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ABSTRACT 

Intense market competition and the global skill supply crunch are hurting the 

manufacturing industry, which is heavily dependent on skilled labour. Companies 

must look for innovative ways to acquire manufacturing skills from their experts 

and transfer them to novices and eventually to machines to remain competitive. 

There is a lack of systematic processes in the manufacturing industry and 

research for cost-effective capture and transfer of human skills. Therefore, the 

aim of this research is to develop a framework for digitisation of manual 

manufacturing task knowledge, a major constituent of which is human skill. 

The proposed digitisation framework is based on the theory of human-workpiece 

interactions that is developed in this research. The unique aspect of the 

framework is the use of consumer-grade gaming interface technology to capture 

and record manual manufacturing tasks in digital form to enable the extraction, 

decoding and transfer of manufacturing knowledge constituents that are 

associated with the task. The framework is implemented, tested and refined 

using 5 case studies, including 1 toy assembly task, 2 real-life-like assembly 

tasks, 1 simulated assembly task and 1 real-life composite layup task. It is 

successfully validated based on the outcomes of the case studies and a 

benchmarking exercise that was conducted to evaluate its performance.  

This research contributes to knowledge in five main areas, namely, (1) the theory 

of human-workpiece interactions to decipher human behaviour in manual 

manufacturing tasks, (2) a cohesive and holistic framework to digitise manual 

manufacturing task knowledge, especially tacit knowledge such as human action 

and reaction skills, (3) the use of low-cost gaming interface technology to capture 

human actions and the effect of those actions on workpieces during a 

manufacturing task, (4) a new way to use hidden Markov modelling to produce 

digital skill models to represent human ability to perform complex tasks and (5) 

extraction and decoding of manufacturing knowledge constituents from the digital 

skill models. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter introduces the research topic by stating the need for this research, 

describing the motivation behind conducting it, providing the basic terms of 

reference, explaining the research concept and outlining the structure of this 

thesis document. This chapter also introduces the gaming interface technology 

used in this research. 

1.1 Research need and motivation 

There is intense global competition in the manufacturing industry with jobs 

being outsourced from high-wage to low-wage economies. The emergence of 

the global skill supply crunch (Figure 1) makes matters worse for manufacturing 

companies especially in high-wage economies resulting in the ever increasing 

cost of hiring skilled manpower, a constant decline in productivity due to 

unmatched skillsets of existing manpower and the prospects of reduced growth 

due to constrained manpower capacity.  

 

Figure 1: The global skill heat map (Oxford Economics, 2012) 

According to the UK Commission for Employment and Skills (UKCES, 2012), 

the UK is facing the effects of this global skill crunch with 1 in 5 vacancies 

proving difficult to fill. Out of the total skill shortage vacancies, about 30% 

belong to the manufacturing sector alone.  
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Despite the challenges, manufacturers must ensure that their products remain 

competitive and that they speed up the time-to-market and at the same time 

minimise manufacturing cost (Padrón et al., 2009). In such a situation, it is the 

need of the hour for the industry to capture and digitise the manufacturing task 

knowledge from skilled experts that perform these tasks today so that this 

knowledge could be used to up-skill the next generation of workforce and build 

intelligent solutions to automate some of these tasks in the future. This 

requirement was confirmed by a recent workshop on autonomous 

manufacturing conducted by the Engineering and Physical Sciences Research 

Council (EPSRC), with representatives from manufacturing companies such as 

Airbus, Jaguar Land Rover and Siemens, in which capture of human skills and 

modelling of complex manufacturing tasks were considered essential for 

tomorrow’s factories to be more productive and adaptive (EPSRC, 2014).    

A cohesive and holistic framework to capture and digitise manufacturing task 

knowledge is currently lacking both in the industry as well as in academic 

research and this research aspires to develop such a framework. 

1.2 Terms of Reference 

1.2.1 Manufacturing task 

Before presenting an overview of manufacturing knowledge and the framework 

to digitise it, it is necessary to briefly describe the general representation of a 

manufacturing task in the perspective of this research and explain the use of the 

common terms used in this chapter. 

Manufacturing tasks can be classified into three primary areas; machining, 

assembly, and inspection as represented using simple illustrations in Figure 2. 

  

 

Figure 2: Simplified representation of a manufacturing task 
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Terms:  

 Human = a skilled expert in a manufacturing enterprise who can be an 

engineer, an operator or a technician. 

 Workpiece = an object or a set of objects that are processed within a 

manufacturing task 

 Tool = an object used to process the workpiece. It could be a machining 

tool, an inspection tool or a machining centre.  

Figure 2 represents typical machining, inspection and assembly tasks. In case 

of machining, the human worker uses a machining tool to process the 

workpiece from its initial state to its final state or in case of inspection, uses an 

inspection tool to inspect a workpiece (Inaba et al., 1999). In an assembly task, 

a human worker assembles a minimum of two workpieces with or without a tool 

to form the assembled workpiece (Nof et al.,1997).  

1.2.2 Manufacturing knowledge 

Hicks et al. (2002) consider data, information and knowledge as important 

commodities for modern, globalised companies and effective use of these 

commodities is increasingly proving to be a solution to gain and sustain a 

competitive advantage. Before exploring the concept of knowledge digitisation, 

the differences between data, information and knowledge must be explained. 

Data is a collection of words, symbols or numbers without a context or meaning. 

Information is a collection of data that when processed provides particular 

meaning within a context. Knowledge is a collection of information with details 

on how the information should be used within a specific context and an 

understanding of data relationships. A significant body of research work (Wiig, 

1994, Nonaka and Takeuchi, 1995, Davenport and Prusak, 1997, Tuomi, 1999, 

Guerra-Zubiaga and Young, 2008) on knowledge management has addressed 

the subject of what is knowledge and how it is related to data and information. 

In the manufacturing domain, knowledge is multi-faceted and primarily contains 

data and information about the products such as product designs, models and 

materials and about the manufacturing tasks such as people, machines, tools, 
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processes, standard operation procedures and the manufacturing environment 

constraints. This research focuses on digitisation of manual manufacturing task 

knowledge. A general classification of manufacturing knowledge is shown in 

Figure 3 in which there are two main types of knowledge associated with a 

manufacturing environment, namely, explicit knowledge and implicit/tacit 

knowledge (Polanyi, 1966).  

Explicit knowledge is the technical or academic data that is described in formal 

language, like manuals, mathematical expressions, copyright and patents. 

According to Smith (2001) this ‘know-what’ or systematic knowledge is readily 

communicated and shared through print, electronic and other formal means.  

Tacit knowledge or hidden and implicit knowledge is a term related to human 

skills. Polanyi (1966) was the first to associate tacit knowledge with physical 

action that cannot be described verbally, such as the knowledge of riding a 

bicycle. Tacit knowledge as defined by Nonaka (1991) is the knowledge based 

on experience and insight that cannot be expressed verbally and therefore 

cannot be documented and transferred easily. 

 

Figure 3: Human skill as tacit knowledge in manufacturing 
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Smith (2001) defines technical tacit knowledge as a specific body of knowledge 

or human skills learnt by people such as those gradually developed by master 

craftsmen. Nickols (2000) is of the opinion that tacit knowledge can be 

communicated or transferred, and it can still be acquired by other means 

besides verbal descriptions. According to Nonaka and Takeuchi (1995), the 

acquisition of tacit knowledge takes place through observation, imitation and 

practice, and the most efficient way to transfer or store tacit knowledge is 

through the use of sketches, video clips, storytelling and patterns. This finding is 

also confirmed by the research reported by Guerra-Zubiaga and Young (2008). 

This research agrees with the opinion of Nickols (2000) that tacit knowledge can 

be acquired and communicated and therefore aims to develop a framework for 

digitisation of manual manufacturing task knowledge. In this framework, human-

workpiece interactions, within which human skills are embedded, are modelled 

and the manufacturing knowledge extracted from the models is represented in a 

digital reusable form.  

1.2.3 Human skill 

Human skill forms a significant part of tacit knowledge and in turn is classified 

into action (or motion) skill and reaction (or control) skill according to Xu and 

Yang (1995). Duan et al. (2008) consider reaction skill as a human decision 

making ability to select the most appropriate actions to execute according to the 

task situation and action skill as the human’s superior movement to execute the 

task when he/she knows what to do. The reaction skill is responsible for the 

choice of actions made depending on the situation of the task which the human 

observes and analyses whereas action skill is responsible for the precise 

gestures, motion mechanics, workpiece manipulation techniques, etc. that the 

human performs during the task. In this classification, skill is hierarchical: the 

reaction skill is a higher level skill than action skill i.e. the output of the reaction 

skill is the input for the action skill.  

1.3 Need for skill extraction and transfer 

Increasing global competition and the global skill supply crunch has created a 
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need for the manufacturing industry to look for quick and effective up-skilling 

solutions. Yoshida et al. (2011) are of the opinion that for a sustainable 

developed society in which manufacturing industries thrive; expert engineers 

must transfer their knowledge and skills to young learners. Since human skill is 

in tacit form, it is not easily shared even if the work procedures of operation in 

manufacturing industries are rigidly defined. However, if this tacit knowledge 

were to be extracted and converted to explicit knowledge, the young engineers 

can easily learn the skill and reach a level of competency required to maintain 

the skill levels and efficiencies of companies.  

Automation is another solution that will make the industry less dependent on 

human skill supply. An effective and efficient integration of automation tools and 

technologies for industrial production has the potential to improve the 

competitiveness of manufacturing companies (Sattar et al., 2014). However, the 

paradox of manual labour in specific operations of otherwise highly automated 

manufacturing systems is consistent in today's industry (Georgilas and 

Tourassis, 2008). Polishing, spray painting, layup of composite fibre plies, 

complex assembly and inspection tasks are still performed manually by skilled 

workers. Automation of such jobs is not easy because according to Duan et al. 

(2008), the main problem is that the robots do not have the abilities to react to 

uncertainties in an unpredictable environment because they have been rigidly 

programmed to do a particular task unlike the humans who handle complex 

unpredictable tasks well. 

Humans manage skill-intensive jobs with relative ease but it is difficult for them 

to make formal definition to describe their own skills; therefore, effectively 

analysing and extracting human skills to make skill models and then using these 

skill models to realise the skill transfer process is a worthwhile idea (Duan et al., 

2007). These skill models can be used to transfer human skill to train less-

skilled human operators or robots. Since the action and reaction skills are 

interlinked, a skill capture and transfer process for both skills is desired. 

1.4 Need for the proposed digitisation framework 

A manual manufacturing task is a complex activity comprising humans, tools, 
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workpieces and environments, and results in the building of products. The 

human is the main actor in this activity, who possesses the intellect and skills to 

significantly influence the outcome of the task, guiding it to successful 

completion by solving problems along the way. Though intellect is an inherent 

virtue, skills can be learnt via training, repetitive practice and/or on-the-job 

experiences. However, the extent of teaching or learning is subjective and 

depends on the individuals involved in the skill-transfer process (Yoshida et al., 

2011). Thus the competitiveness and longevity of a manufacturing firm that is 

dependent on skilled labour is a function of how quickly and effectively it 

enables the transfer of skills from one generation of its workforce to the next.   

There are several reasons for these manufacturing tasks to have remained 

manual in nature despite the widespread use of automation in industry. One of 

them is the dearth of complete understanding of these tasks, especially the tacit 

knowledge such as human skills that are embedded within the tasks (Georgilas 

and Tourassis, 2008). This lack of knowledge deters automation of these tasks 

thereby resulting in a constant demand of skilled manpower. 

Therefore, there is a need to develop a framework for the capture of tacit 

knowledge from skill-intensive manual manufacturing tasks. The framework 

must be cohesive, comprehensive, scalable and flexible to be adopted widely 

by the industry covering a broad spectrum of manual manufacturing tasks.  

1.5 Research concept 

In this research, human skill is considered as an enabler that allows the human 

to successfully perform a manual manufacturing task and as a major 

component of knowledge embedded within the task. The research further 

considers a manual manufacturing task as a series of human-workpiece 

interactions in which every action by the human on the workpiece is followed by 

feedback from the workpiece on its state of progress to which the human reacts 

by performing the next suitable action. This action-feedback-reaction loop 

continues till the task is successfully completed. Thus, skill manifests itself 

through these interactions and this research postulates that by capturing and 

analysing these interactions, human skill could be extracted.  
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The concept of this research is to capture and record human-workpiece 

interactions that take place during a manual manufacturing task. These 

captured interactions are segregated into human action and workpiece states 

that are then studied to establish a cause effect relationship between them. 

Once these relationships are established, human action sequences responsible 

for critical workpiece changes during the task are extracted and the key 

ingredients that make up those human actions are decoded. These ingredients 

are precisely what make up manufacturing knowledge, including human skill 

that is embedded within the task (Figure 4). A framework is thus developed to 

implement this concept in a structured manner and it is tested on both simulated 

and real-world case studies by using it to digitise the knowledge that is 

embedded within those tasks. 

 

Figure 4: Research Concept 

The tasks used in the first 4 case studies are manual assembly tasks. The task 

in the 5th case study can also be broadly classified as an assembly task. 

Assembly is a sub-system of a manufacturing system and involves bringing and 

joining parts and/or sub-assemblies together (Marian, 2003). The primary 

reason for this choice is that assembly tasks can be simulated under simplified 

and structured laboratory conditions with model artefacts and this simplification 

reduces the complexity of human action and object tracking methods needed in 

the framework. The choice of assembly tasks is also valid from the industry 

perspective because assembly consumes up to 50% of total production time 

and accounts for more than 20% of total manufacturing cost (Pan, 2005). 

Gaming interface technology is proposed as a task capture tool to capture the 
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human-workpiece interactions. This technology brings human motion capture 

and workpiece tracking functionality to the framework via the use of commodity-

priced off-the-shelf gaming device without the need for any pre-calibration. One 

such device is the Microsoft Kinect™ (Microsoft, 2014). Other motion capture 

technologies studied were multiple camera systems from Vicon (Aachen, 2012) 

and wearable inertial accelerometer sensor systems from Xsens (Xsens, 2015). 

Both these systems were not selected because they of their relatively higher 

costs (two orders of magnitude greater than the price of Kinect), both are 

marker-based hence obtrusive and both are not suited for object recognition 

and tracking.  

1.5.1 Gaming interface technology 

Modern game design is human-centric and aims to involve a gamer in the game 

not only mentally but also physically. This is achieved by capturing the gamer’s 

body movements using portable motion capture technology as he/she navigates 

through the game, for instance while playing a game of virtual tennis. This 

motion is analysed to extract specific human actions and reactions to game 

situations and the game scenarios are adjusted accordingly. Portable motion 

capture technology is made available using 3D sensing devices that are 

packaged with the latest high-tech gaming consoles. Kinect™ is one such 

device that is used in conjunction with the Xbox™ gaming console made 

available by Microsoft Corporation.  

About the Kinect 

The Kinect is a motion sensing device which enables gamers to control and 

interact with their virtual games through a natural user interface without the 

need for a game controller. This interface uses human gestures and spoken 

commands rather than joystick, keyboard or mouse inputs. Though the device 

was launched in November 2010 as a gaming tool, it was released for the 

development of gesture and speech controlled applications only in June 2011. 

In July 2014, Kinect V2, the second generation of the device with better 

specifications and features was launched. The price point of under £150 per 

unit and its portability and robustness proved to be major advantages for 
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application and game developers alike. The first Kinect generation (Kinect V1) 

holds the Guinness World Record for being the ‘fastest selling consumer 

electronics device’ (BBC, 2011). 

The Kinect V1, which works at a resolution of 640 x 480 pixels, is the primary 

task capture tool used in this research. It comprises an RGB camera that 

produces colour images at the rate of 30 frames per second (fps) and an IR 

camera that produces depth images also at the rate of 30fps (Figure 5). 

Therefore, for every pixel in the scene recorded by the Kinect, six elements of 

useful information can be acquired, namely, its red, green and blue colour 

values, its x and y positions relative to the screen coordinate system, and its 

distance (in mm) from the Kinect in absolute value (Borenstein, 2012).  

  

(a) (b) 

Figure 5: (a) RGB image (b) Depth image produced by the Kinect 

The Kinect comes with a software development kit (Kinect MSDN, 2013) that 

comprises standard functions to identify up to 6 humans from within the scene 

and to track the positions of up to 20 skeletal joints for up to 2 humans (Figure 

6). This motion tracking functionality is provided without the need for any 

additional software coding. This research uses the standard human skeletal 

motion tracking functionality of the Kinect with a standard high-pass filtering and 

threshold-averaging algorithm to filter and smooth the motion capture data. 
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(a) (Microsoft, 2014) (b) 

Figure 6: (a) Standard human identification and skeletal tracking (b) Human 

skeletal tracking in this research 

Object recognition and tracking was a difficult task earlier using colour image 

processing techniques. But with the availability of depth information, object 

recognition and tracking has become relatively easier. In this research, the 

Kinect is used to recognise and track objects at the same time as it tracks and 

captures human motion. Therefore, with just one Kinect device, the human-

object interactions occurring during a manual manufacturing task can be 

captured and recorded. The Kinect is therefore used as the primary task 

capture tool in the proposed digitisation framework.  

There are several software development kits, which implement markerless 

motion capturing algorithms on Kinect depth images. PrimeSense NiTE 

middleware library from OpenNI offers a platform-independent solution with low 

computational costs and is the platform used in this research. The other 

development kit is from Microsoft called the ‘Kinect for Windows SDK’, which 

works only on the Windows platform. These software development kits provide 

functions that extract absolute human joint coordinates in 3D in real-time. 

The advantages of using the Kinect are its low cost, high portability and that it 

does not require any pre-calibration. However, human motion can only be 

captured from the front view where the human faces the device. If the human 

turns his back to the sensor, it may fail to track the motion correctly. The use of 

multiple Kinect devices may be used to capture different perspectives to solve 
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this problem but the projected Infra-Red (IR) patterns from the devices would 

interfere with each other resulting in bad depth image quality and therefore 

unreliable motion capture. The Kinect also suffers from unreliable motion 

capture due to occlusions, which is when the complete view of the human is 

obstructed by a large object. More details about the Kinect including its 

limitations and the introduction of the next generation of the sensor, Kinect V2 is 

presented in CHAPTER 7.  

1.6 Thesis structure 

This thesis is structured into 8 chapters (Figure 7): 

 

Figure 7: Thesis structure diagram 

Chapter 1 gives an introduction to the research. It also presents the research 

problem and motivation. 

Chapter 2 reviews literature in the human skill capture, extraction, modelling 

and transfer domains, collectively referred to as digitisation, for manufacturing 

applications. In this chapter, the literature survey is performed to identify the 

research trends and find research gaps in the area. 
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Chapter 3 outlines the research aim, objectives and scope. This chapter also 

presents the research methodology to explain how this research is conducted. 

Chapter 4 gives the description of the underlying concept of human-workpiece 

interactions and the use of seminal theories from literature for the advancement 

of human-workpiece interaction theory. 

Chapter 5 proposes a framework for digitisation of manual manufacturing task 

knowledge. This chapter introduces Hidden Markov Models and proposes their 

use as a stochastic tool to model human-workpiece interactions.  

Chapter 6 presents the implementation of the framework by using an example 

task of Lego blocks assembly. It also presents the process of digitising the 

manufacturing environment using an automotive wheel-loading task.  

Chapter 7 presents the validation case studies to test whether the digitisation 

framework can extract and decode manual manufacturing task knowledge from 

3 different tasks, including one from the composites manufacturing industry. 

The case studies presented are i) digitisation of a pen assembly task, ii) 

digitisation of an Ikea table assembly task and iii) digitisation of a manual 

composite layup task. Collectively in these studies, different methods and tools 

proposed within the framework are implemented, tested, refined and validated. 

Chapter 8 discusses the contribution of this research to knowledge and the 

advantages and limitations of this research. Finally, this chapter discusses 

future research direction and presents conclusions. 

1.7 Chapter summary 

This chapter introduces the terms frequently used in this thesis; manufacturing, 

manufacturing knowledge and human skills in manual manufacturing. It 

highlights the need to digitise manufacturing knowledge embedded within 

manual manufacturing tasks and presents a research concept to investigate the 

development of a framework to digitise this knowledge. 
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CHAPTER 2 

2 LITERATURE REVIEW 

This chapter reviews the existing work on digitisation of manual manufacturing 

task knowledge as well as existing theories in human behaviour and human-

object interaction that could be investigated to develop this research. In the 

context of this research, digitisation means the capture, modelling and 

extraction of the constituents that make up manufacturing knowledge, especially 

those that are tacit in nature, such as human skill, and representing the 

extracted knowledge in digital form.  

The aim of this chapter is two-fold: (i) to give an overview of the proposed 

processes of manufacturing knowledge digitisation from literature including the 

reported approaches, methods, tools and techniques, and (ii) to learn from 

established theories that underpin the development of the proposed human-

workpiece interaction theory in this research. This chapter also discusses the 

research gaps in manufacturing knowledge digitisation and the research trends 

in the areas of human motion capture, object recognition and tracking, human-

object interaction and gaming interface technology. 

This chapter attempts to achieve the following objectives: 

 Provide an overview of manufacturing knowledge and reported research 

in the digitisation of manual manufacturing task knowledge. 

 Provide an overview of established theories in human behaviour analysis 

and human-object interaction analysis pertaining to the manufacturing 

industry. 

 Identify the steps used in the manufacturing knowledge digitisation 

process. 

 Analyse the research approach and different Information and 

Communications Technology (ICT) methods, tools and techniques used. 

 Identify the research gaps. 

 Discuss the research trends. 
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2.1 Background 

Though automation is pervasive in modern manufacturing, manual labour is still 

used in a large variety of complex tasks that use human skill, which is a 

complex mix of dexterity, precision, accuracy and sophisticated cognition. 

Human skill is a major part of the manufacturing knowledge associated with 

skill-intensive manual manufacturing tasks. Companies relying heavily on skilled 

manpower must effectively capture and archive skills of their experts so that 

they can be transferred to the next generation of the workforce and eventually 

to machines. Therefore digitisation of manufacturing knowledge has become a 

key requirement for the industry (Young, 2003) and the associated processes 

for capturing that knowledge have received keen interest from many 

researchers. Most of the human action and object recognition work in literature 

belongs to the social robotics, human-robot interaction and human-machine 

interface domains. While, some of this work is analysed and presented later in 

this chapter, relevant work in the core area of digitisation of human skills 

applicable in the manufacturing domain has been consolidated and presented in 

this chapter. The structure of the literature review is presented in Figure 8. 

This review is made up of two distinct focus areas. The first focus area targets 

those articles in literature that report research in digitisation of manufacturing 

knowledge, especially human skills from manual manufacturing tasks. The 

literature is surveyed to uncover any existing frameworks that are reported to 

digitise human skill and also to understand the different methods and tools used 

in the digitisation process, including the adoption of gaming interface 

technologies. By analysing the results of this survey, research gaps are 

identified and research trends are predicted. This focus area forms the basis for 

the development of the proposed digitisation framework in this research. The 

second focus area targets those articles in literature that study manual 

manufacturing tasks to obtain further insights into human behaviour, human 

problem-solving processes, human task analysis and human-object interaction 

in manufacturing industry settings. A survey of the literature is conducted to 

study if the concept of human-workpiece interactions has been proposed before 

to digitise manual manufacturing task knowledge. 
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Figure 8: Literature Review Structure 

Seminal articles are obtained to find useful insights into the interplay of human, 

workpieces and the manufacturing environment during manufacturing tasks in 

order to reinforce the proposed human-workpiece interaction concept. Recent 

articles in the areas of human action recognition, object recognition and tracking 

and human-object interface studies are also studied to examine the current 

state-of-the-art in this area.  

2.2 Focus Area I: Digitisation of human skills – skill capture, 

modelling, extraction and transfer 

Skill capture, extraction, modelling and transfer, referred to collectively as 

‘digitisation’ has been centred on the following main entities belonging to a 

manual manufacturing task, namely, a) human, b) workpiece, c) tool, d) a 

combination of human and tool, and e) a combination of human and workpiece. 

The process level classification of this skill digitisation process comprising five 

main sequential steps is illustrated in Figure 9. 
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Figure 9: Process-level classification of human skill digitisation 

The digitisation process begins by acquiring raw data upon observation of the 

human perform the manual manufacturing task. A stereovision system is one 

type of tool used for raw data acquisition (Kruger et al., 2010). The raw data is 

then analysed to obtain useful information about the operation such as positions 

and states of the human (Marfia et al., 2012), workpiece (Matsuki, 2010) and 

tool (Kawashimo et al., 2009) during the operation from start to finish.  From this 

preliminary information, human action and reaction skills are extracted using 

algorithms that look for specific features in the data such as human motion 

trajectories (Tommaso et al., 2012), human action primitives, such as picking up 

and releasing objects, (Faria et al., 2012), workpiece contact states (Skubic and 

Volz, 2000), and decision making and control strategies (Duan et al., 2008). 

This extracted skill is then modelled and represented using standard methods 

such as hidden Markov models (Calinon and Billard, 2005) so that the skills can 

be documented as explicit knowledge and transferred to novice operators or to 

enable automation (Duan et al., 2008).  

Several methods, tools and techniques have been reported in literature to 

implement each of the above 5 steps and are illustrated as technical-level 

classification in Figure 10 and Figure 11. 
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2.2.1 Raw data acquisition 

Raw data is acquired by observing the skilled human perform the manufacturing 

operation. 8 methods used for observation and data acquisition have been 

reviewed.  

(i) The stereo vision system consists of one or more cameras that capture 

colour stereo images, at a specified resolution and frame rate, the motion 

traversed by the human operator and his/her manipulation of the tool and the 

workpiece while performing the operation (Yeasin and Chaudhuri, 2000). Two 

types of vision systems are used: one which requires the human and the 

objects to wear markers for visible distinction and tracking (Kikuchi et al., 2013) 

whereas the other which does not require any markers (Marfia et al., 2012) in 

which object recognition and filtering algorithms are utilised for motion tracking. 

(ii) The multi-sensor system is a combination of two or more devices, such as 

vision cameras, eye movement trackers, force sensors, tactile sensors and 

inertial sensors (Faria et al., 2012), where not only the human motion 

coordinates but also the kinematics of motion, human body orientation, grasp 

transitions on objects, and tactile signatures of the human hand and eye 

movements are acquired. (iii) In order to capture human control strategy data, a 

skilled human operator programs a robot (Okuda, 2007) or tele-operates a robot 

(Grudic and Lawrence, 1996) remotely or using a haptic interface device 

(Skubic and Volz, 2000) to manipulate tools and workpieces. The resulting robot 

motion is tracked to obtain its position and orientation during the entire tele-

operation. (iv) The fourth data acquisition method is to use simulations as a tool 

to acquire operation data. Expert skill such as tool manipulation paths and 

operation conditions are built into kinematic simulation software (Tsai et al., 

2012) to predict how the workpiece will move based on the set of forces and 

constraints acting on it. Dynamic simulators are used by Duan et al. (2008) to 

record control data as a result of human manipulation of objects in simulated 

environments. (v) Visual observations of a skilled human while performing an 

operation and interviewing the human after the operation is a method of 

acquiring data about the actions and decisions made during the operation 

(Hashimoto et al., 2011).  
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Figure 10: Technical-level classification of human skill digitisation process 
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Figure 11: (Continued) Technical-level classification of the human skill digitisation process
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Of all data acquisition methods, this is the most cumbersome and time-

intensive. (vi) Low-cost gaming interface sensors, such as the Microsoft Kinect, 

that provide both Red-Green-Blue (RGB) and depth information of the captured 

scene and provide easy human motion capture are used in recent works to 

digitise human actions and recognise objects. Tomasso et al., (2012) and 

Huang et al., (2014) have used the Kinect to obtain real time information of 

human joint positions and angles during an operation. (vii) The analysis of 

audible data associated with manufacturing like the cutting sound in machining 

is vital to the decision-making skill of the human operator. Kawashimo et al. 

(2009) have used a microphone recorder to record cutting sound in a machining 

operation for subsequent frequency analysis. (viii) Finally, human motion data 

can also be acquired using Kinesthetics (Calinon, 2007), in which the human 

demonstrates the action by moving the passive arms of a humanoid robot and 

the motor encoders within the robot record this movement and joint angles. 

2.3 Raw data analysis 

The next step in the human skill digitisation process is the analysis of raw data. 

In this step, raw data associated with an entity or a combination of entities 

during the observation of manufacturing operation is specifically targeted and 

analysed. Five groups of methods have been reviewed. In the first group, 

human data is analysed to obtain a series of 3-dimensional (3D) coordinates of 

positions of the human body like the arms, torso and legs (Kikuchi et al., 2013, 

2014) as well as the kinematics of human motion such as joint angle data (Duan 

et al., 2008). Ntouskos et al. (2012) report on various articulated 3D human 

motion analysis comprising compression, motion synthesis, indexing and 

classification.  They also report their own work on statistical analysis of a 

diverse set of human action categories using publicly available motion capture 

(MOCAP) databases. In the second group, data associated with the workpiece 

are analysed to obtain its 3-dimensional motion, contact states with other 

workpieces, orientations in space and change in configurations as the 

manufacturing operation progresses from start to finish (Takamatsu et al., 2000, 

Yamamoto et al., 2001). The third group is specific to the analysis of data 
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associated with the tool used in the manufacturing operation. From these 

methods, the tool’s 3-dimensional motion coordinates, angles between its 

constituent parts and orientation in space are obtained (Tsai et al., 2012, 

Sakaida et al., 2008). In the fourth and fifth group, researchers have used a 

combination of two entities such as human-workpiece or human-tool to 

specifically obtain human body motion as well as object movements, states and 

orientations obtained from the analysis. An advantage of using a combination of 

entities for analysis is that the effect of the human actions on the transformation 

of the object (workpiece or tool) status from the starting conditions to the task 

goal is obtained (Jiang et al., 2014, Huang et al., 2014).  

2.3.1 Skill extraction (Action skill) 

The next step in the human skill digitisation process is skill extraction from the 

previously analysed data. More work has been reported to extract action skills 

as compared to reaction skills.  

To extract action skills, researchers have identified specific trajectories 

traversed and gestures produced by the human body to recognise actions that 

have some effect on the tool or workpiece (Liu et al., 2015, Tommaso et al., 

2012). Some researchers have segmented the motion data into action 

primitives, classifying these action primitives to specify specific sub-tasks and 

identifying and labelling the sequence and dependency of motion behaviours 

(Such et al., 2014, Kruger et al., 2010). Another method used is to infer human 

actions on the workpieces based on the changes in position, orientation and 

contact state formation when two or more workpieces come in contact with each 

other (Elkington et al., 2015, Funahashi et al., 2011). This method is usually 

used when only the workpiece is tracked during the operation or when human 

action is observed visually without any aid to record the motion. When the skill 

involved in an operation is not clear, comparison of analysis of motion and/or 

force data is made between the data extracted from a skilled operator and a 

non-skilled operator. The distinct difference in data is then inferred to be the 

change required to go from non-skilled to skilled for that operation (Kikuchi et 

al., 2013, 2015, Funahashi et al., 2011). Skill is also interpreted as the presence 
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of specific association or co-relation rules that exist between different parts of 

the human body or tool or the workpiece during an operation (Kjellstrom et al., 

2011, Huang et al., 2014, Sakaida et al., 2008). There are also some other 

methods used by researchers like producing ‘if-then’ rules based on the effect 

of human action on the tool or workpiece (Duan et al., 2010), extracting control 

strategies via interviews (Hashimoto et al., 2011) or inferring human action skills 

via a robot program written by a skilled human (Okuda, 2007).  

2.3.2 Skill extraction (Reaction skill) 

Reaction skill is considered high-level skill possessed by humans to make 

decisions and solve problems. It is acquired by way of experience and is difficult 

to extract using the methods stated in the previous paragraph since it does not 

involve any explicit motion. However, some researchers have attempted to 

extract reaction skill like Matsuki (2010), who used interviews to extract input to 

output relationships of an operation from a skilled operator. Duan et al. (2008) 

have used a dynamic simulator that simulates a real environment through which 

the human performs virtual manoeuvres and his/her corresponding control 

strategies are recorded. Nechyba and Xu (1995) have used simulation that a 

human uses to produce data, which is then used to feed and train the neural 

network. The neural network then produces control strategies depending on the 

network function set. Kawashimo et al. (2009) use analysis of frequencies of 

cutting sound recorded from a machining operation and map critical frequencies 

to process steps taken by the human operator in order to extract his/her 

decision-making skills in choosing process parameters.  

2.3.3 Skill modelling 

According to Xu and Yang (1995), skill modelling has the potential to enable 

automatic transfer of human skills to automation solutions like robots and create 

a skill library that can effectively be used by the robots in real-time operations. 

They have considered skill modelling and skill transfer in a stochastic 

framework and used Hidden Markov Models (HMM) to model and transfer both 

action and reaction skills. Human action is considered observable data as the 

output symbols of an HMM resulting from human mental states, which are not 



 

 24 

observable and considered as hidden states. The most likely set of human 

mental states responsible for a given set of human actions can be predicted 

from the HMM thus extracting human skill. Calinon and Billard (2005) have used 

principal component analysis (PCA) and independent component analysis (ICA) 

to pre-process human motion data to remove noise and encode the gestures 

using HMM so that the skill could be recognised, generalised and reproduced. 

Kruger et al. (2010) have enhanced the representation of human action by 

using parametric HMMs (PHMM) to map movement trajectories to their desired 

effect on the workpiece by taking the effect of the movement as a parameter. 

Shon et al. (2005) have used Scaled Gaussian Process Latent Variable Model 

(SGPLVM) to perform regression from high dimensional human motion data to 

low dimensional latent variable space to represent human action This way, the 

researchers have produced a learning model that uses imitation of humans. 

Skubic and Volz (2000) have used a hybrid control model, which provides a 

mechanism for combining velocity changes in motion and mapping of force 

control to human-workpiece contact formation events during an assembly task. 

Field et al. (2011) in their review of skill modelling for robotics have briefly 

described stochastic skill models like Gaussian Mixture Models (GMM) and 

HMM, transformational models like PCA, non-linear dimension reduction 

models and connectionist models. 

Conditional Random Fields (CRF) is a commonly used modelling technique to 

recognise and model human actions from continuous motion sequences. CRF 

is a statistical modelling method often applied in pattern recognition and 

machine learning, where they are used for structured prediction. It is used to 

determine relationships between observations and construct consistent 

interpretations from sequential data and is an alternative to the related hidden 

Markov models (HMMs). However unlike HMM, CRF is limited because it 

cannot capture hidden-state variables and it assumes the human action 

sequences to be fully observable, which is not the case where skill heavily 

influences human actions. Researchers have proposed enhanced versions of 

the CRF such as Gaussian Process Latent CRF (Jiang et al., 2014) to build a 

probabilistic model that not only models human actions but also captures the 
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relationships between human and other entities in the environment and Coupled 

Hidden CRF (Liu et al., 2015) in which the hidden low dimensional state 

variables are used for improved human action segmentation and classification.  

2.3.4 Skill transfer 

Skill transfer is the final step in which the skill extracted and sometimes 

modelled is passed on to novice operators for skill upgrading or to the 

automation solution that imitates human skill in the task. Skill is transferred 

using simple methods like generation of a task plan from extracted skill with 

sensor feedback, error detection and recovery actions (Kuniyoshi et al., 1994), 

and generation of robot programs from skill models (Xu and Yang, 1995, Kruger 

et al., 2010).  

Duan et al. (2008) have entered their extracted human motor skill information 

into a kinematic simulator that synthesises motion and generates 3D 

coordinates and joint angle data for robotic arms to reproduce. However, due to 

the differences in degrees of freedom of the human joints and robot arm joints, 

the extracted motor skill information cannot be directly programmed into the 

robot arm. Depending on the lengths and proportion of the different parts of the 

robot arm, kinematic mapping is required to convert the human arm motion 

coordinates and angles to those of the robot arm. Also, certain movements that 

are not possible for the human, for example, backward bending of the arms, are 

possible for the robot arm. Therefore, a combination of human motor skill 

transfer and the use of special robot capabilities may be a practical solution for 

task automation.  

Shon et al. (2005) have used SGPLVM to perform regression on low 

dimensional latent variable space in which human action skill was represented 

to high dimensional motion space representing degrees of freedom of the 

robot’s motorised arms. Grudic and Lawrence (1996) have used Space 

Partitioning, Self-Organising and dimensionality Reducing (SPORE) 

approximation framework to generalise human action skill and map sensor to 

actuator outputs in order to transfer skill from human to robot. Watanuki (2008) 

has reported work on acquisition of manufacturing knowledge in casting by 
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using Virtual Reality (VR) technology comprising a 3D visualisation and motion 

capture system using force feedback and an annotation display device. By 

adding annotation to the space in which a model is displayed in VR 

environment, technical information is shared between engineer and skilled 

operatives and embodied knowledge in the casting process is acquired. Such et 

al. (2014) use the Kinect to capture human hand motion during a composite 

layup task and depending on the observed motion and the pre-defined task 

strategy, annotate the next area of the workpiece that the human should be 

working on thereby transferring layup skill in real-time.  

2.3.5 Recent advances in basic building blocks of this research 

The basic building blocks that underpin this research are human action 

recognition, object recognition and human-object interaction tracking. Recent 

advances in this area have been identified to understand the current research 

landscape and the possibilities of future adoption of some of these advances.  

Recent human action recognition research 

Several articles have reported human action recognition using Red, Green and 

Blue (RGB) vision-based methods. Among the recent papers, Cheng et al., 

(2015) have used a combination of ‘Bag-of-Words’, in which the words are 

distinctive trajectory groups obtained using K-Means clustering, and the spatio-

temporal relationships between the words to recognise human actions from 

RGB videos. Yoon and Kuijper (2013) have proposed a method to detect 

human actions by identifying and extracting skeletal features from the RGB 

images and using multiple kernel-based support vector machines for 

recognising actions. Rahman et al. (2013) have proposed a region-based 

method to recognise human actions by analysing the surrounding negative 

space regions of the human silhouette and Shao et al. (2012) have used 

temporal human action segmentation using methods based on colour intensity 

and motion gradients and action recognition using Pyramid Correlogram of 

Oriented Gradients (PCOG) shape descriptor. For research prior to 2011, the 

reader is referred to the survey of vision-based methods for action 

representation, segmentation and recognition by Weinland et al. (2011) and a 
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review of human activity analysis, where an activity is a set of human actions, 

by Aggarwal and Ryoo (2011). 

Recently, human action recognition using a combination of RGB vision and 

depth imaging (RGB-D) have gained in popularity due to the emergence of 

inexpensive gaming interface technologies that use RGB-D imaging, such as 

the Kinect. The Kinect and its associated Software Development Kit (SDK), 

provides up to 20 skeleton joints of a human in the 3D scene as well as the 

depth information of each pixel of that scene (Shotton et al., 2011). Chen et al. 

(2015) have used a fusion of RG-D imaging and wireless inertial sensors 

strapped to the body for recognition of human actions; Chaaraoui et al. (2014) 

have used an evolutionary algorithm to select the optimal set of joints identified 

by the RGB-D device to recognise human actions; Chen et al. (2013) have used 

spatio-temporal local feature representations to characterise and recognise 

human action from RGB-D images instead of relying on the skeletal joint data. 

For research prior to 2013, the reader is referred to a survey of human motion 

analysis using depth imagery by Chen et al. (2013).  

Recent object recognition and tracking research 

Object recognition has been a widely researched subject with applications in 

surveillance, medical imaging, social robotics and automation to name a few. 

Among the recent articles, Wohlhart and Lepetit (2015) have used the 

Euclidean distance between object descriptors, computed using Convolutional 

Neural Network (CNN), and the Nearest Neighbour search method to detect 

poorly textured objects and their 3D poses from RGB and RGB-D images, 

Zhang et al. (2014) have proposed a multiple kernel approach based on the 

Exact Euclidean Locality Sensitive Hashing (E2LSH) method of object 

detection; Yoon et al. (2013) have proposed a fuzzy particle filter algorithm to 

detect and track objects from a sequence of RGB images, Dou and Li (2013) 

have reported a moving object detection method based on improved Visual 

Background Extractor (VIBE) and graph cut optimisation from monocular video 

sequences. There are a few articles that report the use of RGB-D imaging 

methods for object recognition and tracking. Ali et al. (2013) have used both 
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RGB-D images to recognise object features using a combination of global 

appearance and shape-based feature vectors. Koo et al. (2013) have proposed 

multiple objects tracking from an RGB-D point set using GMM with a Tempo-

Spatial Topological Graph (TSTG). Liu et al. (2013) have reported object 

segmentation from RGB-D data using a probabilistic boundary detector to 

detect object boundary and refine the boundary using Graph Cuts. Asif et al. 

(2013) have presented an approach to detect and track 6D pose of rigid objects 

from RGB-D image sequences using Oriented Brief (ORB) feature key points 

for object segmentation followed by feature extraction. For a detailed review of 

research prior to 2013 in this area, the reader is referred to a survey of 

approaches and methods adopted in literature for object recognition by 

Andreopoulos and Tsotsos (2013).  

Recent human activity tracking and object affordance research 

Social robotics applications, in which robots have to recognise objects in their 

environments and interact with them just as humans would, have opened up 

new approaches to identify and model mutual contexts in which humans interact 

with objects. In such research, human activities are recognised from a 

sequence of RGB or RGB-D images and by tracking changes to the objects that 

the human manipulates, affordances are assigned to those objects. Object 

affordance categorises an object based on its function and context of use, such 

as ‘throwability’ of a ball or ‘sittability’ of a chair. Hu et al., (2015) have used 

exemplar-based human-object interaction descriptors from RGB video data 

without the need to accurately obtain human pose estimation or object tracking 

data. Koppula et al. (2013) have proposed a method to extract human activities 

and object positions from RGB-D image sequence from which spatio-temporal 

co-relations between human and objects and between different objects can be 

extracted and object affordances can be assigned. The human activities and 

affordances are then modelled using Markov Random Field (MRF), the 

parameters of which are learnt using a Structural Support Vector Machine (S-

SVM) formulation. Liu et al., (2013) have proposed a framework for human 

activities that manipulate objects. The framework does not rely on standard 

skeletal tracking library but uses local spatial statistics based algorithm to 
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identify the human’s arms and torso. Based on the location of the arm, multi- 

class Support Vector Machine (SVM) object recogniser identifies the object held 

by the human and temporal super-segmentation is used to identify human 

activities responsible for manipulating the object. Ren and Sun (2013) have 

proposed a Human-Object-Object interaction affordance learning approach to 

model the inter-object affordance based on human hand motion trajectories and 

reaction of manipulated objects, and then used the inter-object affordance 

relationship to improve object recognition. Kjellstrom et al. (2011) have 

proposed a method to track human activity with objects in the environment to 

identify the affordances of these objects. Object feature and human action 

tracking is done by using SVM classification using object feature and human 

hand pose feature classifiers and human actions are co-related with objects 

based on both temporal and feature-level dependencies. A short review of 

methods used to recognise human-object interactions to establish semantics of 

human actions is provided by Ziaeefard and Bergevin (2015). 

2.4 Focus Area II: Human-workpiece interactions 

In order to analyse human-workpiece interactions, it is necessary to capture and 

digitise human motion during a manual manufacturing operation, generate 

human action states from this continuous motion data and identify the effect of 

those action states on the engineering workpiece/s in real-time. There is no 

reported work in literature that proposes the above approach to capture and 

analyse human-workpiece interactions for extracting and digitising human skills 

in manufacturing. There are several articles however that report human action 

recognition and object state detection, addressed as separate disconnected 

tasks. However, a few articles do report detection of human activities and the 

associated object states as connected tasks in order to extract/infer object 

affordances in a social environment. Most of these articles belong to the 

human-machine interface and social robotics domain, focusing on the image 

processing aspect of human and object detection, areas that are not within the 

remit of this research review; this research review focuses on capturing and 
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analysing human-workpiece interactions for human skill extraction and 

modelling from a manufacturing task with a manufacturing perspective.  

The study of human-workpiece interactions is conducted in this research as part 

of a body of work in literature known as ‘Cognitive Work/Task Analysis’ within 

the overall purview of ‘Human Activity/Task Analysis’ but applied to the field of 

manufacturing. There are 3 landmark theories reported in literature that 

investigate human behaviour, human problem solving and the human 

perception of task objects. These seminal theories are, namely, Rasmussen’s 

Skill-Rules-Knowledge (S-R-K) framework (Rasmussen, 1983), Rasmussen’s 

decision ladder concept (Rasmussen, 1980) and Gibson’s theory of object 

affordances (Gibson, 1979). Over the years and till date, these theories have 

been adopted and advanced for developing human-machine and human-

computer interfaces, and assessment of human errors and industrial accidents 

in manufacturing systems. The theories are described below.  

2.4.1 Rasmussen’s Skill-Rules-Knowledge (S-R-K) framework 

Rasmussen developed a simplified human information-processing model called 

as the S-R-K framework (Rasmussen, 1983) to classify the performance of 

skilled human operators into skill-based, rule-based and knowledge-based 

behaviour (reproduced in Figure 12). This division is made based on the 

cognitive contribution of the human during the performance of the task.  

 

Figure 12: Rasmussen's S-R-K framework (Rasmussen, 1983) 
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At the skill-based behaviour, the human performs the task at the subconscious 

level implementing a sequence of sensorimotor processes without explicitly 

referring to any specific procedures or steps. The human actions in this task are 

smooth, automated, well-coordinated and display highly integrated patterns of 

behaviour based on a feed-forward control.  Cycling and swimming are basic 

examples of skill-based behavioural tasks in which sensor feedback does not 

play a major role, since the human senses are too slow for direct feedback 

correction of rapid movements. 

At the second level of rule-based behaviour, human performance is goal 

oriented and is guided by a set of specific rules and procedures. These rules 

may be obtained through training, instructions, derived from past experience, or 

developed by conscious problem solving or planning before the task. Rules are 

typically defined as ‘if-then-else’ clauses, and human operators would pick a 

specific rule and implement the associated procedure at any instance based on 

his/her perception of the system at that instance. Rasmussen makes a 

distinction between skill and rule-based behaviour by the level of training and 

attention a human requires for performing a certain task. Whereas skill-based 

performance does not necessitate a person’s conscious attention and therefore 

cannot be easily documented, rule-based performance is generally based on 

explicit documented know-how. 

The third and the highest level of behaviour is knowledge-based behaviour and 

is most commonly called for when new and unique problems arise within the 

system for which there is no experiential basis of best answers, procedures, or 

rules. This type of behaviour is observed when a human tries to manage 

unfamiliar situations and therefore has to rely on formal formulation, analysis 

and interpretation of the situation to evolve a plan to solve the problem. 

Therefore, the human must have a detailed and thorough knowledge of a 

system and/or process in a knowledge-based behaviour. These problem solving 

sessions when remembered and documented can be converted to rule-based 

behaviours when the human is faced with such situations again in the future.  
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The information observed by the human from the system in the different 

behavioural levels can be divided into 3 categories, namely, signals, signs, and 

symbols. At the skill-based level, sensed information is perceived as time–

space signals that are subconsciously noted but otherwise have no explicit 

meaning or impact on the human’s behaviour during the task. These signals are 

processed by the human as continuous variables. At the rule-based level, the 

human perceives the indicators of the state (or situation) of the system as signs. 

Signs are used to select or modify the stored rules, which in turn control the 

sequencing of skilled subroutines to perform the rule-based task. At the 

knowledge-based level, intelligent reasoning and the generation of new rules 

are based on system information perceived by the human as symbols. Symbols 

are defined by the internal conceptual representation of the system, which is the 

basis for intelligent reasoning and task planning. They represent variables, 

relations, and properties and can be formally processed and unlike signals, can 

be communicated to other humans. 

