419 research outputs found

    Cryptanalysis of a computer cryptography scheme based on a filter bank

    Get PDF
    This paper analyzes the security of a recently-proposed signal encryption scheme based on a filter bank. A very critical weakness of this new signal encryption procedure is exploited in order to successfully recover the associated secret key.Comment: 6 pages, 1 figur

    A 1 Gbps Chaos-Based Stream Cipher Implemented in 0.18 m CMOS Technology

    Get PDF
    In this work, a novel chaos-based stream cipher based on a skew tent map is proposed and implemented in a 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) technology. The proposed ciphering algorithm uses a linear feedback shift register that perturbs the orbits generated by the skew tent map after each iteration. This way, the randomness of the generated sequences is considerably improved. The implemented stream cipher was capable of achieving encryption speeds of 1 Gbps by using an approximate area of ~20,000 2-NAND equivalent gates, with a power consumption of 24.1 mW. To test the security of the proposed cipher, the generated keystreams were subjected to National Institute of Standards and Technology (NIST) randomness tests, proving that they were undistinguishable from truly random sequences. Finally, other security aspects such as the key sensitivity, key space size, and security against reconstruction attacks were studied, proving that the stream cipher is secure

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    Generative Adversarial Networks for Classic Cryptanalysis

    Get PDF
    The necessity of protecting critical information has been understood for millennia. Although classic ciphers have inherent weaknesses in comparison to modern ciphers, many classic ciphers are extremely challenging to break in practice. Machine learning techniques, such as hidden Markov models (HMM), have recently been applied with success to various classic cryptanalysis problems. In this research, we consider the effectiveness of the deep learning technique CipherGAN---which is based on the well- established generative adversarial network (GAN) architecture---for classic cipher cryptanalysis. We experiment extensively with CipherGAN on a number of classic ciphers, and we compare our results to those obtained using HMMs

    Security and complexity of the McEliece cryptosystem based on QC-LDPC codes

    Full text link
    In the context of public key cryptography, the McEliece cryptosystem represents a very smart solution based on the hardness of the decoding problem, which is believed to be able to resist the advent of quantum computers. Despite this, the original McEliece cryptosystem, based on Goppa codes, has encountered limited interest in practical applications, partly because of some constraints imposed by this very special class of codes. We have recently introduced a variant of the McEliece cryptosystem including low-density parity-check codes, that are state-of-the-art codes, now used in many telecommunication standards and applications. In this paper, we discuss the possible use of a bit-flipping decoder in this context, which gives a significant advantage in terms of complexity. We also provide theoretical arguments and practical tools for estimating the trade-off between security and complexity, in such a way to give a simple procedure for the system design.Comment: 22 pages, 1 figure. This paper is a preprint of a paper accepted by IET Information Security and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital Librar
    corecore