9 research outputs found

    Image Enhancement in Foggy Images using Dark Channel Prior and Guided Filter

    Get PDF
    Haze is very apparent in images shot during periods of bad weather (fog). The image's clarity and readability are both diminished as a result. As part of this work, we suggest a method for improving the quality of the hazy image and for identifying any objects hidden inside it. To address this, we use the picture enhancement techniques of Dark Channel Prior and Guided Filter. The Saliency map is then used to segment the improved image and identify passing vehicles. Lastly, we describe our method for calculating the actual distance in units from a camera-equipped vehicle of an item (another vehicle).Our proposed solution can warn the driver based on the distance to help them prevent an accident. Our suggested technology improves images and accurately detects vehicles nearly 100% of the time

    Endoscopic video defogging using luminance blending.

    Get PDF
    Endoscopic video sequences provide surgeons with direct surgical field or visualisation on anatomical targets in the patient during robotic surgery. Unfortunately, these video images are unavoidably hazy or foggy to prevent surgeons from clear surgical vision due to typical surgical operations such as ablation and cauterisation during surgery. This Letter aims at removing fog or smoke on endoscopic video sequences to enhance and maintain a direct and clear visualisation of the operating field during robotic surgery. The authors propose a new luminance blending framework that integrates contrast enhancement with visibility restoration for foggy endoscopic video processing. The proposed method was validated on clinical endoscopic videos that were collected from robotic surgery. The experimental results demonstrate that their method provides a promising means to effectively remove fog or smoke on endoscopic video images. In particular, the visual quality of defogged endoscopic images was improved from 0.5088 to 0.6475

    Transmission Map and Atmospheric Light Guided Iterative Updater Network for Single Image Dehazing

    Full text link
    Hazy images obscure content visibility and hinder several subsequent computer vision tasks. For dehazing in a wide variety of hazy conditions, an end-to-end deep network jointly estimating the dehazed image along with suitable transmission map and atmospheric light for guidance could prove effective. To this end, we propose an Iterative Prior Updated Dehazing Network (IPUDN) based on a novel iterative update framework. We present a novel convolutional architecture to estimate channel-wise atmospheric light, which along with an estimated transmission map are used as priors for the dehazing network. Use of channel-wise atmospheric light allows our network to handle color casts in hazy images. In our IPUDN, the transmission map and atmospheric light estimates are updated iteratively using corresponding novel updater networks. The iterative mechanism is leveraged to gradually modify the estimates toward those appropriately representing the hazy condition. These updates occur jointly with the iterative estimation of the dehazed image using a convolutional neural network with LSTM driven recurrence, which introduces inter-iteration dependencies. Our approach is qualitatively and quantitatively found effective for synthetic and real-world hazy images depicting varied hazy conditions, and it outperforms the state-of-the-art. Thorough analyses of IPUDN through additional experiments and detailed ablation studies are also presented.Comment: First two authors contributed equally. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Project Website: https://aupendu.github.io/iterative-dehaz

    Electrification of Smart Cities

    Get PDF
    Electrification plays a key role in decarbonizing energy consumption for various sectors, including transportation, heating, and cooling. There are several essential infrastructures for a smart city, including smart grids and transportation networks. These infrastructures are the complementary solutions to successfully developing novel services, with enhanced energy efficiency and energy security. Five papers are published in this Special Issue that cover various key areas expanding the state-of-the-art in smart cities’ electrification, including transportation, healthcare, and advanced closed-circuit televisions for smart city surveillance

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Improved Dark Channel Prior for Image Defogging Using RGB and YCbCr Color Space

    No full text
    corecore