2.4.2 Rasmussen’s decision ladder 

In the proposed human-workpiece interaction model, there are three main 

aspects of human involvement, namely, (a) observation of workpiece feedback, 

(b) making decisions about the actions to execute on the workpiece and (c) 

executing the chosen actions. Out of these 3 aspects, decision-making is 

probably the most critical especially for unstructured complex tasks that are 

manually performed. Such decision-making processes are naturalistic and 

intuitive rather than classical or analytical due to the highly dynamic and 

complex nature of the manual task not devoid of uncertainties. This is because 

the human is adept at making naturalistic decisions due to characteristics such 

as sophisticated cognition, memory of past experiences and mental simulation 

of the implementation of the decision to evaluate the outcome even before the 

action is executed. For structured and repetitive tasks, decision-making is 

simplified and therefore most such tasks are already automated.  

To provide a frame of reference for the naturalistic and cognitive decision-

making aspect of the proposed human-workpiece interaction model, 
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Rasmussen’s Decision Ladder template (Rasmussen, 1980) is chosen. Though 

Rasmussen developed the decision ladder template (reproduced in Figure 13) 

to study the decision-making processes of experienced workers in operational 

settings such as thermal power stations, it can also be applied to manual 

manufacturing tasks. This is because, (a) both the environments have 

dynamically changing states, (b) human workers in both settings make 

naturalistic decisions based on observing and recognising the dynamically 

changing system states and (c) human workers in both settings rely on past 

experiences to solve new and unforeseen problems rather than using detailed 

analytical methods.   

Rasmussen’s Decision Ladder’ template has several levels of information 

processing, flowing sequentially from the time the need for action is established 

to the execution of the chosen action. The main information processing 

activities are:  

i. The detection of events that establish a need for action.  

ii. The observation of the set of variables that allow the operator to identify 

the state of the system given the previous system state and the goals of 

the operation. 

iii. The evaluation of the effects of those variables on the performance 

parameters of the system.  

iv. The identification of a general plan, which will tend to correct the system. 

v. A set of procedures to carry out the actions. 

Every information processing activity guides the human decision making step 

that gives rise to a new state of knowledge of the system. This new state of 

knowledge acts as information to the next information processing activity and 

this sequence continues till the action is eventually performed to modify the 

system and solve the problem. 

2.4.3 Gibson’s theory of object affordances 

Gibson (1979) in his seminal work defined object affordances as action 

possibilities available to an individual for an object in an environment depending 
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on his/her action capabilities. Gibson pointed out that, depending on the current 

behavioural goal, the same object could ‘afford’ different actions – a chair may 

be used for sitting, but it could also be used to stand up on and reach the top of 

a tall shelf if that was what was needed. 

 

Figure 13: Rasmussen's decision ladder (Rasmussen, 1980) 

Gibson claimed that objects were perceived in terms of these affordances for 

action. Therefore, Gibson used the theory of affordance to establish a 

relationship between a human and his/her environment and to state that the 

relationship is shaped by the sensory perception and the human action 

capabilities. According to Montesano et al. (2008), this relationship is the basis 

for humans being able to perform complex tasks by choosing appropriate 

actions from a vast repertoire to obtain the desired task results.  

The concept of object affordances has been widely used in robotics though very 

little is known on how humans learn affordances. In robotics, affordances are 

used to capture the properties of an environment and the objects in that 
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environment in terms of the actions the robot is able to perform. These actions 

are limited by the abilities of the robot. By observing humans perform their tasks 

in an environment, the affordances presented by the objects in that environment 

can be captured. For example, a ball affords the actions of catching and 

throwing whereas a cup affords the actions of grasping, drinking and releasing. 

These affordances can be used in robotics to predict the effects of an action 

performed by the robot in a human environment, to plan a series of actions to 

achieve a specific task goal, or to select objects that produce certain effects if 

acted upon in certain ways (Montesano, 2008).  

It is evident from the above description that object affordances are used by the 

human to select the most appropriate action to perform on objects depending 

on the situation of the task and his/her own abilities/skills. These skills enable 

the human to perceive the characteristics of the object dynamically as they 

change during the task and to perform the necessary actions on the object to 

achieve the final task goal.   

2.4.4 Human task analysis 

Rasmussen’s S-R-K framework and decision ladder have been applied to 

classical human task analysis and modelling techniques. Of all the techniques 

reported in literature, Hierarchical Task Analysis (Annett, 2003) and Cognitive 

Work Analysis (Vicente, 1999) are most widely referenced.  

Hierarchical Task Analysis (HTA) 

HTA defines a task as a set of goals, sub-ordinate goals, operations and plans; 

it focuses on what an operator is required to do, in terms of actions and/or 

cognitive processes to achieve a system goal (Kirwan and Ainsworth, 1992) 

along with a set of constraints present in the task environment. The ‘plan’ 

component of HTA is especially important since it specifies the sequence, and 

under what conditions, different sub-goals have to be achieved in order to 

satisfy the requirements of a main goal. In an HTA, data about the task is 

collected using techniques such as observation of skilled experts doing the 

tasks and interviewing them and then using this data to decompose and 
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describe the goals and sub-goals involved (Salmon et al., 2010). The HTA 

procedure as presented by Stanton (2006) is shown in Figure 14.  

However, according to Ezzedine et al. (2005), HTA may not be the most 

practical analysis technique for tasks involving complex human cognitive 

processes. Manual manufacturing tasks involving human skills are considered 

highly cognitive because the human relies on his/her intellect, knowledge and 

past experiences to take cognition of the various factors that influence the task 

such as the dynamically changing workpiece states, and chooses his/her 

actions based on this cognition.  

 

Figure 14: Hierarchical task analysis procedure (Stanton, 2006) 

In HTA, a task description is limited to sequential performance of actions, which 

may not be the case in manual manufacturing tasks especially during problem-
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solving. Also, it is assumed that the information required to achieve the task 

goals and sub-goals are time and process invariant. This assumption is not 

valid in tasks with uncertainties where situations can change dynamically based 

on the effects of human actions on the task. Therefore in order to analyse and 

model complex dynamic tasks, Cognitive Work Analysis (CWA) is preferred.  

Cognitive Work Analysis (CWA) 

CWA was originally developed at the Risø National Laboratory in Denmark 

(Jenkins, 2008) for use within nuclear power process control applications with 

the need to design for new or unexpected situations such as industrial accidents 

and incidents. Though CWA is most suited for industrial work settings, such as 

process control, it has been used in many other domains as well (Hassall and 

Sanderson, 2012) and this research proposes to use some of its components to 

analyse and model human-workpiece interactions during a manual 

manufacturing task for digitisation of manufacturing task knowledge. 

CWA is a multifaceted framework for performing work/task analysis, especially 

for analysing human information behaviour in complex systems open to 

disturbances. The approach works with constraints rather than goals, which is 

based on the notion that making constraints explicit in an interface can 

potentially enhance human performance during a task. CWA consists of 

different phases of analysis (Vicente, 1999) that focus on different classes of 

constraints within a complex task system. The phases are in the order in which 

the constraints on effective action logically flow. A brief description of the CWA 

phases is reproduced from Vicente (1999) in Figure 15 and described below. 

 

Figure 15: Cognitive work analysis phases (Jenkins, 2008) 
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Work Domain Analysis (WDA):  WDA describes the schematic and structure 

of the task including purposes, priorities, functions, physical processes and 

physical objects at different levels of decomposition (Vicente, 1999). 

Control Task Analysis (CTA): CTA describes requirements associated with 

human or machine interventions in the task that will help to achieve the purpose 

of the task such as human actions performed in different work situations 

(different physical or temporal work contexts) and human cognition of task 

information and decisions are taken based on the information (Vicente, 1999).  

Strategies Analysis (SA): SA identifies the physical action and decision control 

strategies that humans use to perform tasks in the work domain. According to 

Rasmussen, SA should (1) identify the different factors that may influence the 

strategies, (2) describe strategies as ‘generic’ categories of cognitive 

processes, (3) identify the criteria used to select one category of cognitive 

processes over other possibilities and (4) identify the cues that prompt the 

selection or change in strategy (Vicente, 1999, Hassall and Sanderson, 2012).  

Social Organisation and Cooperation Analysis (SOCA): SOCA determines 

which agent (human, machine or both) is best placed to perform each 

intervention. It is used to identify how the actions and the associated strategies 

required can be distributed amongst human operators and technological 

artefacts within the system in question and also how these agents could 

communicate and cooperate (Vicente, 1999). 

Worker Competencies Analysis (WCA): WCA identifies the knowledge, rules 

and skills that workers need to successfully perform the work allocated to them. 

Its usual outcome is an analysis of how humans might perform control tasks in 

knowledge, rule or skill based manner, via annotations on a decision ladder. 

According to Salmon et al. (2010), due to its flexibility and the varying 

perspectives on complex systems, the CWA framework has been applied in 

various complex domains for a number of different purposes, including system 

design and modelling, machine interface design and evaluation and the 

development of human performance measures. These applications have taken 
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place in a variety of complex safety critical domains, including air traffic control, 

health care, nuclear power, manufacturing, military command and control, 

petrochemical process control and transport systems.  

A review of CWA research is conducted and reported in literature by Hassall 

and Sanderson (2012). From this survey it is evident that most reports use 

Work Domain Analysis, with fewer reports using Control Task Analysis, and 

even fewer reports using Strategies Analysis, Social Organisation and 

Cooperation Analysis or Worker Competencies Analysis. One possible reason 

for this is that there is a lack of satisfactory methods that integrate two or more 

of the CWA phases successfully. The biggest advantage of combining the 

phases into an integrated analysis is that a single task information acquisition 

system can be used instead of multiple ones, one for each CWA phase.  

The different CWA phases allow the analysis of constraints related to the 

domain within which the activity is conducted (WDA), what activity is conducted 

(CTA), how the activity is conducted (SA and WCA) and whom the activity is 

conducted with (SOCA). In practice, the purpose and context of an investigation 

of cognitive tasks will determine whether all five phases are used and the order 

in which the analyses are done. 

2.5 Chapter Summary 

Skill intensive manual manufacturing tasks form a significant part of the high 

value manufacturing industry. It is getting increasingly difficult for companies to 

sustain such operations because of the scarcity and high cost of skilled labour 

as well as the market needs for higher production speeds and improved quality 

amidst tough global competition. Therefore, there is an urgent need for 

companies to look for ways to automate skill-intensive manufacturing operations 

to reap the benefits of automation or transfer existing manpower skills to new 

recruits to maintain in-house skill competency. However, human skill being tacit 

in nature is difficult to document and hence difficult to transfer from one human 

to another or to an automation solution. Therefore, important research is being 

conducted in the area of human skill digitisation and therefore all the major 
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methods, tools and techniques used in the manufacturing task knowledge 

digitisation process are stated, classified and discussed in this chapter. 

In the process-level classification (Figure 9), human skill digitisation process 

can be segregated into 5 distinct steps. It is clear from Figure 10 that most 

research attention is given to the first three steps of data acquisition by 

observation, data analysis and skill extraction with the last two steps being 

reported by only a handful of articles. This phenomenon is not surprising given 

that data acquisition and analysis are critical steps with multiple technological 

solutions available, each having its own pros and cons depending on the nature 

of the manufacturing operation, which in itself is vastly varied.   

Skill extraction again takes various forms based on the nature of operation.  For 

example, an operation where human dexterity and motion is vital, extraction of 

trajectories and gestures is required, whereas for complex assemblies, 

workpiece contact formations and states along with human action primitives is 

required to be extracted and finally when decision making skills are involved, 

human control strategies derived from cause and effect rules or human action 

corresponding to simulated conditions are extracted.  

Skill modelling is required when human skill used for one operation is required 

to be generalised so that it could also be utilised in automating other operations. 

Modelling is also required to reproduce a learnt skill performed in a structured 

environment to an operation to be automated in an unstructured environment.  

The skill transfer step is commonly a by-product of the skill extraction step 

where the motion trajectories, action primitives, and control strategies are 

extracted. From this data, information such as a list of motion coordinates sub-

tasks and hierarchies, movement association rules, and ‘if-then’ rules that can 

be directly applied to automation solutions as inputs are extracted. Therefore, 

the need for a separate skill transfer step is not compelling in most cases. 

However, in situations where specific mapping is required between sensors that 

capture the environment and actuators that run the automation, or robot 

programs are generated directly from skill models, or skill is visualised using a 

simulator after being extracted, skill transfer is a necessary step.  
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In the technical-level classification (Figure 10), the methods, tools and 

techniques used by researchers in each of the five steps of the manufacturing 

task digitisation process is presented.  Data acquisition is commonly done using 

vision systems or a combination of systems using vision, force and motion 

sensing devices. These systems are most adept at observing human actions 

and interactions with the tool and the workpiece due to their relatively broad 

catchment space, real-time data acquisition and an abundance of technologies 

and products available to choose from. Stereovision systems, both with and 

without markers are a popular choice with more researchers opting for marker-

based systems. The advantage of marker-based systems is that the parts of the 

human body and objects to be tracked can be distinguished easily from the rest 

of the scene without the need for complex image processing algorithms.  The 

disadvantage however is that this system is obtrusive in nature and the markers 

can hinder the human operator trying to demonstrate the operation in a real 

factory environment. Multi device systems also suffer from the same 

disadvantage with the human wearing force, motion and tactile sensors. 

Markerless systems are unobtrusive in nature but require complex computing 

for image processing the data to recognise targeted motion. With faster 

computer speeds, markerless single camera systems could gain significant 

traction and see widespread use for skill extraction in the future.  

Using interviews for data acquisition, especially for skill information is not as 

effective as other techniques because of the very tacit nature of this information 

and its dependency on the communication skills of both the interviewer and the 

interviewee. Simulations are a good way of gathering data due to the ease with 

which various parameters and conditions of a manufacturing operation can be 

set and tweaked without additional costs and efforts.  

Depth capture by using infra-red cameras such as the Kinect shows significant 

promise because of its popularity in human motion and gesture tracking for 

gaming applications. Due to its low cost, robust technology, markerless nature, 

anonymity in motion capture, and availability of mature software libraries for 

motion data acquisition and analysis, depth imagery could easily be extended to 
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observe manual manufacturing operations in actual factory environments. A 

detailed review of different motion capture technologies is presented by Field et 

al. (2011) and Chen et al. (2013) provide a recent survey of human motion 

capture and analysis using depth imagery.  

In data analysis, human motion is analysed the most, followed by workpiece 

and tool motion and states. A manufacturing task as mentioned in section 2.1 is 

an interplay between the human, the tool and the workpiece and this interaction 

over the period of the manufacturing operation results in a successful product. 

Therefore, by analysing a combination of human, tool and workpiece data, not 

only key characteristics of individual motion but also the interdependencies 

could be identified and extracted. Some attempts have been made to combine 

human-workpiece and human tool analysis but no work was found that 

analysed all the 3 entities together.  

In the skill extraction step, action skill has received a lot more attention than 

reaction skill. This could be because a lot of skill-intensive manufacturing 

operations involve complex human gestures to machine, inspect or assemble a 

product. Also, reaction skill, though being abstract in nature, can be extracted 

using simpler methods of interviews and simulations, and can be documented 

as human control strategies for simpler operations. For complex operations 

where dynamic problem solving is involved, it is difficult to extract reaction skills 

currently. In action skills extraction for simple operations, identification of human 

motion trajectories and gestures is sufficient whereas for complex operations, 

segmentation of motion into action and behavioural primitives and sequencing 

of behaviours into hierarchies is required. Identification and extraction of object 

contact formations and states is used for assembly operations and is currently 

limited to simple objects with regular geometrical edges. The method of 

comparing motion data of a skilled operator with an unskilled operator and 

extracting the difference as identification of skill is useful for training novice 

operators and may not be useful in enabling automation of the operation.  

In skill modelling, the stochastic technique of HMM was one of the first few 

models used to represent human motion data and is still relevant because of its 
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ability to model different aspects of human skill even if the observed and 

captured data is not perfect. The parametric or adaptive forms of HMM that 

recognise effects of human movements and generate new trajectories having 

the same effect on objects is gaining interest. This feature could enhance the 

generalisation of skills and their adaptation to unstructured environments.  

In skill transfer, generation of robot programs from skill models, task plans and 

control strategies from neural networks and mapped sensor to actuator outputs 

form direct inputs to the automation solution whereas kinematic simulation of 

extracted skills and documented differences between skilled and unskilled 

operators can be used to enhance skill competency of new operators. In the 

most basic form of skill training, animations can be used to graphically render 

how a particular manual manufacturing task should be done by overlaying the 

manufacturing knowledge extracted on top of the animation. Virtual and 

augmented reality can also be used to transfer skills from experts to novices by 

using the medium of demonstration in an immersive 3D visualisation space.  

Finally, CWA within the ambit of HTA is a preferred method of analysing 

complex manual manufacturing tasks. Within CWA, it is particularly important to 

have integrated analysis of all five phases to understand the interdependencies 

of strategy, control, worker competency, cooperation and task structure to 

extract the manufacturing knowledge embedded within the task.  

2.5.1 Research trends 

Human skill transfer is an important process in today’s manufacturing industry. 

Important research is evident across all aspects of the process though some 

facets will see more growth than others. Human motion capture to record 

manual manufacturing operations for example may see an exponential increase 

in research with newer technologies like depth imaging devices, muscle-control-

sensing devices, wireless accelerometer-based motion tracking systems and 

eye tracking devices being introduced with increased portability and reduced 

cost. Over the last 14 years, a steady increase can be seen in the number of 

articles published in human motion capture and action recognition research 

(Figure 16). This trend is likely to continue. 
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Figure 16: Human motion capture and action recognition research (2000-2014) 

Object recognition and tracking has been a popular topic of research over the 

past several decades with applications in machine learning, industrial and social 

robotics, surveillance, defence, etc. With the advent of portable depth imaging 

sensors such as the Kinect™, object recognition has become easier due to the 

availability of the depth information as against the complex computation 

required earlier with only RGB information available. Research in object 

recognition and tracking is at a considerably greater scale than human motion 

capture and is steadily growing year on year except for a dip in the year 2010 

(Figure 17). Again, this upward trend is likely to continue.  

 

Figure 17: Object recognition and tracking research (2000-2014) 
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Human action recognition and object recognition if done simultaneously can 

provide an insight into the interactions between the human and the objects 

during a task. Such interaction studies are conducted predominantly by 

researchers in the social robotics area where it is important to understand 

human behaviour with objects so that the same behaviour could be imparted to 

robots for human robot co-existence. Research is also on going to identify 

object affordances so that robots can be given the intelligence to choose the 

correct actions that could be taken on objects as they interact with the human 

environment. In human-object interaction research, there has been a gradual 

increase in the number of articles published over the past 14 years (Figure 18) 

and this trend is likely to continue for diverse applications because the technical 

difficulty in simultaneous human and object tracking is decreasing with the 

emergence of low-cost depth imaging technologies.  

 

Figure 18: Human-object interaction research (2000-2014) 

With the advent of the Microsoft Kinect™ in 2010, the first commodity priced 

gaming interface device, human-centric research across multiple domains such 

as engineering, computer science and health science has got access to 

inexpensive, portable, robust and markerless motion capture technology. 

Research on or using the depth imaging technology offered by devices such as 

the Kinect™ has exponentially grown in the past 5 years (Figure 19) and this 

trend will continue as the next generation of these devices that are better than 
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the first generation are made available to satiate the ever increasing appetite of 

the gaming industry for improved human interface technologies.  

 

Figure 19: Depth imaging/sensing research (2009-2014) 

Though not much work can be seen in using depth imaging technologies to 

extract human skills, these technologies may overtake the others such as 

stereo-vision systems due to their ability to simultaneously track human, tool 

and workpiece without any dependence on ambient light conditions and to 

capture human and workpiece motion without the need for markers. However, a 

bottleneck in these depth-imaging devices is the complexity of image 

processing code required to compensate for the lack of adequate tracking 

accuracy. This challenge would be overcome with advances in depth imaging 

and motion tracking technology, brought about by the gaming industry. 

Increasingly, dynamic problem solving, which skilled humans are adept at, is 

also required to be a feature of automation. Therefore, more research may be 

seen in the area of extraction of action and reaction skills in a complete skill 

digitisation process. For this purpose, simultaneous, multi-modal data 

acquisition combining vision, sound, inertia and force may see increased use. 

Skill modelling using HMM and its adaptive versions like parametric HMMs will 

continue to be used for their versatility and stability in representing and 

modelling human skills.  

A major application of skill digitisation is to develop a skill library and use it for 

training and skill upgrading programmes of companies to maintain their skill 
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competency levels. However, with increased labour costs and developments in 

designing bespoke automation solutions incorporated with extracted human 

skill, a shift towards intelligent automation of skill-intensive manufacturing 

operations may be witnessed. A unified framework for intelligent automation 

with embedded human skills is another area that has not been explored fully.  

2.5.2 Research gaps 

As a result of this review, five major research gaps (RGs) have been identified 

that this research proposes to bridge, which could lead to the development of a 

framework for digitising manual manufacturing task knowledge. 

[RG1] There is a lack of representation of manual manufacturing operations as 

interactions between human and workpiece. A lot of research has been 

previously focusing on each of these 2 entities as isolated entities but their 

interdependence on one another over the duration of the manufacturing task 

has not been investigated effectively. The effect of human action and reaction 

on the workpiece during the task can be significant because of the skill-

intensive nature of the manual task. Therefore, by observing and digitising 

these interactions, human action and reaction states could be identified and 

mapped to workpiece states along the entire duration of the operation.  

[RG2] There is no established framework reported in literature or used in the 

industry that cohesively captures, extracts, decodes and stores manufacturing 

knowledge, especially human skill, from manual manufacturing tasks. 

Knowledge acquisition and modelling for operational level and management 

level decision-making is possible using Knowledge Based Systems (KBS) but at 

the task or process level, there is no framework reported. 

[RG3] There is a lack of simultaneous, multi-modal data acquisition methods 

like RGB imaging, depth imaging and sound/voice capture for observing and 

analysing a manual manufacturing task in a single digitisation process to enable 

extraction of both human action and reaction skills. While image processing can 

only provide human action or motion data, extracting human reaction skills 

would require a combination of multiple modes of task capture. Another 
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possibility of using multiple depth and RGB imaging devices to capture different 

aspects of the same manufacturing operation to get multi-perspective data is 

also not investigated enough in literature.  

[RG4] Stochastic modelling tools, such as Hidden Markov Modelling (HMM), 

have been used to model human motion, extract gestures from motion and map 

human gestures to the thought process or mental states. HMM still remains a 

popular method for identifying patterns in time-sequence data such as for 

human activity detection or speech recognition applications. However, 

stochastic modelling has not been used to represent human-workpiece 

interactions in order to map human action states to corresponding workpiece 

states. This interplay of human action, human decision-making and resulting 

workpiece states modelled using HMM is not reported in literature. 

[RG5] Finally, the study of human-workpiece interactions is conducted in this 

research as part of a body of work in literature known as ‘Cognitive Work/Task 

Analysis’ within the overall purview of ‘Human Task Analysis’ but applied to the 

field of manufacturing. Human task analysis research reported in literature and 

studied in this review has been applied at the operational level of a 

manufacturing plant rather than at an individual task level. There are no 

references in literature that have proposed the advancement and application of 

these seminal theories in the digitisation of manual manufacturing task 

knowledge.  
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CHAPTER 3 

3 RESEARCH AIM, OBJECTIVES AND METHODOLOGY 

 

This chapter presents the research aim and objectives based on the hypothesis 

of this research and informed by the research gaps identified from the literature 

review. Following that, the scope is clarified and methodology for conducting 

this research is explained. This chapter aims to achieve the following goals: 

 State the research hypothesis. 

 State the research aim. 

 Outline the research objectives. 

 Clarify the research scope. 

 Explain the research methodology. 
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3.1 Research Hypothesis 

The hypothesis of this research is as follows: 

‘By simultaneously capturing human actions and the effects of those actions on 

the workpiece in real-time for a manual manufacturing task, it should be 

possible to extract, decode and digitise the manufacturing knowledge 

associated with the task. This knowledge mainly comprises expert human 

gestures to execute the task and deft human responses to unexpected 

problems in the task.’ 

Once digitised, this knowledge can be used to (a) impart skill training to other 

humans, (b) study manufacturing tasks to analyse ergonomic correctness, 

human errors and industrial accidents, and (c) develop digital skill models to 

power the next generation of automation solutions to completely replace skilled 

manual tasks.  

Based on the above hypothesis, the research aim and objectives are as follows: 

3.2 Research Aim 

The aim of this research is to develop a framework for digitisation of manual 

manufacturing task knowledge. This research uses gaming interface technology 

as a reliable and cost-effective means to generate human-workpiece 

interactions data from which manual manufacturing task knowledge is extracted 

and decoded using stochastic machine learning.  

3.3 Research objectives 

In order to achieve the research aim, the specific research activities are 

distributed into six main objectives: 

i. To develop a human-workpiece interaction theory to comprehend manual 

manufacturing tasks and to provide the theoretical underpinning for 

development of the proposed digitisation framework.   

ii. To design and develop a framework for digitisation of manual 

manufacturing task knowledge and stochastic machine learning.  
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iii. To develop a method to capture and record human-workpiece 

interactions using gaming interface technology  

iv. To develop a method to extract and decode manufacturing task 

knowledge using stochastic machine learning.  

v. To develop a method to reproduce the decoded manufacturing task 

knowledge using animation. 

vi. To implement, test and validate the framework with simplified, lab-scale 

and real-life manual manufacturing tasks. 

3.4 Research scope 

This research investigates whether a framework for digitisation of manual 

manufacturing task knowledge can be conceptualised and developed. The 

review of literature revealed that though a large body of work exists that 

investigates human activity recognition and object recognition for applications 

such as social robotics, surveillance, human-robot interactions, etc., there is no 

reported work that establishes a complete framework that uses human-

workpiece interaction tracking and modelling to extract and decode manual 

manufacturing task knowledge. There are a few articles, especially from Japan 

that have reported their research in human skill acquisition and transfer with 

application in manufacturing but none have proposed a systematic structure for 

skill acquisition and transfer. Therefore, this research focuses on the 

development of a cohesive digitisation framework for digitisation of manual 

manufacturing tasks. The research also aims to use consumer-grade, low-cost 

gaming interface technology as the primary digitisation tool. The scopes of 

individual aspects of this research are briefly outlined below: 

Manufacturing knowledge: In this research, 3 main constituents of 

manufacturing knowledge are extracted and decoded from within a manual 

manufacturing task: 

1. The nature of human actions and spatial characteristics of human motion 

during those actions. This constituent contributes to understanding and 

digitising the human motor skills used during the task. 
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2. Spatio-temporal relationships between human actions and the 

workpiece/s during the task. This constituent illustrates the effects of 

different human actions on the workpiece/s at any given task instance.  

3. The choice of actions and the sequence in which to implement those 

actions during the task. This constituent contributes to digitising the 

human reaction skills, especially useful in knowing which actions to 

execute when (planned and implemented task strategy) during the task.  

The manufacturing knowledge constituents that are not within the scope of this 

research relate to the physical parameters of a manual manufacturing task such 

as force, torque and human strength as well as to the tactile and audible 

feedback provided by the workpiece in response to human actions during the 

task. Also, extraction of sub-conscious decision making ability of the human in 

response to continuous changes he/she observes in the workpiece/s during the 

task are outside the scope of this research.  

Human-Workpiece interaction model: This research focuses on the 

development of a human-workpiece interaction theory with inputs from 

Rasmussen’s S-R-K framework, Rasmussen’s decision ladder concept and 

Gibson’s theory of object affordances. The proposed theory is expected to be 

generic enough to represent all the 3 major categories of manufacturing tasks, 

namely, machining, assembly and inspection.  

Proposed digitisation framework: This research proposes a framework for 

digitisation of manual manufacturing task knowledge enabled by ICT methods 

and tools obtained off-the-shelf and developing bespoke solutions whenever 

required. The proposed framework is expected to be generic enough to be used 

to digitise manual tasks belonging to all the 3 major manufacturing categories, 

namely, machining, assembly and inspection.  

ICT methods and tools: ICT methods and tools, including gaming interface 

technologies are used to implement the framework. Of the several gaming 

interface technologies available, human motion capture sensors, such as the 

Microsoft Kinect™, are proposed. Apart from using the standard motion capture 

feature, this research extends the functionality of these sensors by using their 
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colour and depth imaging capability to recognise and track moving and 

changing objects within a manual task. The rest of the ICT methods and tools 

such as motion data filtering and smoothing algorithms, data segmentation 

algorithms, and stochastic machine learning algorithms are used in their 

fundamental form from literature. For example, hidden Markov modelling is 

used as the stochastic machine learning tool and is adopted in its fundamental 

form in the framework. 

Validation case studies: The case studies are manufacturing task examples 

for implementing, testing and validating the proposed digitisation framework. 

These tasks are a mix of simplified and actual task examples that contain a 

variety of workpieces and human actions in varying degrees of complexity. The 

case studies begin with simplified tasks, such as Lego block assemblies, before 

progressing to complex ones, such as composite fibre layups. The gradual 

increase in task complexity is designed to deal with the uncertainties of using 

gaming interface sensors that are proposed for digitising manufacturing tasks 

for the first time with no existing benchmarks in literature. 

3.5 Research strategy 

Two main types of research strategies exist, namely, fixed design strategy and 

flexible design strategy (Robson, 2002). Fixed design strategy enables 

structured experimentation with a pre-defined input and output parameter space 

under controlled conditions and a well-defined boundary of exploration to reach 

a conclusion. Research governed by this strategy is quantitative and takes a 

traditional scientific approach, which is pervasive and objective, and strives for 

reliability as well as reproducibility of results.  However, quantitative research 

can sometimes suffer from being constricted to a limited exploration space 

when the solutions desired could be outside of this space. Much of engineering 

research tends to adopt the quantitative approach (Burns, 2000). Flexible 

design strategy enables an investigative approach in which the parameter 

space and the exploration boundary keep evolving with changing research 

contexts to reach a conclusion. Research governed by this strategy is 

qualitative and usually involves interviews, surveys and observations for data 
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collection. The main advantage of the qualitative approach is that the research 

framework and direction can be quickly revised as new information emerges 

enabling the researcher to cover a wider exploration area for in-depth inquiry. 

However, qualitative research can sometimes suffer from heavy dependence on 

the individual skills of the researcher and influence of the researcher's personal 

biases and idiosyncrasies resulting in in-valid generalities and subjective 

conclusions. Much of social and business management research tends to adopt 

the qualitative approach (Gummesson, 1991).   

A fixed design strategy is used in this research to develop, implement and test 

the proposed digitisation framework. The strategy is theory-driven with a well-

defined hypothesis and is implemented using the quantitative approach with 

structured experimentation under controlled laboratory conditions and numerical 

data analysis to draw an objective conclusion. Experimentation also enables 

investigation of the effect of several variables at different functional levels on the 

performance of the framework thereby validating its applicability and efficacy. 

The resulting research methodology is presented below.   

3.6 Research methodology 

The research methodology followed is summarised in Figure 20. This figure 

also maps each step of the methodology to the corresponding thesis chapter. 

3.6.1 Identification of research problem 

This research is in the broad area of manufacturing informatics with a focus on 

providing deeper insights into manual manufacturing tasks with the purpose of 

extracting and decoding knowledge from those tasks. The problem addressed 

by this research is the lack of a cohesive framework for the capture, extraction, 

decoding and transfer, in short digitisation, of manual manufacturing task 

knowledge, especially hidden knowledge such as human skill.  

3.6.2 Literature review 

The literature review is conducted by examining the peer-reviewed journal and 

conference articles, thesis/dissertations, book chapters and web pages. It 
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begins with an overview of the approaches used to digitise manual 

manufacturing task knowledge to understand the need, nature and importance 

of the research problem. Next, the methods used in the reported approaches 

are reviewed to identify the pros and cons of each and to find the gaps that 

could be filled by this research.  

 

Figure 20: Research methodology and corresponding thesis chapter mapping 

Simultaneously, the methods used in literature that apply to the research 

problem but are applied for different problems are also reviewed to identify their 

relevance in this research and their future trends. At this stage, the research 

activity is made up of two main tasks: 

i. Survey of literature 

An extensive literature survey is performed to identify the research trends 

and potential in manufacturing knowledge digitisation. It starts with 
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identification of keywords in manufacturing knowledge digitisation such as 

‘human motion/action capture’, ‘object/workpiece recognition and tracking’, 

‘human-object interactions’, ‘human skill capture/ extraction/ acquisition/ 

digitisation’ and ‘knowledge capture/ extraction/ acquisition/ digitisation in 

manufacturing’. Based on the keywords, an extensive search of databases is 

conducted. The primary databases used for this search are Scopus and 

Science Direct. Google Scholar was used to get access to some papers that 

were not available in the databases. The articles are then filtered to select 

only relevant papers by screening the abstracts. The selected papers are 

fully reviewed and analysed to gain a clearer picture of the relevant research 

landscape. 

ii. Identification of research gaps 

The research gaps in the area of digitisation of manufacturing knowledge 

digitisation are identified from the above literature survey. 

3.6.3 Identification of research aim, objectives and scope 

The research aim is identified based on the research problem. The research 

objectives are developed according to the research gaps found in literature. 

This ensures that the proposed research is aligned with the current research 

trends. The research aim is specifically formulated to solve the research 

problem and is broken down into specific objectives to approach the research 

as a phased activity. The research scope explains the technical and practical 

boundaries within which the research is conducted. 

3.6.4 Establishment of a human-workpiece interaction theory 

In this research, there is a need to conceptualise and develop a basic human-

workpiece interaction theory that could provide a strong foundation to build the 

framework for digitisation of manual manufacturing task knowledge because of 

a lack of such a theory in literature. However, there are seminal theories related 

to human behaviour in manufacturing environments that could be 

complementary to this research and therefore those theories are used to 

reinforce the human-workpiece interaction theory. 
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3.6.5 Development of the proposed digitisation framework 

The framework for digitisation of manual manufacturing task knowledge is 

developed to fulfil the need for a cohesive methodology to capture, model, 

extract and decode manufacturing knowledge from manual manufacturing 

tasks. The approach taken is to identify the key steps in informatics data 

processing from literature and to bring these steps together in a logical 

sequence to implement key functions of the digitisation process. Each function 

is detailed with the relevant inputs, outputs, methods and dependencies.  

3.6.6 Implementation of the proposed digitisation framework 

The framework is proposed to be implemented using a simplified lab-scale 

assembly task. Each function of the framework is applied according to the 

methods, tools and dependencies identified and the outcome of one function is 

the input to the next in the designed sequence. The main goal in this stage is to 

evaluate the comprehensiveness of the framework to digitise manufacturing 

task knowledge and identify major problems or obstacles in the implementation 

of the framework. The issues identified in the evaluation are fed back to the 

development stage for the framework to be refined accordingly.  

3.6.7 Validation of the framework using case studies  

Once the proposed framework delivers its main goal of digitising manual 

manufacturing task knowledge and all the major methods and tools proposed in 

the framework are refined and implemented successfully, the framework is 

tested and validated using real-life-like use cases. Another objective at this 

stage is to leverage the variations in the chosen tasks to test those methods 

and tools that were not used during the implementation stage. 

The research at this stage is made up of two major activities: 

1. Choosing and designing the case studies 

The case studies were chosen and designed to test and validate the 

framework to evaluate its effectiveness, cohesiveness and generality. 
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Importantly, the choice was dictated by the limitations of the framework and 

its methods and tools as they currently stand in this research.  

2. Testing the framework using the case studies 

This task is similar to the implementation stage of the framework where all 

the functions of the framework are executed to digitise the manufacturing 

knowledge embedded within the tasks in the case studies. Any technical or 

practical issues with the framework are noted and fed back to the 

development stage to further refine the framework. Finally, a real 

manufacturing use case is chosen to confirm the findings of this research 

with respect to framework implementation. In this study, the constituents of 

manufacturing knowledge extracted are compared with the knowledge that 

already exists for the task as reported in literature. This comparison is 

expected to demonstrate whether or not the framework is capable of 

extracting both explicit and tacit manufacturing knowledge from actual, real-

world manual manufacturing tasks. 

3.6.8 Discussions and conclusions 

Finally, the contributions made by this research to knowledge are identified by 

reviewing the outcomes against the proposed research aim and objectives. The 

research contributions are assessed to determine whether or not they bridge 

the research gaps. Following that, the limitations of this research are identified, 

based on which the future research directions are discussed. This facilitates the 

continuation of this research in order to overcome the limitations and enhances 

the research outcomes for the benefit of the manufacturing research and 

industrial community. 

3.7 Chapter summary 

This chapter states the research hypothesis, aim and objectives to develop a 

framework for digitisation of manual manufacturing task knowledge. The scopes 

of key stages of research are defined and the proposed research methodology 

to deliver the aim and objectives of this research are presented in detail.  
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CHAPTER 4 

4 HUMAN-WORKPIECE INTERACTION THEORY 

This chapter proposes the concept of human-workpiece interactions to 

represent a manual manufacturing task. It describes the hypothesis behind the 

concept and explains the seminal theories from literature that have been used 

to develop the proposed human-workpiece interaction (HWI) theory. The key 

concepts from this chapter are also presented in two journal papers and a 

conference paper (See ‘List of Publications’). 

This chapter aims to achieve the following objectives: 

 Present the research hypothesis and propose the basic HWI concept. 

 Explain the adoption of Rasmussen’s Skills-Rules-Knowledge (S-R-K) 

framework, Rasmussen’s decision ladder concept and Gibson’s theory of 

object affordances to develop the HWI theory. 

 Describe the use of the proposed HWI theory for human task analysis.   
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4.1 Basic human-workpiece interaction theory 

This research postulates that all manual manufacturing tasks involving a human 

and a workpiece can be represented by a series of interactions between a 

human and the workpiece. These interactions are characterised by the highly 

cognitive nature of manual manufacturing tasks in which human actions on the 

workpiece/s are guided by (a) constant human observation of the workpiece/s’ 

states during the task, (b) human perception of the progress of the workpiece/s 

in real-time based on the observations and (c) dynamic human reasoning and 

decision-making based on the perceptions. The human action itself is a function 

of human dexterity, which is the manner in which the human uses his body to 

perform the task. The combination of cognitive ability and dexterity, also known 

as human skill varies from one human to another thereby causing varying 

quality of the same task when performed by different humans.  

In this chapter, the HWI concept and resulting theory is proposed. The theory is 

constructed at its basic level and is built up to an advanced level by reinforcing 

it with the three seminal theories presented in section 2.4. The methodology of 

advancing the theory is shown in Figure 21. 

 

Figure 21: Methodology for the advancement of the HWI theory 
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The basic HWI theory is shown in Figure 22. This theory consists of two main 

entities, namely, the human and the workpiece. Here the workpiece denotes 

either one or multiple workpieces involved in the task such as objects to be 

manipulated or processed and tools used for manipulation or processing. The 

task may belong to any of the 3 major manufacturing categories, namely, 

machining, assembly or inspection. 

 

Figure 22: Basic HWI theory 

According to the theory, every human action results in a change of state of the 

workpiece and this change of state is instantaneously and implicitly conveyed to 

the human via visible, audible or tactile feedback. The human observes this 

feedback and perceives its implication on the progress of the manufacturing 

task based on his/her intellect, skill and past experiences with the task. After 

analysing this, the human makes a choice on the next action to take on the 

workpiece such that the task is steered towards successful completion. The 

chosen action is then executed and the action-feedback-reaction loop is 

repeated until the task is successfully completed.   

It is evident from this theory that there is a direct co-relation between human 

action and the workpiece state and therefore the manifestation of a human 

action at any instance during the task can be seen as the effect of that action on 

the workpiece.  

4.2 Advancement of the HWI theory 

The basic HWI theory introduced in section 4.1 is based on the research 

hypothesis. While the action and feedback segments of the human-workpiece 
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interaction loop are self-explanatory, the analysis segment needs detailed 

investigation. This is because while human action and workpiece feedback is 

visible during task observation, the analysis of the feedback is not. While human 

skill is largely believed to manifest via his/her physical actions during the task, it 

also manifests significantly via the plans and choices that the human makes 

before and during the task.  

Therefore, the analysis aspect of the theory is reinforced by three landmark 

theories in human behaviour and activity analysis, namely, Rasmussen’s Skill-

Rules-Knowledge (S-R-K) framework, Rasmussen’s Decision Ladder and 

Gibson’s concept of object affordances. Though these theories have been 

proposed for developing human-machine and human-product interfaces, and 

assessment of human errors and industrial accidents in manufacturing systems, 

this research has advanced the theory by applying these concepts to 

understand and model human-workpiece interactions that occur during manual 

manufacturing tasks. The interaction models in turn enable the digitisation of the 

manufacturing knowledge associated with the tasks, especially tacit knowledge 

such as human skill. There are no references in literature that have proposed 

the advancement and application of these seminal theories in digitisation of 

manual manufacturing task knowledge. 

4.2.1 Application of the Rasmussen’s S-R-K framework to advance 

the HWI theory 

According to the S-R-K framework (Section 2.4.1), the human behaviour within 

a system varies according to the state of the system within which the human 

operates, the level of skill and expertise of the human, and the type of 

information available from the system to the human. The same can be applied 

to any manual manufacturing task in which a human manipulates or processes 

a workpiece or a set of workpieces. Examples of such manual manufacturing 

tasks in the industry are complex assemblies, 3D part polishing, spray-painting, 

composite fibre layup, among others. A typical manual assembly task is 

considered to explain the application of the S-R-K framework to the proposed 

HWI theory.  
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Rule-based behaviour: If the assembly task is well defined and has a 

structured set of rules to be applied for all the operations within the task, the 

human actions to complete the assembly are rule-based.  For each action within 

the assembly, the human identifies the state of the workpiece/s by observing 

and analysing specific visible or tactile signs, such as workpiece dimensions 

and orientation of parts and then chooses an appropriate rule from a set of rules 

to respond in order to progress the assembly task.  

Skill-based behaviour: A long and repetitive practise of such rule-based 

behaviour in the assembly task leads to the human acquiring a level of 

expertise and competency such that the behaviour changes from being rule-

based to skill-based. In the skill-based behaviour, the human responds to the 

changes in the workpiece during the assembly task almost automatically with 

appropriate actions in relation to the workpiece information - perceived as 

signals. The human no longer consciously observes and analyses the specific 

signs but subconsciously takes note of those signs as continuous time-space 

signals and produces a reflex to them using actions that are guided by task 

sequence and muscle memory from the past. These signals provide information 

about the current state of the workpiece and allow the experienced user to 

respond with sub-conscious actions. 

Knowledge-based behaviour: Growing expertise and competence also allows 

the human to solve new or unforeseen problems within the assembly task by 

elevating to the highest knowledge-based behaviour. In this kind of behaviour, 

the human relies on intelligent reasoning, pattern matching from experiences of 

the past, generation of hypotheses and attempting to verify them to predict 

workpiece states to solve an unforeseen problem. For this, the human 

consciously perceives and analyses the symbols that represent the problem 

within the assembly task, such as a missing part or wrongly assembled parts, 

and takes the most suitable corrective actions based on his/her experience of 

understanding the task. These problem-solving procedures tend to be 

memorised if solved multiple times and the human actions within those 
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procedures are converted from being knowledge-based to rule-based 

subsequently.  

It is therefore inferred that the analysis aspect of the basic HWI theory can be 

expanded into skill-based, rule-based and knowledge-based segments with 

each of these segments influenced by the S-R-K framework. The HWI theory 

reinforced by the S-R-K framework is shown in Figure 23. 

 

Figure 23: Application of the S-R-K framework to the HWI theory 

Signals, signs and symbols  

In the S-R-K reinforced theory, every human action is followed by feedback 

from the workpiece on its state of progress. Depending on the level of behaviour 

displayed by the human at any given point during the task, this feedback can be 

perceived as signals, signs or symbols. At the skill-based level, the workpiece 

feedback is perceived as continuous time-space signals followed by forming the 

feature of the intended workpiece outcome in mind. The sensorimotor instinct 

then takes over to sub-consciously execute the next intended action on the 

workpiece.  

At the rule-based level, when the human must follow a standard operating 

procedure to execute the task, the workpiece feedback is perceived as signs. 
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These signs are recognised and associated with a pre-defined pattern to pick a 

relevant rule from the stored set of rules to progress the task.   

In certain situations when unforeseen problems occur, the human behaviour is 

classified as knowledge-based and at this level the workpiece feedback is 

perceived as symbols that indicate a problem. Based on the intended final goal, 

past experiences of the task, and generating and testing new hypotheses, the 

human plans a set of action and executes them to solve the problem. 

Depending on the success of the solution, the workpiece either successfully 

progresses to completion or displays symbols of persisting with the same 

problem or occurrence of a new one. A successfully solved problem is 

memorised, the plan that solved the problem is stored as a rule and the next 

time the same problem occurs, the human operates at the rule-based level. The 

more experienced a human gets at a task, the more likely it is that he or she 

performs the task at the skill-level rather than at the rule-based or knowledge-

based levels.  

4.2.2 Application of the Rasmussen’s Decision Ladder concept to 

advance the HWI theory 

In the proposed HWI theory, the human behaviour during the analysis phase of 

the interaction is segregated according to Rasmussen’s S-R-K framework. 

Though decision-making is present at all 3 levels, it is most prominent in the 

knowledge-based level. At this level, the human attempts to solve new and 

unforeseen problems by making decisions based on what he/she observes, 

what he/she knows from past experiences, what the overall goals of the task 

are and by anticipating the consequences of his/her decisions on the workpiece 

and the task at large. At the skill-based level, decision-making is almost absent 

because the skilled human performs his actions sub-consciously based on 

sensorimotor inputs and only observes the feedback from the workpiece sub-

consciously. At the rule-based level a certain degree of decision-making exists 

but those decisions are simple and are merely there to choose rules that govern 

every subsequent action on the workpiece. Therefore, in order to understand 

the decision-making process better at the knowledge-based level, the 
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Rasmussen’s Decision Ladder is used and the main four steps of the ladder are 

adopted (Figure 24).  

In the ‘Activation’ step, the need for response is activated after the human 

detects a problem with the workpiece during one of the interaction loops, for 

example, a wrongly assembled part, categorised as an abnormal condition. 

 

Figure 24: Rasmussen's decision ladder applied to the HWI model 

In the ‘Identification’ step, the workpiece state is identified via the various 

symbols that are observed by the human as part of the feedback from the 

workpiece. Identification of the workpiece state allows the human to compare 

the abnormal state with the expected normal state at this point of the task and 

therefore to decide on the next course of action to solve the problem. In the 

‘Evaluation’ step, the human evaluates all the possible solutions that he/she 

could implement on the workpiece to solve the problem based on his/her past 

experience or even generating new hypotheses and verifying them. The 

evaluation gives the human the ability to choose between competing solutions 

keeping the overall goal of the task in mind. Finally, in the ‘Planning’ step, the 

human simulates the solution in his/her mind to visualise the target state and 

plan the necessary next action to take the workpiece a step closer towards 

problem resolution. This is followed by the actual execution of the chosen 
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action. The subsequent perception of the new state of the workpiece will 

indicate if the problem is completely solved. If the problem persists or a new 

one surfaces, then the decision ladder is repeated at until the problem is 

completely solved.  

