CPS, proposed a DT definition and its constituents in civil engineering and compared DT with BIM and CPS. Then we reviewed 134 papers related to DT in the civil engineering sector out of 468 papers in detail. We extracted DT research clusters based on the co-occurrence analysis of paper keywords' and the relevant DT constituents. This research helps establish the state-of-the-art of DT in the civil engineering sector and suggests future DT development

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included
    • …
    corecore