4.2.3 Application of Gibson’s concept of object affordances to 

advance the HWI theory 

Skilled humans perform complex manual manufacturing tasks on a routine 

basis. They have a vast repertoire of expert actions to execute the task 

governed by the overall goal of the task. Each chosen action exerts its effect on 

the workpiece changing its state either positively or negatively depending on 

whether the workpiece is progressing towards successful completion or 

otherwise respectively. For example, a skilled spray-painter knows the precise 

painting gestures and the right amount of paint release to ensure a uniform 

coating of paint on the vehicle body and a skilled polisher knows the correct 

amount of pressure to exert and the optimum tool paths to follow to achieve the 

desired surface finish. In order to decipher these human skills, it is necessary to 

capture the basic human actions and the corresponding changes undergone by 

the workpiece in real-time. The proposed HWI theory enables the digitisation of 

manual manufacturing task knowledge with an aim to extract, decode and 

reproduce human skills associated with the task.  

Why use object affordances? 

The method used to capture the human-workpiece interactions is daunting 

considering that both human action capture and workpiece progress tracking 

must be performed simultaneously in real-time within a shopfloor environment 

that may not be conducive with varying complexities of workpieces and human 

gestures. Therefore, there is a need to simplify the methods by considering any 

known aspects of the task into the capture algorithms. For example, while 

tracking the progress of a wheel loading task in automotive assembly, the object 

recognition algorithm is greatly simplified if the fact that the wheel is always 

circular is considered.  
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In order to consider the known aspects of the workpiece during the manual task, 

this research draws inspiration from the seminal concept of object affordances 

introduced by Gibson (1979). Gibson suggests that the object affordances are 

action possibilities available to an individual to execute on an object depending 

on his/her action capabilities. The dominance of the visual sensory system over 

others and people's ability to pick up affordances implies that human actions 

are aided by visual feedback from the workpiece during the task. However, 

other perceptual systems such as tactile feedback (for assembly tasks) or 

audible feedback (for machining tasks) cannot be ignored and must be 

considered as viable inputs to the human for associating affordances to 

workpieces during the task.  

If all the known affordances associated with the task workpiece/s are 

considered, the task capture module can be tuned to pick up those affordances 

easily. This way, there is no need to write complex object recognition and 

tracking algorithms to observe and analyse the entire workpiece through the 

duration of the task. Also, different parts of the workpiece could be observed 

and tracked based on particular phases of the task. Again this information can 

be fed prior to the task capture itself so that the sensors capturing the 

workpiece can focus on those parts only thereby reducing computational load. 

Understanding of workpiece affordances in a manufacturing setting is feasible 

because (a) the manufacturing task follows a known sequence of steps except 

during abnormal problem-solving sessions and (b) the workpieces are 

engineering artefacts and therefore have drawings and Computer Aided Design 

(CAD) models to take reference from to develop simpler recognition and 

tracking algorithms.   

Affordances are context-dependent and define the relationships between the 

human and the workpiece during the task. Therefore, workpiece affordances 

(e.g. rough surfaces afford polishing, or a hole affords insertion of a peg) can be 

empirically determined by multiple observations of the tasks and eventually 

predicted by analysing the properties and features of workpieces. Once the 

workpieces are associated with affordances, wrong action-effect combinations 
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may indicate a problem and alert the human to operate in the knowledge-based 

realm to solve the problem.  

In the proposed HWI theory, the human considers workpiece affordances in the 

analysis phase when the next action on the workpiece is being planned as 

shown in Figure 25. Therefore, at the skill-based level, the object affordances 

are subconsciously taken into account because the workpiece feedback 

unambiguously conveys the appropriate affordance.  

 

Figure 25: Application of Gibson's theory of object affordances to the HWI theory 

At the rule-based level, the human consciously considers the workpiece 

affordance in order to confirm that he/she has chosen the correct rule that 

governs his/her next action on the workpiece.  However, at the knowledge-

based level, due to a problem in the task, the workpiece feedback may indicate 

multiple affordances from which the human has to choose one and plan his/her 

problem-solving action based on the chosen affordance.  

Starting from the simple HWI theory, this research has applied Rasmussen’s S-

R-K framework to segregate the analysis phase of the theory into 3 different 

categories of human behaviour during the manufacturing task. The frame of 

reference for the decision-making steps within the knowledge-based level is 
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taken from Rasmussen’s decision ladder. Finally, Gibson’s concept of object 

affordances is used to suggest that the human visualises workpiece feedback 

as an affordance and as a factor to choose the next most appropriate task 

action. The use of this advanced HWI theory will inform the development of the 

proposed framework for digitising manual manufacturing task knowledge. 

4.2.4 Application of HWI theory for human task analysis 

This research proposes that the advanced HWI theory can support a potent 

approach to acquire detailed insights into the cognitive structure of the manual 

manufacturing tasks and therefore provide significant information for human 

task analysis, especially the Cognitive Work Analysis (CWA) component. The 

CWA itself consists of five components, namely, Work Domain Analysis (WDA), 

Strategy Analysis (SA), Control Task Analysis (CTA), Social Organisation and 

Cooperation Analysis (SOCA) and Worker Competency Analysis (WCA) 

(section 2.4.4) out of which only the SA, CTA and WCA are considered in this 

research. WDA and SOCA are not considered because of the use of high-level 

abstraction frameworks and the study of human factors in these analyses 

respectively requiring a qualitative research approach. This is outside the scope 

of this quantitative research.   

Strategy analysis: By capturing the human actions on the workpiece and 

mapping them to corresponding workpiece changes in time and space, the task 

strategy used by the human can be identified and analysed. This is the SA 

component of CWA. There are two classes of methods to perform SA, namely, 

formative methods and empirical methods. Generally, the formative methods 

work on inferring the strategies from interviewing the humans involved in the 

tasks rather than extracting the strategies by observing the humans perform the 

tasks. In the empirical method, workers in different task settings are observed 

and analysed, workers’ verbal reports are analysed and other related 

information about the task such as task constraints are collected. This research 

therefore uses the empirical method. 

Control task analysis: Each workpiece progress is associated with the human 

action immediately preceding it in time, and the action itself is based on the 
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workpiece feedback received prior to the action. Therefore, the decisions that 

the human makes based on the workpiece feedback during the task can be 

inferred by analysing the action choices of the human during the task. This is 

the CTA component of CWA. 

Worker competency analysis: Within the captured HWI data, human actions 

during the task can be extracted in digital form. The effectiveness of these 

actions in the task depends on the competency of the worker. This enables the 

evaluation of worker competency and the comparison of competencies between 

two or more workers for the same task. CWA further enables the following 

capabilities: 

i. Ergonomic analysis of a manual-manufacturing task for improving 

workplace health and safety. 

ii. Error analysis of manufacturing tasks for reducing human-induced 

industrial accidents. 

iii. Human skills transfer process for up-skilling the workforce. 

This research proposes to use the empirical method of cognitive work analysis 

(CWA) to extract the manufacturing task knowledge comprising human action 

skills, human reaction/control skills and task strategies. This method is designed 

and executed in accordance with a framework proposed in this research.  

4.3 Chapter summary 

This chapter proposes the basic HWI concept and explains how the HWI theory 

is developed by using seminal theories from literature such as Rasmussen’s S-

R-K framework, Rasmussen’s decision ladder and Gibson’s theory of object 

affordances. The HWI theory acts as a guide for the development of the 

framework for digitisation of manual manufacturing task knowledge that has the 

potential to facilitate CWA. The proposed framework is presented in the next 

chapter. 
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CHAPTER 5 

5 FRAMEWORK FOR DIGITISATION OF MANUAL 

MANUFACTURING TASK KNOWLEDGE 

 

This chapter proposes a framework for digitisation of manual manufacturing 

task knowledge. It describes the major steps, methods and tools used in the 

proposed framework. The framework is also presented in a journal paper (See 

‘List of Publications’). 

This chapter aims to achieve the following objectives: 

 Define and explain the terms of reference used in the digitisation 

framework. 

 Propose the design and structure of the digitisation framework. 

 Propose the major steps used in the framework and explain the inputs, 

outputs, methods and dependencies of each step. 

 

 

 

 

 

 

 

 

 

 



 

 73 

5.1 Terms of reference 

Framework is defined in Merriam Webster as “a basic conceptual structure or a 

frame of reference for a set of ideas or facts in order to build a system”. This 

research proposes to develop a cohesive process, enabled by ICT, to digitise 

manufacturing knowledge associated with manual manufacturing tasks. A 

framework is therefore required to provide a structure for this process to define 

its inputs, methods, dependencies and outputs.  

5.1.1 Framework structure 

The digitisation framework is used to support an ICT platform and therefore 

each of its proposed components is organised according to the four basic 

elements of informatics data flow (Figure 26). 

 

Figure 26: Basic elements of each ICT component of the framework 

Data Input: At the overall framework level, the primary data input to the ICT 

platform comes from gaming interface devices, such as the Microsoft Kinect™, 

that capture and record human action and changing workpiece configurations 

during a manual-manufacturing task into digital data. Secondary inputs are 

taken from the experts executing the manual task in the form of verbal cues 

during the task to note certain critical sub-tasks, published task guidelines, 

engineering drawings of the workpieces and manufacturing environment, and 

technical task manuals if available.  

Data Processor: The input data is processed using a set of software 

programmes that run standard and bespoke algorithms including third party 

Application Programming Interfaces (APIs) for human skeletal motion 

processing, depth image processing to recognise and track changes in 
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workpiece, audio processing, modelling and analysis of processed data, and 

mining of manufacturing knowledge from the models produced.  

Data Storage: Input data, processed data and produced models are stored and 

archived in appropriate digital data storage units such as Comma Separated 

Values (.CSV) files, spreadsheets, and databases for searchable and on-

demand access.  

Data Output: The input, processed and stored data can be queried to extract 

the manufacturing knowledge embedded within this data which can be 

disseminated in various forms using multiple media depending on the 

application. Various manufacturing knowledge constituents can be extracted, 

such as task strategy, problem-solving approach, expert gestures during 

workpiece manipulation, body motion mechanics, etc. This knowledge can be 

reproduced using multiple media. 

5.1.2 Digitisation 

Digitisation is defined in Merriam Webster as “a process of converting analogue 

information into digital information”. This definition has a wide scope and 

therefore there is a need to define a suitable scope of digitisation implemented 

in this research.  

As explained in section 4.1, any manual manufacturing task can be represented 

as a series of human-workpiece interactions in which the human using his skills, 

knowledge and experience manipulates a workpiece from its initial state to its 

final desired state. The manufacturing knowledge associated with this task is 

embedded within these interactions and the manufacturing environment at 

large. To extract this knowledge, the interactions and the environment have to 

be in a form that can be capable of being analysed. The interactions and the 

manufacturing environment are physical in nature and the human decisions that 

affect the interactions and the environment are abstract in nature. Therefore 

both these elements need to be digitised so that the resultant digital data can be 

processed and analysed using ICT algorithms, methods and tools to extract the 

manufacturing task knowledge.  
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5.1.3 Manual manufacturing 

A manual-manufacturing task is one that does not involve the use of any 

mechanised or automated hardware or software tools for the primary operation 

of manipulating engineering workpieces. In order to compensate for the lack of 

automation, the human performing the manual task uses his set of skills 

including but not limited to his intellect, sophisticated cognition, dexterity, 

adaptability, smart decision making and the ability to learn from past 

experiences and training. Manual manufacturing entails a wide spectrum of 

tasks belonging to the 3 main families of manufacturing operations, namely, 

machining, assembly and inspection. 

5.1.4 Manufacturing knowledge 

The knowledge embedded within or associated with a manual-manufacturing 

task is made up of two main components, namely, the explicit component and a 

tacit (hidden) component. The explicit component includes standard operating 

procedure manuals, engineering drawings, manufacturing environment layouts 

and constraints, etc. and is well documented. The tacit component includes 

human action skills and human reaction or decision making skills that affect the 

task and is not documented because of the difficulty in capturing and 

expressing this knowledge.  

The human action and control skills manifest themselves during the task in the 

form of human-workpiece interactions that are responsible for successful 

implementation of the task and involve the following key knowledge 

constituents: 

i. Task strategy planned prior to the task and adjusted during the task. 

ii. Motion characteristics and mechanics that make up human actions to 

manipulate workpiece/s during the task. 

iii. Effects of specific human actions on specific workpiece configurations 

and their time-space dependencies during the task. 

iv. Expert human gestures to solve unforeseen and unexpected problems 

that occur during the task.  
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This research strives to extract and present the above 4 aspects of hidden 

manufacturing knowledge in a digital form that can be accessed on demand, 

and consumed using multiple media as required by the end application.  

5.2 Development of the framework 

The proposed framework for digitisation of manual manufacturing task 

knowledge comprises 6 main steps as illustrated in Figure 27. Each step of the 

proposed framework includes its own data input, data processing methods, 

internal and external dependencies, and data output. The data output of one 

step is the primary data input to the next step. The following section illustrates 

and describes each step of the framework. 

 

Figure 27: Framework for digitisation of manual manufacturing task knowledge 

Step 1: Capture 

Purpose: To capture and record the human-workpiece interactions occurring 

during a manual manufacturing task within a manufacturing environment into 

digital data (Figure 28).  

Description: In order to capture the human-workpiece interactions, it is 

necessary to track both the human actions and the changes undergone by the 

workpiece simultaneously in real time for the entire duration of the manual task. 

Human actions involve complex skeletal motion such as translational and 

rotational hand gestures, motion mechanics, body postures, grip-release 
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movements, etc. These human actions directly affect the workpiece causing it to 

change shape, dimensions, colour, orientation, etc. depending on the task being 

performed.  

 

Figure 28: The ‘Capture’ step and its elements 

Inputs: Apart from capturing the actual manual manufacturing tasks (the 

primary input to this step), secondary inputs about the task such as descriptions 

of critical human actions and verbal indication of when problems are being 

solved during the task can be obtained from the expert performing the task. In 

certain tasks, the sounds produced by the workpiece or the tool indicate the 

progress of the task, such as in machining or polishing. This input can be 

obtained by recording these sounds along with capturing the human-workpiece 

interactions. Finally, inputs such as engineering drawings of the workpiece and 

critical components of the manufacturing environment help in scoping, 

structuring and simplifying the process of capturing the task.  

Methods: Human action is captured by using one or more Kinect sensors. The 

Kinect sensor generates RGB and depth image streams of the 3D scene that is 

being captured. The associated software libraries, both standard and bespoke, 
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are used to simultaneously extract human skeletal motion from the images and 

the changes made to the workpiece. Sounds generated during the task and 

spoken words by the human while performing the task are also recorded using 

stereo microphones and processed into transcriptions using standard audio 

processing and speech-to-text libraries.  

Dependencies: The accuracy of the human-workpiece interaction capture 

depends heavily on the resolution of the Kinect. While the human skeletal 

tracking is a mature functionality and comes standard with the Kinect, object 

recognition and tracking must be custom developed and is constrained by its 

relatively low resolution (640 x 480 pixels). Also, the human skeletal tracking 

performance is affected by occlusions; i.e. when the device does not get an 

unobstructed view of the human body. Therefore, skeletal motion tracking 

reliability depends on the scale of the occlusion during the task. Finally, all the 

known aspects of the task such as the physical boundary of the task, exclusion 

of highly unlikely scenarios of the task and predictable configurations of the 

workpiece during the task can be considered in the capture algorithms and 

simplify the task capture step. These dependencies limit the level of task 

complexity that can be reliably captured.  

Outputs: Tracking the human skeletal motion results in a digital data stream of 

3D coordinates (x, y, z) of the 20 skeletal joints of the human body for the entire 

duration of capture. Recognising and tracking the workpiece results in a digital 

stream of 3D coordinates (x, y, z) of workpiece positions, numerical dimensions, 

shapes in the form of 2D silhouettes and workpiece configurations in the form of 

constituent parts. Transcriptions of sound data form a part of the digital data 

output if sound was captured during the task. All these digital outputs have a 

timestamp associated with them indicating the exact time of capture for each 

data point.  

Step 2: Segment 

Purpose: To segment the raw data generated in step 1 into discrete human 

action states and workpiece states that collectively and sequentially represent 
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the entire series of human-workpiece interactions captured during the manual 

manufacturing task (Figure 29).  

Description: The human-workpiece interactions captured in step 1 are 

recorded as continuous raw digital data. In order to extract and decode the 

manufacturing knowledge embedded within this data, it needs to be filtered to 

remove unwanted data or noise and segmented into distinguishable states that 

can be modelled and analysed using an appropriate state-machine based 

learning technique. Therefore, the segmentation step segregates the raw and 

continuous human-workpiece interaction data into discrete human action states 

and workpiece states, associating the sound transcriptions with the 

corresponding states based on the recording timestamps.  

 

Figure 29: The ‘Segment’ step and its elements 

Inputs: The output of step 1 consisting of human skeletal motion data, 

workpiece motion, dimension and configuration data, sound transcriptions and 

task timestamps form the input for the segmentation step. Task timestamps 

provide the fundamental link between the human, workpiece and sound data 
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because all these 3 sources of data are recorded simultaneously during the task 

capture step.  

Methods: Manual manufacturing tasks differ from each other based on how the 

workpiece changes during the tasks. The segmentation method changes 

depending on whether the workpiece undergoes a gradual change or big 

changes at regular or irregular intervals, whether the trajectories of human 

actions during the task are smooth, spasmodic or cyclical and whether the 

human mainly operates in the skill-based, rule-based or knowledge-based 

levels during the task. This research considers 3 categories of tasks based on 

the above conditions.  

In the first category, the workpiece changes are gradual in nature for the 

duration of the task and the human uses his skill-based behaviour much more 

than rule-based or knowledge-based behaviours. An example of such as task is 

manual polishing in which the surface of the workpiece gradually changes from 

rough to smooth. For this category of tasks, the human-workpiece interaction 

data is segmented using time sampling.  

In the second category, the human action is primarily made up of big and abrupt 

changes to motion trajectories, such as in complex assemblies where 

constituent parts need to be assembled on the workpiece using precise but big 

gestures seen among the otherwise smooth trajectories. In these tasks, the 

human uses a combination of rule-based and knowledge-based behaviour 

much more than skill-based behaviour. For this category of tasks, the human-

workpiece interaction data is segmented using trajectory-change sampling.  

In the final category, the workpiece undergoes prominent changes to its 

position, dimension, shape or configuration or a combination of these 

characteristics as opposed to the gradual workpiece changes seen in the first 

category. The human action trajectories are usually cyclical for these tasks. An 

example of such a task is composite layup where repetitive human actions are 

required to manipulate the composite ply and lay it over a complex mould. In 

these tasks, the human uses a combination of rule-based and knowledge-based 

behaviour much more than skill-based behaviour. For this category of tasks, the 
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human-workpiece interaction data is segmented using workpiece-change 

sampling.  

In addition to segmenting the data into discrete human action and workpiece 

states, it is also necessary to identify and isolate problem-solving sessions that 

have occurred within the human-workpiece interactions during a manual task. 

Isolation of such sessions will enable further analysis, extraction and decoding 

of problem-solving strategies including the choice of corrective actions made by 

the expert while solving the problem.  

However, before segmentation, the continuous raw data needs to be filtered to 

remove any unwanted data. This filtering is done by removing the high 

frequency noise from human skeletal motion and idling periods during the task 

that do not contribute to the progress of the task. A simple threshold 

comparison algorithm is used to filter out such noise and the threshold values 

are obtained empirically and/or in consultation with task experts. The three 

segmentation techniques are described below. 

i. Time sampling: This is the simplest form of segmentation where the 

continuous human skeletal motion data and workpiece progress data is 

segmented every ‘n’ units of time. The unit used in this research is ‘seconds’ 

and the value of ‘n’ is chosen based on the frequency of small changes in 

human actions that result in incremental changes in the workpiece. 

ii. Trajectory sampling: In this technique, continuous human skeletal motion 

data is analysed and segmented at points where an abrupt change in gesture 

such as change in motion direction, angles between body parts, acceleration 

and/or speed is detected. The continuous workpiece data is also segmented 

at the same points.  Specific joints of the human skeleton are chosen 

depending on the parts of the body that are predominantly used to perform 

the task. For example, in an assembly task, abrupt changes in only hand 

gestures are used to segment human motion data. A threshold to determine 

the level of abruptness in motion is set prior to the implementation of the 

segmentation step. The threshold value is arrived at on the basis of empirical 

means and/or in consultation with the task experts.  
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iii. Workpiece sampling: In this technique, the workpiece characteristics such 

as position, dimensions, shape and configuration are analysed to find points 

where significant changes in any of these characteristics have occurred. The 

continuous workpiece data is segmented at these points to obtain discrete 

workpiece states. At the same points, corresponding human action data is 

also segmented to obtain discrete human action states. As in the trajectory-

based segmentation technique, a threshold value is chosen to determine the 

level of workpiece change that is considered significant enough for 

segmentation. This threshold value is estimated based on empirical data 

and/or in consultation with the task experts. For example, in the composite 

layup task, the workpiece is divided into several sectors and the change in 

ply surface topography changes significantly from being not laid to fully laid in 

those sectors. The segmentation is performed every time the laminator 

progresses from one sector to another.  

iv. Segregation of problem-solving sessions: One key objective of this 

research is to identify problem-solving sessions within the captured human-

workpiece interactions and analyse these sessions further to extract and 

decode the knowledge-based behaviour used by the human to solve the 

problem. There are two ways investigated in this research to identify and 

isolate problem-solving sessions within the captured human-workpiece 

interaction data.  

In the first method, the corresponding human and workpiece states 

generated from the human-workpiece interaction data for two or more runs of 

the same task are compared. The presence of additional states in some runs 

of the task indicates peculiar human behaviour and unexpected changes to 

the workpiece during those runs. It is important to isolate and analyse such 

states because in some cases they could be representations of problem-

solving sessions and for some it could be noise (false data captured as a 

result of low resolution of the Kinect or unwanted data that was missed by the 

filtering process).  
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In the second method, verbal instructions are issued by the task expert to the 

capture step to note his/her set of actions as problem-solving actions. A 

verbal indication to start noting the problem-solving session is processed 

using a standard speech-to-text function and all human skeletal motion and 

workpiece-change data captured from this point on is flagged as a problem-

session session until a verbal instruction to stop is issued by the expert.  This 

way there is no need to compare human and workpiece states of task runs to 

isolate problem-solving sessions. Both these methods have been 

investigated in this research.  

Dependencies: The performance of the segmentation step depends on the 

quality of human-workpiece interaction data being captured and recorded. This 

quality is further dependent on the resolution of the Kinect and the sound 

capturing microphones. Higher the resolution less is the noise in the captured 

data. With the primary human action and workpiece-change data coming from 

the Kinect, its low image resolution introduces a significant amount of noise in 

the captured data.  

Other factors that affect the performance of the segmentation step are the 

thresholds used for segregating human and workpiece data in the trajectory-

change-based and workpiece-change-based segmentation techniques. 

Realistic values of these thresholds must be obtained based on past task 

capture data and/or with practical inputs from task experts based on their task 

knowledge. Unrealistic values will result in incorrect generation of human and 

workpiece states. A higher than realistic threshold will result in missed states 

and loss of knowledge whereas a lower than realistic threshold will generate 

redundant states introducing more complexity, which does not necessarily 

mean more accuracy in the subsequent modelling step. 

Outputs: Two main outputs are generated from the segmentation step, namely 

the discrete human action states comprising human skeletal motion data within 

each state and discrete workpiece states comprising the positional, 

dimensional, shape and configurational changes within each state. Out of the 

several ways to represent human action states, one way is to use Therbligs. 
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Therbligs are mainly used in human motion study in work environments, such 

as in an assembly line to evaluate task productivity. For certain tasks, Therbligs 

can be investigated to represent human action states and one such 

investigation is conducted in this research. A third but not a discrete output is 

the time-space dependencies between human action states and corresponding 

workpiece states based on a common time and space of capturing the manual-

manufacturing task.  

Step 3: Model 

Purpose: To model the human-workpiece interactions represented as discrete 

human and workpiece states for each observation of a manual manufacturing 

task (Figure 30). 

 

Figure 30: The ‘Model’ step and its elements 

Description: The discrete human action states and workpiece-change states 

generated in step 2 are non-deterministic in nature, which means that the same 

states may not be generated every time the same manual manufacturing task is 

captured. Because of the manual nature of the task, it is not performed in 

exactly the same manner even by the same human and small differences 
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between the tasks may result in different states. Therefore, in order to analyse 

these states to extract and decode the manufacturing knowledge embedded 

within them, a non-deterministic discrete state space modelling technique can 

be used.  

Inputs: The inputs for the modelling step are the discrete human action and 

workpiece states as well as the time-space dependencies between these states 

as generated in step 2.  

Methods: There are two popular methods to model time series data of 

multivariate observations, which in this case are the human-workpiece 

interactions, namely Hidden Markov Modelling (HMM) or Conditional Random 

Fields (CRF). Both are graphical models that describe how the input states of a 

system are connected, the probabilities of input states to emit output states and 

enable the prediction of a sequence of input states given a sequence of output 

states.  

HMM is a generative modelling method in which the input states are 

independent of each other except for the Markov assumption that the next input 

state is dependent only on the previous input state, thereby modelling a system 

as a directed graph with a specific state sequence. There is no relationship 

between the output states themselves. The transition probabilities between 

input states and emission probabilities between input and output states are 

fixed and time-invariant.  

CRF is a discriminative modelling method in which the input states depend on 

other inputs states and also affect them not necessarily in any sequence, 

thereby modelling a system as an undirected graph. The Markov assumption 

could be made a part of these dependencies. The output states however are 

independent of each other like in the case of HMM. However, the main 

difference between CRF and HMM is that in CRF the transition probabilities 

between input states and the emission probabilities between input and output 

states are conditional and not fixed. Therefore, more context-dependent 

variables can be modelled in CRF, which is not possible in HMM. Therefore, 
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CRF seems to be a better choice in terms of the richness of detail that can be 

modelled for a time-series system (Sutton and McCallum, 2011). 

Despite CRF being a superior modelling method, HMM is used in this work 

because of two primary reasons. First, HMM can be used to model a system in 

which input states are hidden and the relationship between them is not 

completely known whereas in a CRF, the relationships must be defined as a 

conditional function. Second, even when the state transition and emission 

probabilities are not known, an HMM model can be trained by using only the 

observed output states using unsupervised learning algorithms, whereas 

unsupervised learning in CRF is less known in literature. Sutton and McCallum 

(2011) state: “For any particular data set, it is impossible to predict in advance 

whether a generative or a discriminative model will perform better. Finally, 

sometimes either the problem suggests a natural generative model, or the 

application requires the ability to predict both future inputs and future outputs, 

making a generative model preferable.” Given the above arguments and the 

new approach of this research to extract knowledge from tasks by modelling the 

human-workpiece interaction within the tasks, HMM was chosen as a practical 

attempt.   

HMM is used to model the human-workpiece interactions that are segmented 

into discrete human action and workpiece states. An HMM is a stochastic 

machine learning tool used to model and analyse systems that can be 

represented as state machines that display the Markov condition; the current 

state of the system depends only on the previous ‘n’ states of the system. In 

addition to the Markov condition, another factor in an HMM is that the set of 

states that affect the system are hidden (not observable directly) whereas the 

effects of those states on the system are observable. The transitions between 

the hidden states and the observation states are represented stochastically, i.e. 

by assigning probabilities for hidden state transitions and for observation states 

caused by the hidden states.  These probabilities are assumed to be time-

invariant, i.e. the probabilities do not change over the duration of the task and 

therefore it is vital that these probabilities are estimated empirically. These 
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probabilities are initially assigned in the HMM model on random basis and/or in 

consultation with the task experts and may not be optimal. Therefore, the HMM 

models must be trained in order to generate optimal probabilities so that the 

human-workpiece interactions could be modelled as accurately as possible. 

Training is conducted using an expectation-maximisation (EM) algorithm that 

optimises the probabilities of the HMM to the local optimum. A detailed 

introduction to HMM is presented later in this chapter (section 5.3).  

Dependencies: Modelling of human-workpiece interactions depends on the 

primary characteristics of the HMM models, namely, the topology of the model 

determined by the number of hidden states (human action states) and the 

number of observation states (workpiece states) and the model parameters 

comprising the hidden state transition probabilities and probabilities of the 

hidden states emitting the observation states. Training efficacy of the HMM 

depends on the observation sequence used for the training. Each unique 

observation sequence results in a unique set of optimised HMM parameters due 

to the training process converging to a local optimum rather than a global one 

and therefore the selection of observation sequences for HMM training requires 

some attention.  

Outputs: As a result of this modelling step, one hidden Markov model is 

generated for each unique observation of a sequence of workpiece states, i.e. 

unique task scenarios. Therefore, several HMMs could be generated for one 

task where each HMM model represents a different scenario within the same 

task. This step completes the digitisation process of the manual manufacturing 

task where each unique observation is modelled using an HMM model. These 

models could be saved in .CSV files and can be retrieved on demand for 

manufacturing knowledge extraction and decoding. 

Step 4: Extract 

Purpose: To analyse all the HMM models generated in the modelling step for a 

task and extract the human action sequences responsible for any given task 

scenario (sequence of workpiece change states) whether or not the scenario is 

observed (Figure 31).   
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Description: After the digitisation of a manual manufacturing task into digital 

human-workpiece interaction models using HMM, the next step is the analysis 

of these models in order to decode the manufacturing knowledge embedded 

within them. However, before manufacturing knowledge is decoded for a task, 

the human action sequences responsible for different scenarios of the task must 

be identified and extracted. 

Inputs: The input to the analysis step is the set of HMM models generated in 

step 3 for the digitised manual manufacturing task.  

Methods: As described in the modelling step, all unique sets of human-

workpiece interactions observed during several runs of the manual 

manufacturing task are modelled using hidden Markov modelling. 

 

Figure 31: The 'Extract' step and its elements 

Therefore, each task is associated with several HMM models. One of the main 

constituents of manufacturing knowledge is the sequence in which actions are 

selected and executed by the human during the task. Therefore, it is necessary 

to first extract the human action sequences responsible for specific workpiece 

state sequences representing various task scenarios.  
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Since each task is represented by multiple HMM models, one for each task 

scenario, a method to select the right HMM model for a given task scenario is 

needed. The selection method is deterministic if the given workpiece 

observation sequence (task scenario) has been observed before and is already 

represented by an HMM model. The right HMM model is therefore selected by 

merely comparing the given workpiece observation sequence with all 

observation sequences represented by their corresponding HMM models. The 

selection method is non-deterministic if the given workpiece sequence has not 

been observed before and an HMM model for it does not exist. In this case the 

HMM model that is most likely to represent the given workpiece observation 

sequence is stochastically obtained. Once the HMM model is identified for the 

given task scenario, the next step is to extract that human action sequence that 

is most likely responsible for that scenario.  

Dependencies: The selection of the right HMM model to extract the human 

action sequences for a given task scenario (workpiece observation sequence) 

depends on the task scenario itself. This implies that a strong dependency 

exists between the workpiece states to human action states, as is the case with 

any manual manufacturing task. The same is true for task scenarios involved in 

problem-solving sessions. Also, the HMM model topology as discussed in 

section 5.3.2 influences the extraction of human action state sequences 

because the number of hidden states and observed states could be different for 

different task scenarios.  

Outputs: The output of the extraction step is the sequence of human action 

states that is obtained by deterministic or stochastic means for the generation of 

the given task scenario represented by its workpiece change sequence. Human 

action sequences for different combinations of workpiece change sequences 

can be extracted in order to cover all task scenarios and decode the 

manufacturing knowledge associated with these scenarios in the next 

‘decoding’ step. 
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Step 5: Decode  

Purpose: To decode the different manufacturing knowledge constituents 

associated with the human action sequences extracted in step 4 (Figure 32).  

Description: Manufacturing knowledge is embedded within the actions 

performed by the human during the task. There are several constituents of this 

knowledge such as task strategy, timing and nature of human gestures, 

mechanics of human body motion and workpiece manipulation techniques used 

during the execution of the task. These knowledge constituents can be decoded 

from the human action sequences extracted in step 4. 

Inputs: Human action sequences responsible for given workpiece change 

sequences during a manual-manufacturing task.   

 

 

Figure 32: The 'Decode' step and its elements 

Methods: From the sequence of human action states and the resulting 

workpiece observation states, each state must be mapped to its actual human 

skeletal motion data and workpiece progress data respectively. From these two 
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sets of data the knowledge constituents are decoded. For example, from the 

human action sequence, the strategy adopted by the human to execute the task 

can be obtained. Similarly, from the human skeletal motion data, motion 

mechanics such as speed and acceleration of human hand gestures, angle 

between upper and lower limbs, glance angle, body orientations, etc. can be 

obtained. The resolution of a problem during the task can also be decoded by 

observing the effects of unusual actions taken during those sessions on the 

workpiece and the contribution of those actions to successfully solve the 

problem.  

Dependencies: In order to decode the knowledge constituents, the right human 

action sequence for the given workpiece observation sequence (query) must be 

provided. 

Outputs: The output of the decoding step is a set of manufacturing knowledge 

constituents decoded from the human action sequences. This data being in 

digital form can then be converted into multiple media so that it could be 

reproduced and transferred in the next step of the framework. 

Step 6: Reproduce 

Purpose: To reproduce the manufacturing knowledge constituents extracted 

and decoded using the first 5 steps of the framework (Figure 33). 

Description: The manufacturing knowledge associated with the captured 

manual manufacturing task can be reproduced by rendering the knowledge 

constituents decoded in the previous step. The human actions required to 

execute the task successfully can be reproduced graphically using tools such as 

animations with the relevant knowledge constituents annotated within the 

animation during the corresponding times of the task. 

Inputs: Knowledge constituents such as precise human gestures, mechanics of 

movements performed, and task strategies adopted during the execution of the 

task. 
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Methods: Graphical rendering of the execution of the task including human 

actions and workpiece progress can be reproduced using multiple media. The 

simplest form of rendering is 2D animation on the computer screen annotated 

with the knowledge constituents such as task strategy in the form of action 

sequence, human’s body postures, motion speed and acceleration values, 

problem-solving gestures, etc.   

Dependencies: In order to reproduce a manual manufacturing task with 

knowledge constituents annotated, the original capture step must record all task 

details such as all human actions and the corresponding changes to the 

workpiece. However, due to various constraints of the ‘Capture’ step such as 

low resolution of the Kinect, it is difficult to capture the workpiece changes in 

certain orientations, especially if the workpiece is complex. Also problems such 

as occlusions do not allow the capture of all human actions in the task making 

some portions of the task not reproducible. 

 

Figure 33: The 'Reproduce' step and its elements 
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When disconnected actions form part of a human action sequence, appropriate 

stitching methods are required to connect the disconnected actions together to 

render the unified human action sequence.  

Outputs: The knowledge extracted and decoded using this framework can be 

stored in the form of documents such as task manuals or as videos of 

animations demonstrating the task.  Since all the knowledge constituent data is 

digital, virtual and augmented reality tools could be used to reproduce the 

knowledge in virtual task space for task simulation or augmenting this 

knowledge over the real manufacturing environment in real task space. Such 

reproduction of knowledge helps in applying the digitisation framework to 

applications such as ergonomic analysis, human error analysis, skill training 

and to inform the design and process of automating manual manufacturing 

tasks. 

5.3 Introduction to Hidden Markov Models 

5.3.1 Need for modelling 

Digitisation of manufacturing knowledge associated with a manual 

manufacturing task involves not only the capture and record of human-

workpiece interactions in digital form but also the representation of this digital 

data in a manner that can be analysed and reproduced as required. Another 

objective of the digitisation process is to extract the hidden or implicit aspect of 

manufacturing knowledge such as human skill and decode this knowledge so 

that it can be explicitly documented and passed on from one human to another.  

Human-workpiece interactions during a manual manufacturing task can be 

considered as a sequential time series of human actions and changes in 

workpiece configurations. In the segmentation phase, this continuous human-

workpiece interaction data is segmented into discrete human action states and 

workpiece observation states, in which each human action state is made up of 

continuous human motion data. In these interactions, the changes undergone 

by the workpiece, denoted by the workpiece states are distinctly observable 

whereas the human action states, embedded with action and control skills, are 
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not distinctly observable. The HWI theory also illustrates that any human action 

on the workpiece is influenced by the outcome of the workpiece from the 

previous human action. 

Therefore, a modelling tool is needed that can represent a time series of 

human-workpiece interaction data over long and repeated observations of a 

manual manufacturing task and one that can also take into account the hidden 

nature of human actions and the dependence of human action on the outcome 

of the workpiece based on the previous human action. The modelling tool must 

also be able to identify the human action sequences responsible for all the 

possible workpiece observation sequences in order to extract and decode the 

different constituents of manufacturing knowledge.  

These requirements form the basis of selecting a semi-supervised machine 

learning technique that can represent (1) multiple long time series of 

multivariate data as a state machine, (2) hidden input states that influence the 

observable output states and (3) incorporate the dependencies of hidden input 

states over the previous output states and the previous hidden input states. The 

human-workpiece interactions can be considered as a Markov process where 

the next human action state is dependent only on the previous human action 

state. Because the human action states are considered hidden, Hidden Markov 

Modelling (HMM) is a suitable modelling tool.  

HMM, a stochastic framework for modelling a time series of multivariate 

observations is a widely used tool to analyse and predict time series 

phenomena. There is a large volume of literature produced on the design and 

use of HMM to a broad range of pattern recognition tasks. A classical reference 

to HMM can be found in Rabiner and Juang (1986). The first practical 

application of HMM is based on the work of Rabiner (1989) for speech 

recognition. Since then, HMM has been used to model and analyse time series 

data including, Electro-Cardiogram (ECG) analysis (Coast et al., 1990), face 

detection and recognition (Nefian and Hayes, 2000), gene finding in DNA 

(Cawley and Pachter, 2003), stock market forecasting (Hassan et al., 2007) and 

human activity detection (Sung et al., 2012) among others.  
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An HMM model is a statistical Markov model in which the system being 

modelled is assumed to be a Markov process with unobserved (hidden) states. 

A Markov process is a process, which moves from one state to the next 

depending only on the previous ‘n’ states. This process is called ‘n’ order 

Markov process where ‘n’ is the number of past states affecting the choice of 

the next state. The simplest Markov process is the first order process where the 

choice of the next state depends only on the previous state (n = 1). 

In a regular Markov model, the state is directly visible to the observer, and 

therefore the state transition probabilities are the only parameters. In a hidden 

Markov model, the state is not directly visible, but output, dependent on the 

state, is visible. The transitions between hidden states are governed by a 

Markov chain and the emissions from each state are governed by a distinct 

probability distribution. The principal use of HMM is the determination of the 

most likely sequence of hidden states that could have generated a given 

sequence of observations. This problem usually does not have an exact 

solution therefore the idea is to find the hidden state sequence that would have 

generated the observed sequence with the highest probability. 

In speech recognition, the HMM try to match a pattern of sound frequencies to 

predefined words based on the highest probability of a word matching a 

sequence of sound frequencies (Rabiner, 1989). HMM is also been widely used 

for Human Activity Recognition (HAR) from a continuous series of video or 

static image data. In HAR, human motion features such as body silhouettes and 

joint angles and human motion characteristics such as motion speed and 

acceleration are extracted using techniques such as Principal Component 

Analysis (PCA) and these motion features are mapped to predefined activities 

such as walking, running, jumping, idling, etc. to recognise human activities 

within a video or image sequence. HMM is used to match the human motion 

feature patterns to the activity datasets and select the most probable activity 

that would match the motion feature pattern (Uddin et al., 2010). 

The main ability that this research aims to enable is to extract human action 

sequences that are responsible for specific workpiece state change sequences 
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during a manual manufacturing task. The workpiece state changes are 

considered observable due to these being conspicuous whereas the human 

action states are considered hidden because within these actions are implicit 

human skills that are not directly observable. Therefore, HMM is used to model 

the hidden human states and observable workpiece states and map any 

workpiece state sequence to a human action sequence to extract and decode 

manufacturing knowledge associated with the manual tasks.  

5.3.2 Definition of HMM 

The structure of an HMM model contains states and observations. An HMM 

model is defined as set (𝑆, 𝑂, 𝜋, 𝐴, 𝐵), where 𝑆 =  {𝑠1, 𝑠2 … , 𝑠𝑛} is a finite set of 

′𝑛′ states, 𝑂 =  {𝑜1, 𝑜2 … , 𝑜𝑚} is a vocabulary of ‘𝑚’ possible observation 

symbols or states, 𝜋 = {𝜋𝑖} are the initial state probabilities, 𝐴 = {𝑎𝑖𝑗
} is the 

state transition matrix, 𝐵 = {𝑏𝑖(𝑜𝑘)} is the emission matrix.  

𝜆 =  (𝜋, 𝐴, 𝐵) is used to denote an HMM model where 

𝜋𝑗 is the probability that the system starts at state j at the beginning 

𝑎𝑖𝑗  is the probability of going to state j from state i 

𝑏𝑖(𝑜𝑘) is the probability of “generating” symbol 𝑜𝑘 at state i 

It is assumed that the state machine emits a symbol and starts to jump to a new 

state at the same time. Time t is discrete and starts with 1. Each probability in 

the state transition matrix and in the emission matrix is time invariant, i.e. the 

matrices do not change over time as the system evolves. This condition is often 

unrealistic but reasonably acceptable in this research because the 

manufacturing task is a known sequence of workpiece observations and the 

probabilities of workpiece state transitions and workpiece observations as a 

result of human actions would not normally change over the duration of a task.  

Because HMM is a stochastic modelling technique, each model must adhere to 

the following obvious probability constraints: 
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∑ 𝜋𝑖 = 1
𝑛

𝑖=1
            

∑ 𝑎𝑖𝑗 = 1 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛
𝑛

𝑗=1
 

∑
𝒃𝒊(𝒐𝒌) = 𝟏 𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐, … , 𝒏 𝒘𝒉𝒆𝒓𝒆 𝒏 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒉𝒊𝒅𝒅𝒆𝒏 𝒔𝒕𝒂𝒕𝒆𝒔 𝒂𝒏𝒅 
                                                                      𝒎 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒔𝒕𝒂𝒕𝒆𝒔

𝒎

𝒌=𝟏
 

[Equation 5-1] 

In common applications of HMM, the internal states of the model are not 

observable, thus the states are said to be hidden. Only the emitted symbols 

(observations) can be observed. The goal is to extract some information about 

the internal states from the model parameters and emitted symbols. The 

emitted symbols in this case are the observable workpiece states and the 

internal states are the human action states in which implicit constituents of 

manufacturing knowledge are hidden.  

Example of an HMM model: Consider the following state machine with two 

hidden states ‘A’ and ‘B’ and each state emitting one of the two observation 

symbols ‘0’ or ‘1’.  

 

Figure 34: Example state machine 

The HMM model that represents the above state machine (Figure 34) is 

𝜆 =  (𝜋, 𝐴, 𝐵) in which input states 𝑆 =  {𝐴, 𝐵} and observations states𝑉 =

 {0, 1}. The HMM model parameters are: 

 State transition matrix 𝐴 =  (
0.95 0.05
0.1 0.9

) 

 

 Emission matrix 𝐵 =  (
0.65 0.35
0.5 0.5

)  
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 Initial probability matrix 𝜋 = ( 0.5 0.5) 

5.3.3 Standard HMM implementation 

There are three fundamental problems that HMM can be applied to solve. HMM 

is of practical interest here mainly because all these problems can be solved in 

reasonably quick time for long sequences. The first two are pattern recognition 

problems whereas the third is a model learning problem. The 3 problems are: 

(1) Finding the probability observing a given observation state sequence given 

an HMM model (‘evaluation problem’), (2) finding the hidden state sequence 

that most likely generated the given observation state sequence (‘decoding 

problem’) and (3) re-estimating the HMM model parameters so that the model is 

optimised given an observation state sequence (‘learning problem’). 

Problem 1: Evaluation 

Given the HMM model 𝜆 =  (𝜋, 𝐴, 𝐵) and a sequence of observation states 𝑂, 

find the probability of observing the observation state sequence from the HMM 

𝜆 also denoted as 𝑃(𝑂|𝜆).  

Consider a situation in which a system is modelled using multiple HMM models 

each representing a different system scenario, i.e. a different sequence of 

observation states. Therefore, given an observation state sequence, the 

evaluation problem aims to find the HMM model that is most likely to represent 

that sequence. Such a problem is encountered in speech recognition where a 

large number of HMM models exist, each representing a particular word. An 

observation sequence is formed from the phonetics of a spoken word, which is 

recognised by identifying the most probable HMM model representing the word. 

In this research, all unique workpiece state sequences (task scenarios) 

observed for a manual manufacturing task will be modelled using distinct HMM 

models. Given a task scenario, the evaluation problem is to find the HMM model 

that most likely represents it. Once the HMM model is found, the manufacturing 

knowledge embedded within the human action states within the model can be 

extracted and decoded.  
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The evaluation problem is solved by using the ‘Forward’ or ‘Backward’ 

algorithm. Both algorithms are similar in nature and are used to compute the 

probability of an observation state sequence given an HMM model. Since the 

‘Forward’ algorithm is used in this research, it is described below.  

Forward Algorithm 

This algorithm consists of 3 main steps, namely, initialisation to find the initial 

partial probability, forward recursion to find intermediate partial probabilities and 

termination to find the final probability as the sum total of all partial probabilities.  

The given observation sequence is 𝑂 =  {𝑜1, 𝑜2, … , 𝑜𝑇}, 𝑎 is the probability in 

state transition matrix 𝐴 and 𝑏 is the probability in the observation emission 

matrix 𝐵. 

Initialisation: Determine the first partial probability 𝛼𝑡(𝑖) for occurrence of state 𝑖 

at time 𝑡 =  1. 

𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 

 [Equation 5-2] 

Forward recursion: For each time step 𝑡, the partial probability 𝛼𝑡 is determined 

for each state 𝑖. This partial probability is the sum of all probabilities of all 

possible forward paths leading to that state. Recursively, a partial probability of 

a state at time 𝑡 can be determined by using partial probability of that state at 

time 𝑡 − 1.  

𝛼𝑡+1(𝑖) = (∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗

𝑖

) 𝑏𝑗(𝑜𝑡+1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑡 ≤ 𝑇 − 1  

𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 

[Equation 5-3] 

Termination: The final probability 𝑃 (𝑂 | 𝜆) of the given observation state 

sequence 𝑂 given the HMM model 𝜆 is the sum of all partial probabilities 𝛼 

computed in the previous two steps for time 𝑡 = 𝑇.  
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𝑃(𝑂|𝜆) = ∑ 𝛼𝑇(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛

𝑖

 

[Equation 5-4] 

By running the ‘Forward’ algorithm on all HMM models, the model that returns 

the highest final probability 𝑃(𝑂|𝜆) is the one that most likely represents a given 

observation state sequence.  

Problem 2: Decoding 

Given the HMM 𝜆 =  (𝜋, 𝐴, 𝐵) and the observation sequence 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑇} 

the goal is to compute the most likely sequence of hidden states that produced 

the observation sequence 𝑂, i.e. to extract the hidden state sequence 𝑆 =

{𝑠1, 𝑠2, … , 𝑠𝑇} which maximises 𝑃(𝑆|𝑂). 

In this research, it is essential to find the sequence of human action states that 

are responsible for any given workpiece state sequence so that the hidden 

aspect of manufacturing knowledge associated with the task, such as human 

action and reaction skills, can be extracted and decoded.  

The Viterbi algorithm can be used for this purpose, which is similar to the 

‘Forward’ algorithm. The difference in the Viterbi algorithm is that in the final 

step, instead of summing up the partial probabilities, the highest probability 

among the partial probabilities is chosen. Then the hidden state sequence is 

obtained by back tracking the path that travels through the highest partial 

probability from 𝑡 =  𝑇 𝑡𝑜 1.  

Viterbi Algorithm 

This algorithm consists of 3 main steps, namely, initialisation to find the initial 

partial probability, forward recursion to find intermediate partial probabilities 

storing each state with the highest intermediate partial probability and 

termination to find the final probability which is the highest of all partial 

probabilities.  
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The given observation sequence is 𝑂 =  {𝑜1, 𝑜2, … , 𝑜𝑇}, 𝑎 is the probability in 

state transition matrix 𝐴 and 𝑏 is the probability in the observation emission 

matrix 𝐵. 

Initialisation: Determine the first partial probability 𝛿𝑡(𝑖) for occurrence of state 𝑖 

at time 𝑡 =  1. 

𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 

[Equation 5-5] 

Forward recursion: For each time step 𝑡, the partial probability 𝛿𝑡 is determined 

for each state 𝑖. This partial probability is the highest of all probabilities of all 

possible forward paths leading to that state. Recursively, a partial probability of 

a state at time 𝑡 can be determined by using partial probability of that state at 

time 𝑡 − 1.  

𝛿𝑡(𝑖) = max
𝑖

(𝛿𝑡−1(𝑖)𝑎𝑖𝑗) 𝑏𝑗(𝑜𝑡) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 2 ≤ 𝑡 ≤ 𝑇  

𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 

[Equation 5-6] 

For backtracking the best path at the end, the state associated with the highest 

partial probability is stored in an array at each step 𝑡.  

Termination: The final probability 𝑃 (𝑜𝑇 | 𝜆) of the given observation state 

sequence 𝑂 given the HMM model 𝜆 is the highest of all partial probabilities 𝛿 

computed in the previous two steps for times 𝑡 =  𝑇. 

𝑃(𝑜𝑇|𝜆) = max
𝑖

(𝛿𝑇(𝑖)) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 

[Equation 5-7] 

The state 𝑠 that is associated with the highest final probability 𝑃(𝑜𝑇|𝜆) is then 

added as the last state to the array of states that represents the best state path 

that was constructed in the forward recursion phase. Therefore, for a given 
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observation sequence 𝑂, the most probable hidden state sequence 𝑆 is 

determined.  

Problem 3: Learning 

The evaluation and decoding problems involve either a measurement of an 

HMM model's relative suitability or an estimate of what the underlying model is 

representing, i.e. to determine what might have `really happened'. It can be 

seen that both the problems depend upon foreknowledge of the HMM 

parameters - the state transition matrix 𝐴, the emission matrix 𝐵, and the initial 

vector 𝜋. There are, however, many circumstances in practical situations in 

which these are not directly quantifiable, and have to be estimated. Usually, the 

HMM topology is relatively well designed (by an expert or obtained heuristically) 

but reasonably true determination of the state transition and observation 

emission probabilities is needed. The process of re-estimating the transition and 

emission probabilities of an HMM model is known as ‘the learning problem’.  

Given the observation state sequence 𝑂 based on which the HMM model 𝜆 is 

generated, learning is an iterative process in which the parameters of the model 

are re-estimated by optimising them with each learning cycle (iteration) until the 

parameters cannot be optimised anymore, i.e. when a convergence is reached. 

The convergence is reached when 𝑃(𝑂|𝜆), the probability of the model 𝜆 to emit 

the observation state sequence 𝑂, does not increase with any more iterations. 

There are 2 main learning algorithms that are commonly reported in literature, 

namely, ‘Viterbi Training’ also known as ‘Segmental K-Means’ and ‘Baum 

Welch’, also known as ‘Forward-Backward’ algorithm.   

‘Viterbi Training’ algorithm: In this algorithm, the parameters 𝐴 and 𝐵 of the 

HMM model 𝜆 =  (𝜋, 𝐴, 𝐵) are adjusted to maximise 𝑃(𝑂, 𝐼|𝜆) where 𝐼 is the 

sequence of hidden states that is responsible for emitting the observation state 

sequence 𝑂. Firstly, this algorithm requires the hidden state sequence 𝐼 to be 

known beforehand to re-estimate the HMM model parameters. Secondly, by re-

estimating the parameters based on the specific combination of the hidden state 

sequence 𝐼 and the observation state sequence 𝑂, the resulting HMM model 
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becomes highly selective for that combination and loses its ability to predict 

hidden state sequences for other observation state sequences.  

‘Baum-Welch’ algorithm: In this algorithm, the parameters 𝐴 and 𝐵 of the HMM 

model 𝜆 =  (𝜋, 𝐴, 𝐵) are adjusted to maximise 𝑃(𝑂|𝜆) where 𝑂 is the sequence 

of observation states based on which the HMM model 𝜆 was generated. Unlike 

the Viterbi algorithm, the Baum-Welch algorithm does not require the hidden 

state sequence 𝐼 to be known beforehand. It also computes 𝑃(𝑂|𝜆) by summing 

up the probabilities 𝑃(𝑂, 𝐼|𝜆) for all possible hidden state sequences 𝐼 rather 

than a specific sequence. Therefore, the resulting HMM model does not lose its 

ability to predict hidden state sequences for other observation state sequences.    

Choice between the two learning algorithms 

It is important to note that none of the two learning algorithms give globally 

optimum HMM model parameters but converge to a local optimum instead 

(Dempster et. al, 1977, Boodidhi, 2011). This means that for each observation 

state sequence and for each new set of starting HMM parameters, both the 

algorithms will converge to new optima resulting in a different resulting HMM 

model each time. 

The Viterbi training algorithm requires the HMM model to be initialised with 

reasonably appropriate parameters rather than with random numbers. To arrive 

at the optimised HMM model, this algorithm does not consider all possible 

hidden state sequences. Therefore, it is not computationally expensive and 

executes relatively faster (Rodrıguez and Torres, 2003). Therefore, in cases 

where the HMM model can be appropriately initialised, the hidden state 

sequence that emits the observation state sequence is known and the HMM 

model is required to run in real-time (such as in speech recognition), the Viterbi 

training method is preferred.  

The Baum-Welch algorithm does not need any model initialisation but just non-

zero random values as starting HMM model parameters. Also, the algorithm 

exhaustively uses all the available data to produce robust and optimal estimates 

of model parameters and is therefore computational expensive and slower. In 
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this research, as the hidden state sequences for all observation state 

sequences may not be known and the HMM is not required to run in real-time 

the ‘Baum Welch’ algorithm is preferred and used. 

Baum-Welch algorithm explained 

The Baum-Welch algorithm (Baum et al., 1970) consists of 4 main steps, 

namely, forward recursion, backward recursion, determination of temporary 

probability variables and re-estimating of the revised HMM parameters 

𝜋, 𝐴 and 𝐵. Before the algorithm is executed, the HMM model 𝜆 =  (𝜋, 𝐴, 𝐵)  is 

initialised with random values for parameters 𝜋, 𝐴 and 𝐵. The algorithm updates 

these parameters iteratively until convergence is reached. 

Initialisation: Determine the first partial probability 𝛼1(𝑖) for occurrence of state 

at time 𝑡 =  1 and the last partial probability 𝛽𝑇(𝑖) at time 𝑡 =  𝑇 

𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 

𝛽𝑇(𝑖) = 1 

[Equation 5-8] 

Forward Recursion: For each time step 𝑡, the partial probability 𝛼𝑡 is determined 

for each state 𝑖. This partial probability is the sum of all probabilities of all 

possible forward paths leading to that state. Recursively, a partial probability of 

a state at time 𝑡 can be determined by using partial probability of that state at 

time 𝑡 − 1.  

𝛼𝑡+1(𝑗) = (∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗

𝑖

) 𝑏𝑗(𝑜𝑡+1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑡 ≤ 𝑇 − 1  

𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 

[Equation 5-9] 

Backward Recursion: For each time step 𝑡, the partial probability 𝛼𝑡 is 

determined for each state 𝑖. This partial probability is the sum of all probabilities 

of all possible forward paths leading to that state. Recursively, a partial 
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probability of a state at time 𝑡 can be determined by using partial probability of 

that state at time 𝑡 − 1.  

𝛽𝑡(𝑖) = ∑ 𝛽𝑡+1(𝑗)𝑎𝑖𝑗

𝑗

𝑏𝑗(𝑜𝑡+1) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑡 ≤ 𝑇 − 1  

𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 

[Equation 5-10] 

Determination of temporary probability variables: Using the forward and 

backward partial probabilities, the temporary probability variables 𝛾 and 𝜉 are 

calculated as follows: 

𝜸𝒕(𝒊) =
𝜶𝒕(𝒊)𝜷𝒕(𝒊)

∑ 𝜶𝒕(𝒋)𝜷𝒕(𝒋)𝒏
𝒋=𝟏

 

𝜉𝑡
(𝑖, 𝑗) =

𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1
(𝑗)𝑏𝑗(𝑜𝑡+1)

∑ ∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗𝛽𝑡+1
(𝑗)𝑏𝑗

𝑛
𝑗=1 (𝑜𝑡+1)𝑛

𝑖=1

 

[Equation 5-11] 

where 𝜸𝒕
(𝒊) is the probability of the system being in state 𝑖 at time 𝑡, given the 

observation state sequence 𝑂 and HMM 𝜆 and 𝜉𝑡(𝑖𝑗) is the probability of the 

system being in state 𝑖 and 𝑗 at times 𝑡 and 𝑡 + 1 respectively given the 

observation state sequence 𝑂 and HMM 𝜆. 

Re-estimation of updated HMM parameters: Using the temporary probability 

variables 𝛾 and 𝜉, the revised HMM parameters 𝜋’, 𝐴’ and 𝐵’ are computed: 

�̅� = 𝛾1(𝑖) 

𝑎𝑖𝑗̅̅ ̅̅ =
∑ 𝜉𝑡(𝑖, 𝑗)𝑇−1

𝑡=1

∑ 𝛾𝑡
𝑇−1
𝑡=1 (𝑖)

 

𝑏�̅�(𝑘) =
∑ 𝛿𝑜𝑡,𝑜𝑘

𝛾𝑡(𝑖)𝑇
𝑡=1

∑ 𝛾𝑡(𝑖)𝑇
𝑡=1

 

[Equation 5-12] 
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Note that the equation for 𝑏�̅�(𝑘) 𝑡ℎ𝑒 summation in the nominator is only 

performed over observation states correspond to 𝑜𝑘. 

Using the revised 𝜋’, 𝐴’ and 𝐵’, a new iteration of the algorithm is executed until 

convergence is achieved.  

5.3.4 Proposed application of HMM in the framework  

The main goal of this research is to extract and decode the manufacturing 

knowledge associated with manual manufacturing tasks, especially the hidden 

aspects of that knowledge such as human action and reaction skills. By 

observing and segmenting the human-workpiece interactions during the task, 

the human action states (hidden states) and workpiece states (observation 

states) are modelled into an HMM model 𝜆 =  (𝜋, 𝐴, 𝐵). All unique task 

scenarios including the ones with problem solving sessions are represented by 

their individual HMM models (𝜆1, 𝜆1, … , 𝜆𝑁 𝑓𝑜𝑟 𝑁 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑎𝑠𝑘 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠). For 

each HMM, the parameters are assigned using inputs from the task experts or 

randomly when such inputs are not available. The 3 problems of evaluation, 

decoding and learning are applied to this research in the following order for 

digitisation of each task: 

1. Learning 

HMM models representing the unique scenarios of a task are optimised using 

the Baum-Welch algorithm before being used to extract and decode the 

manufacturing knowledge from that task. This ensures that the models are 

reasonably true in representing their respective task scenarios.  

2. Evaluation 

Given a task scenario with its unique workpiece state sequence, the ‘Forward’ 

algorithm is used to find the HMM model that most likely represents that 

scenario. For example, if a task is represented by 2 HMM models, one for a 

normal scenario and one for a problem-solving scenario, it is expected that for a 

given workpiece state sequence resembling a normal task scenario, the normal 
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task scenario HMM will be returned by the algorithm. Once the most likely HMM 

model is identified, it could be used to extract and decode the task knowledge.  

3. Decoding 

From the identified HMM model, the Viterbi algorithm is used to determine the 

most likely sequence of human action states (hidden states) that are 

responsible for the given sequence of workpiece states (observation states). 

Once the sequence of human action states is identified, the knowledge 

constituents within those states such as strategy adopted by the human, 

mechanics of human body motion, action choices made by the human in 

response to the changing configurations of the workpiece, etc. can be extracted. 

Once all this information is available, the human action and reaction skills can 

be made explicit and reproduced using multiple media such as animations for 

skill demonstration or converted to workpiece manipulation and control 

programmes to develop an automation solution for the task. 

5.4 Chapter summary 

This chapter proposes the design of the framework for digitisation of manual 

manufacturing task knowledge and provides the major steps, methods and tools 

needed to develop the framework. It also highlights the inputs, outputs and 

dependencies of each step, an implementation of which is presented in the next 

chapter. A brief introduction to HMM and its application in modelling human-

workpiece interactions is also presented. 
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CHAPTER 6 

6 IMPLEMENTATION OF THE DIGITISATION 

FRAMEWORK  

This chapter presents a step-by-step implementation of the proposed 

framework for digitisation of manual manufacturing task knowledge and task 

environment. The digitisation process of the manufacturing task environment 

described in this chapter is presented in two journal papers and a conference 

paper (See ‘List of Publications’). 

This chapter aims to achieve the following objectives: 

 Explain the rationale behind the choice of example task and the 

framework implementation process. 

 Describe the experiment setup needed for framework implementation. 

 Present the framework implementation process in a step-by-step manner 

detailing the methods, tools and techniques used.  
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6.1 Overview 

The proposed digitisation framework described in the previous chapter (Chapter 

5) is implemented using both off-the-shelf and bespoke ICT methods and tools 

for human action and workpiece progress capture during a manual task. This 

combination makes this research unique in the current literature landscape and 

the low cost point of using gaming interface sensors makes it potentially 

attractive for the industry. The 6 steps of the framework implemented to digitise 

the manufacturing knowledge embedded within two simplified, lab-scale 

manufacturing tasks and the results are presented and discussed.  

6.2 Choice of example task 

The proposed digitisation framework starts by capturing human-workpiece 

interactions and the task environment data and then progresses to represent 

this data into digital models. These models are subsequently analysed to 

extract and decode the manufacturing knowledge embedded within the task and 

the extent of knowledge that can be extracted depends on the amount and 

quality of task data captured. Data capture is therefore a vital step in the 

framework and it is implemented in this research using gaming interface 

technology such as Kinect sensors.  

These sensors are primarily meant for the gaming industry and therefore do not 

have the capabilities required to capture complex manufacturing tasks, such as 

high fidelity, high resolution imaging. At the same time, the advantages of these 

sensors, such low cost, portability, effective full-body human skeletal tracking 

and availability of the 3D imaging are compelling enough to be used in this 

framework. Therefore, Lego blocks assembly task is chosen as an example of a 

simplified lab-scale manufacturing task. In this task, the workpieces individually 

and when assembled have simple geometries which makes their real-time 

recognition and tracking quite simple and reliable despite the low resolution 

(640 x 480 pixels) of the current generation of Kinect sensors. The human 

actions required to execute this assembly task are also not complex and 

therefore can be reliably captured in real-time.  
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6.3 Task description 

6.3.1 Task elements 

There are 3 main elements in the implementation of the digitisation framework, 

namely, the human, the workpiece and the task.  

Human: The human performing the assembly task is assumed to be an expert 

based on his skills, training and past experiences of performing the task 

repeatedly. He is assumed to know the solutions to all the known problems in 

the task and have the wherewithal to solve new and unforeseen problems that 

might arise during the task.  

Workpiece: The workpiece or the set of workpieces in this task are the blocks 

of Lego in standard shapes, sizes and colours that are assembled together to 

form a specific structure and in a sequence best known to the task expert. 

Task: The task involves manoeuvring the workpieces from their initial positions 

to the assembly zone and assembling them together to form the final desired 

shape. The human uses his two hands to grasp, manoeuver and place the 

workpieces in the best-known sequence. The following figure (Figure 35) 

illustrates the workpieces used in the task and the final assembled structure, 

which is the final goal of the task.  

  

(a) (b) 

Figure 35: (a) Task workpiece components and (b) Final assembled workpiece 

6.3.2 Task setup 

The task setup consists of the task expert who performs the task, the workpiece 

components for assembly and a workstation (the table) on which the assembly 

is performed (Figure 36). The task is captured by a Kinect sensor, mounted on 

a tripod at a height of 1.5m from the floor and at a distance of 1.5m from the 
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assembly workspace. The task environment is tightly controlled by ensuring that 

no other human apart from the one implementing the task is present, lighting 

conditions in the room are maintained unchanged for the duration of the task to 

avoid the effects of ambient light change on workpiece recognition and tracking, 

no sunlight is allowed to enter the room to avoid interference with the Kinect 

sensor and only the selected Lego blocks were manipulated during the task 

without the introduction of new ones.   

 

Figure 36: Task setup for digitisation of assembly task 

6.3.3 Task rules 

Two rules have been formulated and programmed into the task capture step to 

minimise uncertainty in the framework implementation process.   

i. The assembly is executed within the pre-defined virtual box on the 

workstation. This rule cuts down the time taken by the task capture function 

by focussing the workpiece recognition and tracking function on a small 

area rather than the entire 3D space in the visible view of the Kinect sensor.  

ii. Only one block is handled and manoeuvred at a time. This rule cuts the 

complexity of the real-time workpiece progress tracking function by 

recognising and tracking only one object at a time based on its colour and 

its changing spatial positions within the virtual box.  
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6.4 Framework implementation process 

The 6 steps of the framework are implemented sequentially as described in 

section 5.2. Multiple runs of the task are performed to capture various scenarios 

under normal and problem solving conditions. Unique observations are 

selected, modelled and analysed to extract and decode the manufacturing 

knowledge embedded within the task.  

Step 1: Capture 

The Kinect sensor records the entire task performed by the human and the data 

produced by the sensor is processed using standard and bespoke software 

functions to capture and digitise human actions and the effects of those actions 

on the workpiece during the task. Sound is not captured in this implementation. 

Task capture is also sometimes referred to as task observation depending on 

the context in which it appears in this thesis.  

Tracking human actions 

A continuous stream of RGB and depth image frames (Figure 37) is produced 

by the sensor at the rate of 30 fps. A standard human skeletal tracking function, 

provided by an open source library called ‘OpenNI’, is used to track and record 

the 3D spatial positions of the 11 upper body joints of the human while 

performing the task. The lower body joints are ignored because they are 

occluded by the assembly workstation. For each image frame generated by the 

sensor, the skeletal joint positions are acquired using the following functions: 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_HEAD, head) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_NECK, neck) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_LEFT_SHOULDER, l_shoulder) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_LEFT_ELBOW, l_elbow) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_LEFT_HAND, l_hand) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_RIGHT_SHOULDER, r_shoulder) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_RIGHT_ELBOW, r_elbow) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_RIGHT_HAND, r_hand)  

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_TORSO, torso) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_LEFT_HIP, l_hip) 

 kinect.getJointPositionSkeleton(user_id, SimpleOpenNI.SKEL_RIGHT_HIP, r_hip) 
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For example, in the first function the user being tracked is identified by the 

‘user_id’ variable, the skeletal joint to be tracked is specified by the 

‘SimpleOpenNI.SKEL_HEAD’ and the joint position is returned in the vector 

variable ‘head’.  The 3D coordinates (x, y, z) for each joint position are stored in 

the sequence of capture thereby acquiring the 3D motion data for the upper 

body of the human while he performs the assembly task.   

 

(a) 

 

(b) 

Figure 37: (a) Depth image frame and (b) RGB image frame 

Tracking workpieces 

A bespoke depth and RGB image processing function is developed for 

workpiece recognition and tracking. This function looks for the presence of 

groups of screen pixels with the 4 workpiece colours (red, green, blue and 

yellow) simultaneously in the RGB image streams sent by the Kinect sensor. 

The search area for this function is limited to the virtual assembly box which is 

200 screen pixels in length (x), 200 screen pixels in height (y) and 1000mm in 

depth (z). Once a coloured pixel block is identified, its 2D boundary and centre 

point are computed and highlighted on the screen as shown in Figure 38. By 

acquiring the boundaries and centre points of all the workpieces for each image 

produced by the sensor, the positions of individual workpieces as well as the 

progress of the assembled workpiece structure can be tracked in real-time. 

 

Figure 38: Workpiece components identified and tracked 
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A sequence of images in which human skeletal motion and workpiece 

components are tracked during the assembly task are shown below. In Figure 

39, the task is successfully completed without any problems (normal task 

scenario) whereas in Figure 40, a wrong assembly sequence is corrected by the 

task expert while successfully completing the task (problem solving scenario). 

 

Figure 39: Sequence of images captured (normal scenario) 

 

Figure 40: Sequence of images captured (problem-solving scenario) 
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Output 

3D coordinates of human skeletal motion, 2D coordinates of workpiece 

positions and the assembly structure configurations are recorded in a 

spreadsheet along with the timestamps at which they were captured. The 

timestamps, stored as frame numbers, are the vital link between the human 

actions (represented by skeletal motion) and the corresponding workpiece 

changes (represented by individual workpiece positions and change in 

assembly structure configuration). A snapshot of the output spreadsheet is 

shown in Figure 41. 

 

Figure 41: Snapshot of the spreadsheet that stores the captured raw data  

Continuous data charts 

The human skeletal motion data and workpiece change data can be visualised 

in the form of charts. Even before analysing the raw data any further, these 

charts provide useful information about the overall nature of the task and in 

some cases also about the sequence of actions that lead to task progress. The 

charts are shown in Table 1. 

 

 

 

 

Frame Red X Green X Blue X Yellow X Head X Head Y Head Z Neck X Neck Y Neck Z L_Hand X L_Hand Y L_Hand Z

1 320 320 320 320 531.09 69.04 2116.77 501.88 119.68 2185.85 386.58 241.52 2282.50

2 320 320 320 320 531.06 69.00 2109.73 501.36 119.80 2184.02 385.84 241.38 2284.12

3 320 320 320 320 530.83 68.86 2106.71 501.06 119.82 2182.97 384.62 240.44 2286.30

4 320 320 320 320 530.44 69.04 2106.20 500.52 119.89 2182.93 383.99 239.77 2285.05

5 320 320 320 320 529.88 68.21 2110.95 499.96 119.25 2184.38 383.66 239.42 2284.76

6 320 320 320 320 529.16 67.75 2113.34 499.29 118.81 2185.90 384.30 240.09 2287.74

7 320 320 320 320 528.41 67.53 2115.53 498.78 118.55 2186.75 383.80 241.26 2290.96

8 320 320 320 320 527.94 67.43 2122.12 498.90 118.51 2189.48 384.43 241.41 2291.24

9 320 320 320 320 526.46 66.89 2119.41 498.07 118.17 2189.27 383.87 242.02 2292.03

10 320 320 320 320 524.87 66.47 2124.06 497.08 117.91 2191.01 383.57 242.48 2292.58

11 320 320 320 320 523.18 65.94 2125.88 496.09 117.71 2191.98 383.38 242.73 2293.30
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Table 1: Charts showing human skeletal motion (arm and elbow) and workpiece 

tracking from raw captured data 

 

Chart 1: X-axis movement of the four 

workpiece blocks (red, green, blue and 

yellow) 

 

Chart 2: Y-axis movement of the four 

workpiece blocks (red, green, blue and 

yellow) 

 

Chart 3: X, Y and Z axis movements of left 

and right hand joints of the human 

 

Chart 4: X, Y and Z axis movements of left 

and right elbow joints of the human 

Filtering 

The raw data contains noise which is unwanted data that has crept into the 

capture step due to errors in human skeletal tracking and/or workpiece tracking 

which in turn is due to factors such as low resolution of the Kinect sensor and 

occlusions affecting skeletal tracking. In this example, human skeletal tracking 

data does not have noticeable noise and the amplitude of the noise present will 

not have a considerable effect on the segmentation step. Therefore, this data is 

not filtered before segmentation.  

However, in workpiece change data high amplitude noise can be seen in the 

tracking charts. These data points that abruptly increase in amplitude in 
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comparison with the preceding and succeeding data and at unexpected 

positions during the task are filtered out using a simple threshold comparison 

algorithm. Using this algorithm, noise can be filtered online while the raw data is 

captured or offline, after the raw data is captured. In this example, the filtering is 

done offline and the results are shown in Table 2 

Table 2: Workpiece tracking charts - before and after filtering 

  

Workpiece tracking chart before and after filtering 

Step 2 – Segment 

The filtered human action and workpiece change data is continuous in nature 

and must be segregated into discrete states to facilitate the hidden Markov 

modelling of the human-workpiece interactions.  

According to the framework, segmentation of raw human action and workpiece 

data can be done by 3 techniques, namely, time-sampling, trajectory-sampling 

and workpiece-sampling. In this example, the workpiece undergoes prominent 

changes in shape and structure with every cyclical action of the human and 

therefore the workpiece-sampling segmentation technique is used.  

In this technique, the workpiece tracking data is segmented at points where any 

one of the workpiece characteristics such as position, shape, dimension or 

configuration undergoes an abrupt change. In this example, these segmentation 

points are clearly seen in the workpiece tracking charts and both the workpiece 

tracking data and human skeletal motion data is segmented at these points. 

Workpiece states are generated at these segmentation points whereas human 

action states are the period between two workpiece states (Table 3).  
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Table 3: Generation of human action and workpiece states (normal scenario) 

 

 

 

 

 

Workpiece tracking data segmentation Resulting workpiece states 

 

 

 

 

 

Human tracking data segmentation Resulting human action states 

In order to capture another task scenario, a problem solving session was 

introduced into the task execution. The Lego blocks are assembled in the wrong 

sequence and subsequently corrected. The continuous human-workpiece 
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interaction data from this task scenario is also filtered and segmented.  Because 

of the presence of a problem-solving session in this particular task observation, 

more workpiece and human action states are generated as compared to the 

normal task scenario (Table 4). 

The generated workpiece and human action states are discrete in nature. Each 

workpiece state is a snapshot of the workpiece at that particular point in time 

during the task. A human action state however is not a snapshot of the human 

pose at the point of segmentation but a repository of continuous human motion 

tracking data responsible for bringing the workpiece from its previous state to 

the next. But for discrete time space modelling purposes, the human action 

state is considered as a discrete state.  

Table 4: Human action and workpiece states (problem-solving scenario) 

 

 

 

 

Workpiece tracking data segmentation Resulting workpiece states 
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Human tracking data segmentation Resulting human action states 

Step 3: Model 

The discrete human action and workpiece states are now ready to be modelled 

using HMM. As described in section 5.3.4, the fundamentals of HMM are 

adopted from literature as-is but their interpretation is construed according to 

the needs of representing human-workpiece interactions in this framework. This 

interpretation of HMM is novel and is presented below.  

HMM generation 

HMM topology: A bespoke function is developed that takes the workpiece and 

human action states as inputs and generates the HMM topology (𝑆, 𝑂, 𝜋, 𝐴, 𝐵), 

where 𝑆 =  {𝑠1, 𝑠2 … , 𝑠𝑛} is a set of  ′𝑛′ human action states, 𝑂 =  {𝑜1, 𝑜2 … , 𝑜𝑚} 

is a set of ‘𝑚’ workpiece states, 𝜋 = {𝜋𝑖} are the initial state probabilities, 

𝐴 = {𝑎𝑖𝑗
} is the state transition matrix, 𝐵 = {𝑏𝑖(𝑜𝑘)} is the emission matrix 

(Section 5.3.2).  

The dimensions of 𝜋, 𝐴 and 𝐵 are dependent on the number of workpiece and 

human action states generated by the ‘Segment’ step. Initial probability values 

for these matrices were assigned in consultation with the task expert. 
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Unique HMM models: Each unique task observation is represented using its 

own HMM model. Therefore, ‘n’ different task captures will generate ‘n’ different 

HMM models and the goal is to model as many task scenarios so that 

knowledge embedded within the task can be extracted and decoded to the 

fullest extent. In this example, two unique observations are made and therefore 

two unique HMM models were generated; one for the normal task scenario and 

one for the problem-solving task scenario (Figure 42 and 40).  

The workpiece state sequence observed for (A) - normal scenario is  

𝑂𝐴  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝑅,   𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌} 

The workpiece state sequence observed for (B) – problem-solving scenario is  

𝑂𝐵 =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵𝐺𝑅,   𝑊𝑃_𝐵𝐺𝑅𝑌,   𝑊𝑃_𝐵𝐺𝑅,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵,    

𝑊𝑃_𝐵𝑅, 𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌}   

HMM models 𝜆𝐴 and 𝜆𝐵 are generated for the two unique workpiece state 

sequences 𝑂𝐴 and 𝑂𝐵. 

 

Figure 42: HMM model 𝝀𝑨 for normal scenario 
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Figure 43: HMM model 𝝀𝑩 for problem-solving scenario 

Optimisation of HMM parameters: The HMM model parameters (probabilities of 

𝜋, 𝐴 and 𝐵) are assigned in consultation with the task expert. However, these 

may not be optimum values for the particular task scenario. Therefore, 

optimisation is required so that the HMM model can represent the task scenario 

with reasonable trueness. In other words, 𝑃 (𝜆𝐴 | 𝑂𝐴) and 𝑃 (𝜆𝐵 | 𝑂𝐵)  must be 

maximised. 

The optimisation of HMM parameters also known as ‘the learning problem’ is 

explained in section 5.3.3. In this example, the two HMM models 𝜆𝐴 and 𝜆𝐵 are 

put through the Baum Welch algorithm to optimise their parameters and 

following are the results. 

For 𝜆𝐴, the probability of observing 𝑂𝐴 is 𝑃 (𝜆𝐴 | 𝑂𝐴) = 3.85𝑒 − 3 

After the first Baum-Welch Iteration: 𝑃1(𝜆𝐴 | 𝑂𝐴) = 1.72𝑒 − 4 

Since 𝑃1 < 𝑃, the parameters of 𝜆𝐴 cannot be optimised beyond their initial 

values. This means that the initial estimation of parameters by the task expert 

were reasonably true for the model to represent the normal task scenario.  

For 𝜆𝐵, the probability of observing 𝑂𝐵 is 𝑃 (𝜆𝐵 | 𝑂𝐵) = 3.23𝑒 − 11 

After the first Baum-Welch Iteration: 𝑃1(𝜆𝐵 | 𝑂𝐵) = 2.18𝑒 − 10 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑃1 > 𝑃 
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After the second Baum-Welch Iteration: 𝑃2(𝜆𝐵 | 𝑂𝐵) = 9.96𝑒 − 14 

Since 𝑃2 < 𝑃1, convergence was reached after the first iteration itself and the 

parameters of 𝜆𝐵 cannot be optimised any further. 𝜆𝐵 with its new optimised 

parameters will be used in the subsequent steps of the framework for task 

scenario B (Figure 44). 

 

Figure 44: HMM model 𝝀𝑩 with optimised parameters 

Convergence to local optimum: Consider another workpiece state sequence 𝑂𝐶, 

which is another way of solving the problem in task scenario B.  

𝑂𝐶  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵𝐺𝑅,   𝑊𝑃_𝐵𝐺𝑅𝑌,   𝑊𝑃_𝐵𝐺𝑅,    

𝑊𝑃_𝐵𝐺, 𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝑅,   𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌} 

This workpiece observation sequence differs slightly from 𝑂𝐵 and the difference 

is highlighted in red font in 𝑂𝐶. The HMM model 𝜆𝐵 is again put through the 

Baum-Welch algorithm to see if it converges to 𝜆𝐶  again with the new 

observation sequence 𝑂𝐶.  

For 𝜆𝐵, the probability of observing 𝑂𝐶 is 𝑃 (𝜆𝐵 | 𝑂𝐵) = 2.93𝑒 − 12 

After the first Baum-Welch Iteration: 𝑃1(𝜆𝐵 | 𝑂𝐶) = 1.71𝑒 − 10 𝑟𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑃1 > 𝑃 

After the second Baum-Welch Iteration: 𝑃2(𝜆𝐵 | 𝑂𝐶) = 3.05𝑒 − 13 
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Since 𝑃2 < 𝑃1, convergence was reached after the first iteration itself and the 

parameters of 𝜆𝐵 cannot be optimised any further. Hence 𝜆𝐵 with new optimised 

parameters is henceforth called 𝜆𝐶  (Figure 45). This proves that the Baum- 

Welch algorithm converges to a different optimum every time a new observation 

sequence is used for optimisation. 

 

Figure 45: HMM model 𝝀𝑪 with optimised parameters 

Thus the output of the modelling step is a set of unique HMM models with 

optimised parameters representing their corresponding workpiece observation 

sequences. Each model therefore embodies the human-workpiece interactions 

that are involved in their respective task scenarios. These models are now 

ready to be analysed in the knowledge extraction and decoding steps. 

HMM evaluation – picking the right model 

The HMM model that represents a particular task scenario can be 

queried/analysed to extract the constituents of manufacturing knowledge 

embedded within that scenario. Each task can have multiple models as in this 

case (𝜆𝐴, 𝜆𝐵 𝑎𝑛𝑑 𝜆𝐶) therefore, for a given task scenario it is necessary to pick 

the right model for analysis. This is the case for ‘the evaluation problem’ 

explained in section 5.3.3 in which the ‘Forward’ algorithm is used to find the 

model that returns the maximum probability to represent a given task scenario. 
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Consider a task scenario represented by the workpiece observation sequence  

𝑂𝑄1  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝑅,   𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌} 

By deterministic evaluation the sequence in 𝑂𝑄1 is compared with that in 𝑂𝐴, 𝑂𝐵 

and 𝑂𝐶 and a match is found with 𝑂𝐴. Therefore, 𝜆𝐴 is picked for the given 

observation sequence 𝑂𝑄1. 

Now, consider a task scenario represented by the workpiece observation 

sequence  

𝑂𝑄2  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵𝐺𝑅,   𝑊𝑃_𝐵𝐺𝑅𝑌,   𝑊𝑃_𝐵𝐺𝑅,    

𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝑅,   𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌} 

In this case, deterministic evaluation fails to pick a model because the given 

observation sequence 𝑂𝑄2 does not match any of the observation sequences 

𝑂𝐴, 𝑂𝐵 and 𝑂𝐶. Therefore, by stochastic evaluation 𝑃(𝜆𝐴 | 𝑂𝑄2) is compared with 

𝑃(𝜆𝐵 | 𝑂𝑄2) and 𝑃(𝜆𝐶  | 𝑂𝑄2) and the model with the highest probability is picked. 

Therefore, by using the ‘Forward’ algorithm: 

𝑃 (𝜆𝐴 | 𝑂𝑄2)  =  5.47𝑒 − 14 

𝑃 (𝜆𝐵 | 𝑂𝑄2)  =  3.23𝑒 − 13 

𝑃 (𝜆𝐶  | 𝑂𝑄2)  =  1.70𝑒 − 10 

Since 𝑃 (𝜆𝐶  | 𝑂𝑄2) >  𝑃 (𝜆𝐵 | 𝑂𝑄2) >  𝑃 (𝜆𝐴 | 𝑂𝑄2) , HMM model 𝜆𝐶   is picked for 

the given observation sequence 𝑂𝑄2. 

Step 4: Extract 

Once the best HMM model is identified for a given task scenario, the sequence 

of human action states responsible for that scenario can be extracted using the 

Viterbi algorithm as described in section 5.3.3. This algorithm uses both forward 

and backward recursive methods to arrive at the most likely sequence of human 

action states. Once the human action state sequence is extracted, detailed 
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analysis can be performed on the individual states in the sequence to decode 

the manufacturing knowledge embedded within them.  

In the previous step, for observation sequence 𝑂𝑄1, HMM model 𝜆𝐴 is identified 

that most likely embodies the task scenario represented by 𝑂𝑄1.Using the 

‘Viterbi’ algorithm, the most likely sequence of human actions 𝐻𝑄1 that could 

produce 𝑂𝑄1 is identified.  

Therefore, 𝐻𝑄1  =  {𝐻_𝐴_𝐵,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌} 

Note that 𝐻𝑄1  is the exactly the same as 𝑂𝐴 , the original observation sequence 

that 𝜆𝐴 was based on. This shows that the parameters for 𝜆𝐴 were appropriately 

assigned.  

However, this phenomenon may not be seen for other observation sequences 

due to the stochastic nature of the ‘Viterbi’ algorithm. Such a case is presented 

when the workpiece observation sequence 𝑂𝑄2 is considered. From the 

previous step, HMM model 𝜆𝐶 is identified that most likely embodies the task 

scenario represented by 𝑂𝑄2. Again using the ‘Viterbi’ algorithm, the most likely 

sequence of human actions 𝐻𝑄2 that could produce 𝑂𝑄2 is identified.  

Therefore, 𝐻𝑄2  =  {𝐻_𝐴_𝐵,   𝐻_𝐴_𝐺,   𝐻_𝐷_𝐺,   𝐻_𝐷_𝑅,   𝐻_𝐷_𝑌,   𝐻_𝐴_𝑌,    

𝐻_𝐷_𝑌,   𝐻_𝐷_𝑅,   𝐻_𝐴_𝐵,   𝐻_𝐷_𝐵,   𝐻_𝐴_𝐵,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌} 

Note that 𝐻𝑄2 is not captured during any of the task scenarios but is determined 

stochastically. This case demonstrates that even for task scenarios that have 

not been observed and captured, the ‘Extract’ step is able to output the most 

likely human actions that could have produced that scenario. Therefore, various 

task scenarios can be simulated and the human response to those scenarios 

can be predicted to gain a deeper insight into complex manual tasks.  

Step 5: Decode 

Given a task scenario, steps 4 and 5 have shown that the right HMM model that 

best represents that scenario can be picked and the human action sequence 

responsible for that scenario can be extracted. This sequence is made up of 
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human action states that correspond directly to the changes the workpiece has 

undergone in the given task scenario. In this step, these human-workpiece 

interactions are further analysed to decode the manufacturing knowledge 

embedded within them.  

There are several constituents of manufacturing knowledge such as the task 

strategy adopted, nature and spatial characteristics of gestures made, 

mechanics of motion performed during the gestures, action choices made in 

response to task situations and workpiece manipulation techniques. These 

constituents can be decoded from the raw human action data and workpiece 

tracking data stored within the states that are extracted. 

Extraction of states from the human action sequence 

Consider the output sequence 𝐻𝑄1  =  {𝐻_𝐴_𝐵,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌} 

extracted from HMM model 𝜆𝐴 from the workpiece observation sequence  

𝑂𝑄1  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝑅,   𝑊𝑃_𝐵𝑅𝐺,   𝑊𝑃_𝐵𝑅𝐺𝑌}. The human action data within 

the states of 𝐻𝑄1 is pulled out from the raw human motion data and mapped to 

the corresponding workpiece states from the observation sequence (Table 5).  

Table 5: Human action data mapped to corresponding workpiece states 

Human Action State Workpiece State Observed Task Status  

 

 

  
WP_B 

H_A_B 
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Decoding of manufacturing knowledge 

Multiple constituents of manufacturing knowledge can be decoded from the 

extracted states and human action data. These constituents include the 

following but are not limited to: 

 Task execution strategy 

 Nature and spatial characteristics of human gestures while working on the 

workpiece 

 Workpiece manipulation techniques 

 Mechanics of human movements such as body bending angle, angles 

between upper and lower arms, body orientation with respect to the 

workpiece, etc. 

WP_BR 
 

 

WP_BRG 

 

 

 

WP_BRGY 
 

 

 

 

H_A_R 

H_A_G 

H_A_Y 
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Task execution strategy 

The task execution strategy can be decoded by determining the sequence of 

human actions responsible for the given sequence of workpiece states from the 

most likely HMM model. From the human action sequence, the following 

knowledge can be decoded: 

 Plan and approach of task execution by breaking the task down into sub-

tasks i.e. the action states. 

 Sequence of execution of the sub-tasks to achieve the main task. This 

sequence depends on the task scenario being queried.  

 Selections made during the task to choose specific actions from a 

repertoire of actions available to the human to successfully complete the 

task. In this example, the repertoire of human actions 

𝐻 is {𝐻_𝐴_𝐵,   𝐻_𝐴_𝐺,   𝐻_𝐷_𝐺,   𝐻_𝐷_𝑅,   𝐻_𝐷_𝑌,   𝐻_𝐴_𝑌,    

𝐻_𝐷_𝑌,   𝐻_𝐷_𝑅,   𝐻_𝐴_𝐵,   𝐻_𝐷_𝐵,   𝐻_𝐴_𝐵,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌} 

From this set, the actions chosen are 𝐻_𝐴_𝐵, 𝐻_𝐴_𝑅, 𝐻_𝐴_𝐺 𝑎𝑛𝑑 𝐻_𝐴_𝑌 

and each one is executed at specific times during the task. 

Nature and spatial characteristics of human gestures 

A human action state in the digitisation framework is not a static snapshot of the 

human pose at time ‘t’ but a continuous series of human gestures from time t1 

to t2, which manipulate the workpiece from its state at time t1 to its resulting 

state at time t2. Therefore, by visualising the human motion data within each 

extracted action state, the nature (trajectories and patterns) and spatial 

characteristics (3D spatial coordinates) of human gestures with respect to the 

changes in the workpiece can be obtained. The human motion data and 

corresponding workpiece change data for the extracted state H_A_B is shown 

as an example (Table 6). 
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Table 6: Human actions and workpiece progress during state H_A_B 

 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

Workpiece manipulation techniques 

Workpiece manipulation, such as grasping and release, techniques vary from 

task to task and person to person. However, for each task there is a ‘correct’ 

technique to grasp and release workpieces and these techniques can be learnt 

from observing how the experts do it. In this example, the human skeletal 

motion data and the workpiece configuration and position data from the 

extracted states can be visualised to extract workpiece grasp and release 

techniques. For the extracted action states 𝐻_𝐴_𝐵, 𝐻_𝐴_𝑅, 𝐻_𝐴_𝐺 𝑎𝑛𝑑 𝐻_𝐴_𝑌, 

Table 7 shows how the expert manipulated each workpiece while performing his 

action during those states.  

Table 7: Workpiece manipulation techniques illustrated for each extracted state 

Human Action 
State 

Workpiece Grasping 
Technique 

Workpiece Release 
Technique 

 
H_A_B 

  

 
H_A_R 

  

H_A_B 
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H_A_G 

  

 
H_A_Y 

  

Mechanics of human motion 

Human motion data is complex and consists of the 3D spatial coordinates of 20 

different skeletal joints that are tracked and recorded in the capture step. Useful 

insights can be drawn from this complex motion data.  

Any motion parameter that is important to understand the 

human’s action skills can be computed from the joint 

coordinate data. For example, the angle between the upper 

and lower arms represented by vectors ‘a’ and ‘b’ can be 

obtained from the equation: a · b = |a| × |b| × cos (θ), where |a| is the magnitude 

of vector ‘a’ and θ is the angle between them.  

Motion mechanics such as body bending angle, angles between the upper and 

lower arms and motion speed and acceleration for each critical joint can be 

mathematically calculated using vector computing. This information is vital to 

understand the physical nuances of skill execution. A comparison of the 

mechanics computed for different people executing the same task can provide a 

skill metric to quantify skill levels of people and as a measure to gauge the 

efficacy of skill training processes. However, the comparison of motor skills is 

valid only between people with similar builds and body proportions. This is 

because a human with relatively shorter height might need to perform certain 

workpiece manipulations in a completely different manner as compared to a 

taller human in order to achieve the same task result. Motion data can also 

provide the kinematics information to design and develop an automation 

solution that could mimic human motion for a complex task.  
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Table 8 illustrates the computation of body bending angle and the angles 

between upper and lower arms for 4 random human poses chosen from the 

action states. 

Table 8: Human motion mechanics extracted from motion data 

  

 Angle between upper & lower arm (Left): 145
o
 

 Angle between upper & lower arm (Right): 170
o
 

 Body bending angle: 153
o
 

 Angle between upper & lower arm (Left): 132
o
 

 Angle between upper & lower arm (Right): 127
o
 

 Body bending angle: 174
o
 

  

 Angle between upper & lower arm (Left): 158
o
 

 Angle between upper & lower arm (Right): 145
o
 

 Body bending angle: 172
o
 

 Angle between upper & lower arm (Left): 168
o
 

 Angle between upper & lower arm (Right): 150
o
 

 Body bending angle: 161
o
 

Step 5: Reproduce 

There are multiple ways as suggested in section 5.2 to reproduce the decoded 

manufacturing knowledge. One of the simplest ways to reproduce the task 

strategy is to tabulate the human action states and their corresponding 

workpiece observation states in chronological order. Using graphics-rich media 

such as immersive virtual environments, the task execution can be 

demonstrated using human avatars on virtual workpieces. Such a 

demonstration can be augmented with the knowledge constituents such as 
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motion mechanics for better visualisation of the skills involved. Augmentation of 

this information can also be done on a real task environment using mixed reality 

technologies for in-view, hands-free access.  

It is not within the scope of this research to reproduce manufacturing knowledge 

using virtual or mixed reality. 2D animation is used instead as a medium to 

reproduce the human-workpiece interactions with augmented information about 

the manufacturing knowledge constituents. An example of a basic animation of 

executing the Lego block assembly task is shown in Figure 46. A trained human 

should be able to learn from the animation, augmented with additional task 

knowledge such as motion mechanics and expected workpiece progress during 

the animation, in order to acquire the necessary skills to perform the assembly 

task successfully.  

 

Figure 46: Human-workpiece interactions animated for a specific task scenario 

6.5 Digitisation of manufacturing task environment 

6.5.1 Overview 

In the implementation of the framework described so far, the environment within 

which the assembly tasks were performed did not play a role in the digitisation 
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process. The environment was controlled to remain unchanged during the 

course of task execution and therefore the ‘Capture’ step of the framework was 

not programmed to track any changes that may have taken place within it. 

However, it is necessary to investigate the digitisation of the manufacturing 

environment as well to capture any changes that might affect the task positively 

or negatively.  

In this study, an effort is made to digitise the manufacturing environment of a 

manual assembly task from the automotive industry, namely the manual wheel 

loading operation that occurs in the trim and final assembly line in automobile 

production. Human actions within the task are not tracked to maintain a sharp 

focus on the digitisation of the task environment only. Therefore, a scenario is 

envisaged in which the wheel loading operation is automated by replacing the 

human operator with an automated wheel loading system and the purpose of 

implementing the ‘Capture’ step is to feed digitised information about the task 

environment to this automated system.   

This study differs from the Lego block assembly study presented in section 6.1 

in 4 main areas: 

1. Only the ‘Capture’ step is implemented and not the whole framework. 

2. Three Kinect sensors are used instead of just the one to digitise different 

parts of the task environment. 

3. Real-life engineering workpieces, tools and activities are used to mimic 

the actual task. 

4. The other ambient characteristics of the task environment, such as 

lighting are not controlled. 

6.5.2 Choice of task 

The manual wheel loading operation is chosen because: 

1. It is a prime target for automation in the automotive industry and 

automation of complex manual tasks is one of the potential applications 

of the proposed framework.  
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2. It involves real-world engineering workpieces such as the wheel and the 

wheel hub and therefore the capability of the ‘Capture’ step to recognise 

and track them within an industrial-scale task environment can be tested. 

3. It can be easily mimicked in the laboratory using industrial-scale tools.   

6.5.3 Background 

The automotive industry is one of the early adopters of automation for material 

handling, processing, assembly and inspection operations and continues to be 

highly automated (Gupta and Arora, 2009). However, there are a few operations 

in vehicle production that have not been automated yet such as those in the trim 

and final assembly line where the vehicle gets its seats, internal and external 

trims, and wheels. This is because the installation of components on a constant 

moving vehicle body is a complex task that is as yet best performed by skilled 

human operators (Choi et al., 2010).  

While this study tests the ‘Capture’ step of the proposed framework to digitise a 

task environment, it does so in the context of enabling the automation of the 

wheel loading operation in the trim and final assembly line. Though the 

operation would seem straightforward for a human operator, it is one of the 

most complex manufacturing assembly activities to automate because it 

requires the human ability to accurately track the moving vehicle body that 

sways unpredictably on the conveyor line and to recognise in real-time the 

alignment features for successful assembly. Human operators perform wheel 

loading accurately and effectively using their multi-modal sensing abilities and 

acquired skills. These characteristics allow them to intelligently manoeuver the 

wheel towards the wheel hub and install it while constantly compensating for 

arbitrary motion deviations of the car body. They have to instinctively rotate the 

wheel if required to align the tapped bores on the wheel to the threaded studs 

on the wheel hub and swiftly react to take adaptive steps in case of unforeseen 

situations like unplanned conveyor halts (Figure 48). Therefore, it has been 

difficult to replace skilled human wheel loading operators with automated 

solutions. Chen et al. (2009) have indicated that the wheel loading operation 

alone can cost automotive manufacturers up to US$1.5 million a year thereby 
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justifying the need to automate this operation. The potential threat of developing 

musculoskeletal disorders in operators, caused by manoeuvring heavy wheels 

in uncomfortable body postures during installation despite using weight 

compensation gantries (Figure 47), further reinforce the need for automation. A 

focused literature review is presented in Appendix A.  

 

Figure 47: Manual wheel loading operation 

The ‘Capture’ step provides a cost-effective method to track the motion 

characteristics of the moving vehicle body in real-time and simultaneously 

identify the misalignment between the to-be-loaded wheel and the wheel hub 

that receives the wheel. This data can be used by the automation solution to 

gather intelligence about the operation enabling it to successfully perform the 

wheel loading operation. An example of an automation solution could be an 

expert system that controls an industrial robot arm to align and load the wheels 

on to the moving vehicle body. 

 
 

 

Wheel hub mounted 

on the vehicle axle 

Wheel Car body on the conveyor line with wheel hubs 

installed (Turpen, 2012) 

Figure 48: A typical wheel hub, wheel and assembly line 
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6.5.4 Method 

Mimicking the wheel loading operation 

In order to collect live data pertaining to a wheel loading operation and given 

that it was not possible to do this in an actual production line, the key elements 

of the operation are mimicked in laboratory conditions.  

An important element of the operation is the moving conveyor line carrying the 

vehicle body with the wheel hubs mounted on the front and back axles. 

Therefore, the motion of the wheel hub on the conveyor line is reproduced by 

mounting the wheel hub on to a robot arm and programming the robot arm to 

mimic typical conveyor line motion. The conveyor motion characteristics such 

as out-of-plane deviations are programmed as sinusoidal oscillations in the 

following five patterns:  

1. Linear motion of the wheel hub along x-axis without any deviations at an 

average speed of around 67mm/s (Shi, 2008).  

2. Linear motion of step 1 with stop-start movements to mimic the vehicle body 

jerks on the conveyor line.  

3. Linear motion of step 1 with sinusoidal motion deviations along the vertical y-

axis to mimic the bounce of the vehicle body on the conveyor line.  

4. Linear motion of step 1 with sinusoidal motion deviations along the 

perpendicular z-axis to mimic the sway of the vehicle body on the conveyor line.  

5. Linear motion of step 1 with sinusoidal motion deviations along both y-axis 

and z-axis to mimic the composite effect of both bounce and sway of the vehicle 

body on the conveyor line.  

According to the data received from a Tier 1 manufacturer, a typical vehicle 

body in motion on a conveyor will deviate from linear motion with out-of-place 

oscillations of +/-10mm in amplitude and a frequency of 1Hz (Chen et al., 2010). 

The second important element of the operation is the radial alignment between 

the wheel and the wheel hub so that the bores of the wheel are in the same 

angular position as the studs on the wheel hub at the time of loading. The 
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misalignment scenarios are also reproduced during the experiments by 

positioning the wheel hub on the robot arm with varying angular positions. 

Experiment setup 

The wheel loading workstation, simulated in the laboratory, is divided into two 

motion sensing zones, namely, the far sensing zone and the near sensing zone. 

This is done to cover the entire 2.5m length of a typical wheel loading 

workstation. In the far sensing zone, the coarse motion of the moving wheel hub 

is tracked whereas in the near sensing zone, the motion characteristics are 

closely monitored. In the near sensing zone, the alignment features on the 

moving wheel hub are also recognised and their angular positions are 

measured.  

Two Kinect sensors, one in the far sensing zone (called the ‘far sensor’) and 

one in the near sensing zone (called the ‘near sensor’), are used (Figure 49). 

The wheel hub is mounted on the robot arm with the studs facing the sensors. 

Comau NM-45, a 6-axis industrial robot arm with a maximum payload of 45Kg 

and position reproducibility of 0.06mm is used. The robot is programmed to 

mimic the 5 conveyor motion patterns listed above and each pattern is repeated 

10 times to obtain multiple datasets to gauge reproducibility of results.   

 

Figure 49: Wheel loading workstation setup simulated in the laboratory 

Kinect sensor positioning 

The Kinect sensors are reported to have maximum accuracy over the distance 

range of 1 to 3m from the sensor with an effective field of view of 54.0° 
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horizontal and 39.1° vertical (Dutta 2012). Khoshelham and Elberink (2012) 

have reported that the random error of measurement results increases 

quadratically with increasing distance from the sensor and reaches 40 mm at 

the maximum range of 5m. These inputs influenced the positioning of the Kinect 

sensors in the far and near sensing zones to cover the entire length of the 

wheel loading workstation with the combined frames of view of the two sensors.  

Therefore, the far sensor was placed at a perpendicular distance of 2m from the 

moving wheel hub plane covering a horizontal field of view of about 2m. The 

near sensor was placed at a distance of 850mm covering a horizontal field of 

view of about 800mm. The two sensors are laterally separated by a distance of 

1m to attain a 400mm of view overlap with each other and are placed at the 

same height as that of the moving wheel hub from the ground. The two sensors 

together cover an area of 2.4m of the workstation (Figure 50). 

 

Figure 50: Kinect sensor positioning for far and near motion sensing 

In addition to the Kinect sensors, a laser motion tracker (Leica Absolute Tracker 

AT402) is also used to track the motion of the moving wheel hub (Figure 49). 

The laser tracker uses a laser beam that is reflected off a reflector that is 

attached to the wheel hub to track its motion. It has a resolution of 0.1 μm, 

accuracy of +/- 10 μm and repeatability of +/- 5 μm making it a very accurate 

device for tracking motion and therefore is used to gauge the accuracy and 

precision of the proposed depth sensor based method. 
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The third Kinect sensor is placed directly in front of the wheel placed on the 

storage rack and at the same height as that of the centre of the wheel from the 

ground (Figure 51). This sensor recognises the alignment features on the 

wheel, which are the four tapped bores, and measures their angular positions. 

 

Figure 51: Alignment feature recognition of the stationary wheel 

Sequence of events 

This experiment imitates the wheel loading operation as it is performed in an 

actual automotive trim and final assembly line. The sequence of events 

reproduced is as follows: 

a) The robot arm moves the wheel hub linearly across the workstation (along x-

axis) for a distance of about 2.5m at an average speed of about 67mm/s. 

Typical conveyor motion deviations are programmed into the path as per the 5 

patterns listed in section 3.1. 

b) The wheel hub first enters the far sensing zone in which the far sensor tracks 

it and records its spatial position in all 3 axes. The speed of motion is also 

computed.  

c) The wheel hub then enters the near sensing zone in which the near sensor 

tracks it and records its spatial position in all 3 axes. The speed of motion is 

also computed. The near sensor also recognises the alignment features, the 4 

studs on the moving wheel hub, to record their angular positions.  

d) The Kinect sensor placed in front of the stationary wheel recognises the 

alignment features, the 4 bores on the wheel to record their angular positions. 
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e) The data generated in each of the above steps enables the automated wheel 

loading solution to make critical decisions such as when, where and how to load 

the wheel onto the moving wheel hub and to dynamically correct the 

misalignments if any between the wheel and the wheel hub before loading. Any 

data that is out of the tolerance limits can be used to trigger an abort. 

Motion tracking and feature recognition of the moving wheel hub 

The algorithms used to track the moving wheel hub and recognise the angular 

positions of the alignment features of both the moving wheel hub and the 

stationary wheel are based on the comparison of depth values of the pixels that 

belong to the object with those of the background. In this manner, the object 

edge is located from each depth image and its centre point is computed. Since 

the sensor produces up to 30 depth image frames per second, the continuous 

computation of the centre point within these images results in tracking the 

motion of that object.  

The moving wheel hub first enters the field of view of the far sensor in the far 

motion sensing zone. This zone covers the pre-loading area where the x, y and 

z positions of the centre of the wheel hub are tracked and its motion speed is 

constantly computed (Figure 52). Any deviations or disruptions in motion along 

any of the 3 axes are captured and recorded. Since the far sensor is placed at a 

relatively larger distance from the wheel hub motion plane, it can track a wider 

area but being less accurate is used to measure coarse motion characteristics.  

The wheel hub then moves into the field of view of the near sensor in the near 

motion sensing zone. This zone covers the loading area and therefore the fine 

motion is tracked with more accuracy and precision than in the far sensing 

zone. In this zone, the alignment features of the moving wheel hub are also 

recognized (Figure 53a). The 4 studs located 90o apart from each other at a 

pitch centre diameter of 108mm from the centre (Figure 53b) are recognised 

and their angular positions are measured in terms of the angular position of the 

stud located within the 90o to 180o quadrant. 
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Figure 52: The moving wheel hub tracked in the two  motion-sensing zones 

Object and feature recognition of the stationary wheel  

The depth sensor placed in front of the stationary wheel also uses the same 

edge detection algorithm to detect the wheel centre as the one used to detect 

the moving wheel hub centre (Figure 54a). 

  

(a) (b) 

Figure 53: (a) Wheel hub tracking and feature recognition (b) Wheel hub drawing 

The 4 bores located 90o apart from each other at a pitch centre diameter of 

108mm from the wheel centre (Figure 54b) are recognised and their angular 

positions are measured in terms of the angle of the bore located within the 90o 

to 180o quadrant.  

The difference between the angular positions of the alignment features on the 

wheel and those on the wheel hub denote a misalignment (Figure 55) that 

needs to be corrected before loading can take place.  

180
o
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(a) (b) 

Figure 54: (a) Recognised wheel and wheel bores and (b) 2D wheel drawing  

 

Figure 55: Misalignment of wheel and wheel hub features 

6.5.5 Results 

The results of the task environment digitisation are presented in this section in 

the following order: 

1. Identification of wheel features and measurement of the angular positions of 

the wheel bores.  

2. Motion tracking of the moving wheel hub and identification of the angular 

positions of the wheel studs for the programmed motion pattern no. 5, which 

is the linear motion along x-axis with sinusoidal deviation in y and z-axis, 

the most complex pattern. Tracking results for all motion patterns are 

presented in Appendix B.  

Identification of wheel features and measurement of the angular positions 

of the wheel bores 

The Kinect sensor captures depth images of the stationary wheel at the rate of 

up to 30 frames per second. From within each depth image, the 4 bores of the 
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wheel are recognised and their angular positions, represented by the angle of 

the bore located within the 90o to 180o quadrant (the ‘first bore’), are measured. 

To improve the accuracy of this method, the angle obtained is cumulatively 

averaged over 45 depth frames before it is recorded. 10 iterations of the 

experiment are conducted and the results are tabulated in Table 9.  

Table 9: First wheel bore angle and its standard deviation (10 iterations) 

 

Motion tracking of the moving wheel hub and identification of the angular 

positions of the wheel studs 

The far and near sensors track the motion of the wheel hub by continuously 

detecting the centre point of the hub and recording its x, y and z coordinates 

along with its speed in the direction of motion (x-axis). In the far sensing zone, 

the far sensor tracks the position and speed of the wheel hub whereas in the 

near sensing zone, the near sensor tracks its motion and identifies the angular 

positions of the studs of the moving wheel hub.  

The motion tracking data obtained from the far and near sensors is compared to 

that obtained from the laser tracker that tracks the same motion. Since the laser 

tracker and the depth sensor are not synchronised during motion tracking, the 

two sets of data cannot be plotted and visualised on the same chart. The motion 

tracking results for the five simulated motion patterns are presented below. 

Since each motion pattern is run for 10 iterations, the wheel hub position and 

speed values are averaged over the 10 iterations.  

Linear motion at 67mm/s along x-axis with deviations in y and z-axis 

In the far sensing zone: Figure 56 and Figure 57 show the motion charts 

produced by the far sensor and the laser tracker for y-axis and z-axis deviations 

respectively. Since the oscillations are along the y-axis and z-axis, x-axis 

motion tracking chart is not shown. 
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Figure 56: Wheel hub positions - far sensor and the laser tracker (y-axis) 

  

Figure 57: Wheel hub positions - far sensor and the laser tracker (z-axis) 

In the near sensing zone: Figure 58 and Figure 59 show the motion charts 

produced by the near sensor and the laser tracker for y-axis and z-axis 

deviations respectively. Table 10 shows the angular positions of the wheel hub 

measured over 10 iterations for this motion pattern. 

  

Figure 58: Wheel hub positions - near sensor and the laser tracker (y-axis) 

  

Figure 59: Wheel hub positions - near sensor and the laser tracker (z-axis) 
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Table 10: First wheel hub stud angle and its standard deviation (10 iterations) 

 

6.5.6 Performance and proposed improvements 

Optimum sensor setup is vital for reliable performance of the wheel loading task 

digitisation process. This involves the distances at which the sensors are placed 

from the task plane, sensor face angles with respect to the task plane, the 

number of image frames averaged for error minimisation and the IR interference 

between the two Kinect sensors. All these aspects are studied and the analysis 

is presented in Appendix C. 

The results show that the proposed Kinect sensor based task capture method is 

able to track the moving wheel hub and measure its motion characteristics in 

real-time. The use of a far and near motion sensing zone isolates the low and 

high accuracy needs of the wheel loading operation while being able to capture 

the entire workstation length. Despite the relatively low resolution of the Kinect 

sensor, placing it at a short perpendicular distance of 850mm from moving 

wheel hub plane, the resulting motion tracking error of 2.78mm is achieved. 

For the use case in this study, the wheel bores are 20mm in diameter and the 

wheel hub studs are 12mm in diameter. Therefore, an assembly tolerance of 

4mm is required for successful wheel loading irrespective of the motion 

patterns. The error in measuring motion deviation amplitude, especially in the 

crucial near motion sensing zone of 2.78mm is less than the required assembly 

tolerance. For the measurement of angular position of the wheel hub studs, the 

maximum standard deviation noted was 1.54o, which is an equivalent of 

1.46mm, is also less than the 4mm tolerance required. Therefore the proposed 

method is feasible to be implemented in wheel loading operations that use the 

specifications of the wheel and the wheel hub used in this study.  

According to Chen et al. (2005), the minimum assembly tolerance used in the 

industry is 2mm. The maximum error recorded of 2.78mm for y-axis and z-axis 
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deviations in this work renders the proposed method unsuitable for the industry 

in its current version. However, with the recent launch of the second generation 

of the Kinect sensor (Kinect V2) with improved depth resolution coupled with 

improved object detection algorithms, it is anticipated that the motion tracking 

error of less than 2mm would be achieved. 

IR interference between the far and the near sensors compelled the motion 

sensing zone to be divided into mutually exclusive far and near motion sensing 

zones. The second generation of depth sensors are expected to be significantly 

less affected by IR interference and therefore a motion tracking setup with the 

far sensor tracking the moving wheel hub along the entire length of the loading 

workstation can be used. This setup will enable the far sensor to constantly 

track the moving hub for major disruptions whereas the near sensor can track 

the motion more precisely and determine misalignments more accurately.  

In this study, the Kinect sensors are not re-calibrated and therefore object 

recognition and tracking quality degrades as the object moves away from the 

centre of the field of view of the sensor. A calibration method is needed to 

enhance the accuracy of coordinate mapping between the sensor coordinate 

system and the real world coordinate system and this is expected to enhance 

the accuracy of motion tracking and feature recognition.   

Finally, the wheel hub mounted on the vehicle axle consists of additional 

components such as the brake disc callipers and in some cases the drum brake 

setup is installed. Therefore, the tracking method proposed here will need to be 

amended to recognise the wheel hub and recognise the alignment features in 

the presence of such components. 

6.6 Chapter summary 

This chapter presented the implementation of the proposed framework for 

digitisation of manual manufacturing task knowledge from the manual assembly 

of Lego blocks. This task was captured, segmented, modelled and the 

manufacturing knowledge constituents such as task strategy, precise human 

gestures, workpiece grasp and release techniques, and human motion 
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mechanics were extracted, decoded and reproduced successfully. The chapter 

also presented how the framework and the task capture methods proposed 

within it could be implemented to capture and digitise the manufacturing 

environment within which the tasks occur. The next chapter presents the testing 

and validation of the framework using 3 case studies.  
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CHAPTER 7 

7 VALIDATION 

This chapter presents 3 case studies in which 3 different manual tasks are used 

to test the performance of the digitisation framework. The case studies are 

designed to test certain methods and tools from the digitisation framework that 

were not tested at the implementation stage. To validate the framework, it is 

benchmarked against an existing method of extracting task knowledge from a 

real-world composite layup task. Finally, through the case studies the breadth 

and depth of investigation conducted in this research is summarised.  

This chapter aims to achieve the following objectives: 

 Introduce the case studies.  

 Describe the implementation of the framework for each case study and 

present the outcomes. 

 Present the performance of the framework against the benchmark. 

 Summarise the breadth and depth of investigation conducted in this 

research. 
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7.1 Overview 

The proposed digitisation framework was developed and successfully 

implemented by digitising the knowledge embedded within a simplified 

assembly task and an assembly task environment (sections 6.4 and 6.5). A 

validation study will provide an understanding of the framework through different 

real-life-like task examples (case studies) and will cover additional features and 

functions of the framework that are not used in the implementation phase. The 

study will also gauge the efficacy of the framework by evaluating whether it can 

deliver the 5 functionality measures in the case studies.  

Case studies provide an experimental platform for contextual analysis of a 

limited number of parameters. Researchers have used case studies as an 

important tool for many years across a broad spectrum of research disciplines. 

Yin (1984) defines case study research as “an empirical inquiry that investigates 

a contemporary phenomenon within its real-life context; when the boundaries 

between phenomenon and context are not clearly evident; and in which multiple 

sources of evidence are used”.   

While most case studies are qualitative in nature, those adopted in this research 

are quantitative where the research data is gathered by experimental means. 

Three case studies are chosen, namely, (1) digitisation of pen assembly task 

knowledge, (2) digitisation of Ikea table assembly task knowledge and (3) 

digitisation of manual composite layup task knowledge. In these case studies, 

the digitisation framework is used as proposed to extract, decode and 

reproduce the manufacturing knowledge embedded within the tasks. In the third 

case study, the knowledge digitised by the framework is also benchmarked 

against the knowledge extracted by other means from the same task. The 

selection of case studies is broadly based on the following factors: 

i. The case studies must include human actions of varying difficulty during 

task execution to test the effectiveness of using gaming interface sensors 

to capture different types of human motions.  
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ii. The case studies must include different types of workpieces with varying 

complexity to test the effectiveness of using gaming interface sensors to 

recognise and track different workpieces in real-time.  

iii. The case studies must have the requirements that need the use of the 

features and functions of the framework not tested before.  

iv. The tasks chosen must be not be complex enough to warrant the use of 

sophisticated motion capture and image processing algorithms because 

each of these areas are formative research subjects in themselves and 

are outside the scope of this research. 

The case studies are briefly tabulated in Table 11: 

Table 11: Case study description 

S. No. Case Study Key Feature Key Challenge 

1 Digitisation of 

pen assembly 

task 

knowledge. 

Human-workpiece 

interactions are 

segmented using the 

trajectory-change-

sampling method. 

Object recognition and 

tracking using the edge 

detection method. 

Recognition and tracking 

of small workpiece 

components based on 

depth and colour image 

processing. 

Inferring human actions 

from workpiece change 

tracking. 

2 Digitisation of 

Ikea table 

assembly task 

knowledge. 

Human-workpiece 

interactions are 

segmented using the 

time-sampling method. 

Use of the second 

generation of the Kinect 

sensor (Kinect V2). 

Object recognition and 

Use of microphones to 

capture sound data and 

isolation of problem 

solving sessions from the 

human-workpiece 

interaction data. 

Use of two Kinect sensors 

to capture the task, 

especially the first use of 
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tracking using the depth 

and brightness values of 

its pixels. 

Comparison of 

assembly skills between 

two users. 

the Kinect V2 sensor.  

Comparison between 

Kinect V1 and V2 for 

evaluation of the Kinect 

V2 capability for this 

research. 

Using the framework to 

capture and digitise the 

assembly task performed 

by another user with no 

prior training or 

experience in the task. 

3 Digitisation of 

manual 

composite 

layup task 

knowledge 

The task is a real world 

manufacturing example 

which is at the interface 

between assembly and 

machining and therefore 

is completely different 

from other tasks in this 

research. 

The workpiece in this 

case is a deformable 

composite prepreg ply 

that is formed into a 

complex shape. Object 

recognition and tracking 

is fairly complex. 

Human actions are 

complex and continuous 

in nature with specific 

Selection between the 3 

proposed data 

segmentation techniques 

is difficult because the 

task displays 

characteristics that suit all 

3 techniques.  

Workpiece recognition 

and tracking needs a 

completely different 

approach. 

Complex and precise 

human actions involved in 

the task require the 

motion tracking method to 

be much more accurate 

and reliable than the ones 

used in the tasks earlier. 



 

 153 

ply manipulation 

techniques embedded 

within them, which is a 

new constituent of task 

knowledge. 

The knowledge from this 

task is extracted before 

using other means and 

therefore will provide a 

benchmark for this 

research. 

The task is performed at a 

different location to the 

one in which this research 

is carried out. Therefore, 

the framework must deal 

with uncertainties of setup 

and task environment. 

7.2 Case Study 1: Pen assembly task 

In this study, the task chosen is the manual assembly of a pen. The human-

workpiece interactions involved during the assembly are captured and recorded 

using the Kinect, the continuous interaction data is segmented into discrete 

human action and workpiece observation states, the states are modelled using 

HMM to generate human-workpiece interaction models and these models are 

analysed to extract and decode the manufacturing knowledge associated with 

the assembly task. This case study differs from the others used in this research 

in 4 main areas: 

i. Workpiece recognition and tracking method. 

ii. Using workpiece tracking data to compensate for loss of human action 

data. 

iii. Segmentation method. 

iv. Representation of human action and workpiece states. 

The pen assembly task is performed in the laboratory under controlled task 

environment conditions. Therefore, only the human and the workpiece were 

tracked during the task and the knowledge of the task environment was not 

digitised.  
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7.2.1 Choice of task 

The pen assembly task is selected in accordance with the factors listed in 

section 7.1 and for the following additional reasons. 

i. In this assembly task, the changes in workpiece states are gradual and 

continuous in nature and not in prominent chunks as seen in the Lego 

blocks assembly task. Therefore, a different technique is needed to 

segment the workpiece states.  

ii. Workpiece tracking is more complex due to the small size and grayscale 

of the components. This requires the use of different object recognition 

and tracking method that does not rely on colour differentiation.   

iii. The duration of the task is small and therefore the number of discrete 

states generated from the captured data will also be small. This ensures 

that more complexity is not added to the modelling and analysis phases 

of the digitisation process for this task.  

7.2.2 Task description 

In this task, the human uses his left and right hands to manipulate the two 

components of the pen in order to assemble it. The workpiece here refers to the 

two components of the pen, namely the left component and the right 

component.  

Sequence of steps in the assembly task 

i. Find the two components of the pen within the pre-defined virtual box on 

the table. 

ii. Grasp the two components, one in each hand and move them to the front 

of the sternum. 

iii. Move the two components towards each other until they mate. 

iv. Upon mating, rotate the right component with respect to the left, the left 

being stationary, in order to complete the threaded fit assembly of the 

pen. 
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Task rules 

The following rules are followed while performing the task and these rules are 

programmed into the task capture step of the digitisation process to minimise its 

complexity:   

i. The assembly is executed within the pre-defined virtual zone in front of 

the human sternum. This rule cuts down the time taken by the task 

capture function by focussing the workpiece recognition and tracking to a 

small area rather than the entire 3D space in the visible view of the 

Kinect sensor.  

ii. The task is performed at a normal speed so that real-life-like conditions 

can be simulated for capture. 

iii. The same pen is used every time the task is run to capture data. Though 

depth-imaging processing is predominantly used for object recognition 

and tracking, in some instances when depth data is not reliable, RGB 

data is used. Therefore, using the same pen does not add to the 

complexity of workpiece tracking.  

iv. The left and right components of the pen are held in left and right hands 

respectively without making a switch midway through the task. Again this 

rule does not add to the complexity of workpiece tracking during the task. 

7.2.3 Task setup 

 

  

(a) (b) (c) 

Figure 60: (a) Workpiece components and assembled workpiece (b) Experiment 

Setup (c) Human arm tracking 
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The table is the assembly workstation with a pre-defined virtual box where the 

workpiece components are initially placed. A Kinect sensor is used to capture 

and record the entire assembly task. It is mounted on a tripod was placed at a 

distance of 1.2m from the human operator and at a height of 1.2m from the floor 

(Figure 60). The distance of 1.2m is chosen because it was the maximum 

distance at which the object recognition algorithm could track the workpiece 

components reliably. Using the standard human skeleton tracking functions of 

the library, the 3D motion of the human’s left and right arms (shoulder, elbow 

and hand) are recorded throughout the assembly task. At the same time, the 

workpiece components are also tracked using a moving object recognition 

algorithm. A Java based software development platform called ‘Processing’ 

version 2.1 is used to write the image processing and skeletal tracing code and 

‘SimpleOpenNI’ version 1.96; an open source library is used to interface with 

the Kinect sensor.  

7.2.4 Implementation and testing of the framework 

Step 1: Capture 

The Kinect sensor captures the entire task performed by the human and the 

data produced is processed using standard and bespoke software functions to 

digitise and record human actions and the effects of those actions on the 

workpiece components. Sound is not captured in this implementation.  

Workpiece component identification 

The workpiece components must be placed within the pre-defined virtual area, 

marked in red outline in Figure 61, on the table in preparation for assembly. The 

workpiece identification algorithm scans this virtual area and reports the 

presence or absence of the two pen components of the workpiece using the 

blue and red outlines respectively. This step simulates the presence or absence 

of assembly components in their storage racks in an actual assembly 

workstation. 
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Figure 61: The virtual area (red outline) for placement of workpiece components 

(b) Identification of components 

The pre-defined area is divided into one pixel wide columns. For each column, 

the depth and RGB values of each pixel in the column are compared with those 

of the next pixel in the same column. Any abrupt change in pixel values against 

those of the background pixels is marked and this change pattern is compared 

against known pixel patterns for workpiece component edges E1 to E5 as 

shown in Figure 62. By recognising these edges, the workpiece components 

are identified. 

 

Figure 62: Key workpiece component edges E1 to E5 

The abrupt changes in the depth and RGB values of pixels corresponding to the 

workpiece component edges are shown in the charts in Figure 63. 

  

  
(a) (b) 
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Figure 63: Depth pixel patterns of background and component edges E1, E2, E3, 

E4 and E5 

Tracking human-workpiece interactions 

The assembly process begins when the human picks up the workpiece 

components, left and right, using his left and right hand respectively. The 

human then brings them together until the two components are mated and 

cannot come any closer as shown in Figure 64. 

     

Figure 64:  Human motion tracking (arms) and workpiece component tracking  

During this process, the left and right human arm joints (shoulder, elbow and 

hand) as well as the key component edges are continuously identified and 

tracked until mating of the components occurs. The key component edges E2 

and E3 (see Figure 62), which converge in the X direction during the assembly 

are detected by using an edge detection method, similar to the edge detection 

process of Figure 63, that distinguishes the pixel depth pattern of the edge 

against those of the background pixels (Figure 65b). 
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(a) (b) 

Figure 65: (a) Component edge recognition (b) depth pixel pattern at the edges  

The edge detection and tracking is confined to a virtual box, spanning the two 

human hands in X direction, 80 pixels in Y direction and a range of 900mm to 

1150mm in Z direction in front of the human, to reduce the computational load 

of the algorithm.  Since the depth change in pixels belonging to the edges as 

compared to the background is significant higher (greater than 200mm), there is 

no need to examine the RGB values of the pixels for edge detection.  

In the final assembly step, the human performs the threaded fit process by 

rotating the right component with respect to the left until no further rotation is 

possible. Since the Kinect cannot detect rotation motion, the edges E2 and E4 

are tracked continuously and the narrowing gap between them is computed. At 

this stage, only the RGB values of the pixels belonging to edges E2 and E4 are 

compared with the rest of the pixels on the horizontal scanning line because the 

Kinect is not able to reliably resolve the depth values of pixels in this small area. 

Because the pixels belonging to the gap are darker than others on the scanning 

line, the edges E2 and E4 are identified (Figure 66). 

 

 

(a) (b) 

Figure 66: Gap identification (b) RGB value of pixels along the scanning line 
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The capture system then approximates the amount and direction of rotation 

applied. The final threaded fit process is shown in Figure 67. 

   

Figure 67: Tracking edges E2 and E4 for threaded fit action and identifying the 

completed pen assembly 

During the assembly process, x, y and z coordinates of the human’s arm joints 

(shoulder, elbow and hand) as well as the x, y and z coordinates of the key 

workpiece component edges E2, E3 and E4 are captured simultaneously in 

real-time along with the timestamps. All this captured data is recorded in a 

spreadsheet (Figure 68). 

 

Figure 68: Snapshot of the spreadsheet with human action and workpiece data 

Filtering 

The coordinates of the human operator’s hand joints and the workpiece 

component edges are extracted from the depth image stream sent by the Kinect 

at 30fps. The human skeletal tracking data as well as the workpiece motion 

data is noisy due to the low resolution of the Kinect sensor. Therefore, to reduce 

the noise and to provide more time for filtering and smoothing of the depth 

image stream in real-time, the image acquisition rate from the Kinect was 
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slowed down to 6fps, which is still considerably fast as compared to the normal 

speed of the assembly task.  

Filtering was needed to keep out the inherent noise in the motion data and was 

achieved by ignoring the data points that lie outside of the known interaction 

boundaries of the assembly operation. For example, hand motion diverging for 

a few milliseconds within the continuous converging motion is considered noise 

and is ignored. Smoothing was achieved by averaging out the variations in the 

filtered data points within a pre-defined deviation range to minimise the effect of 

high frequency noise that still crept in. The effect of filtering and smoothing of 

motion data on computation of gap width between the two components during 

assembly is shown in Figure 69.  

 

(a) 

 

(b) 

Figure 69: Gap tracking (a) before filtering and (b) after filtering 

Step 2 – Segment 

The continuous human and workpiece data is segmented into human action 

states and workpiece states using the trajectory-sampling method. The 

spreadsheet containing continuous raw human motion and workpiece tracking 

data is parsed and the data is segmented according to the following 6 steps. 

i. Segregation of workpiece motion into workpiece motion primitives 

Workpiece motion data is segmented at places where abrupt change in 

motion direction is detected and the resulting segments are workpiece motion 

primitives. In Figure 70b, red segments indicate a sharp drop in direction of 

motion, green segments indicate a sharp rise in direction of motion and blue 

segments indicate gradual or no change in direction of motion.  
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(a) (b) 

Figure 70: workpiece x-motion (b) Workpiece x-motion primitives 

ii. Generation of workpiece states 

The workpiece motion primitives are mapped to the corresponding steps of 

the assembly sequence (Table 12). 

Table 12: Workpiece motion primitives mapped to assembly sequence 

Frame 

No. 
Workpiece Motion Primitive 

Correspoding 

Assembly Step 

1 

  

18 

  

33 

  

42 
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154 

  

195 

  

The image frame numbers at which each of these primitives terminates are 

designated as workpiece states. The resulting workpiece states are listed in 

Table 13 and illustrated in Figure 71. Each state is annotated with its own 

data such as its image frame number, spatial position and whether the 

rotation action is applied to the component or not.  

Table 13: Workpiece states for left and right workpiece components 

State 
Frame 

no. 

Left Component Right Component 

X, Y, Z position 
Rotation 
applied 

X, Y, Z position 
Rotation 
applied 

0 1 250, 250, 1280 0 350, 252, 1271 0 

1 18 250, 250, 1280 0 350, 252, 1271 0 

2 33 217, 278, 1477 0 350, 252, 1271 0 

3 42 212, 264, 1101 0 366, 255, 1126 0 

4 154 273, 237, 1113 0 275, 236, 1116 0 

5 195 273, 237, 1113 0 275, 236, 1116 1 

 

Figure 71: Workpiece states identified on the workpiece x-motion chart 
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iii. Generation of human action states 

Human motion is segmented into human action states according to their 

spatio-temporal dependencies on the corresponding workpiece states. An 

example of human motion segmentation based on the workpiece states is 

shown in Figure 72 and the resulting human action states in Table 14. 

 

Figure 72: Segmentation of human motion according to the workpiece states 

Table 14: Human action states (for left and right hand) 

 

Therbligs: Therbligs are used in this study to represent human action states on 

the basis of what the states are intended for (Table 15). By doing this, every 

human state is associated with a work function within the overall assembly task. 

Therbligs were first proposed by the industrial psychologists Frank and Lillian 

Gilbreth for as a way of classifying human motions in a work task. The Gilbreths 
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claimed that complex human tasks consist of 18 basic motions such as 

searching, gripping, moving and positioning (Figure 73) which could be used to 

study and improve human motion in work environments, such as an assembly 

line or a production workshop, and improve work efficiencies (Ferguson, 2000).  

 

Figure 73: The 18 Therbligs 

Table 15: Therbligs associated with human action states 

 

iv. Addressing unexpected motion primitives 

Unexpected workpiece motion primitives that are not associated with any 

assembly step but have corresponding human actions can be regarded as 
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human response to a problem. Otherwise as in this example, these stray 

primitives are just noise and can be ignored (Figure 74). 

 

Figure 74: Unexpected workpiece motion primitives with no human reaction 

Step 3: Model 

The discrete human action and workpiece states generated in the previous step 

are now ready to be modelled using HMM. The human states of ‘Find (F)’ and 

‘Position (P)’ are dropped during modelling because those are just snapshots of 

the human pose and not human actions that manipulate the workpiece. The 

nomenclature of the states is based on the Therblig they individually represent.  

HMM generation 

Two different task scenarios are captured for modelling. In scenario A, the 

human uses both hands simultaneously to position the two components before 

thread fitting them together whereas in scenario B, the human positions one 

component first and then the other.  

The workpiece o sequence observed for scenario A is  

𝑂𝐴  =  {𝑊𝑇𝐿,   𝑊𝑇𝑅,   𝑊𝐺𝐿,   𝑊𝐺𝑅,   𝑊𝑃𝑃𝐿,   𝑊𝑃𝑃𝑅,   𝑊𝑃𝐿,   𝑊𝑃𝑅,   𝑊𝑃𝐴} 

The workpiece state sequence observed for scenario B is  
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𝑂𝐵 =  {𝑊𝑇𝐿,   𝑊𝑇𝑅,   𝑊𝐺𝐿,   𝑊𝑃𝑃𝐿,   𝑊𝑃𝐿,   𝑊𝐺𝑅,   𝑊𝑃𝑃𝑅,   𝑊𝑃𝑅,   𝑊𝑃𝐴} 

HMM models 𝜆𝐴 and 𝜆𝐵 are generated for the two unique workpiece state 

sequences 𝑂𝐴 and 𝑂𝐵 (Figure 75). 

  

HMM model 𝜆𝐴 HMM model 𝜆𝐵 

Figure 75: HMM models for the pen assembly task 

Optimisation of HMM parameters: In this example, the two HMM models 𝜆𝐴 and 

𝜆𝐵 are put through the Baum Welch algorithm to optimise their parameters. For 

both models the algorithm did not go past the first run, which means that the 

initial estimation of parameters were good enough for the models to closely 

represent their task scenarios.  

HMM evaluation – picking the right model 

Stochastic evaluation is used to determine the most likely HMM model that 

closely represents a given task scenario. The task scenario is given in the form 

of a workpiece observation sequence.  

Consider a task scenario represented by the given workpiece observation 

sequence 𝑂𝑄  =  {𝑊𝑇𝐿,   𝑊𝑇𝑅,   𝑊𝐺𝐿,   𝑊𝐺𝑅,   𝑊𝑃𝑃𝑅,   𝑊𝑃𝑃𝐿,   𝑊𝑃𝑅,   𝑊𝑃𝐿,

𝑊𝑃𝐴}, which is different from 𝑂𝐴and 𝑂𝐵. 

Therefore, by stochastic evaluation 𝑃(𝜆𝐴 | 𝑂𝑄) is compared with 𝑃(𝜆𝐵 | 𝑂𝑄) and 

the model with the highest probability is picked. Therefore, by using the 

‘Forward’ algorithm: 
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𝑃 (𝜆𝐴 | 𝑂𝑄)  =  3.21𝑒 − 10 

𝑃 (𝜆𝐵 | 𝑂𝑄)  =  6.11𝑒 − 10 

Since 𝑃 (𝜆𝐵 | 𝑂𝑄) >  𝑃 (𝜆𝐴 | 𝑂𝑄) , HMM model 𝜆𝐵  is picked for the given 

observation sequence 𝑂𝑄.  

Step 4: Extract 

Once the most probable HMM model is identified for the given task scenario, 

the sequence of human action states responsible for that scenario can be 

extracted using the Viterbi algorithm. Once the human action sequence is 

extracted, detailed analysis can be performed on the individual states that make 

up the sequence to decode the knowledge embedded within them.  

In the previous step, for observation sequence 𝑂𝑄, HMM model 𝜆𝐵 is identified 

that most likely embodies the task scenario represented by 𝑂𝑄. Using the 

‘Viterbi’ algorithm, the most likely sequence of human actions 𝐻𝑄 that could 

produce 𝑂𝑄 is identified.  

Therefore, 𝐻𝑄  =  {𝑇𝐸𝐿, 𝑇𝐸𝑅, 𝐺𝐿, 𝐺𝑅, 𝑇𝐿𝑅, 𝑇𝐿𝐿, 𝑃𝑃𝑅, 𝑃𝑃𝐿, 𝐴} 

Step 5: Decode 

Given a task scenario, steps 4 and 5 have shown that the right HMM model that 

best represents that scenario can be picked and the human action sequence 

responsible for that scenario can be extracted. This sequence is made up of 

human action states that correspond directly to the changes the workpiece has 

undergone in the given task scenario. In this step, these human-workpiece 

interactions are further analysed to decode the manufacturing knowledge 

embedded within them.  

There are several constituents of manufacturing knowledge such as the task 

strategy adopted, nature and spatial characteristics of gestures made, 

mechanics of motion performed during the gestures, and workpiece 

manipulation techniques. These constituents can be decoded from the raw 
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human action data and workpiece tracking data stored within the states that are 

extracted. 

Extraction of states from the human action sequence 

Consider the output sequence 𝐻𝑄  =  {𝑇𝐸𝐿, 𝑇𝐸𝑅, 𝐺𝐿, 𝐺𝑅, 𝑇𝐿𝑅, 𝑇𝐿𝐿, 𝑃𝑃𝑅, 𝑃𝑃𝐿,

𝐴} extracted from HMM model 𝜆𝐵 for the given observation sequence 

𝑂𝑄. The human action data within the states of 𝐻𝑄 is pulled out from the raw 

human motion data and mapped to the corresponding workpiece states from 

the observation sequence (Table 16). 

Table 16: Human action states mapped to corresponding workpiece states 

Human action state Workpiece state in observed task status  

 
  

 
 

There is no chart for this action state because the 
action is to ‘grasp’ the workpiece component, 
which cannot be captured by the Kinect. 

GL 
 

There is no chart for this action state because the 
action is to ‘grasp’ the workpiece component, 
which cannot be captured by the Kinect. 

GR 
 

TEL 

TER 
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There is no chart for thread fitting action because 
the Kinect cannot track hand rotation movements. 

 

A 

 

TLR 

TLL 

PPR 

PPL 
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Decoding of manufacturing knowledge 

Multiple constituents of manufacturing knowledge can be decoded from the 

extracted states and human action data. These constituents include the 

following but are not limited to: 

 Task execution strategy. 

 Nature and spatial characteristics of human gestures while working on the 

workpiece. 

 Workpiece manipulation techniques. 

 Mechanics of human movements such as body bending angle, angles 

between upper and lower arms, body orientation with respect to the 

workpiece, etc. 

Task execution strategy 

The task execution strategy can be decoded by determining the sequence of 

human actions responsible for the given sequence of workpiece states from the 

most likely HMM model. From the human action sequence, the following 

knowledge can be decoded: 

o Plan and approach of task execution by breaking it down into sub-tasks 

i.e. the action states 

o Sequence of execution of the sub-tasks to achieve the main task. This 

sequence depends on the task scenario.  

o Selections made during the task to choose specific actions from a 

repertoire of actions available to successfully complete the task. In this 

example, the human made a choice of positioning one component first 

and then the other component for thread fitting assembly. Problem-

solving scenarios were not captured in this task therefore the expert’s 

approach to an unforeseen problem could not be extracted. 

Nature and spatial characteristics of human gestures 

By visualising the human motion data within each extracted action state, the 

nature (trajectories and patterns) and spatial characteristics (3D coordinates) of 

human gestures with respect to the changes in the workpiece can be obtained. 
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The human motion data and corresponding workpiece change data for the 

extracted state ‘TEL’ is shown as an example (Table 17). 

Table 17: Human motion data and gestures during the human action state TEL 

 

    

Human state ‘TEL’ 1 2 3 4 

Mechanics of human motion 

Motion mechanics such as body bending angle, angles between the upper and 

lower arms, and body orientation can be obtained using vector computing. This 

information is vital to understand the physical nuances of human skills exhibited 

during task execution. Table 18 illustrates how body bending angle and the 

angles between upper and lower arms can be annotated on image frames 

extracted from the action states. 

Table 18: Mechanics of human motion annotated over the actual task images 

  

 Angle between upper & lower arm (Left): 157
o
 

 Angle between upper & lower arm (Right): 168
o
 

 Body bending angle: 173
o
 

 Angle between upper & lower arm (Left): 132
o
 

 Angle between upper & lower arm (Right): 162
o
 

 Body bending angle: 174
o
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 Angle between upper & lower arm (Left): 155
o
 

 Angle between upper & lower arm (Right): 136
o
 

 Body bending angle: 166
o
 

 Angle between upper & lower arm (Left): 41
o
 

 Angle between upper & lower arm (Right): 28
o
 

 Body bending angle: 176
o
 

In this case study, not only the interaction between the human and the 

workpiece components but also the interaction between the left and right hands 

of the human during the assembly task can be decoded. With further analysis of 

these interactions, it is possible to visualise and extract a particular human skill 

involved in the assembly task that allows the human to sub-consciously align 

the two pen components in y and z axis simultaneously as the two components 

are brought together for mating.  During this pre-positioning stage of assembly, 

the components provide a visual feedback on their spatial position to the human 

who analyses it and adjusts the motion of his hands continuously to ensure 

alignment (Figure 76). Without this alignment, it wouldn’t be possible to mate 

the components, resulting in a failed assembly. 

   

Figure 76: The pre-positioning stage for component alignment 

Step 5: Reproduce 

2D animation is produced as a medium to reproduce the human-workpiece 

interactions and augment this animation with manufacturing knowledge 
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constituents extracted and decoded in this framework. An example of such an 

animation is shown in the form of static snapshots of the animation at various 

times of the task in Figure 77. 

 

Figure 77: Human-workpiece interactions animated for a specific task scenario 

Therefore, the 6-step digitisation framework has been successfully tested and 

demonstrated for digitisation of task knowledge embedded within the manual 

pen assembly task. Most of the work in this case study is also presented in a 

journal paper and a conference paper (See ‘List of Publications’). 

7.3 Case Study 2: Ikea table assembly task 

In this study, the task chosen is the manual assembly of an Ikea table. The 

human-workpiece interactions involved during the assembly are captured, 

segmented, modelled and the manufacturing knowledge associated with the 

assembly task is extracted and decoded. This case study differs from the others 

in 5 main areas: 

1. Workpiece recognition and tracking method. 

2. Segmentation method used to generate human action and workpiece 

states. 

3. Representation of human action and workpiece states. 

4. Capture of verbal inputs from the human during the task.  

5. Digitisation of the assembly task performed separately by two humans 

for skill comparison using the framework.  
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The Ikea table assembly task was performed in the laboratory under controlled 

conditions. Therefore, only the human and the workpiece were tracked during 

the task and the knowledge of the task environment was not digitised.   

This case study was implemented to test all the 6 steps of the framework on a 

real-life-like assembly task example. As this study is the fourth task to be 

digitised, task capture and segmentation steps of the framework had already 

matured into reliable processes. Therefore, more focus is given to modelling 

and knowledge extraction and decoding in this study.  

7.3.1 Choice of task 

The Ikea table assembly task is selected in accordance with the factors listed in 

section 7.1 and for the following additional reasons. 

1. In this assembly task, the human actions are cyclical in nature with 

regular intervals between two prominent actions. Therefore, the time-

sampling segmentation method, which has not been tested so far, is 

used in this study.  

2. The workpiece tracking in this case is a real-time tracking of changes in 

workpiece configurations rather than its position, dimension or shape. A 

predominantly depth-based object recognition method that relies on the 

known geometry of the workpiece, which has not been tested so far, is 

used in this study. 

3. A clear assembly sequence can be built into the task so that any 

workpiece components assembled out of turn can be flagged as a 

problem. The resolution of the problem can then be analysed as a 

separate task scenario. 

7.3.2 Task description 

In this task, the human assembles the different components of an Ikea table 

together to form the finished workpiece consisting of the table base and the four 

legs. The human, considered the task expert, manipulates the workpiece 

components and assembles the table on an assembly workstation. An 

assembly sequence is built into the task which if not followed is flagged as an 
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error that needs resolving by the task expert. To shorten and simplify the 

assembly task, the legs of the table are not thread fitted into the base but simply 

placed on it.  

Assembly sequence 

i. Grasp and pick the base of the table from its storage area and place it on 

the workstation within the defined virtual box. 

ii. Grasp and pick a table leg from the storage area and place it on the base 

at position number 1. 

iii. Grasp and pick a table leg from the storage area and place it on the base 

at position number 2. 

iv. Grasp and pick a table leg from the storage area and place it on the base 

at position number 3. 

v. Grasp and pick the remaining leg from the storage area and place it on 

the base at position number 4 to complete the assembly task. 

Task rules 

Four rules are followed while executing the task and these rules are 

programmed into the task capture step of the digitisation framework to minimise 

its complexity.   

i. The assembly is executed within the pre-defined virtual box on the 

workstation. This rule cuts down the time taken by the task capture 

function by focussing the workpiece tracking to a small area rather than 

the entire 3D space in the visible view of the Kinect sensor.  

ii. The task is performed at a normal speed so that real-life like conditions 

can be simulated for capture. 

iii. All the components of the table have the same colour (white) to test the 

ability of the workpiece tracking to recognise workpiece configuration 

using only the depth information. 

iv. No other sound is generated during the task except for verbal 

instructions from the task expert. This rules ensures that the instructions 

are captured clearly and immediately upon being spoken.  
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7.3.3 Task setup 

The task is performed on the assembly workstation with a pre-defined virtual 

area where the workpiece components are placed. A Kinect sensor is used to 

capture and record the entire assembly task. It is mounted on a tripod at a 

height of 1.5m from the floor and at a distance of 1.5m from the area where the 

human will perform the assembly. The distance of 1.5m was chosen because it 

was the optimum distance at which the object recognition algorithm could track 

the relatively large workpiece components reliably (Figure 78).  

 
 

   
(a) (b) (c) 

Figure 78: (a) Workpiece components and assembled workpiece (b) experiment 

setup (c) RGB and depth images with tracking of upper human body motion 

The software development platform and the human motion tracking method are 

the same as the previous tasks. An online speech processing library from 

Google is introduced in this study to process and transcribe the task expert’s 

verbal inputs during the task, which are captured by a microphone headset.  

7.3.4 Implementation and testing of the framework 

Step 1: Capture 

The Kinect sensor captures the entire task performed by the human and the 

data produced is processed using standard and bespoke software functions to 

digitise and record human actions and the effects of those actions on the 

workpiece components. Sound is also captured in this implementation.  

Workpiece recognition 

The workpiece components are assembled inside the pre-defined virtual are on 

the assembly workstation. This virtual area is marked in a white circle outline as 

shown in Figure 78c. The workpiece tracking algorithm scans this virtual area 



 

 178 

for presence of surfaces not belonging to the workstation, based the depth 

patterns and identifies them using blue dots.  

To identify the object placed on the workstation as the Ikea table and to track its 

configuration as it is assembled, 8 specific points within the virtual area are 

continuously scanned for presence or absence of the components belonging to 

the table. The location of these points is determined from the known geometry 

of the assembled workpiece as shown in Figure 79 (a). The four base points  

(BP1 to BP4) are used to identify the presence of the base on the workstation 

and leg points (LP1 and LP4) are used to identify the individual legs when they 

are assembled on the base (Figure 79 (b)). 

 (a) 

 (b) 

Figure 79: (a) Known geometry of the assembled workpiece (b) Workpiece 

feature recognition points 

Tracking human-workpiece interactions 

The assembly process begins when the human picks up the workpiece 

components one by one and places them on the workstation at specific 

locations in a specific sequence for assembly. The base is placed first followed 

by the legs in the assembly order of 1 to 4, as marked on the base. Two task 

scenarios are captured. In the first scenario (scenario A), the assembly 

sequence is followed and in the second scenario (scenario B), the assembly 

sequence is not followed resulting in a problem-solving session within the task. 

Figure 80 shows the captured assembly sequence in scenario A. 
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Figure 80: The captured assembly sequence in scenario A 

This task scenario is continuously tracked by the capture step and the live 

status of the task is graphically rendered as shown (Table 19). The human 

motion (of left hand, right hand and torso) is continuously plotted and a 

workpiece configuration snapshot is taken and displayed every 3 seconds. This 

way, the human action within every 3-second period is responsible for the 

workpiece configuration at the end of the 3-second period.  

Table 19: Live human action and workpiece progress (scenario A) 

 

 



 

 180 

 

 

 

In scenario B, the expert places leg 4 before legs 2 and 3 and therefore triggers 

a problem alert. Upon activation of this alert, the expert issues a verbal 

instruction for the capture system to label his next set of actions as problem-

solving actions until he issues an instruction again to stop labelling (Table 20).  

Table 20: The problem-solving sequence for scenario B 

     

The expert places 
the table leg on 
location 4 before 
placing the table legs 
in locations 2 and 3 
triggering a problem 
alert. 

The expert issues a 
verbal instruction to 
the capture system 
to label his next set 
of actions as 
problem-solving 
actions 

The notices and expert 
corrects the problem 
by removing the table 
leg from location 4. 

The expert now 
places the table leg 
in location 2 thereby 
solving the problem 
and subsequently 
following the 
sequence. 

The expert issues a 
verbal instruction to 
the capture system 
to stop labelling his 
actions as problem-
solving actions. 

This problem-solving scenario is rendered graphically in Table 21. A ‘sequence 

error’ alert is raised by changing the colour of the workpiece snapshot from 

black to red and displaying a ‘sequence error’ message on the capture system 

screen. Once the verbal instructions to label the expert’s action is given, the 
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human motion plot changes its colour to violet indicating that the motion data is 

labelled and recorded as a problem-solving session in the spreadsheet.   

Table 21: Live human action and workpiece progress (scenario B) 
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This human-workpiece interaction data is filtered and smoothened before it is 

stored in a spreadsheet. Snapshots of the spreadsheet for scenarios A and B 

are presented in Figure 81 and Figure 82 respectively.  

 

Figure 81: Snapshot of the spreadsheet for task scenario A 

 

Figure 82: Snapshot of the spreadsheet for task scenario B 

Note that the problem solving (‘Prob-Solv’) field in the spreadsheet for all data 

points in scenario A is ‘N’ which denotes normal actions. For scenario B, the 

label changes from ‘N’ to ‘Y’ when the task expert issues an instruction to note 

his problem-solving actions. Such data points with can be isolated easily for 

further analysis.   

Step 2 – Segment 

The continuous human and workpiece data is segmented into human action 

states and workpiece states using the time-sampling method and the spatio-

temporal dependencies between these states is identified. The spreadsheet 

containing continuous raw human motion and workpiece tracking data is parsed 



 

 183 

and the data is segmented every 3 seconds (Figure 83). This interval can be 

changed to change the granularity of the digitised knowledge desired.  

 

Figure 83: Segmentation of human motion data for task scenario A 

In this case, the time unit used is 3 seconds. The segmentation process and 

resulting states are shown in and Table 22 respectively.  

Nomenclature of states 

The workpiece states are named according to the following format: 

Assembly Started? (Y/N) – Base (B/O) – Leg 1 (L/O) – Leg 2 (L/O) – Leg 3 

(L/O) – Leg 4 (L/O) 

Note that in the above format, symbol ‘𝑂’ means ‘Not Present’. For example, if 

no workpiece is present, the workpiece state is 𝑁𝑂𝑂𝑂𝑂𝑂 and if the base and 

first 2 legs are present, the workpiece state is 𝑌𝐵𝐿𝐿𝑂𝑂.  

The nomenclature of a human action state is similar but these states can also 

indicate a change effected in the workpiece state. For example, if only 

YBOOOO occurs during a human action state, that state is named 

𝐻_𝑌𝐵𝑂𝑂𝑂𝑂 and if two workpiece states, for example 𝑌𝐵𝑂𝑂𝑂𝑂 and 𝑌𝐵𝐿𝑂𝑂𝑂, 

occur within a human action state, then that state is named 

𝐻_𝑌𝐵𝑂𝑂𝑂𝑂_𝑌𝐵𝐿𝑂𝑂𝑂 indicating that the human has changed the workpiece 

configuration in that state.   
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The human action and workpiece states for task scenarios A and B are 

illustrated in Table 22 and Table 23 respectively. 

Table 22: Human action and workpiece states for normal task scenario A 

Human action state Workpiece state 

H_NOOOO  

NOOOO 

H_NOOOO_YBOOOO   

YBOOOO 

H_YBOOOO  

YBOOOO 

H_YBOOOO_YBLOOO  

YBLOOO 

H_YBLOOO_YBLLOO  

YBLLOO 

H_YYBLLOO  

YBLLOO 

H_YYBLLOO_YBLLLO  

YBLLLO 

H_YYBLLOO_YBLLLL  

YBLLLL 

H_YBLLLL  

YBLLLL 

Table 23: Human action and workpiece states for the problem solving scenario B 

Human action state Workpiece state 

H_NOOOO  

NOOOO 

H_NOOOO_YBOOOO   

YBOOOO 
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H_YBOOOO  

YBOOOO 

H_YBOOOO_YBLOOO  

YBLOOO 

H_YBLOOO_YBLOOL 

(Sequence error) 
 

YBLOOL 

H_YYBLOOL 

(Sequence error) 
 

YBLOOL 

H_YYBLOOL_YBLOOO  

YBLOOO 

H_YYBLOOO_YBLLOO  

YBLLOO 

H_YYBLLOO_YBLLLO  

YBLLLO 

H_YYBLLOO_YBLLLL  

YBLLLL 

H_YBLLLL  

YBLLLL 

 

Isolation of problem-solving session from within the task 

Another method of isolating problem-solving sessions from the continuous task 

data is by comparing the human motion charts of the same task performed in 

multiple scenarios and identifying the segments where the charts differ (Figure 

84). The problem solving sessions can be separately modelled and the 

knowledge embedded within them can be extracted and decoded. 
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Figure 84: Identification, isolation and segmentation of problem-solving session 
from a captured task scenario 

Step 3: Model 

The discrete workpiece and human action states generated in the segmentation 

step are now ready to be modelled using HMM.  

HMM generation 

The topology of the HMM model depends on the number of human action and 

workpiece states generated and the parameters of the HMM model are 

estimated by the task expert. Since the time-sampling segmentation method is 

used, different set of human action states can be generated for the same task 

scenario. This is because the time taken for each action within the task scenario 

can vary from one capture run to another.  
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4 unique HMM models (𝜆𝐴, 𝜆𝐵, 𝜆𝐶  and 𝜆𝐷) are generated, out of which 3 models 

(𝜆𝐴, 𝜆𝐵, 𝜆𝐶) belong to the normal task scenario from which 3 different human 

action states were captured and 1 model (𝜆𝐷) belongs to the unique problem-

solving session that was captured once.  

All the HMM models are optimised using the Baum Welch algorithm and the 

optimised models used for knowledge extraction and decoding.  

HMM evaluation – picking the right model 

Consider a task scenario represented by the workpiece observation sequence  

𝑂𝑄1  =  {𝑁𝑂𝑂𝑂𝑂𝑂,   𝑌𝐵𝑂𝑂𝑂𝑂,   𝑌𝐵𝐿𝑂𝑂𝑂,   𝑌𝐵𝐿𝐿𝑂𝑂,   𝑌𝐵𝐿𝐿𝐿𝑂,   𝑌𝐵𝐿𝐿𝐿𝐿} 

Using the ‘Forward’ algorithm, the following model probabilities are computed: 

𝑃(𝜆𝐴 | 𝑂𝑄1)  =  2.68𝐸 − 5 

𝑃(𝜆𝐵 | 𝑂𝑄1)  =  7.68𝐸 − 6 

𝑃(𝜆𝐶  | 𝑂𝑄1)  =  3.28𝐸 − 6  

𝑃(𝜆𝐷 | 𝑂𝑄1)  =  4.70𝐸 − 7 

Since 𝑃 (𝜆𝐴 | 𝑂𝑄1) is the highest probability HMM model 𝜆𝐴  is picked for the 

given observation sequence 𝑂𝑄1.  

Similarly, consider the problem-solving scenario represented by the workpiece 

observation sequence: 

𝑂𝑄2  =  {𝑌𝐵𝐿𝑂𝑂𝐿,   𝑌𝐵𝐿𝑂𝑂𝑂,   𝑌𝐵𝐿𝐿𝑂𝑂,   𝑌𝐵𝐿𝐿𝐿𝑂,   𝑌𝐵𝐿𝐿𝐿𝑂,   𝑌𝐵𝐿𝐿𝐿𝐿}  

Using the ‘Forward’ algorithm, the four probabilities are computed for the new 

observation sequence 𝑂𝑄2 

𝑃(𝜆𝐴 | 𝑂𝑄2)  =  4.15𝐸 − 10 

𝑃(𝜆𝐵 | 𝑂𝑄2)  =  2.43𝐸 − 10 

𝑃(𝜆𝐶  | 𝑂𝑄2)  =  8.77𝐸 − 9  

𝑃(𝜆𝐷 | 𝑂𝑄2)  =  1.48𝐸 − 7 
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Since 𝑃 (𝜆𝐷 | 𝑂𝑄2) is the highest probability HMM model 𝜆𝐷  is picked for the 

given observation sequence 𝑂𝑄2. 

Step 4: Extract 

Once the most probable HMM model is identified for the given task scenario, 

the sequence of human action states responsible for that scenario can be 

extracted using the Viterbi algorithm. Once the human action sequence is 

extracted, detailed analysis can be performed on the individual states that make 

up the sequence to decode the knowledge embedded within them.  

Consider the observation sequence 𝑂𝑄2 for which 𝜆𝐷 is identified as the most 

likely model that represents 𝑂𝑄2. Using the ‘Viterbi’ algorithm, the most likely 

sequence of human actions 𝐻𝑄2 that could produce 𝑂𝑄2 is identified.  

Therefore, 𝐻𝑄2  =  {𝐻_𝑌𝐵𝐿𝑂𝑂𝐿_𝑌𝐵𝐿𝑂𝑂𝑂,   𝐻_𝑌𝐵𝐿𝑂𝑂𝑂,   𝐻_𝑌𝐵𝐿𝑂𝑂𝑂_𝑌𝐵𝐿𝐿𝑂𝑂, 

𝐻_𝑌𝐵𝐿𝐿𝑂𝑂,   𝐻_𝑌𝐵𝐿𝐿𝑂𝑂_𝑌𝐵𝐿𝐿𝐿𝑂,   𝐻_𝑌𝐵𝐿𝐿𝐿𝑂_𝑌𝐵𝐿𝐿𝐿𝐿} 

The manufacturing knowledge embedded within this action sequence 𝐻𝑄2 will 

be decoded in the next step. 

Step 5: Decode 

It has been demonstrated so far that human response in a given task scenario 

can be extracted from the HMM model that represents that scenario. The task 

scenario may or may not have been explicitly observed while capturing the task. 

From the human response, how exactly did the human manipulate the 

workpiece during the scenario can be obtained from the raw human-workpiece 

interaction data that is stored in spreadsheets. The link to the relevant data in 

the spreadsheet is provided by the model.  

Consider the human action states 𝐻𝑄2 extracted earlier for the given task 

scenario represented by the workpiece observation sequence 𝑂𝑄2. Before, any 

manufacturing knowledge constituents can be decoded from 𝐻𝑄2, the human 

action states contained within it must be extracted along with the raw human-

workpiece interaction data.  
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States in 𝐻𝑄2 are:  1) 𝐻_𝑌𝐵𝐿𝑂𝑂𝐿_𝑌𝐵𝐿𝑂𝑂𝑂, 2) 𝐻_𝑌𝐵𝐿𝑂𝑂𝑂, 3) 𝐻_𝑌𝐵𝐿𝑂𝑂𝑂_𝑌𝐵𝐿𝐿𝑂𝑂, 4) 

𝐻_𝑌𝐵𝐿𝐿𝑂𝑂, 5) 𝐻_𝑌𝐵𝐿𝐿𝑂𝑂_𝑌𝐵𝐿𝐿𝐿𝑂, 6) 𝐻_𝑌𝐵𝐿𝐿𝐿𝑂_𝑌𝐵𝐿𝐿𝐿𝐿  

These human action states are mapped to the corresponding workpiece states 

from the observation sequence and the human-workpiece interaction data 

associated with the states are tabulated in Table 24. 

Table 24: Extracted human action mapped to corresponding workpiece states. 

Human action state 
Workpiece state and 

task status 

 

H_YBLOOL_YBLOOO  

 

H_YBLOOO 
 

 

H_YBLOOO_YBLLOO 
 

 

H_YBLLOO 
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H_YBLLOO_YBLLLO 
 

 

H_YBLLLO_YBLLLL 
 

From the above human action data, several constituents of manufacturing 

knowledge such as the task strategy adopted, nature and spatial characteristics 

of gestures made, mechanics of motion performed during the gestures, and 

workpiece manipulation techniques can be decoded.  

The knowledge constituents decoded in this study are: 

 Task execution strategy 

 Nature and spatial characteristics of human gestures during the task 

 Workpiece manipulation techniques 

 Mechanics of human motion such as head bending angle (glance angle), 

body bending angle, angles between upper and lower arms, gesture speeds, 

body orientation with respect to the workpiece, etc. 

Task execution strategy 

The task execution strategy can be decoded by determining the sequence of 

human actions responsible for the given sequence of workpiece states from the 

most likely HMM model. From the human action sequence, the following 

knowledge can be mined: 
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a. Planning and approach of task breakdown into sub-tasks as seen in 

Table 24 where each action can be considered a sub-task. 

b. Execution sequence of sub-tasks to achieve the main task. This 

sequence changes if a different task scenario were to be considered.  

c. Selections made during the task to choose specific actions from a choice 

of actions available to successfully complete the task. In this example, 

during the problem-solving scenario where a leg was wrongly placed, the 

human either had the choice to remove that leg and place it in the right 

position, or to place legs at the locations that he had missed before 

making the sequence error.   

Nature and spatial characteristics of human gestures 

By visualising the human motion data within each extracted action state, the 

nature (trajectories and patterns) and spatial characteristics (3D coordinates) of 

human gestures with respect to the changes in the workpiece can be obtained. 

The human motion data and corresponding workpiece change data for the 

extracted state H_NOOOOO_YBOOOO is shown in Table 25. 

Table 25: Human gestures during an action state 

 

H_NOOOOO_YBOOOO 
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1 2 3 4 

Workpiece manipulation techniques 

Component grasping is an important constituent of manufacturing knowledge in 

assembly tasks because improper grasping can result in accidentally dropping 

the component or making additional manoeuvres to orient it correctly for 

successfully assembly. Grasping techniques used by skilled experts could be 

extracted and annotated with the corresponding human actions states in which 

component grasping occurs so that these techniques are also transferred when 

skill training is conducted.   

In this study, the workpiece grasping techniques that occur in different human 

action states are extracted (Table 26). 

Table 26: Workpiece component grasping techniques 

Human action state Grasping technique 

H_NOOOOO_YBOOOO 

 

H_YBOOOO_YBLOOO 

 



 

 193 

H_YBLOOO_YBLLOO 

 

H_YBLLOO_YBLLLO 

 

H_YBLLLO_YBLLLL 

 

Mechanics of human motion 

Dexterity is an important trait that humans possess and can use this trait 

effectively to perform complex movements, such as those required in manual 

manufacturing tasks. Humans who are experienced at performing a task can 

routinely perform complex gestures because the movements involved within the 

gestures become embedded in muscle memory due to repetitive practice. 

Dexterity manifests itself in the mechanics of human motion such as in body 

postures, nature and spatial characteristics of gestures, workpiece manipulation 

techniques, gesture speeds, glancing angles, body orientations with respect to 

the workpiece, etc.  

Table 27 shows the changes in body orientation with respect to the y-axis while 

manipulating the workpiece in human action state 𝐻_𝑁𝑂𝑂𝑂𝑂𝑂_𝑌𝐵𝑂𝑂𝑂𝑂. 
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Table 27: Body orientation computed and illustrated over actual task images 

  

  

Step 5: Reproduce 

2D animation is used as a medium to reproduce the human-workpiece 

interactions and augment this animation with manufacturing knowledge 

extracted and decoded in this framework. An example of such an animation 

(without the annotations) is shown in the form of static snapshots in Figure 85. 
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Figure 85: Animation of a specific task scenario 

7.3.5 Task performed by another human 

So far, the proposed framework was used to digitise the tasks performed by the 

same human, the author. In order to demonstrate that the framework is 

independent of the human performing the tasks, the Ikea table assembly task 

was performed by another human (henceforth called ‘Operator 2’) who is not 

involved in this research. The 6-step framework was used to digitise this task 

with no changes made to any of its components. The same task capture setup 

was used as before (Figure 78). Operator 2 was shown the individual 

components of the workpiece and the final assembled workpiece but he was not 

trained or briefed on how to perform the actual assembly. This was done so that 

the skills naturally used by operator 2 to perform the task could be digitised. 

Operator 2 performed the assembly task 5 times and each time the task was 

captured using the methods prescribed in the framework. The human action 

and workpiece states were then generated using the time-sampling technique 

and then modelled using hidden Markov modelling to produce an HMM model 

that represents the second operator’s execution of the task. This model is used 

to extract the operator’s action states for any given task scenarios. The 

constituents of manufacturing knowledge extracted from the author’s execution 

of the task are extracted and decoded from the second operator’s task too.  
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Results 

In this section, only the extraction and decoding of the manufacturing 

knowledge constituents are presented since the implementation of the 

framework is already described in the earlier sections of this study.  

Task execution strategy: It is observed that the task execution strategy used by 

operator 2 is different from that of the author. The sequence in which operator 2 

assembled the workpiece was extracted from the HMM model generated for 

operator 2 as  

𝐻𝑂2  =  {𝐻_𝑁𝑂𝑂𝑂𝑂_𝑌𝐵𝑂𝑂𝑂𝑂,   𝐻_𝑌𝐵𝑂𝑂𝑂𝑂_𝑌𝐵𝑂𝐿𝑂𝑂,   𝐻_𝑌𝐵𝑂𝐿𝑂𝑂,  

𝐻_𝑌𝐵𝑂𝐿𝑂𝑂_𝑌𝐵𝑂𝐿𝐿𝑂,   𝐻_𝑌𝐵𝑂𝐿𝐿𝑂_𝑌𝐵𝑂𝐿𝐿𝐿,   𝐻_𝑌𝐵𝑂𝐿𝐿𝐿_𝑌𝐵𝐿𝐿𝐿𝐿} 

Note that the same nomenclature for human action and workpiece states is 

used as before. The assembly sequence check was disable for operator 2 so 

that a different task strategy could be observed. Operator 2 assembled the base 

of the table first followed by the table legs in the order 2 -> 3 -> 4 -> 1 whereas 

the author assembled the legs in the order 1 -> 2 -> 3 -> 4. Though this is fairly 

trivial knowledge which could also be visually observed, the framework enables 

automatic extraction of this knowledge which is very useful for complex tasks 

where visual observation and task segmentation is not as easy.  

Human gestures and grasping techniques: The gestures performed by operator 

2 during the task also varied from those of the author. This could be seen from 

the differing hand motion charts for the action states that are common for the 

two operators. An example of such an action state in which this difference is 

clearly demonstrated is shown in Figure 86.  
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Figure 86: Differences in hand motion during the task 

From these charts and images it can be seen that the author while assembling 

the leg component grasps it with his right hand and transfers it to his left hand 

before placing it on the table base, while always keeping his hands separated 

whereas operator 2 grasps the leg component with both his hands and places 

the leg on the base never separating the two hands during the action state.  

Mechanics of human motion: The mechanics of movements of the two 

operators is also different and this can be compared because the digitisation 

framework is able to extract and decode it.  An example of this is shown in 

Figure 87 where the mechanics of the two operators while placing the table 

base is computed and displayed. The difference in mechanics between the 

author and operator 2 represents their different skills levels used while 
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performing the assembly task. The images also show the different ways in 

which the two operators grasp the base for placement.  

 

Figure 87: Difference in motion mechanics while performing assembly 

It is therefore demonstrated that the 6-step digitisation framework is 

successfully implemented and tested to digitise the manual manufacturing task 

knowledge embedded within the Ikea table assembly task irrespective of who 

performs the task. It also demonstrates the ability of the framework to digitise 

the skills of two different humans which can be useful in applications where skill 

comparison is needed, such as when evaluating the competency of novice 

workers before and after skill training. 

7.4 Case Study 3: Composite Layup Task 

This case study concludes the validation of this research by implementing the 

proposed 6-step framework to digitise the manufacturing knowledge embedded 

within a real-world manufacturing task. The task chosen is the manual layup of 

pre-impregnated composite plies over a metal mould with complex surface 

geometry. Composite layup is an important process in the manufacturing 

industry and has not been fully automated because of the complexity involved 

and the difficult nature of the composite material itself. However, because of 

high production costs, low production speeds and inconsistent quality, manual 

layups are prime targets for automation. Also, because of the increasing 

scarcity of skilled layup technicians, effective methods of skill transfer/training 

are urgently sought. This research aims to capture, extract and decode the tacit 
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constituents of manufacturing knowledge that essentially are a significant part of 

human layup skills to enable effective skill transfer from people to people and 

people to machines. A successful implementation of the framework to achieve 

this aim and a benchmarking of this research with similar work done by another 

researcher group are key steps needed to validate this research and are 

presented in this chapter.  

The two main objectives of this case study are  

i. To demonstrate the feasibility of the proposed digitisation framework to 

capture, extract and decode manufacturing knowledge, especially tacit 

knowledge such as human skill, from a real-world manufacturing task. 

ii. To compare the proposed digitisation method and resulting outcomes 

with those of another reported method used to extract manufacturing 

knowledge from the same task.  

Most of the work in this case study is presented in a journal paper (See ‘List of 

Publications’). 

7.4.1 Choice of task 

A real-life manufacturing task is chosen for the first time in this research at a 

stage when the proposed digitisation framework has been successfully 

implemented and tested for 4 tasks of varying complexity so far. Therefore, all 

the 6-steps of the framework have developed enough to be tested with a real-

life case study.  

The manual composite layup task is chosen primarily because it exemplifies a 

vast set of manual tasks used in the manufacturing industry which are more art 

than science. Their dependency on human skill is so heavy that despite the 

market-driven push to lower costs, increase production speeds and provide 

consistent quality, it hasn’t been possible to fully automate them. Secondly, 

composite layup is growing in significance and use in the manufacturing 

industry across different sectors due to high performance potential of the 

composite materials. An example of this is the growing percentage of composite 

material in the aircraft structures used in commercial airplanes of today.   
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Therefore, there is a need to standardise the manual layup process to reduce 

costs and the discrepancies between parts caused by human variation. 

Alternatively, Automated Fibre Placement (AFP) techniques have been 

developed and used by the composite manufacturing industry. However, these 

techniques have not advanced enough to be able to completely replace human 

skills that are required to manipulate the hard-to-work-with pre-impregnated 

composite plies into complex mould shapes leaving no air pockets, wrinkles or 

distorted surfaces.  

7.4.2 Related work in literature 

Given the growing importance and value of manual layup processes in 

composite manufacturing, it is surprising that there is little documentation about 

the best practices of manual layup of pre-impregnated woven materials in 

literature. Researchers have suggested that this may be because of the dearth 

of holistic methods to observe, capture, extract and decode the human skills 

involved in manual layup tasks, which according to them is a necessary 

precursor for documenting the best practices, standardising the processes and 

eventually automating them. There are a few attempts being reported in 

literature to understand the manual layup process. Bekey et al.  (1993) have 

used heuristics from human motor skills observations to develop a knowledge-

based control tool for robot hand grasping actions,  Buckingham and Newell 

(1996) have used the explicit understanding of laminators actions while picking 

and placing large plies of pre-impregnated material to design automated pick 

and place systems, Skordos et al. (2005) have proposed a technique to 

optimise the layup process of woven composite material but with no evidence of 

direct observation of manual layup being performed. Kikuchi et al. (2013) come 

close to reporting a full technique to observe a manual layup process to extract 

relationships between human skill and material properties involved in the 

process.  Researchers at the University of Bristol’s Advanced Composite Centre 

for Innovation and Science (ACCIS) believe that for standardising and 

improving manual composite layup processes, a full understanding of the 

processes facilitated by direct visual observation and analysis is necessary. 
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According to them, there is a big gap in knowledge to clearly understand the 

skills used by experienced layup technicians to manipulate pre-impregnated 

composite material by hand into the complex shapes of the moulds. This 

deduction agrees with the literature review presented in this thesis by the author 

that also reports the lack of holistic methods to capture and digitise tacit 

manufacturing knowledge from manual manufacturing.  

Studies at the ACCIS have attempted to bridge this gap by visually observing 

and examining each step of the layup process performed by skilled and 

experienced technicians on different moulds. From these examinations, a list of 

hand layup techniques used by the technicians were extracted and documented 

to understand how, where and why these techniques were used in relation to 

the mould geometry. The 3 main objectives of that study were to improve the 

current layup process, improve the methods used to transfer layup skills from 

one technician to another and lay the foundations for automating complex layup 

tasks in the future.  

7.4.3  Final validation problem 

In this final case study, the proposed digitisation framework is used to capture, 

extract, decode and reproduce the tacit manufacturing knowledge embedded 

within a manual composite layup task. Each of the 6 steps of the framework are 

implemented and the outcomes of these steps are reported.  

The validation study was conducted at the premises of the ACCIS at the 

University of Bristol.  The task involved hand layup of the pre-impregnated 

carbon and glass woven material (prepreg) onto a metallic mould. The mould 

consisted of surfaces with varying orientations and recesses in order to 

introduce layup complexities in the task that only technicians skilled in the art 

could handle successfully. Two researchers (known in the context of this study 

as technicians T1 and T2 to maintain anonymity) who are actively involved in 

composite layup research at the ACCIS and who are sufficiently trained and 

skilled in the manual layup process performed the task 3 times each. These 

performances were captured and analysed using the proposed digitisation 

framework and the human skills brought into the task by the two technicians 
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were extracted, decoded, compared and reproduced as per the framework. 

Finally, in order to benchmark this research, the methods and the resulting 

outcomes of the proposed digitisation framework and those of the research 

conducted by the ACCIS researchers themselves in understanding the manual 

layup process are compared to discuss the similarities, differences and identify 

the complementary aspects of the two studies. 

7.4.4 Experimental method 

The experiment was setup to implement the step 1 (the Capture step) of the 

proposed digitisation framework. The setup (Figure 88) consisted of a worktable 

on which the metallic mould is placed and secured. 2 technicians, trained and 

skilled in the composite layup task for the chosen mould, performed the layup 

process for 3 times each thereby resulting in 6 different observations. 2 Kinect 

sensors were used in this study, one to track the technician’s actions and the 

second one to track the real-time changes to the workpiece, which in this case 

is the mould with the pre-impregnated ply laid on top of it. The reason why two 

Kinect sensors were used instead of just one is to take the advantage of 

superior skeletal motion tracking of the second generation Kinect (Kinect V2) for 

human action tracking and the easier correlation and processing of the depth 

and colour image streams of the first generation Kinect (Kinect V1) for 

workpiece progress tracking. More details on comparison between the Kinect 

V1 and V2 sensors is provided later in section 8.6.3. 

 

Figure 88: Experiment setup for the validation study 
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The Kinect sensors were mounted on a tripod at a height of 1.2m from the floor 

and at a distance of 0.7m from the workpiece. While the Kinect V1 was tilted to 

accommodate the workpiece in its field of view, the Kinect V2 was not. Two 

different resin pre-impregnated composite materials were tested in the 

reconnaissance stage, namely the carbon fibre woven and plain glass woven 

prepregs. The plain glass woven prepreg was eventually chosen because its 

surface rendered better than the carbon fibre woven prepreg on the infrared 

camera image of the Kinect V1. The experiments were conducted in 

accordance to the University of Bristol’s policy for experiments involving human 

participants. All the six task observations were conducted at 20oC in clean room 

conditions. The technicians used a tool called the ‘dibber’ to assist during layup.  

Human action tracking 

The human skeletal joint tracking functions within the Kinect V2 library 

developed by Lengeling (2014) were used in the software code that was written 

in the java-based ‘Processing’ development platform. The 12 skeletal joints 

belonging to the upper half of the technician’s body are tracked (Figure 89) at 

the rate of up to 20 frames per second and recorded in a spreadsheet along 

with the tracking timestamps in seconds.  

 

Figure 89: Upper body skeletal tracking joints 
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Workpiece progress tracking 

A different method to track workpiece progress is used in this validation study 

because of the nature of the task. The layup task starts with the workpiece 

being in its initial state in which the prepreg is placed over the mould with the 

ply not conforming to the mould surfaces below. The technician then presses 

the ply all over the mould in a specific pattern in order to make it conform to the 

surface of the mould underneath thus forming the final shape of the composite 

part. Therefore, the surface of the ply changes from non-conforming to 

conforming to the surfaces of the mould as the layup progresses (Figure 90). 

 

Figure 90: Workpiece progress from blank mould to fully laid prepreg 

The surface area of the ply is divided into 7 distinct sectors (Figure 91). The 

technician lays up the ply on the mould one sector at a time and covers the 

entire mould in a sequence of sectors according to a technician-specific task 

strategy.  

 

Figure 91: Workpiece divided into 7 layup sectors 

The conversion of the ply from non-conforming to conforming can be captured 

by dividing its surface into finite elements and tracking the orientation of these 
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elements in real-time. The surfaces of the ply whose elements have the same 

orientation as that of the contours of the mould surface underneath are 

considered to be fully conformed and laid up. The areas tracked are grouped 

into the seven sectors as mentioned above.  

3-Step method to determine surface orientation of the ply  

Step 1: The surface of the ply is divided into a finite number of triangular planes 

(elements). The number of elements can be increased or decreased by varying 

the resolution factor. Higher the resolution, higher is the granularity and better is 

the accuracy of determining surface orientation.  

Step 2: For each element, the cross product of the vectors that represent any of 

the two sides of the triangle is computed and the resulting vector is the surface 

normal of the element (Figure 92).  

Step 3: The surface normals are grouped and displayed in different colours 

depending on their orientation with respect to the unit vectors along x, y and z 

axis. This way, the surface contour of the ply can be visualised as either being 

conformed to the mould surfaces underneath or not.  

 

Figure 92: Method to determine ply surface contours 

In this study, the surface normals are grouped into 4 different colours, each 

representing a differently orientated surface as shown in Figure 93.   
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Figure 93: Different surface orientations of the mould 

By applying the 3-step method as described above on the prepreg ply 

continuously as the layup task progresses, the changes happening to the 

workpiece as the technician manipulates the ply can be tracked. In Figure 94, 

the surface normals of the bare mould, the prepreg ply surface before layup and 

the same surface after layup is shown. It can be noted that the surface 

orientations of the finished workpiece should be the same as those of the bare 

mould implying that the ply has fully conformed to the mould.  

 

Figure 94: Surface orientation of the workpiece being tracked 

It should be noted that the above method is useful to visually track the progress 

of composite laying on the mould and is not accurate enough to measure the 

actual orientation in absolute angles of the ply surface. 
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7.4.5 Implementation and testing of the digitisation framework 

The digitisation of the manufacturing knowledge involved in the composite layup 

task is achieved by implementing the 6-step framework as described below.  

Step 1: Capture 

Human action capture and workpiece progress tracking are performed 

simultaneously so that both have common timestamps. Hence, each human 

action can be associated with the corresponding changes to the workpiece at 

any given time during the task. The interface windows in Figure 95 show the 

human action and workpiece progress being recorded by the capture step and 

the resulting spreadsheet in which the task data is stored is shown in Figure 96. 

6 task observations are captured: 3 each by the 2 technicians.  

 

Figure 95: Task capture application windows 

 

Figure 96: Spreadsheet recording the technician's motion and workpiece state 
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Step 2: Segment 

As explained in section 7.4.4, the workpiece progress is tracked by monitoring 

the surface orientations of the prepreg ply in the pre-defined area where the 

mould is located. When the technician manipulates the ply during the task, the 

workpiece tracking is disturbed because of the presence of the technician’s 

hands in the area (Figure 97).  

 

Figure 97: Technician's hands interfering with workpiece tracking during layup 

Therefore, instead of recording the workpiece progress at regular time intervals, 

it is recorded whenever the technician completes laying up a sector of the 

mould (Figure 91). The technician is therefore instructed to move back from the 

workpiece by at least 200mm after he has completed working on a sector and 

this movement is tracked by the Kinect sensor to record the state of the 

workpiece. The workpiece state is also recorded as a running number in the 

spreadsheet in which the technician’s skeletal motion is recorded. This way the 

workpiece state is recorded at the beginning of the task and after every sector is 

completed in order to track its progress throughout the layup task.  

The resulting seven workpiece states that correspond to the seven workpiece 

sectors and the associated human action states are shown in Figure 98. It must 

be noted that in this case study, the segmentation of human-workpiece 

interaction data is done at the time of its capture rather than as a separate step.   



 

 209 

 

Figure 98: Human action and resulting workpiece states for technician T1 

Step 3: Model 

The nomenclature of the human and workpiece states is based on the 

workpiece sector that those states belong to. The workpiece sectors are 

illustrated in Figure 91. The human action and workpiece states generated and 

their sequence observed during the layup tasks performed by the two 

technicians are shown in Table 28. 

Table 28: Human action and workpiece states for technicians T1 and T2 

State 

Sequence 

Technician T1 Technician T2 

Human Action State Workpiece State Human Action State Workpiece State 

1 H_C_T WP_C_T H_C_T WP_C_T 

2 H_C_M WP_C_M H_C_M WP_C_M 

3 H_R_T WP_R_T H_R_T WP_R_T 

4 H_L_T WP_L_T H_R_MB WP_R_MB 

5 H_C_B WP_C_B H_L_T WP_L_T 

6 H_R_MB WP_R_MB H_L_MB WP_L_MB 

7 H_L_MB WP_L_MB H_C_B WP_C_B 
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HMM generation 

The human-workpiece interactions involved in the composite layup task are 

represented using HMM models. The concept of HMM and its adoption in the 

digitisation framework is described in section 5.3.4. The two technicians use 

different approaches to perform the layup task and therefore are represented by 

two different HMM models 𝜆𝑇1 and 𝜆𝑇2.  

Two more models 𝜆𝑇3 and 𝜆𝑇4 are generated for the problem-solving scenarios 

that the two technicians faced during their third task run. T1 solves a problem 

(wrinkled ply) that occurs in the state 2 (𝐻_𝐶_𝑀 now named 𝐻_𝐶_𝑀_𝑃) in 3 

steps, namely, 𝐻_𝑀_𝑃𝑆1, 𝐻_𝑀_𝑃𝑆2, and 𝐻_𝑀_𝑃𝑆3 to restore the task back to 

the correct state 𝐻_𝐶_𝑀. T2 also solves a wrinkled play problem that occurs in 

state 4 (𝐻_𝑅_𝑀𝐵 now named 𝐻_𝑅_𝑀𝐵_𝑃) in 3 steps, namely, 𝐻_𝑅_𝑀𝐵_𝑃𝑆1, 

𝐻_𝑅_𝑀𝐵_𝑃𝑆1, and 𝐻_𝑅_𝑀𝐵_𝑃𝑆3 to restore the task back to 𝐻_𝑅_𝑀𝐵.  

The transition probabilities in matrix A and the emission probabilities in matrix B 

for all the four HMM models are generated after consulting the two technicians. 

These models now represent the strategies used by the two technicians during 

their individual layup tasks. Initial matrix 𝜋 is the same for both the technicians 

since they both start the lay up process at 𝑊𝑃_𝐶_𝑇 sector. The four models are 

shown in Figure 99 to Figure 102.  

 

Figure 99: 𝝀𝑻𝟏 (normal scenario) for technician T1 
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Figure 100: 𝝀𝑻𝟐 (normal scenario) for technician T2 

 

Figure 101: 𝝀𝑻𝟑 (problem-solving scenario) for technician T1 

 

Figure 102: 𝝀𝑻𝟒 (problem-solving scenario) for technician T2 
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None of the HMM models required any optimisation because the Baum-Welch 

algorithm did not go beyond the first iteration and diverged immediately 

indicating that the models appropriately represented the tasks. Though this 

does not imply that the models are at their most optimum, it does imply that the 

probability inputs from the two technicians were aptly representative of the 

workpiece state sequence observed and captured during the tasks. 

Step 4: Extract 

The main aim of the digitisation framework in the study of manual composite 

layup is to extract manufacturing knowledge embedded within the layup 

process. This knowledge consists of the following constituents that may be 

unique to the technician performing the task depending on his/her skills and 

experience: 

1. Approach taken or strategy adopted by the technicians to successfully lay 

the prepreg ply over the mould taking into account the shape of the mould 

and its surface orientations. 

2. Ply manipulation techniques used to lay the ply over critical areas of the 

mould and the time taken for each technique. 

3. Motion mechanics of the technician’s body when applying the layup 

techniques and 

4. Problem-solving techniques used to correct layup errors such as folds and 

wrinkles in the laid up ply. 

According to this research, the above constituents of manufacturing knowledge 

are embedded within the HMM models that represent the layup tasks and 

associate the tasks with the technician. Therefore, the HMM models are queried 

with a task scenario and the most likely human action sequence responsible for 

that task scenario is obtained. The above knowledge constituents are then 

decoded from the human action sequence in the next step of the framework.  

The task scenario is nothing but a sequence of states that the workpiece goes 

through during the task. This workpiece sequence could also be one that is not 

previously observed but is queried to ascertain the most likely human response 

to unforeseen task scenarios. However, since there are multiple models 
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representing the variations observed in the same task, the most appropriate 

model for a given task scenario must be first identified.  

HMM evaluation – picking the right model for a given task scenario 

Consider task scenarios represented by the workpiece state sequences 

𝑂𝑄1  =  {𝑊𝑃_𝐶_𝑇, 𝑊𝑃_𝐶_𝑀, 𝑊𝑃_𝑅_𝑇, 𝑊𝑃_𝐿_𝑇, 𝑊𝑃_𝐶_𝐵, 𝑊𝑃_𝑅_𝑀𝐵, 𝑊𝑃_𝐿_𝑀} 

and 𝑂𝑄2  =  {𝑊𝑃_𝐶_𝑇,   𝑊𝑃_𝐶_𝑀,   𝑊𝑃_𝑅_𝑇,   𝑊𝑃_𝑅_𝑀𝐵,   𝑊𝑃_𝐿_𝑇,   𝑊𝑃_𝐿_𝑀,    

𝑊𝑃_𝐶_𝐵} 

Since these are previously observed and captured workpiece state sequences, 

a simple comparison with the workpiece state sequences of all the four models 

results in identification of HMM 𝜆𝑇1 and 𝜆𝑇2 as the most likely models that 

represent 𝑂𝑄1and 𝑂𝑄2 respectively.  

For normal task scenarios 

Consider another task scenario 𝑂𝑄3  =  {𝑊𝑃_𝐶_𝑇, 𝑊𝑃_𝐶_𝑀, 𝑊𝑃_𝐶_𝐵, 𝑊𝑃_𝑅_𝑇,

𝑊𝑃_𝑅_𝑀𝐵, 𝑊𝑃_𝐿_𝑇, 𝑊𝑃_𝐿_𝑀𝐵}. This scenario has not been observed 

previously therefore the ‘Forward’ algorithm is used to identify the most 

probable model that represents it. The probabilities of the four HMM models 

given the workpiece state sequence 𝑂𝑄3 are: 

𝑃(𝜆𝑇1 | 𝑂𝑄3)  =  8.34𝑒 − 7 

𝑃(𝜆𝑇2 | 𝑂𝑄3)  =  3.12𝑒 − 7 

𝑃(𝜆𝑇3 | 𝑂𝑄3)  =  1.90𝑒 − 9 

𝑃(𝜆𝑇4 | 𝑂𝑄3)  =  1.17𝑒 − 8 

Since 𝑃(𝜆𝑇1 | 𝑂𝑄3)  is the highest probability, 𝜆𝑇1 is picked as the most likely 

model to represent the task scenario of 𝑂𝑄3.  

For problem-solving task scenarios 

Consider the following problem solving scenarios   

𝑂𝑄4  =  {𝑊𝑃_𝐶_𝑀_𝑃, 𝑊𝑃_𝐶_𝑀_𝑃𝑆1, 𝑊𝑃_𝐶_𝑀_𝑃𝑆2, 𝑊𝑃_𝐶_𝑀_𝑃𝑆3, 𝑊𝑃_𝐶_𝑀} and 

𝑂𝑄5  =  {𝑊𝑃_𝑅_𝑀𝐵_𝑃,   𝑊𝑃_𝑅_𝑀𝐵_𝑃𝑆1,   𝑊𝑃_𝑅_𝑀𝐵_𝑃𝑆2,   𝑊𝑃_𝑅_𝑀𝐵_𝑃𝑆3,      
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𝑊𝑃_𝑅_𝑀𝐵} 

The ‘Forward’ algorithm picks HMM models 𝜆𝑇3 and 𝜆𝑇4 as the most likely 

models that closely represent 𝑂𝑄4 and 𝑂𝑄5.  

Extraction of human action sequence from the HMM model 

In this case of the previously observed task scenarios 𝑂𝑄1 and 𝑂𝑄2, the human 

action sequences can be directly extracted from the identified models 𝜆𝑇1 and 

𝜆𝑇2 without the need to use the Viterbi algorithm and the sequences are  

𝐻𝑄1  =   {𝐻_𝐶_𝑇, 𝐻_𝐶_𝑀, 𝐻_𝑅_𝑇, 𝐻_𝐿_𝑇, 𝐻_𝐶_𝐵, 𝐻_𝑅_𝑀𝐵, 𝐻_𝐿_𝑀𝐵}   

and 

𝐻𝑄2  =   {𝐻_𝐶_𝑇,   𝐻_𝐶_𝑀,   𝐻_𝑅_𝑇,   𝐻_𝑅_𝑀𝐵,   𝐻_𝐿_𝑇,   𝐻_𝐿_𝑀,   𝐻_𝐶_𝐵}  

However for task scenario 𝑂𝑄3, which is not previously observed, the Viterbi 

algorithm is needed to find the most likely human action sequence from the 

identified HMM 𝜆𝑇1. The algorithm yields 𝐻𝑄3 as the most likely human 

response to task scenario 𝑂𝑄3. 

𝐻𝑄3  =  {𝐻_𝐶_𝑇, 𝐻_𝐶_𝑀, 𝐻_𝐶_𝐵, 𝐻_𝑅_𝑇, 𝐻_𝑅_𝑀𝐵, 𝐻_𝐿_𝑇, 𝐻_𝐿_𝑀𝐵}  

The Viterbi algorithm is also used to find the human action sequence during 

problem solving scenarios 𝑂𝑄4 and 𝑂𝑄5 from the identified models 𝜆𝑇3 and 𝜆𝑇4 

respectively. The human action sequences identified are  

𝐻𝑄4  =  {𝐻_𝐶_𝑀_𝑃,   𝐻_𝐶_𝑀_𝑃𝑆1,   𝐻_𝐶_𝑀_𝑃𝑆2,   𝐻_𝐶_𝑀_𝑃𝑆3,   𝐻_𝐶_𝑀}  

and  

𝐻𝑄5  =  {𝐻_𝑅_𝑀𝐵_𝑃,   𝐻_𝑅_𝑀𝐵_𝑃𝑆1,   𝐻_𝑅_𝑀𝐵_𝑃𝑆2,   𝐻_𝑅_𝑀𝐵_𝑃𝑆3,   𝐻_𝑅_𝑀𝐵} 

It can be observed that the human action sequences match the workpiece state 

sequences perfectly. This is because in this case, there is a close association 

between human actions and the resulting workpiece states according to the 

emission matrices of the four HMM models. The probability of one human action 

state resulting in a workpiece state other than which it is associated with in the 

emission matrix is extremely low. However, it must be noted that this 
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phenomenon is not necessarily true for other tasks where one human action 

can result in more than one workpiece state as can be seen in other case 

studies. 

Step 5: Decode 

In the previous step, human actions that are most likely responsible for a task 

scenario are obtained by querying the appropriate HMM model with the 

workpiece state sequence representing the scenario. From the extracted human 

actions, the four constituents of manufacturing knowledge that are embedded 

within the actions can be decoded as follows:  

Technician’s task strategy 

This is the highest level of knowledge embedded within a manufacturing task. 

The approach taken by the technician to lay the ply on the mould depends on 

the geometry of the mould and the knowledge of how the ply that is already laid 

up in one sector can affect the lay up on the neighbouring sectors. There are 

also sector dependencies where one sector must be laid before another to 

avoid layup errors such as folds or wrinkles. The approach taken by one 

technician may vary from the other based on individual skills and experience. In 

this case, the task strategy can be observed from the sequence of actions taken 

by the technician to perform the task. This sequence is obtained automatically 

in the previous step where human action state sequences are obtained for any 

given task scenarios.  

For example, for the task scenario 𝑂𝑄1, the human action sequence obtained 

was 𝐻𝑄1. This sequence came from model 𝜆𝑇1 that belongs to technician T1. 

Therefore, it can be deduced that in order to get the workpiece through the task 

scenario of 𝑂𝑄1, the skills and experience of technician T1 and the human 

action sequence of 𝐻𝑄1 would be most suitable. The human action sequence in 

𝐻𝑄2 is similarly obtained for 𝑂𝑄2 from model 𝜆𝑇2 and hence reveals the task 

strategy used by technician T2 in the task. The difference in task strategies 

adopted by T1 and T2 for laying up the same mould with the same ply is 

illustrated in Figure 103. 
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Figure 103: Difference in task strategy between technicians T1 and T2 

Ply manipulation techniques 

The actual action data from within each human action state from the extracted 

sequence is obtained from the spreadsheet that contains the skeletal motion 

data of the technician. The x, y and z motion of the technician’s left and right 

hands are plotted against time so that the motion patterns can be visualised for 

each state thereby revealing the techniques used by the technician in each 

state. As an example, the technician’s hand actions during state 5 (𝑊𝑃_𝐶_𝐵) 

from the extracted human action state sequence 𝐻𝑄1 is shown below. Similarly, 

motion plots of the technician’s rest of the upper body joints, such as elbows, 

shoulders, head and torso can also be obtained and visualised.  

 

Figure 104: Technician's left and right hand motion plots (x, y, z) 
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According to the Elkington et al., 2015, there are 7 standard hand techniques 

used by the technicians to manipulate the ply. The techniques are (1) one 

handed guiding, (2) two handed guiding, (3) manual folding, (4) mould 

interaction shearing, (5) double tension shearing, (6) tension secured shearing, 

and (7) smoothing and tensioning. One or more of these techniques are used 

within each of the human action states and therefore can be isolated and 

revealed as an important constituent of manufacturing knowledge embedded 

within the manual layup task. The seven techniques captured are listed in 

Figure 105. 
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Figure 105: The hand techniques of ply manipulation 

Time taken per workpiece sector 

The time taken by the technician for each human action state can be easily 

obtained from the spreadsheet containing the task capture data because it also 

contains the timestamp of each Kinect frame from which the human skeletal 

joint coordinates are captured. With this information, the workpiece areas that 

take longer to layup than others can be identified which might indicate higher 

mould shape complexity in those areas. This also allows comparison of time 

taken by the two technicians to layup the 7 sectors of the workpiece (Figure 

106) as a measure to compare skill levels.    

 

Figure 106: Difference in time taken by the two technicians per workpiece sector 
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Motion mechanics of the technician’s body 

The skeletal joint coordinates belonging to the upper body of the technician are 

recorded in the spreadsheet in the capture step of the framework. From these 

joint coordinates, several motion parameters can be obtained using vector 

computing. Examples of four different motion mechanics computed using 

skeletal coordinate data is shown in Figure 107. This data helps in finding the 

technician’s body posture and orientation, glance angle and the positions of his 

hands while performing critical hand layup techniques. 

 

Figure 107: Body motion mechanics computed from skeletal coordinate data 

Another critical knowledge constituent that can be obtained is the gesture 

speed. In the layup process, the hand speed while performing ply manipulation 

is critical to the success of the process, especially in certain critical areas of the 

mould and therefore is also indicative of the technician’s skill. A difference in the 

hand speeds between two technicians also implies a difference in skill levels. 

Higher hand speeds however are not necessarily a sign of superior skills in a 

layup task.  
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A small portion of hand motion data is plotted in Figure 108 and the hand speed 

in two zones A and B is computed from skeletal coordinate data. In this 

example, screen coordinates are converted to Kinect sensor coordinates so that 

speed values are obtained in mm/s rather than in pixels/s.  

 

In zone A: 

Right hand X speed = 228.6mm/s 

Left Hand Y speed = 277.5mm/s 

Left Hand Z speed = 440mm/s 

In zone B: 

Right hand X speed = 364.6mm/s 

Left Hand Y speed = 377.7mm/s 

Left Hand Z speed = 211mm/s 

Figure 108: Hand motion speeds in zones A and B 

Problem-solving techniques 

In this study, the two technicians deliberately introduced a problem while laying 

up a particular area of the workpiece. An error was made in the layup resulting 

in a wrinkle on the surface of the ply. This problem was solved by the 

technicians using their individual techniques in 3 steps resulting in the wrinkle 

being removed from the surface of the ply. The problem and the problem 

solving steps captured for technician T1 are shown in Figure 109. 

 

Figure 109: Problem solving scenario within the layup task 
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The human action state sequence used by technician T1 is already extracted in 

step 2, which is 𝐻𝑄4. 

 𝐻𝑄4  =  {𝐻_𝐶_𝑀_𝑃, 𝐻_𝐶_𝑀_𝑃𝑆1, 𝐻_𝐶_𝑀_𝑃𝑆2, 𝐻_𝐶_𝑀_𝑃𝑆3, 𝐻_𝐶_𝑀}  

For each state in this sequence, the hand techniques used as well as the 

motion mechanics during these techniques can be obtained.  

Step 6: Reproduce 

The spreadsheet that contains a stream of skeletal joint coordinates of the 

technician’s upper body and the workpiece states is an accurate digital 

representation of the task. This way a task can be digitally captured and stored 

in a text file less than 1 megabyte in size instead of the usual practice of 

capturing and storing tasks in video files in sizes of the order of a few gigabytes. 

The skeletal coordinates stored in the spreadsheet can be rendered graphically 

to produce a stickman animation of the captured layup task. However, when the 

need to refer to greater level of detail, such as finger positions, is required then 

the animation does not suffice and the actual colour images belonging to the 

concerned part of the task are required.  

A few snapshots of such an animation and the corresponding workpiece states 

are shown in Figure 110. Visualising the task animation as well as studying the 

decoded constituents of manufacturing knowledge enables the transfer of skills 

from an experienced technician to a novice technician. Since the various task 

scenarios are stored in digital models, access to the knowledge within these 

models is possible on-demand. 
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Figure 110: Layup task animation  

7.4.6 Research benchmarking 

The final case study has demonstrated that the 6-step framework is 

successfully able to digitise, the manufacturing knowledge embedded within a 

real-world composite layup task, considered as an important manual task in the 

high value manufacturing industry. It is also reports how layup skills, 

represented by the constituents of manufacturing knowledge, can be acquired 

from skilled technicians so that they could be transferred to novice technicians.  

An approach to benchmark the framework is by comparing its methods and 

outcomes to those reported by similar research done by Elkington et al. (2015) 

at the ACCIS (University of Bristol), in which the knowledge associated with 

manual composite layup tasks were extracted on the basis of visual 

observation. The comparison is presented in Table 29 with comments on 

whether the compared aspects between the two researches are similar, 

different or complementary. 
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Table 29: Comparison between the proposed research and the ACCIS research 

(Elkington et al., 2015) 

Aspect This work ACCIS work Comments 

Aim To capture, extract 

and decode the 

manufacturing 

knowledge embedded 

within a manual layup 

task in digitised form. 

To fully understand the 

manual layup task in 

detail in order to further 

develop the task, 

improve training 

methods for the task and 

support automation of 

the task. 

The aims are similar in 

nature but this work also 

aims to digitise the 

manufacturing knowledge 

in a form that can be easily 

transferred.  

Concept The human-

workpiece 

interactions involved 

in the layup task are 

captured and 

modelled into digital 

data and the 

knowledge 

constituents are 

automatically 

extracted and 

decoded from the 

digital data.  

The layup task is 

observed and recorded 

as video footages which 

are then revisited several 

times to manually extract 

the manufacturing 

knowledge constituents 

embedded within the 

task.  

This work uses a 

structured 6-step 

framework to digitise 

manufacturing knowledge 

whereas the ACCIS work 

uses a 2-step method to 

analyse and extract 

knowledge from the task 

recorded in video files. 

Task The layup task was 

performed by two 

technicians for 3 

times each to provide 

6 task datasets. Both 

technicians were 

moderately 

experienced. 

The layup task was 

performed by four 

technicians for 3 times 

each to obtain 12 task 

datasets. Out of the four 

technicians, two were 

vastly experienced and 

two were moderately 

experienced. 

The ACCIS work has much 

richer and diverse task 

datasets as compared to 

the proposed work due to 

the higher number of 

technicians and the varying 

skill levels of the 

technicians involved. The 

skills levels of differently 

skilled technicians can be 

compared in the ACCIS 

work, which is not possible 
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in this work where both 

technicians are equally 

skilled and experienced.  

Task 

Observation 

Setup 

Gaming interface 

sensors such as the 

Microsoft Kinect are 

used to capture the 

task and record it 

using low definition 

numerical data.  

A video camera is used 

to record the task in a 

high fidelity video file.  

The ACCIS work uses HD 

camera as against the low-

resolution Kinect sensor 

used by this work. 

However, the Kinect 

sensor produces both RGB 

and depth images thereby 

providing the capability to 

obtain human motion 

tracking and object 

recognition from the image 

frames at the same time. 

Task 

Capture 

Method 

The technician’s 

actions are 

automatically 

captured as skeletal 

joint motion of the 

upper body. The 

workpiece progress is 

also captured 

simultaneously by 

tracking the 

manipulation of the 

ply over the mould. 

The only source of task 

capture is to visually 

observe the technician’s 

actions and effects of 

these actions on the ply 

throughout the task. Any 

significant actions are 

noted manually for future 

revisits and analysis.   

This work uses innovative 

software methods that 

access the RGB and depth 

image streams coming 

from the Kinect sensor to 

track human actions and 

their effects on the 

workpiece automatically. 

Since all this data is digital, 

it is stored in a 

spreadsheet for 

subsequent modelling and 

knowledge extraction.  

Outcome The digitised task 

scenarios are 

modelled into hidden 

Markov models from 

which the task 

execution strategy, 

ply manipulation 

techniques, 

mechanics of 

By revisiting the video 

footage several times, 

the hand techniques 

used by the technicians 

to manipulate the ply are 

observed, noted and 

grouped into categories 

for effective 

documentation. 

This work produces a rich 

knowledge base from the 

captured task right from the 

highest levels of task 

execution strategy down to 

the mechanics of 

technician’s actions (upper 

body motion) when 

manipulating the ply during 
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gestures as well as 

problem-solving 

actions during the 

task can be extracted 

and decoded.  

Screenshots of the video 

footage showing these 

techniques are captured 

and stored. The 

emphasis is to 

understand the skill used 

in each of these 

techniques as well as the 

purpose of each 

technique based on 

when and where it is 

used during the layup 

task. 

the task. The ACCIS work 

can only extract ply 

manipulation techniques at 

the hand level.  

The use of modelling 

allows this work to predict 

human response to 

unobserved task scenarios, 

which is not possible in the 

ACCIS work.  

In order to get down to 

finer task details such as 

finger positions during ply 

manipulation, both works 

have access to video data 

from which these details 

can be retrieved.  

Knowledge 

Reproduction 

Since the task and its 

manufacturing 

knowledge 

constituents are 

captured in digital 

form, those can be 

easily reproduced in 

using multiple media, 

the most basic of 

which is 2D 

animation, providing 

an effective and easy 

medium for skill 

transfer. 

Since the extraction of 

manufacturing 

knowledge constituents 

is manual in nature, their 

reproduction is only 

possible by documenting 

them in static documents 

and revisiting the video 

footage of the tasks. This 

however does not 

provide any easier 

means of skill transfer.  

The digitised task 

knowledge produced in this 

work can be consumed in 

multiple forms ranging from 

viewing the various task 

scenarios in 2D or 3D 

animation with the 

manufacturing knowledge 

constituents augmented 

within the animation to 

using virtual reality to 

visualise the task scenarios 

in an immersive 

environment. This potential 

is not available with the 

ACCIS work.  

The ACCIS research is among the first known to successfully attempt to 

understand complex manual layup tasks in detail to provide a clear 

documentation of the hand techniques used by technicians of varying skill levels 
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during manipulation of a pre-impregnated ply. The proposed research due to its 

advanced task capture, digitisation and modelling methods and its capability to 

extract, decode and reproduce manufacturing knowledge constituents 

embedded within not just the observed task scenarios but also from the 

unobserved ones, makes it a potential candidate to advance the understanding 

of not just manual composite layup tasks but also a broader spectrum of manual 

manufacturing tasks from several sectors of the manufacturing industry based 

on the other case studies reported earlier.  

7.5 Validation summary 

The framework has been successfully applied to digitise manual manufacturing 

task knowledge as demonstrated using the 5 chosen manual tasks including 

one real-life manufacturing task. Through these 5 tasks, the framework was 

extensively tested across variations in tasks, workpieces, humans, task 

strategies, nature of human actions, and ICT methods and tools used.  

The framework is built on a strong foundation of the advanced human-

workpiece interaction theory. The strength of the theory was essential to hold 

the framework up against the extensive testing. The theory itself was based on 

the research hypothesis that arose out of the research problem. The literature 

review contributed to the design of the framework structure as well as to the 

identification of seminal theories in human behaviour and object analysis for 

advancing the human-workpiece interaction theory. 

Table 30 helps to clearly visualise the diversity and depth of investigation that 

this research has undergone from the initial to the concluding period. The text in 

vertical signifies the underpinning structure on which the digitisation framework 

was built and the horizontal text signifies the framework steps each with its own 

methods and tools used.  

The case studies provided a platform for implementation, testing and validation 

of the framework. It can be observed that the framework was tested extensively 

to cover a big variety of tasks and technical requirements on the basis on which 

it can be said that the framework is successfully validated. 
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Table 30: Breadth and depth of research 

1. Lego 2. Wheel 3. Pen 4. Table 5. Layup

Kinect V1 √ √ √ √

Kinect V2 √ √

Single sensor √ √ √

Multiple sensors √ √ √

Toy √

Simulated √ √ √

Real-world √

Short √ √ √ √

Long √

Controlled √ √ √

Uncontrolled √ √

Normal √ √ √ √ √

Problem-solving √ √ √

Smooth √

Jerky √

Cyclical √ √

Irregular √ √

Small √ √ √

Big √

Non-deformable √ √ √ √

Deformable √

Small √ √

Large √ √ √

Coloured √

Grayscale √ √ √ √

Simple √ √ √

Complex √ √

Dimension √

Shape √

Position √ √

Configuration √

Edge √ √

Colour & brightness √

Contour √

Surface orientation √

√

√ √

√

√

√ √ √

√

Modelling √ √ √ √

√ √ √ √

√ √ √ √

√ √ √ √

√ √ √

√ √

√ √ √ √

√ √ √ √
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7.6 Chapter summary 

This chapter presents the validation of the proposed framework using 3 case 

studies. In these case studies, 2 real-life like and 1 real-life manual 

manufacturing tasks were performed and the manufacturing knowledge 

embedded within them was successfully digitised using the proposed 

digitisation framework. The knowledge extracted by the framework for the 

composite layup task was benchmarked with the knowledge extracted from the 

same task by researchers at ACCIS, University of Bristol. The variety of tasks 

and technical requirements that the framework was tested was also 

summarised to prove the generality and validity of the framework. The 

framework has its advantages and limitations, which will be covered in the next 

chapter. 
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CHAPTER 8 

8 DISCUSSION AND CONCLUSIONS 

This chapter discusses the key findings and outcomes of this research, maps 

key concepts in theory to their practical implementations and identifies the 

research limitations. It discusses the contributions to knowledge made by this 

research and identifies future work.  

This chapter aims to achieve the following objectives: 

 Present the contributions to knowledge. 

 Discuss the contribution of the human-workpiece interaction theory to the 

development of the digitisation framework. 

 Map the concepts of hierarchical task analysis and cognitive work 

analysis to the implementation of the digitisation framework. 

 Discuss the advantages and limitations of this research.  

 Identify future work. 

 Present conclusions.  
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8.1 Overview 

The aim of this research is to develop a framework for digitisation of manual 

manufacturing task knowledge. The motivation behind this research is the need 

for the industry to capture and digitise the tacit aspects of knowledge, such as 

human skill, embedded within the manufacturing tasks currently performed by 

skilled task experts. The captured knowledge being digital in nature can be 

transformed into appropriate media for fast and easy up-skilling of new people 

in the workforce and for informing the design of next generation automation 

solutions. The research is timely because the manufacturing industry especially 

in high wage economies is beginning to feel the ill effects of a global skill supply 

crunch and is under intense pressure to maintain its competitiveness compared 

to the industry from low-wage economies.  

In this context, the framework for digitisation of manual manufacturing task 

knowledge has been developed. The framework is strongly underpinned by the 

human-workpiece interaction theory that is built around the research hypothesis 

and is reinforced by the Rasmussen’s S-R-K framework and Rasmussen’s 

decision ladder proposed to understand human behaviour during tasks and the 

seminal theory of object affordances proposed by Gibson. The framework is 

implemented using an example assembly task and all the 6 steps were 

successfully applied to digitise the manufacturing knowledge from the task. The 

framework is also successfully validated using 3 case studies including a real-

life manufacturing task, each presenting a different challenge to the framework 

but collectively demonstrating the framework’s potential to be implemented 

across most manufacturing tasks.  

The chapter will discuss the contributions of this research to knowledge, the role 

of human-workpiece interaction theory in the development of the digitisation 

framework and the usefulness of the framework for Hierarchical Task Analysis 

(HTA) and Cognitive Work analysis (CWA). It will present the key findings of this 

research along with the outcomes vis-à-vis the research objectives and identify 

the pros and cons of the methods and tools proposed in the framework.   
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8.2 Contributions to knowledge [vis-à-vis research gaps] 

This research provides the following 5 contributions to knowledge: 

1. The theory of human-workpiece interactions to decipher human behaviour 

during manual manufacturing tasks is developed on the basis of the 

research hypothesis which states that a manual task can be broken down 

into a series of human-workpiece interactions and by observing and 

analysing these interactions, the knowledge embedded within the task can 

be captured and digitised. [RG1] 

2. A cohesive and holistic framework to digitise manual manufacturing task 

knowledge making innovative use of consumer-grade hardware and ICT 

software. The framework is underpinned by the theory of human-workpiece 

interactions. [RG2] 

3. For the first time, consumer-grade gaming interface sensors, such as the 

Kinect, were used to digitise the manufacturing knowledge embedded within 

manual tasks. Innovative methods that leveraged these sensors were 

developed to recognise and track human actions and their effect on the 

workpieces in real-time and were successfully demonstrated using a variety 

of tasks and scenarios within those tasks. [RG3] 

4. For the first time, Hidden Markov Modelling (HMM) was used to co-relate 

human actions to workpiece progress during a manual manufacturing task. 

Therefore, human-workpiece interactions and the manufacturing knowledge 

embedded within them are represented using hidden Markov models, which 

could be used to extract and decode all the key constituents of knowledge 

on demand. Also for the first time, each task expert could be uniquely 

represented by his/her own model giving birth to the concept of digital skill 

models that could be queried to extract each task expert’s skills in a digital, 

transferable form. [RG4]  

5. Extraction of manufacturing knowledge such as task strategies from the 

digital skill models and decoding of the constituents of this knowledge such 

as workpiece manipulation skills from the raw human-workpiece interaction 

data provide the means to perform human task analysis with a focus on 

cognitive work analysis. [RG5] 
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8.3 Mapping the human-workpiece interaction theory to the 

digitisation framework 

The human-workpiece interaction (HWI) theory (section 4.1) is mainly derived 

from the research hypothesis that by observing human-workpiece interactions 

that occur during a manual task, the manufacturing knowledge that is 

embedded within that task can be captured and digitised.  

The HWI theory is reinforced by (a) Rasmussen’s Skill-Rules-Knowledge (S-R-

K) framework, which categorises human behaviour during a task into skill-

based, rule-based and knowledge-based behaviour, (b) Rasmussen’s decision 

ladder concept that explains the human behaviour during problem-solving 

scenarios in the task and (c) Gibson’s theory of object affordances that explains 

how the action chosen by the human to perform on the workpiece at any given 

instance during the task depends on the affordance presented by the workpiece 

at that particular instance. Based on the HWI theory, the framework for 

digitisation of manual manufacturing task knowledge is developed (section 5.2).  

8.3.1 Mapping the basic HWI theory to the framework 

The first step ‘Capture’ is designed to record the entire manufacturing task in 

which the human interacts with the workpiece. The idea is to get raw digital data 

of human actions and workpiece progress during the task. Therefore, the 

capture step digitises the fundamental human-workpiece interaction theory from 

the HWI theory as shown in Figure 111. 

 

Figure 111: Digitisation of basic human-workpiece interactions 
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The human-workpiece interaction data can be visualised by using motion charts 

with augmented workpiece progress data as shown in Figure 112 where the 

data is picked from the second validation case study of the Ikea table assembly. 

 

Figure 112: Motion chart of continuous human-workpiece interaction data 

8.3.2 Mapping the skill-based behaviour to the framework 

The above continuous data is broken down by the ‘Segment’ step into discrete 

human action states and workpiece progress states. The human skeletal motion 

during each action state is responsible for the following workpiece progress 

state. For example in (Figure 113: the Ikea table assembly task), the human 

action state ‘𝐻_𝑁𝑂𝑂𝑂𝑂𝑂_𝑌𝐵𝑂𝑂𝑂𝑂’ is responsible for advancing the workpiece 

from state ‘𝑁𝑂𝑂𝑂𝑂𝑂’ (sequence no. 1) to state ‘𝑌𝐵𝑂𝑂𝑂𝑂’ (sequence no. 5), 

where the base of the table is placed on the workstation. 

 

 

Figure 113: Human action state and its motion chart 
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The human activity within each action state occurs naturally due to the routine 

nature of the activity involved during the state without the human having to 

explicitly follow any instructions. This activity is subconsciously influenced by 

the affordance presented by the workpiece in the form of signals, such as in this 

case where the table base presents the ‘grasp, manoeuvre and place’ 

affordance to the human. The HWI theory classifies subconscious human 

activity as skill-based behaviour therefore the extraction of human activity data 

from within each action state in the ‘Decode’ step of the framework results in the 

digitisation of the skill-based task behaviour as shown in Figure 114. 

 

Figure 114: Digitisation of the skill-based human behaviour 

8.3.3 Mapping the rule-based behaviour to the framework 

The human action states and workpiece progress states are modelled to 

represent their co-relation using Hidden Markov Modelling (HMM) in the ‘Model’ 

step. Multiple observations of different scenarios of the same task result in 

multiple models representing that task. From these models, for any task 

scenario, the human action sequences that are most likely responsible for that 

scenario can be extracted by using the ‘Extract’ step.  

Consider the task scenario used in case study 2 denoted by the following 

workpiece observation sequence:   
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1.  

NOOOOO 

2.  

YBOOOO 

3.  

YBLOOO 

4.  

YBLLOO 

5.  

YBLLLO 

6.  

YBLLLL 

No 
Workpiece      

The human action sequence responsible for the above task scenario as 

extracted from the task model is: 

1. 
H_NOOOOO_Y

BOOOO 

2. 
H_YBOOOO_Y

BLOOO 

3. 
H_YBLOOO_Y

BLLOO 

5. 
H_YBLLOO_Y

BLLLO 

6. 
H_YBLLLO_Y

BLLLL 

In this task scenario, the workpiece is assembled according to a known 

sequence prescribed by the assembly rules. From the human action state 

sequence, it implies that the human has followed the assembly rules during the 

task in order to decide which action to perform when. The signs observed by the 

human during the assembly are the configurations of the workpiece before and 

after the application of every rule. These signs convey the workpiece affordance 

to the human based on which the human chooses which rule to apply when 

during the task. Therefore the extraction of human action sequence for a task 

scenario results in the digitisation of the rule-based behaviour of the human 

during the task as shown in Figure 115. 

 

Figure 115: Digitisation of the rule-based human behaviour 
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8.3.4 Mapping the knowledge-based behaviour to the framework 

According to the HWI theory, the human displays knowledge-based behaviour 

when he is solving an unforeseen problem during a task. This behaviour is 

broken down into four stages, namely, activation, identification, evaluation and 

planning. The digitisation framework has a feature in the segmentation step 

wherein a problem-solving session within a task scenario can be identified and 

isolated for further analysis. This feature was used in the second validation case 

study where a problem-solving session was segregated from the human-

workpiece interaction data. The human action and workpiece states within this 

session were modelled and the human action sequence responsible for problem 

solving was extracted. The workpiece progress sequence and the 

corresponding human action states extracted during the problem solving 

session are shown below. 

Workpiece progress state sequence:  

1. 
Y_BLOOL 

(Wrong workpiece 
state) 

2. 
YBLOOO 

(Workpiece state restored to 
the state before the problem) 

3. 
YBLLOO 

(Workpiece state 
corrected) 

   

Corresponding human action state sequence:  

1.  

H_YBLOOL_YBLOOO 

(Wrongly placed leg 
removed) 

2.  

H_YBLOOO 

(Workpiece restored to pre-
problem state) 

3.  

H_YBLOOO_YBLLOO 

(Leg placed in the correct 
position) 

The ‘Activation’ stage of the problem-solving session occurs when the human 

sees a wrong workpiece configuration resulting from his/her previous action. In 

this example, the human action results in the workpiece state ‘𝑌𝐵𝐿𝑂𝑂𝐿’ which is 

not the expected state ‘𝑌𝐵𝐿𝐿𝑂𝑂’ as per the assembly sequence. The 

occurrence of the workpiece state ‘𝑌𝐵𝐿𝑂𝑂𝐿’ therefore activates the human to 

respond to the problem.  
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In the ‘Identification’ stage, the human looks for various symbols, in this case 

the placement of the legs of the workpiece, to detect the wrong state as 

compared to the expected state. 

In the ‘Evaluation’ stage, the human compares the choices he/she has to 

correct the problem and makes a choice based on his/her past experiences of 

solving similar problems and the overall task goal in mind. In the example 

shown in Figure 116, the human makes a choice of removing the leg placed in 

position 4 and placing it in position 2, on the basis of reaching the overall goal of 

completely assembling the table. 

 

(a) 

    

(b)  

 (c) 

Figure 116: (a) Wrong workpiece configuration (b) Chosen workpiece 
configuration (c) Overall task goal 

In the ‘Planning’ stage, the human plans his next action by visualising the target 

state ‘𝑌𝐵𝐿𝑂𝑂𝑂’ and the current affordance presented by the workpiece 

‘𝑌𝐵𝐿𝑂𝑂𝐿’ and executes the necessary action ‘𝐻_𝑌𝐵𝐿𝑂𝑂𝐿_𝑌𝐵𝐿𝑂𝑂𝑂’ (Figure 

117).  

  

(a) 

    

(b)   

(c) 

Figure 117: (a) Current workpiece affordance (b) target workpiece state (c) 

Execution of chosen action 
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Therefore, extraction of human action states responsible for solving a problem 

and extraction of human activity data from within these states results in the 

digitisation of the knowledge-based behaviour of the human in the task as 

shown in Figure 118. 

 

Figure 118: Digitisation of knowledge-based human behaviour 

8.4 Mapping of hierarchical task analysis to the framework 

In Hierarchical Task Analysis (HTA), the manual task is broken down into sub-

tasks, each fulfilling a sub-ordinate goal but all contributing to fulfil the main task 

goal. The ‘Segment’ step of the framework breaks the manual manufacturing 

task down into sub-tasks (human action states) and the subsequent ‘Model’ 

step co-relates each action state to the corresponding workpiece progress state 

thereby mapping the action states to the sub-goals of the task. Using the 

‘Extract’ step of the framework, the complete task execution strategy is 

extracted in the form of the action state sequence, which maps to the overall 

goal of the task.  

8.5 Mapping of cognitive work analysis to the framework 

The human uses his cognitive skills to solve unforeseen problems that occur 

during the task. The framework supports the segregation and modelling of the 



 

 239 

problem-solving scenarios from the task from which cognitive work analysis is 

enabled. It must be noted that not all problem-solving scenarios can be 

addressed because if any problem is not captured during the task observations, 

its solution cannot be segregated and modelled. However, it was shown during 

the validation case studies that the framework is able to extract human action 

sequences for not only observed task scenarios but also for unobserved task 

scenarios. Therefore, the framework is able to predict human action sequences 

for solutions to also those problems that have not been captured. This ability of 

the framework qualifies it to support cognitive work analysis and three of its five 

components, namely, strategy analysis (SA), cognitive task analysis (CTA) and 

worker competency analysis (WCA).  

The SA and CTA are jointly performed when the human action states 

responsible for solving observed and unobserved problems are extracted and 

the human activity within those states is decoded using the framework. SA 

corresponds to the sequence of human actions that is planned and executed as 

a strategy to solve problems during a task whereas CTA corresponds to the 

control decisions taken by the human in between 2 action states depending on 

the current state of the workpiece against the target state of the workpiece both 

of which are captured in the human-workpiece interaction data.  

WCA is performed when the human activity within each action state is studied. 

For each human performing the task, his/her action skills comprising body 

movements, workpiece manipulation techniques, and the speed and 

acceleration of hand gestures and reaction skills comprising decision-making to 

choose certain actions over others depending on the state of the workpiece can 

be extracted from the human activity data using the framework. Therefore, the 

competency of each worker performing the task can be analysed and 

represented using the skill models generated in the ‘Model’ step of the 

framework.  

8.6 Advantages and limitations of the framework 

Each of the 6-steps of the digitisation framework involves the use of innovative 

ICT methods to enable its functionality. The advantages that these methods 
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bring to the framework are compelling but they also have certain limitations that 

curtail the full extent to which this framework can serve the digitisation needs of 

the manufacturing industry.  

The 4 focal ICT methods used in the framework are: 

1. Human skeletal motion tracking.  

2. Object recognition and tracking. 

3. Segmentation of continuous human-workpiece interaction data. 

4. Modelling the human-workpiece interactions using Hidden Markov 

Modelling (HMM). 

Each of these methods is discussed in detail below: 

8.6.1 Human skeletal motion tracking 

Human skeletal motion tracking is a major part of the ‘Capture’ step of the 

digitisation framework. A key hardware tool used in this step is a commodity 

gaming interface technology, such as the Microsoft Kinect. The Kinect is a 

depth imaging sensor and an RGB camera packed into a single device and 

comes with a software development kit with ready-to-use library of functions for 

human skeletal motion tracking. The commodity price point of less than £200 

per unit, markerless and anonymous motion tracking and high portability makes 

it extremely attractive to use in this framework and on the actual shopfloors of 

the manufacturing industry. The primary advantage of using the Kinect™ is the 

easy availability of real-time 3D motion tracking of up to 20 human skeletal 

joints for up to 2 humans simultaneously per Kinect sensor.  

However, there are 3 main limitations of using the Kinect™ for human skeletal 

motion tracking that negatively influence the implementation of the framework.  

Noisy human motion tracking 

Both the first and the second generation of the Kinect sensors (Kinect V1 and 

V2 respectively) are used in this research with the Kinect V2 introduced only in 

the last phase of research. Therefore, most of the work is done with the Kinect 
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V1 that has a resolution of 640 x 480 pixels for RGB imaging and 320 x 240 

pixels for depth imaging. The human skeletal motion tracking function uses the 

depth image and matches the depth patterns within each image with human 

skeleton patterns to extract 3-dimensional positions of up to 20 skeletal joints 

per image. Since, these positions are captured for up to 30 image frames per 

second (fps), human motion can be tracked.  

This positioning data for each human joint is affected by the low resolution of 

the depth image resulting in noisy motion capture data. This high frequency 

noise must be filtered in order to obtain reliable human motion tracking to 

correctly capture human actions during a manual-manufacturing task. An 

example of before and after filtering noise from right hand joint data is shown in 

Figure 119. 

  

Figure 119: Before and after filtering high frequency noise (different task runs) 

Incorrect identification of human skeleton 

Since the human skeletal motion tracking function uses depth image patterns to 

recognise human skeleton, any objects handled by a human that resemble 

human body parts are sometimes recognised as human body parts. As a result, 

the skeletal joint position data for that part of the human body is incorrect. 

Although, this phenomenon is not common, it may pose a problem if it occurs 

during critical moments of the task. An example of incorrect human skeletal 

recognition and the resulting error in skeletal joint position data is shown in 

Figure 120a below. 
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(a) (b) 

Figure 120: (a) Incorrect recognition of human arm (b) Unreliable skeletal 

tracking due to a large occlusion 

Occlusions affecting human skeletal tracking reliability 

Any large object that comes in the way of the Kinect getting an unobstructed 

view of the human body, also known as occlusion, can hamper the reliability of 

skeletal tracking data (Figure 120b). The loss of reliability or even the loss of 

skeletal tracking increases as the size of the occlusion increases. This 

disadvantage limits the size of the workpiece used in task in order to 

successfully implement the framework. However, the Kinect is able to provide 

skeletal tracking even if the entire lower body is occluded from its view, which is 

demonstrated for all the tasks digitised in this research.  

8.6.2 Object recognition and tracking 

With the availability of both depth and RGB images at the rate of 30fps 

providing 3-dimensional position and colour information per image pixel, the 

Kinect is also used to recognise and track objects in the framework. Before the 

availability of depth images, even simple object recognition needed complex 
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image processing. The additional depth information provides an additional 

dimension of detail to be able to distinguish between object surfaces, edges, 

and detect changes in object surfaces and edges. When depth information 

about certain object features is not reliably available due to the low resolution of 

depth images, colour information about the pixels associated with the object is 

be used to complement the depth information. However, colour recognition 

suffers from heavy dependency on ambient lighting conditions and any change 

in these conditions causes the object recognition and tracking function to fail. 

Therefore, in all the implementations of the framework except in the case of 

digitising the task environment, the ambient lighting conditions were controlled. 

The following (Figure 121) shows an example of how lighting conditions can 

affect object recognition. 

  

(a) (b) 

Figure 121: Object recognition result in (a) normal lighting condition (b) 

brightened condition 

8.6.3 Introduction of Kinect V2 into the research 

The second generation of the Kinect sensor, hereafter called as the ‘Kinect V2’, 

and the associated Software Development Kit (SDK) were launched in October 

2014 with promising upgrades in depth and RGB imaging, and human skeletal 

motion tracking quality. These upgrades compelled the author to consider using 

the Kinect V2 as a possible replacement for Kinect V1 in the digitisation 

framework.  Though a complete comparative study between Kinect V1 and V2 

has been conducted and reported by Zennaro (2014) for computer vision 

applications in robotics, the Kinect V2 was technically evaluated from the point 

of view of its use in the proposed digitisation framework as a task capture tool 

as an alternative to Kinect V1 and therefore the two Kinect versions are 
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compared in a 3-part study. In the first part, the specifications and features of 

the sensors are compared from literature, in the second part the two sensors 

are used to capture a set of tasks and their performance in skeletal motion 

tracking is evaluated and compared and in the third part, the object recognition 

capability of the sensors is compared.  The detailed comparison study is 

presented in Appendix D.  

Verdict 

From the skeletal tracking and object recognition results, it can be deduced that 

the Kinect V2 is a better sensor than Kinect V1, in terms of accuracy, precision 

and reliability. Therefore, the Kinect V2 emerges as a candidate to replace 

Kinect V1 in the digitisation framework from this point onwards in research.  

However, it must also be noted that in all the case studies so far, there is a 

need to capture the depth and RGB values of the same pixel belonging to a 

particular object in the 3D scene for object recognition and tracking. This need 

was easily met with the Kinect V1 because the pixels in the depth image (320 x 

240) were easily mapped to the colour image (640 x 480) by a factor of 2 

helped by the almost same fields of view of the colour and depth cameras. This 

pixel mapping is a challenge in the case of the Kinect V2 because the pixels in 

the colour image (1920 x 1080) do not directly map to those in the depth image 

(512 x 424) because of the different fields of view of the colour and depth 

cameras. A separate calibration step is needed to perform this mapping and the 

additional complexity brought in by the computer graphics techniques involved 

in performing the calibration meant that the mapping was left out of the scope of 

this research. It can also be observed from the comparison results that for the 

Kinect V2, the improvement in skeletal tracking performance is much greater 

than the improvement in object recognition performance over Kinect V1.  

Therefore, a decision was made to use the Kinect V2 for its improved skeletal 

tracking capability and the Kinect V1 for its easy object recognition capability, 

simultaneously operating the two sensors in the task capture method used in 

this research from this point onwards. In this way, the advantages of both the 

sensors are exploited to the best possible extent. 
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The Kinect V2 was therefore introduced in the framework and the 

implementation of the ‘Capture’ step of the framework for the Ikea table 

assembly case study was repeated. Kinect V2 replaced Kinect V1 as the human 

motion capture tool while Kinect V1 was retained for workpiece tracking. The 

same setup was used for the composite layup case study. The use of Kinect V2 

in the Ikea table assembly case study is presented in Appendix E.  

8.6.4 Segmentation of continuous human-workpiece interaction data 

 According to the proposed digitisation framework, segmentation of human-

workpiece interaction data can be performed using 3 methods, namely, time-

change based, trajectory-change based and workpiece-change based 

depending on whether time, human action or workpiece change is the 

dominating factor in the task.  

Time-based segmentation is used when human actions and effects on those 

actions are gradual in nature and no sudden changes to either during the 

duration of the workpiece. In this case, the human-workpiece interaction data is 

divided into segments of ‘n’ time units each. The point to note in this type of 

segmentation is that should there be an abrupt change in either human action 

or workpiece state, that change may be subsumed within one state if it occurs in 

that state’s time period rather than a separate state being created for that 

sudden change. Creation of a separate state would have made the sudden 

change detectable and the human actions that led to that change more 

conspicuous at the time of analysis. Another disadvantage of time-based 

segmentation is that if no workpiece change happens during a particular time 

period (task idling), the states generated during this period show no change in 

the workpiece configurations. This results in duplicate states that do not add 

any value to the subsequent modelling and knowledge extraction steps of the 

framework. 

Trajectory-change based segmentation works by dividing the human-workpiece 

interaction data at locations where there are significantly big and or sudden 

changes in action among the otherwise smooth human actions regardless of 

whether those changes in action had any effect on the workpiece or not. A 
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threshold to define the level of change in trajectory that warrants segmentation 

is needed in this method. Using this segmentation method ensures that for all 

major actions, their individual states are created and changes to the workpiece 

as a result of big and sudden human actions can be analysed from within the 

states. However, this segmentation technique is affected by noise in the human 

motion capture data because any peak in the data that does not represent any 

change in action will be considered for creation of a state. These states that do 

not indicate any progress in the task unnecessarily increase the complexity of 

the modelling and knowledge extraction steps subsequently in the framework. 

Workpiece-change based segmentation divides human-workpiece interaction 

data at instances where the workpiece has undergone prominent changes in 

state regardless of whether there was significant human action preceding that 

state or not. A threshold to define the level of prominence in workpiece change 

that warrants segmentation is needed in this method. This method is the best 

suited for the framework because the basis of the framework is to determine 

which human actions states cause what effect on the workpiece during the 

duration of the task. This segmentation method does not get affected by human 

motion noise or task idling because states are created on the basis of prominent 

workpiece changes.  

Both the trajectory-change and workpiece-change based segmentation 

methods suffer from heavy dependency on the threshold values that define the 

level of change. A smaller than optimum threshold value would result in creation 

of trivial states that are of no use to the modelling and knowledge extraction 

steps and a larger than optimum threshold value would result in missing states 

or merging of two important states into one, thereby losing significant 

information about the task that could have been extracted. Determining the 

optimum threshold value thus is a matter of involving the task experts in the 

segmentation process and using their inputs to either include missed states or 

exclude trivial states manually from the subsequent modelling and knowledge 

extraction steps of the framework.  
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8.6.5 Modelling the human-workpiece interactions using Hidden 

Markov Modelling 

The human-workpiece interactions captured during the manual-manufacturing 

task are modelled using Hidden Markov Modelling (HMM). HMM is used 

because there is an observable aspect of manual manufacturing, which are the 

changes to the workpiece during the task and there is a hidden aspect, which is 

the human skill that is embedded within the actions during the task. HMM is a 

widely used tool to analyse and predict time series phenomena such as speech 

recognition from continuous voice data. A hidden Markov model very closely 

represents the proposed human-workpiece interaction concept because the 

Markov assumption in an HMM states that any change in observable states is 

only due to past hidden states, which is also the concept of the human-

workpiece interactions in a manual manufacturing task.  

i. Order of the Markov process  

In this framework, 1st order Markov process is assumed, which states that the 

next workpiece state depends only on the previous human action state and 

none before that. Therefore, a change to the workpiece at any instance is 

only due to the human action immediately preceding that instance. In most 

manual manufacturing situations this assumption holds true but in cases 

where cumulative effects of several past human actions are evident on the 

workpiece, the 1st order Markov process assumption is not valid. An example 

of such a case is the polishing task where the heat build-up over multiple 

polishing passes affects the surface of the workpiece cumulatively or a 

composite layup task in which effects of plies laid several steps back can 

affect the layup of the next ply. This change in workpiece cannot be attributed 

to only the last polishing or ply layup pass but to multiple previous passes. 

Such tasks cannot be effectively modelled using 1st order Markov assumption 

made in the framework and the selection of the Markov process order would 

depend on the manufacturing task being studied.  
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ii. Presence of zeros in an HMM model 

There are many examples where the probability of transition from one 

particular state to another is zero because that occurrence is physically 

impossible. For example, in the second validation case study, the human 

action state ‘𝐻_𝑌𝐵𝐿𝐿𝑂𝑂’ cannot transition to ‘𝐻_𝑌𝐵𝑂𝑂𝑂𝑂’ because the task 

does not allow handling of two workpiece components at the same time. In 

such a situation, the probability of state transition from ‘𝐻_𝑌𝐵𝐿𝐿𝑂𝑂’ to 

‘𝐻_𝑌𝐵𝑂𝑂𝑂𝑂’ is zero. However, if such zeros are entered into the HMM 

model, the forward and backward algorithms for HMM evaluation, the Viterbi 

algorithm for HMM decoding and the Baum Welch algorithm for HMM training 

may give erroneous results due to mathematical underflow errors.  

In order to avoid this problem, the ‘Absolute Discounting’ technique is used 

where a small probability factor f is discounted (subtracted) from all states 

that are assigned a non-zero probability. The probability factor is then 

distributed equally among states that are assigned zero probability so as to 

maintain the sum of probabilities to 1. An example of ‘Absolute Discounting’ 

is shown below: 

 Before discounting: 

State A B C D E 

Probability 0 0.2 0 0 0.8 

  𝑓 =  (𝑝(𝐵) +  𝑝(𝐸)) / 100 =  0.01 

 𝑝(𝐵)  =  𝑝(𝐵) –  𝑓 =  0.19 𝑎𝑛𝑑 𝑝(𝐸)  =  𝑝(𝐸) –  𝑓 =  0.79 

All other states are assigned the probability f. Therefore, the resulting HMM 

A’ contains all non-zero probabilities thereby preventing underflow errors 

while computing for HMM evaluation, decoding and training. This method 

does not affect the HMM greatly because the value of factor f is significantly 

lower than the non-zero probability values.  
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After discounting: 

State A B C D E 

Probability 0.01 0.19 0.01 0.01 0.79 

iii. Sparse observation data 

Not all task scenarios can be observed by the framework and this depends 

on how the number of instances of the task captured. This results in sparse 

observation data in which the probabilities of occurrence of certain state 

transitions and observations in an HMM are assigned to zero causing 

mathematical underflow errors as explained earlier. Literature has revealed 

that the most common way of solving this issue is by using smoothing 

techniques such as Absolute Discounting, Laplace smoothing, Good-Turing 

estimation and Shrinkage. A more practical approach is used in this 

framework in which the task experts assign non-zero state transition and 

observation probabilities, including for those that are not observed. For those 

state transitions and observations that are not possible in the task, the 

Absolute Discounting technique is used to avoid zero probabilities. The 

resulting HMM is then optimised using the Baum-Welch algorithm.  

iv. Long observation sequences  

The HMM evaluation, decoding and training algorithms work well for HMM 

models with a short sequence of states. This is because many mathematical 

quantities that are generated at intermediate steps of the algorithms would 

quickly get extremely small as the sequence gets longer, resulting in 

underflow errors. There are generally two ways to deal with the problem in 

the literature. In the first method, the entire HMM model can be represented 

in the logarithm domain in which the product of small quantities is a sum of 

logarithms of those quantities thereby avoiding extremely small numbers. 

The second method is to use scaling in all the HMM algorithms. In this step, 

the mathematical quantities computed at each stage of the algorithms are 

scaled by a common factor to avoid pushing the quantities towards zero. This 

way the quantities never get small enough to cause underflow errors. In this 
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framework, the scaling method is used in which at the end of each computing 

stage, a factor of 10 was used to scale all the probabilities of the HMM.  

v. Improving the HMM parameter estimation process 

In this framework, the HMM parameters are assigned based on inputs from 

the task expert. However, these parameters may not be optimum every time 

and without optimisation the HMM models will not produce correct results. 

Since the extraction and decoding of manufacturing knowledge depends on 

the correctness of the HMM model, its parameters must be optimised by 

training the HMM models.   

After comparing the two most commonly used HMM optimisation algorithms, 

namely, the Viterbi Training algorithm and the Baum Welch algorithm, the 

latter was selected in this framework as explained in section 5.3. This 

algorithm uses an observed workpiece state sequence and trains the HMM 

model by determining the optimum parameters. However, the Baum Welch 

algorithm converges to a local optimum, which means that for every change 

in the initial parameters, the optimised parameters will be different even for 

the same observed sequence.  

The local optimum may work in certain situations and may not work in others. 

For example, in validation case study 2, for the workpiece observation 

sequence𝑂𝑄  =  {𝑌𝐵𝐿𝑂𝑂𝐿, 𝑌𝐵𝐿𝑂𝑂𝑂, 𝑌𝐵𝐿𝐿𝑂𝑂, 𝑌𝐵𝐿𝐿𝐿𝑂, 𝑌𝐵𝐿𝐿𝐿𝑂, 𝑌𝐵𝐿𝐿𝐿𝐿}, 

the Baum Welch optimised HMM model produces  

𝐻𝑄  =  {𝐻_𝑌𝐵𝐿𝑂𝑂𝐿_𝑌𝐵𝐿𝑂𝑂𝑂,   𝐻_𝑌𝐵𝐿𝑂𝑂𝑂,   𝐻_𝑌𝐵𝐿𝑂𝑂𝑂_𝑌𝐵𝐿𝐿𝑂𝑂,

𝐻_𝑌𝐵𝐿𝐿𝑂𝑂_𝑌𝐵𝐿𝐿𝐿𝑂,   𝐻_𝑌𝐵𝐿𝐿𝐿𝑂_𝑌𝐵𝐿𝐿𝐿𝐿}  

as the most likely human action state sequence responsible for the 

workpiece observation sequence. In this case, the human action sequence 

generated by the optimised HMM is correct.  

However, for the Lego block assembly example, for the workpiece 

observation sequence:  

𝑂𝑄  =  {𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵,   𝑊𝑃_𝐵𝐺,   𝑊𝑃_𝐵𝐺𝑅,   𝑊𝑃_𝐵𝐺𝑅𝑌,   𝑊𝑃_𝐵𝐺𝑅,  
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𝑊𝑃_𝐵𝐺, 𝑊𝑃_𝐵, 𝑊𝑃_𝐵𝑅, 𝑊𝑃_𝐵𝑅𝐺, 𝑊𝑃_𝐵𝑅𝐺𝑌}  

the optimised HMM produces the human action sequence  

𝐻𝑄  =  {𝐻_𝐴_𝐵,   𝐻_𝐴_𝐺,   𝐻_𝐷_𝐺,   𝐻_𝐷_𝑅,   𝐻_𝐴_𝑅,   𝐻_𝐷_𝑌,   𝐻_𝐷_𝑅,   𝐻_𝐷_𝐺,    

𝐻_𝐴_𝐵,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌} 

This output action sequence is incorrect. The correct output sequence should 

have been  

𝐻𝑄  =  {𝐻_𝐴_𝐵,   𝐻_𝐴_𝐺,   𝐻_𝐷_𝐺,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝑌,   𝐻_𝐷_𝑌,   𝐻_𝐷_𝑅,    

𝐻_𝐷_𝐺,   𝐻_𝐴_𝑅,   𝐻_𝐴_𝐺,   𝐻_𝐴_𝑌}  

This example illustrates that Baum Welch algorithm is not sufficient to 

achieve fully optimised HMM models.  

Therefore, other means of optimising HMM parameters will have to be 

investigated. In the literature, the use of Artificial Neural Networks (ANN) to 

transform the input observation sequence of the HMM so that this 

transformed sequence better suites the HMM is reported by Bengio et al. 

(1992). They used the ANN to transform the actual observations and then the 

transformed observations were fed into the HMM as an input vector. After 

optimizing the HMM for the transformed observations using the Baum Welch 

algorithm, significant improvements were achieved. Hassan et al. (2007) 

have furthered this research by using Genetic Algorithms (GA) to optimise 

the initial parameters of an HMM whose input observation sequence has 

been transformed using ANN and demonstrated even better results. The use 

of ANN and/or GA to optimise HMM models are outside the scope of this 

study and therefore are identified as future research. 

8.6.6 Reproduction of extracted manufacturing knowledge 

The ‘Reproduce’ step of the framework provides a platform for reproduction of 

the manufacturing knowledge extracted and decoded by the framework and for 

skill transfer. Going beyond exhibiting the extracted task strategy and animating 

the task with the extracted knowledge constituents augmented within the 

animation, is not within the scope of this study. The more effective and 
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attractive methods such as the use of virtual reality (VR) for immersive 

experience of the task or the use of augmented reality (AR) to overlay task 

knowledge onto real task environments have not been investigated and have 

been identified as future research. 

8.7 Generality of the framework 

The digitisation framework is built upon a strong theoretical foundation of 

representing a manual manufacturing task as a series of human-workpiece 

interactions which when captured and modelled can enable the extraction, 

decoding and reproduction, i.e. digitisation of the manufacturing knowledge 

embedded within the task. This theoretical underpinning isolates the framework 

from the specifics of the task to be digitised or the end-user application.  

The structure of the digitisation framework was designed by categorising the 

work of other researchers in literature in the area of human skill acquisition into 

functional research units. It was observed that these units corresponded to the 

standard informatics steps of data input, data processing, data analysis and 

data output in that order. Therefore, the digitisation framework was structured 

into 6 sequential steps that matched the standard informatics steps thereby 

allowing the framework structure to be fairly generic to accommodate the 

requirements of digitising most manual manufacturing tasks. 

The methods and tools proposed in the framework, such as the Kinect sensors 

to capture the task or the several object recognition techniques to track 

workpiece progress during the task, are specific to both the type of tasks that 

were digitised as well as the era in which this research is carried out. These 

methods and tools were used off-the-shelf and plugged into the framework 

without the need to alter the design or the structure of the framework. For 

example, when the need to use Kinect V2 arose, it was just plugged into the 

framework to work alongside Kinect V1 without changing the framework and 

object detection techniques kept changing for different tasks as the workpieces 

changed but the framework remained the same.  
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Finally, the tasks chosen for implementing and validating the framework 

represented different task complexities, people, environments and constraints. 

The tasks ranged from simple Lego blocks assembly in a controlled 

environment to the complex composite layups in the clean room and the 

workpieces ranged from simple geometrical shapes as in the Ikea table 

components to the deformable pre-impregnated composite plies and the 

framework was able to accommodate all these requirements further reinforcing 

its generality.  

8.8 Potential applications of the framework 

It has been demonstrated that the framework at its fullest extent can be used to 

capture, extract, decode and reproduce manufacturing knowledge, especially 

the tacit knowledge such as human skills that is embedded within manual 

manufacturing tasks. At the very least, some components of the framework can 

be used independently for example, the ‘Capture’ step can be used to record a 

task into a video with the human actions and workpiece progress are annotated 

within the video for task demonstrations. A few application areas for the industry 

have been identified and briefly explained below. 

1. Skill transfer platform 

The main aim of the framework is to acquire skills from a human performing a 

task and digitise it in transferrable form such as in skill models. Therefore, an 

obvious application area is to build a skill transfer platform based on the 

framework which will enable a company to acquire skills from its senior experts 

in a non-obtrusive manner, archive them into skill models and reproduce them 

in a manner that is most appropriate for skill training. Effective skill training 

methods use multiple media such as print, videos, animations, immersive 

game-based training and training on the job by augmenting training data on the 

real-world task environment.  

Currently, video demonstration is a popular choice for skill training and is an 

obvious comparison candidate for the task knowledge digitisation framework 

proposed in this research. Though a video provides an easy means to record 
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and playback manual tasks for a leaner’s viewing, it does not provide a rich 

medium to effectively absorb the key learning points. A video reproduction is 

only a 2-dimensional illustration in which a critical 3rd (depth) dimension of the 

task is lost and needs multiple recordings from multiple viewing perspectives to 

fill the dimension gaps. Also, a video demonstration does not explicitly illustrate 

the motor and control skills used by the human during the task leaving this 

important knowledge constituent to the individual interpretation of the learner. 

Finally, a video demonstration does not provide the means to obtain real-time 

feedback on the performance of the learner while performing the taught task 

thereby making it difficult to evaluate the efficacy of the skill training programme 

and compare the skill proficiency of the learner before and after skill training.  

A senior representative from Airbus commented “The skill transfer platform 

enabled by Cranfield’s digitisation framework will help us tap into the years and 

years of training and experience of our senior technicians before we lose those 

skills forever when the technicians retire”.   

2. Real-time ergonomic evaluation 

The framework is effective in capturing human actions during a manual task and 

compute the mechanics of body motion such as body postures, angles between 

different parts of the body that move during the task, speed and acceleration of 

those movements and orientation of the body with respect to the workpiece 

being handled. In many instances, human actions may not be ergonomically 

correct and may lead to musculoskeletal disorders among the workforce over 

prolonged use of the wrong actions. A real-time ergonomic evaluation platform 

based on the framework can be used on factory shopfloors to continuously 

monitor human activity and raise alarms whenever bad ergonomics is detected 

in addition to reporting them. The platform can thus enable factories to design 

ergonomically correct workstations to ensure the wellbeing of their workforce.  

An engineering manager from Rolls Royce (Marine) commented “confined 

workspaces such as in submarines compel people to work with bad postures 

and perform complex manoeuvring of components in cramped areas. A real-

time ergonomics platform will enable us to evaluate the ergonomics of tasks in 
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submarine environments and provide vital information to help us design better 

workspaces that minimise the ill-effects of working in confined spaces”.  

3. Real-time remote collaboration platform 

Manufacturing is an increasingly global activity with distributed sites for product 

design, verification, production and customer support. Therefore, geographically 

dispersed engineering teams are collaborating with each other at a scale never 

seen before. Commercial unified communication tools such as Skype™ and 

Webex™ are commonly used but the extent to which teams can use these tools 

to collaborate and solve a common engineering problem remains limited. These 

tools only enable the exchange of voice, text, files for communication and a 

shared whiteboard for collaboration. They do not allow for sharing physical 

engineering contexts or support collaborative working on engineering 

workpieces, which are key requirements for engineering-related collaborations.  

The framework captures human actions and resulting workpiece changes 

during the task along with its environment and digitises this information into 

simple numeric data forms. Therefore the framework digitises the activities 

within a task while capturing the task context. If tasks occurring at two different 

sites could be digitised in this manner and the digital task data that is generated 

could be exchanged across these sites and reproduced in real-time, then it 

becomes possible for remote teams to collaborate with each other during the 

task, work on common workpieces and solve a common problem. Since the 

task data is low-definition, its synchronous exchange does not depend on the 

network bandwidth and global collaboration becomes truly possible.  

A technical services manager from Jaguar Land Rover commented “with 

increasing global spread of our dealerships, it becomes necessary for our 

experts to deliver technical support remotely to the dealer technicians to solve 

unforeseen problems with our customers’ cars as soon as possible. A real-time 

remote collaboration platform will help us react quickly to technical support 

requests and significantly reduce the need for our experts to travel”. 
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A real-time remote collaboration platform is being developed as part of an 

Innovate UK funded project and the initial results of this work are presented in a 

conference paper (See ‘List of Publications’). 

4. Intelligent automation of complex manual manufacturing tasks 

Complex manual manufacturing tasks rely heavily on human intellect and skills, 

acquired with training and years of experience performing the task. The 

composite layup is an example of such a task in which hard to manipulate pre-

impregnated composite plies are laid over moulds with complex geometries. 

Experienced layup technicians can plan the layup strategy based on the mould 

geometry and on the understanding of the deformation characteristics of the 

composite material, execute the plan successfully by using appropriate ply 

manipulation techniques suited for different areas of the mould to avoid any 

undesirable deformities in the ply such as wrinkles and bridges and rectify any 

deformities that are unavoidable.  

In order to automate such a task, the automation solution must be able to learn 

from the experienced technician in task approach, layup techniques and 

problem solving. Such a solution needs the intelligence to devise a task strategy 

by observing the mould geometry and predicting the layup techniques required 

for the different areas of the mould. It must also be dexterous enough to 

execute the techniques correctly by manipulating the ply just as how a human 

technician would. The solution must also keep track of the progress of the layup 

on the mould, identify problems and then have an approach to solve them.  

Before developing the automation solution, the task performed by the 

experienced technician must be systematically understood, incorporating all 

possible scenarios, whether or not those scenarios have been observed. The 

framework has the ability to understand the task by capturing the human-

workpiece interactions involved in multiple task scenarios and even predicting 

such interactions for scenarios that have not been observed. Since all this 

knowledge is digitised, it can be used to inform the intelligence behind an 

automation solution in the form of expert systems.  
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The framework is also able to extract and decode the complex human actions 

involved in the task such as hand gestures, gesture speed, body postures, body 

orientations, etc. These actions could now be incorporated into the kinematic 

control of robot arms that have similar dexterity to human hands. The only 

knowledge constituent that the framework does not extract is the force used by 

the human hands while performing the task. Means of acquiring this knowledge 

is a future topic of research because existing methods such as getting the 

human to wear force-capture gloves while performing the task are obstructive 

and not practical.  

Finally, it has been demonstrated that the framework is also able to digitise task 

environments by capturing manufacturing environment and operational data 

that is critical to the task. In the wheel loading case (section 6.5), the framework 

was able to provide motion data of the moving wheel hub and misalignment 

data between the moving wheel hub and the to-be-assembled wheel so that the 

automation solution could make decisions on when and how to load, continue 

loading or abort and if and how to correct misalignment in real-time. Therefore, 

the framework proposed methods to replace human senses in the monitoring of 

the task environment. 

Therefore, by having the human-like expert system control the human-like 

robotic solution in a task environment that could be continuously monitored by a 

human-like sensing system, there is a potential for intelligent solutions to be 

developed for automating complex manual manufacturing tasks. 

8.9 Future Work 

Future research work has been identified by considering the limitations of this 

research and suggesting possible ways of addressing them as described below.  

Further validation in real manufacturing shopfloor conditions 

The framework has been currently tested with about 4 case studies with varying 

task complexity, constraints, people and environments including one real-world 

manufacturing task example. According to the author, these case studies are 

representative of a large number of manual manufacturing tasks in the industry. 
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However, all the above tasks were conducted in a fairly controlled task 

environment and the issues that are likely to occur while digitising tasks on real 

shopfloors are not known. These issues are related to the positioning of the 

Kinects on the shopfloor, presence of occlusions in the form of machines, 

gantries, etc., IR or other forms of interference from the machines, presence of 

dust and oil mists that might affect the Kinect cameras, ethical matters, 

psychological matters and health and safety matters among others. Therefore, 

there is a need to exhaustively test the framework in real shopfloor conditions 

and also conduct research on human psychology to assess human acceptance 

and adaptation to the framework.  

Alternative technologies to complement or even replace the Kinect sensor 

The research in its current form has sufficiently addressed the objectives of 

developing and implementing the framework for the capture and digitisation of 

manual manufacturing task knowledge.  However, certain methods used in this 

framework will need to be upgraded to achieve better results. One such method 

is human motion capture and object recognition that records human-workpiece 

interactions during the task. The first generation of the Kinect sensor (Kinect 

V1) did not produce reliable results under certain conditions as explained in 

section 8.6.1 and therefore the second generation of the sensor (Kinect V2) was 

investigated and used in the ‘Capture’ step of the framework. However, due to 

the complexity involved in mapping the depth and colour image pixels, Kinect 

V2 was not used for workpiece progress tracking even though it was preferred 

over the Kinect V1 and this constraint compelled the use of both Kinect V1 and 

V2 in the framework. However as Kinect V1 is already an obsolete product, 

more work is needed in the area of depth to colour image mapping thereby 

eliminating the need to use Kinect V1. 

Another major issue is the unreliable skeletal tracking by the Kinect in the 

presence of large occlusions that make certain parts of the human not visible to 

the sensor. This issue remains to be a concern even with the Kinect V2 

because both the sensors need a clear line-of-sight to the human without any 

obstructions. Therefore, a completely different method such as marker-based or 
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accelerometer-based motion tracking would need to be used to complement the 

Kinect. The commodity price point factor must be taken into account while 

investigating other methods because affordability is a big plus point for the 

industry to adopt the framework.   

Enhance the robustness of human-workpiece interaction modelling 

The ‘Model’ step is another target for improvement in this research as it stands 

currently. The issues of zero probability values and the models unable to cater 

to long task observation sequences will need to be tackled using successfully 

tried and reported methods from the literature such as Laplace Smoothing and 

model initialisation using evolutionary algorithms. HMM model optimisation 

method currently used in this research does not produce sufficiently robust 

results all the time because the adopted Baum-Welch training algorithm 

converges only to the local optimum when global optimum is desired. Therefore, 

other proven optimisation techniques such as genetic algorithms and artificial 

neural networks can be considered or even a combination of evolutionary 

algorithms and the Baum-welch algorithm can be tried.  

Address other important manufacturing knowledge constituents 

The framework currently is not able to extract and decode task knowledge 

constituents such as the force applied by the human while manipulating the 

workpiece, lower body weight distribution or the eye movements made during 

the task. These are important constituents because tactile feedback from the 

workpiece is equally important as visual feedback. Moreover, the pressure 

applied by the human feet on the floor while performing the task also reveals 

important insights into body posture and weight distribution among the legs that 

have a bearing on the force applied on the workpiece. Therefore unobtrusive 

methods that capture human force applied on the workpiece and on the floor 

must be used. Eye movement of the human during a task is an important 

constituent because it can tell where the human vision is focussed while 

performing critical parts of the task. Though the framework measures the head 

bending or glance angle, the actual glance direction obtained by tracking eye 

movement is not captured. The sound generated during a task, such as 
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machining, provides important insights into the progress and quality of the task. 

The Kinect sensor used in this research has the capability to capture audio but 

it is only used in this research to capture human verbal commands. In the 

future, the Kinect sensor could be used to capture machine sounds as well to 

add the audible dimension of the task to the extracted manufacturing knowledge 

constituents.  

Another task knowledge constituent that can be captured is the influence of the 

human being left-handed, right-handed or ambidextrous on the task. To obtain 

this knowledge, the motion data of the human hands can be mapped on to the 

workpiece geometry to extract and visualise motion patterns that vary between 

people of different dexterities. Capturing this knowledge is important when 

transferring skills from a right-handed expert to a left handed novice because 

the difference in dexterity can be compensated by the framework to negate any 

disadvantages that the left-handed novice might face.  

Finally, this research captures and extracts only the knowledge associated with 

a manufacturing task but does not extract the quality factor associated with this 

knowledge. Quality factor is an important constituent because it could provide a 

single unified index to evaluate and compare human skills between people of 

varying builds, body proportions, gender, dexterity and cultural backgrounds. 

Quality factor is envisaged as a function of key task characteristics such as 

human motion accuracy vis-à-vis a standard motion pattern for a particular task, 

precision to record performance consistency, workpiece progress indicator, task 

result indicator and the time taken per sub-task. This research could investigate 

the development of such a quality factor for manual manufacturing tasks.  

Scaling up for digitisation of tasks with higher cognitive human inputs 

The framework in its present form is not able to digitise task knowledge from 

complex manual manufacturing tasks in which human cognitive inputs 

overshadow the physical inputs. An example of such a task is the manual 

assembly of an aircraft engine, in which human must identify the positioning, 

orientation and mating requirements of assembling intricate parts on to complex 

engine sub-assemblies whereas the actual assembly actions are rather simple. 
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In such a task, sophisticated human cognition to identify workpiece features as 

well as sub-conscious decision making to constantly align and position the 

workpieces for assembly far outweigh the motor skills needed in the task. 

Therefore, motion sensing and simple object recognition will not be adequate to 

extract and decode manufacturing knowledge. In such cases, qualitative 

methods of obtaining task data such as interviews, questionnaires, task walk-

throughs and what-if analysis of known and unforeseen task situations will have 

to be introduced into the framework. Existing methods used in hierarchical task 

analysis and cognitive work analysis could be explored for this purpose.  

New interface technologies to accommodate the advances in 

manufacturing technology  

New human-machine interface technologies are continuously being developed 

and introduced at a rapid pace due to the flourishing gaming industry. A 

constant eye must be kept on the market and on the literature for new motion 

capture technologies such as 3D wireless accelerometer-based motion sensing 

at commodity prices, force sensing technologies such as portable and wireless 

electromyography (EMG), floor pressure sensing technologies for monitoring 

the pressure applied by human feet on the floor and the weight distribution 

between the feet, eye tracking technologies as well as new and better human 

action recognition and object recognition algorithms. The generic nature of the 

framework allows the plugging in and out of these new technologies to improve 

its digitisation capability for manufacturing tasks of the future.  

8.10 Conclusions 

The manufacturing industry, especially in high wage economies, is grappling 

with issues of global skill shortage and intense competition. Therefore, 

sustaining slow and costly manual manufacturing operations has become very 

difficult threatening to reduce the global competitiveness of manufacturing 

enterprises. The two ways in which manufacturing enterprises can remain 

globally competitive is by adopting quick and cost-effective skill transfer 

programmes to rapidly up-skill their workforce in the short term and by adopting 

intelligent solutions to automate complex manual tasks and use the human 
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workforce in a higher value-added capacity in the long term. This research has 

the potential to enable both these solutions for the manufacturing industry. 

The aim of this research is to develop a framework for digitisation of manual 

manufacturing task knowledge. It aims to achieve the digitisation by using 

consumer-grade gaming interface sensors to make the framework cost-effective 

and technologically advanced at the same time. The framework was developed 

with a strong underpinning of human-workpiece interaction theory reinforced by 

seminal research in human behavioural analysis by eminent researchers such 

as Rasmussen and Gibson. The 6 steps of the framework were designed by 

studying the flow of informatics process and data adopted by researchers in the 

human skill acquisition and knowledge capture domains. The methods and tools 

used in each of the 6 steps were chosen from off the shelf, specifically selecting 

those that were proven and were cost-effective. For example, gaming interface 

sensors, such as the Microsoft Kinect™, were chosen for their low-cost, 

consumer-grade robustness, proven credentials in the gaming world and easy 

availability even though such sensors are not as capable as their expensive 

industrial counterparts such as the Vicon™ or the XSens™ motion capture 

system. The deficiencies in terms of accuracy and precision were compensated 

to acceptable levels for the case studies chosen by leveraging prior knowledge 

of the tasks.  

The framework was successfully implemented for digitising the task knowledge 

embedded within a simplified assembly task and for digitising operational data 

from a task environment. It was also successfully validated using 3 case studies 

with tasks ranging in complexity from simple to complex, involving different task 

environments, structures, workpieces, requirements, constraints and people. 

For all the studies, the framework was able to capture, extract, decode and 

reproduce all the important manufacturing knowledge constituents embedded 

within the tasks such as those that make up human action and reaction skills. 

This demonstrates the generality of the framework to accommodate the 

digitisation of most manual manufacturing tasks. The framework is also generic 

with respect to the tools used, which means that newer and better tools can be 
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plugged into the framework without the need to change its basic design and 

structure.  

This research contributes to knowledge in the five main areas, namely, (1) the 

theory of human-workpiece interactions to decipher human behaviour in manual 

manufacturing tasks, (2) a cohesive and holistic framework to digitise manual 

manufacturing task knowledge, especially tacit knowledge such as human 

action and reaction skills, (3) the use of low-cost gaming interface technology to 

capture human actions and the effect of those actions on workpieces during a 

manufacturing task, (4) a new way to use hidden Markov models as digital skill 

models to represent human ability to perform a complex task and (5) extraction 

and decoding of manufacturing knowledge constituents from digital skill models. 

The biggest contribution to research as a combination of all the above is the 

new ability to unearth and decode human skills that were always considered 

very difficult to explicitly document and transfer.  

The significance of this research is its direct impact to enable faster and cost-

effective skill transfer between people, enable detailed analysis of manual tasks 

on the shopfloor to assess task ergonomics in real-time, enable real-time 

collaboration between remote engineering teams and enable the intelligent 

automation of skill-intensive manual manufacturing tasks, all contributing 

towards enhancing the competitiveness of the manufacturing industry. 
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Appendix A: Literature review for the wheel loading 

case study 

The difficulty of using a rigidly programmed industrial robot to load wheels on a 

moving vehicle body has been recognised in literature. Since industrial robots 

must be pre-programmed with little flexibility in their task execution, it is difficult 

for them to cater to complex requirements, as in wheel loading (Chen et al., 

2009). A few articles have reported attempts to automate wheel loading by 

proposing industrial sensor based methods to replace the human skills of 

simultaneously tracking the moving vehicle body to anticipate the precise 

aligning and loading moves for successful assembly. 

Cho et al. have reported the use of a visual tracking manipulator using a 

camera on the wheel gripper mounted on an industrial robot that loads the 

wheel to track the centre of the wheel hub on the moving vehicle body (Cho et 

al., 2005). The visual tracking method is divided into macro tracking that 

monitors the velocity of the moving vehicle body and micro tracking that 

monitors the fine positional errors to assist in precision wheel loading. However, 

there is no mention of misalignments being identified. Chen et al. have reported 

a method of visual servoing to track the motion of the vehicle body in two axes 

to determine the wheel-loading instance and position (Chen et al., 2009). Force 

sensors that measure the loading force along all 3 axes are used for precise 

control of the final robot movement towards the wheel hub to perform loading 

according to set values of compliant contact forces between the robot tool and 

the wheel hub. Misalignment between the wheel and the wheel hub is also 

checked by the visual servoing system and transformation is applied to correct 

it. Shi (2008) has reported a preliminary analysis of dynamic conveyor motion 

and presented the typical motion characteristics of industrial conveyors such as 

speed, acceleration and multi-axis deviations in motion. Based on that study, 

Shi and Menassa (2010) have proposed a method in which a coarse vision 

camera tracks the general motion characteristics of the moving vehicle body 

with lower accuracy and a fine vision camera to track the deviations in vehicle 

body motion just before loading is performed. A vision camera placed at the end 
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of the industrial robot arm that loads the wheel is used to locate the wheel hub 

studs for alignment. Lange et al. (2010) have also proposed a coarse and fine 

sensing system and a compliant force-torque sensor in the robot end-effector to 

control the loading step to compensate for final temporal or spatial offsets. 

Predictive modelling of robot motion trajectory in addition to the computed 

trajectories based on vision inputs is used to enhance loading precision. The 

camera on the robot end-effector identifies the positions of the wheel hub studs 

with respect to the positions of the wheel bores to determine misalignment.  

In all of the above articles, industrial vision systems such as costly stereo-vision 

cameras are used for object tracking and feature recognition. These systems 

require computationally expensive image processing and pattern matching 

algorithms. Also because of their use of colour values of pixels for isolating 

target objects from the background, ambient light might affect image-processing 

accuracy and therefore active computational intervention is required to 

compensate for changes in lighting conditions. Thirdly, vision systems can only 

provide effective object tracking along two axes and additional force sensors 

are required to provide the same along the third axis.  

In this study, inexpensive Kinect sensors and depth-based object recognition 

methods in the framework are used to track and obtain motion characteristics of 

the moving wheel hub along all 3 axes simultaneously. Depth data is also used 

to recognise alignment features on the stationary wheel and the moving wheel 

hub. Since depth data is provided by Infra-Red (IR) and not visible light (RGB) 

imaging, the proposed technique does not depend on ambient light conditions. 

The motion data obtained from the Kinect sensors for the moving wheel hub is 

also compared to that obtained from a highly accurate laser motion tracker. The 

main objective of this comparison is to gauge the accuracy and precision of the 

consumer-grade Kinect sensor vis-à-vis its expensive industrial counterpart. 
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Appendix B: Detailed results of the wheel loading case 

study 

The results of the task environment digitisation are presented in this section in 

the following order: 

1. Identification of wheel features and measurement of the angular positions of 

the wheel bores.  

2. Motion tracking of the moving wheel hub and identification of the angular 

positions of the wheel studs for the following programmed motion patterns:  

a. Linear motion along x-axis with no deviations in y and z axis. 

b. Jerky motion along x-axis with no deviations in y and z axis. 

c. Linear motion along x-axis with sinusoidal deviation in y-axis. 

d. Linear motion along x-axis with sinusoidal deviation in z-axis. 

e. Linear motion along x-axis with sinusoidal deviation in y and z-axis. 

Identification of wheel features and measurement of the angular positions of the 

wheel bores 

The Kinect sensor captures depth images of the stationary wheel at the rate of 

up to 30 frames per second. From within each depth image, the 4 bores of the 

wheel are recognised and their angular positions, represented by the angle of 

the bore located within the 90o to 180o quadrant (the ‘first bore’), are measured. 

To improve the accuracy of this method, the angle obtained is cumulatively 

averaged over 45 depth frames before it is recorded. 10 iterations of the 

experiment are conducted and the results are tabulated in Table 31. 

Table 31: First wheel bore angle and its standard deviation (10 iterations) 

 

Motion tracking of the moving wheel hub and identification of the angular 

positions of the wheel studs 

The far and near sensors track the motion of the wheel hub by continuously 

detecting the centre point of the hub and recording its x, y and z coordinates 
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along with its speed in the direction of motion (x-axis). In the far sensing zone, 

the far sensor tracks the position and speed of the wheel hub whereas in the 

near sensing zone, the near sensor tracks its motion and identifies the angular 

positions of the studs of the moving wheel hub.  

The motion tracking data obtained from the far and near sensors is compared to 

that obtained from the laser tracker that tracks the same motion. Since the laser 

tracker and the depth sensor are not synchronised during motion tracking, the 

two sets of data cannot be plotted and visualised on the same chart. The motion 

tracking results for the five simulated motion patterns are presented below. 

Since each motion pattern is run for 10 iterations, the wheel hub position and 

speed values are averaged over the 10 iterations.  

1. Linear motion along x-axis at 67mm/s with no deviations in y and z axis 

In the far sensing zone: Wheel hub motion tracked along all three axes by the 

far sensor and the laser tracker is presented in charts shown in Figure 122. The 

corresponding speed computed from the far sensor and laser tracker motion 

data is plotted in the charts shown in Figure 123.  

(a)    

(b)    
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(c)    

Figure 122: Wheel hub positions - far sensor and the laser tracker along (a) x-

axis, (b) y-axis, and (c) z-axis 

  

Figure 123: Wheel hub motion speed (x-axis) - far sensor and the laser tracker 

In the near sensing zone: Wheel hub motion tracked along all three axes by the 

near sensor and the laser tracker is presented in charts shown in Figure 124. 

The corresponding speed computed from the near sensor and laser tracker 

motion data is plotted in the charts shown in Figure 125. In this zone, the 

angular position of the wheel hub stud located in the 90o to 180o quadrant (the 

‘first stud’) is also measured for 10 iterations as shown in Table 32. 

(a)     
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(b)     

(c)     

Figure 124: Wheel hub positions - near sensor and the laser tracker along (a) x-

axis, (b) y-axis, and (c) z-axis 

  

Figure 125: Wheel hub motion speed (x-axis) - near sensor and the laser tracker 

Table 32: First wheel hub stud angle and its standard deviation (10 iterations) 

 

2. Jerky motion along x-axis with no deviations in y and z axis 

Since jerky motion is along the x-axis only, the y-axis and z-axis motion tracking 

charts are not shown.  

In the far sensing zone: Figure 126 and Figure 127 show the motion and speed 

charts produced by the far sensor and the laser tracker respectively. 
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Figure 126: Wheel hub positions - far sensor and the laser tracker (x-axis) 

  

Figure 127: Wheel hub speed - far sensor and the laser tracker (x-axis) 

In the near sensing zone: Figure 128 and Figure 129 show the motion and 

speed charts produced by the near sensor and the laser tracker respectively. 

Table 33 shows the angular positions of the wheel hub measured over 10 

iterations for this motion pattern.  

  

Figure 128: Wheel hub positions - near sensor and the laser tracker (x-axis) 

  
Figure 129: Wheel hub speed - near sensor and the laser tracker (x-axis) 
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Table 33: First wheel hub stud angle and its standard deviation (10 iterations) 

 

3. Linear motion at 67mm/s along x-axis with deviations in y-axis 

Since the oscillations are along the y-axis only, x-axis and z-axis motion 

tracking charts are not shown.  

In the far sensing zone: Figure 130 shows the motion charts produced by the far 

sensor and the laser tracker. 

  

Figure 130: Wheel hub positions - far sensor and the laser tracker (y-axis) 

In the near sensing zone: Figure 131 shows the motion charts produced by the 

near sensor and the laser tracker. Table 34 shows the angular positions of the 

wheel hub measured over 10 iterations for this motion pattern. 

Table 34: First wheel hub stud angle and its standard deviation (10 iterations) 

 

  

Figure 131: Wheel hub positions - near sensor and the laser tracker (y-axis) 
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4. Linear motion at 67mm/s along x-axis with deviations in z-axis  

Since the oscillations are along the z-axis only, x-axis and y-axis motion 

tracking charts are not shown.  

In the far sensing zone: Figure 132 shows the motion charts produced by the far 

sensor and the laser tracker. 

  

Figure 132: Wheel hub positions - far sensor and the laser tracker (z-axis) 

In the near sensing zone: Figure 133 shows the motion charts produced by the 

near sensor and the laser tracker. Table 35 shows the angular positions of the 

wheel hub measured over 10 iterations for this motion pattern. 

  

Figure 133: Wheel hub positions - near sensor and the laser tracker (z-axis) 

Table 35: First wheel hub stud angle and its standard deviation (10 iterations) 
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Appendix C: Sensor setup for wheel loading case study 

The use of Kinect sensors in a real manufacturing environment to obtain live 

moving assembly data is relatively new in literature. Little is known on the 

optimum sensor positioning parameters and their influence on data capture 

precision and accuracy, such as the perpendicular distance of the sensor from 

the objects to be tracked and the sensor face plane angle with respect to the 

assembly line plane. Therefore, experiments are conducted to determine the 

effects of variations in sensor positions on the measured data and to obtain the 

optimum setup for data capture (Figure 134).  

 
Figure 134: The experiment setup for optimising sensor positioning parameters 

The impact of distance of the sensor from the observed object  

It was observed that at a distance of 950mm and above, the features of the 

wheel were too small to be rendered in the depth image whereas the minimum 

distance below which the feature recognition algorithm does not work is 

700mm. Therefore, the distance between the sensor and the wheel was varied 

from 700mm to 950mm and the optimum distance of 850mm was obtained with 

the least standard deviation of 0.28o (Figure 135).  

  
Figure 135: Impact of sensor distance on feature recognition precision 

The impact of sensor face angle with respect to the object plane 

The feature recognition algorithm uses depth values of the pixels corresponding 

to the object being tracked to recognise features and measure its angular 



 

 290 

positions. Therefore, it is expected that the sensor face (Figure 136) is perfectly 

parallel (relative angle of zero) to the object face plane at all times. 

 

Figure 136: Impact of sensor face plane angle on the depth image capture 

However, this is difficult to achieve in a real manufacturing scenario and 

therefore, it is necessary to find the angle range within which the proposed 

method can work. The effect of sensor face angle with respect to the wheel face 

plane on feature recognition effectiveness was investigated by varying the 

sensor face angle from -20o to 20o. The results below show that the feature 

recognition works reliably only within the -10o to 10o range (Figure 137). 

 

Figure 137: Alignment feature recognition at different sensor face plane angles 

Impact of number of frames used for averaging 

In this study, the cumulative averaging technique is used to reduce the 

measurement errors while obtaining the angular positions of the alignment 

features on the wheel and the moving wheel hub. The sensor produces 30 

depth image frames per second and the algorithm processes each image to 

recognise the features and measure their angular positions. Because of the 
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noise present in the sensor depth data, measurement obtained from only one 

frame does not suffice. Therefore, angular positions measured from multiple 

frames are averaged to determine the final angular positions. The number of 

frames averaged was varied from 1 frame (no averaging) to 120 frames and the 

optimum number of frames was found to be 45 with the least standard deviation 

of 0.17o (Figure 138). Averaging over 45 frames results in a delay of 1.5 

seconds to obtain the angular position result, which is satisfactory.  

 
Figure 138: Number of frames averaged impact the data accuracy 

Impact of IR interference between the two Kinect sensors 

A depth sensor is an Infra-Red (IR) light emitting device, which measures depth 

by processing the IR waves that are reflected back to it from the surfaces in its 

view. Therefore, when two or more sensors are used to observe the same 

scene, the IR waves emitted by the sensors interfere with each other causing 

significant noise in depth data obtained from both sensors (Maimone and 

Fuchs, 2012). Due to this constraint, the far and near sensors are time-

multiplexed to avoid their simultaneous operation (Figure 139). 

 

Figure 139: Depth images (a) with IR interference and (b) without IR interference 

(a) (b) 
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Accuracy of depth sensor motion tracking 

In this work, motion data captured by the depth sensors is compared with that 

obtained from the industry standard laser tracker. Hence, the error in depth 

sensor motion data is computed relative to the motion data produced by the 

laser tracker. The motion parameters used for the relative error computation are 

values of motion speed, deviation amplitude and deviation frequency for all 5 

motion patterns averaged over 10 iterations each (Table 36).  

Table 36: Relative errors in depth sensor motion tracking data 

 

From the above results it can be noted that the near sensor is more accurate in 

motion tracking than the far sensor due to its closer proximity to the moving 

wheel hub that enables it to capture better depth images of the wheel hub. It 

can also be noted, that the near sensor is able to better track the motion 

deviations of the wheel hub with lower deviation frequency error than the far 

sensor. Therefore, there is significantly less lag in tracking motion deviations of 

the moving hub in the near sensing zone than in the far sensing zone while 

maintaining the error difference between them. Finally, from the error values of 

motion pattern 4 and 5, it can be observed that the depth sensors are less 

accurate in tracking motion in the depth axis (z-axis) than in the other two axes. 

This phenomenon could be linked to the way in which the sensors calculate the 

depth values of pixels in the 3D scene by way of interpolation based on the 

structured light technique (Cruz et al., 2012) rather than absolute depth 

measurement.  

The measurement of wheel hub speed along the direction of motion is critical to 

determining the position and time at which to load the wheel. In this study, the 



 

 293 

error in measurement of average wheel hub speed ranges from 0.15mm/s to 

8.06mm/s (Table 36). 

Contrary to expectation, the far sensor average speed errors are lower than 

those of the near sensor for all motion patterns. However, on closer observation 

the error spread along the entire tracked motion is more erratic for the far 

sensor than that of the near sensor, an example of which is shown in Figure 

140. 

(a)   

(b)   

Figure 140: Speed values computed by (a) the far sensor and (b) the near sensor 

and the laser tracker 
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Appendix D: Comparison study of Kinect V1 and Kinect 

V2 

Comparison of specifications and features 

The specifications and features of the Kinect sensors that are useful in the 

context of this research are compared in Table 37 where the data is obtained 

from Duncan (2014) and Smeenk (2015). 

Table 37: Comparison between Kinect V1 and Kinect V2 

Specification/Feature Kinect V1 Kinect V2 

Colour (RGB) camera 
resolution and frame rate 

640 x 480 pixels @ 30 
frames per second (fps) 

1920 x 1080 @ 30 fps 

Depth camera resolution 
and frame rate 

320 x 240 @ 30 fps 512 x 424 @ 30 fps 

Depth imaging technology Structured light technique 
(Cruz et al., 2012) 

Time of flight technique 
(Conde et al., 2014) 

Maximum depth distance ≈ 4.5m ≈ 4.5m 

Minimum depth distance 40cm 50cm 

Field of view (colour 
camera) 

62
o 
x 48.6

o  

(≈ 10 x 10 pixels per degree)
 

84.1
o 
x 53.8

o  

(≈ 22 x 20 pixels per degree) 

Field of view (depth 
camera) 

58.5
o 
x 46.6

o 

(≈ 5 x 5 pixels per degree) 

70.6
o 
x 60

o 

(≈ 7 x 7 pixels per degree) 

No of full skeletons tracked 2 6 

No of skeletal joints tracked 
per person 

20 (does not include thumb) 26 (including thumb) 

It is evident from the table above that on all but one parameter the Kinect V2 is 

better than Kinect V1.  Enhanced resolutions of colour and depth images result 

in both bigger viewing areas and also the higher precision of the images 

themselves improving the colour image detail and depth image detail by a factor 

of about 4 and 2 respectively. The increased accuracy in depth imaging is also 

because of the time-of-flight method used by Kinect V2 to retrieve the actual 
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depth values of the pixels as opposed to the structured light method used by the 

Kinect V1 resulting in interpolated depth values of pixels.  

The skeletal motion capture capability of the Kinect V2 is also better than that of 

the Kinect V1 in terms of higher number of skeletons/persons being tracked 

simultaneously and the higher number of skeletal joints tracked per person. The 

increased accuracy of the depth imaging is also anticipated to result in 

increased reliability and precision of skeletal motion tracking, a claim that is 

evaluated in the next section.  

Comparison of skeletal motion tracking capability 

The skeletal motion tracking of the two Kinect sensors was compared in an 

experiment that measured two performance parameters that are vital to the 

proposed digitisation framework. 

1. Skeletal tracking accuracy and precision: the ability of the Kinect sensor 

to accurately and precisely provide the spatial positions of the human’s 

hands within the 3D scene captured by the sensor. 

2. Skeletal tracking reliability: the ability of the Kinect sensor to continuously 

and correctly track the human skeleton throughout the duration of the task 

being captured. This parameter is measured in terms of the percentage of 

the total task time that the skeleton was tracked and tracked correctly. 

Skeletal tracking experiment setup 

In this experiment, the human picks up an object and places it on three pre-

defined locations, numbered 1, 2 and 3, on a table, first using the right hand and 

then the left hand. The X and Y positions of these locations are based on the 

screen coordinates in pixels whereas the Z position is based on the distance of 

these locations from the Kinect sensor. The skeletal tracking accuracy could be 

measured only along the Z-axis because the Kinect measurements could be 

compared with measurements taken by a measuring tape. The skeletal tracking 

precision however was measured along all 3 axes. The human’s skeleton is 

tracked by the Kinect sensor, which records the spatial positions of the human’s 

hands throughout the task. The sensor was placed at a height of 1.2m from the 
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floor and the 3 locations; L1, L2 and L3 for object placement were at a distance 

of 900mm, 1200mm and 1500mm respectively from the sensor (Figure 141). 10 

iterations of the experiment were conducted with the Kinect V1 and then with 

Kinect V2 and the tracking data obtained was analysed.  

 

Figure 141: Experiment setup for skeletal tracking comparison between Kinect 

V1 and V2 

Results 

Skeletal tracking accuracy and precision 

The spatial positions of the human’s left and right hand captured by the Kinect 

sensor for the entire duration of the task are stored in a CSV file without any 

post-processing. These positions are plotted against the image frame number 

from which they came in the following motion charts. The charts also show the 3 

pre-defined locations at which the objects were placed by the human hands.  
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Figure 142: Motion plot of the human hands during the task captured by Kinect 

V1 (left) and Kinect V2 (right) 
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From the hand motion plots above, it is evident that the skeletal tracking data  

provided by Kinect V2 contains significantly less noise then that by Kinect V1 

and therefore is more reliable. The z-positions of the left and right hands as 

obtained from the two Kinect sensors when the human places the object at the 

3 pre-defined locations (L1, L2 and L3) is presented in Table 38. The values are 

averaged across the 10 task iterations and are compared against the known 

location values to gauge the accuracy of skeletal tracking and the standard 

deviation of values across 10 iterations is computed to gauge the precision of 

skeletal tracking. It must be noted that the object is 50mm in width and breadth 

and therefore for the sake of simplifying the error computation, the hand z-

position are compared against the z-positions of the object location plus 50mm.   

Table 38: Spatial z-positions of the human hands during object placement 

Hand 

Kinect V1 (mm) Kinect V2 (mm) 

L1 L2 L3 L1 L2 L3 

Left 1519 1211 910 1540 1237 927 

Error 31 39 40 10 13 23 

Std. Dev. 39 45 51 15 19 22 

Right 1523 1216 915 1537 1239 935 

Error 27 34 35 13 11 15 

Std. Dev. 31 41 45 17 15 19 

From these results it can be noted that the skeletal tracking of Kinect V2 is 

considerably more accurate and precise than Kinect V1. The above values are 

for the human’s hand joints but the same is likely to be true for the rest of the 

skeletal joints because from past observations, the hand joint values are the 

most error and noise prone of all the skeletal joint positions provided by both 

Kinect V1 and V2 sensors.  

Skeletal tracking reliability 

This parameter is the ability of the Kinect sensor to continuously and correctly 

track the human skeleton throughout the duration of the task. To simplify the 
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process of counting the number of times the skeleton was tracked incorrectly, 

the total task time of 18 seconds is divided into 9 equal intervals of 2 seconds 

each. The tracked skeleton, which can be seen overlaid on top of the human in 

the RGB video (Figure 141), is visually monitored during each interval and all 

intervals that show at least one instance of incorrect tracking are counted as 

bad intervals. The skeletal tracking reliability is then obtained by calculating the 

percentage of bad intervals among the total 9 intervals.  

Both Kinect V1 and V2 sensors were able to continuously track the human 

skeleton for all 9 intervals during all 10 iterations of the task. Therefore, the 

tracking availability percentage is 100% for both the sensors. However, the 

Kinect V1 sensor correctly tracked the skeleton for an average of only 4 out of 

the 9 intervals over the 10 iterations of the task, resulting in tracking correctness 

percentage of 44.4%. Whereas, the Kinect V2 sensor correctly tracked the 

skeleton for an average of 8 out of the 9 intervals over the 10 iterations of the 

task, resulting in tracking correctness percentage of 88.8%, which is double that 

of the Kinect V1 sensor.  Therefore, in skeletal tracking accuracy, precision and 

reliability, the Kinect V2 is superior in performance to Kinect V1. 

Comparison of object recognition capability 

Object recognition is not an out-of-the-box feature provided by the Kinect 

sensors. This feature is developed by writing bespoke RGB and depth image 

processing algorithms that identify a pattern of pixels belonging to objects O1, 

O2 and O3 in the 3D scene by tracking changes in their RGB or depth values. 

The quality of object detection of the Kinect V1 and V2 sensors can therefore be 

compared by analysing the RGB and depth values that are associated with the 

same object that is placed at the same location with respect to the two sensors.  

An experiment was setup for this purpose in which three objects of the same 

kind were placed at different distances from the Kinect sensor, which is 

mounted on a tripod at a height of 1.2m from the floor. An imaginary horizontal 

line is drawn that crosses all the 3 objects at the same height and the RGB and 

depth values of all the pixels belonging to that line are captured and analysed 
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(Figure 143). Each experiment was run for 10 iterations and then repeated by 

changing the Kinect sensor from V1 to V2.  

 

Figure 143: Experiment setup for object recognition comparison  

Results 

Colour and depth profile 

The red, green and blue values of all the pixels on the horizontal reference line 

are recorded from 10 colour images of the same scene taken by the Kinect V1 

and V2 sensors. The depth values of the same pixels were also recorded from 

the 10 depth images and compared with the actual values. These values and 

their standard deviations across the 10 readings are tabulated in Table 39. 

Table 39: Average colour and depth values of objects O1, O2 and O3 

Object 

Kinect V1 Kinect V2 

Red 

(Std. 
Dev.) 

Green 

(Std. 
Dev.) 

Blue 

(Std. 
Dev.) 

Depth 

(Error) 
(Std. 
Dev.) 

Red 

(Std. 
Dev.) 

Green 

(Std. 
Dev.) 

Blue 

(Std. 
Dev.) 

Depth 

(Error) 
(Std. 
Dev.) 

1 
215.0 
(0.43) 

218.2 
(0.32) 

210.4 
(1.00) 

1522.5 
(22.5) 
(1.34) 

192.0 
(0.40) 

204.7 
(0.39) 

208.5 
(0.57) 

1507.0 
(7.0) 

(1.38) 

2 
231.2 
(0.68) 

233.6 
(0.67) 

230.2 
(0.69) 

1217.9 
(17.9) 
(1.24) 

202.8 
(0.74) 

214.6 
(0.50) 

218.3 
(0.70) 

1195.0 
(5.0) 

(0.71) 

3 
189.1 
(0.54) 

194.5 
(0.32) 

183.7 
(1.00) 

908.0 
(8.0) 

(0.32) 

177.2 
(0.65) 

189.3 
(0.38) 

193.0 
(0.83) 

907.0 
(7.0) 

(0.00) 

The colour and depth images and the corresponding charts with colour and 

depth values plotted against the pixel number for the two Kinect sensors are 

shown in Figure 144.  
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Kinect V1 

 
Kinect V2 

Figure 144: Colour and depth profiles of the horizontal reference line 
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From the above colour and depth profiles, it can be observed that the Kinect V2 

performs slightly better than Kinect V1 both in terms of the reproducibility of 

pixel colour and depth values across the 10 experiment runs as well as the 

accuracy of the pixel depth values. The images produced by Kinect V2 look 

sharper and provide a greater level of detail as compared to Kinect V1 due to 

higher resolution of its colour and depth cameras.  
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Appendix E: Kinect V2 in the Ikea table assembly case 

study 

A change in the original experiment setup was required to capture this task. The 

new setup (Figure 145) uses the two versions of the Kinect simultaneously. 

 

Figure 145: New experiment setup for digitisation of Ikea table assembly task 

Only the ‘Capture’ step (first step) of the digitisation framework was repeated 

with the new experiment setup. The main aim was to obtain better human 

skeletal tracking data in terms of accuracy and reliability with the Kinect V2 and 

replace the original Kinect V1 data in the already identified and modelled human 

action states. No other change in the framework or its implementation in this 

case study is required as a result of introducing the Kinect V2. 

Human action capture with the Kinect V2 

New skeletal joints such as wrist, hand tip and thumb were captured along with 

the other standard upper body joints by using the Kinect V2. The tracking data 

for the hand motion is shown in Figure 146 below along with the original Kinect 

V1 data for visual comparison.  
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Kinect V1 Kinect V2 

Figure 146: Hand motion charts for Kinect V1 and V2 

The skeletal tracking data of Kinect V2 is more representative of the actual 

human action performed during the table assembly task. While this fact may not 

be clearly inferred from the hand motion charts above, the following images 

(Figure 147) demonstrate some instances where the Kinect V1 failed to provide 

correct hand motion tracking unlike the Kinect V2, which correctly tracked the 

human skeleton for the entire duration of the task.  
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Kinect V1 (incorrect skeletal tracking) Kinect V2 (correct skeletal tracking) 

Figure 147: Skeletal tracking differences between Kinect V1 and V2 

Thus the Kinect V2 has proven to be an effective and reliable tool to capture 

human actions during the assembly task. Kinect V1 continues to be used for 

workpiece progress tracking until a method is found to correlate the depth 

image pixels with the colour image pixels within the development platform used 

in this research. 


