
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 9-12-2021

Generative Adversarial Networks for Classic Cryptanalysis Generative Adversarial Networks for Classic Cryptanalysis

Deanne Charan

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1034&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1034&utm_medium=PDF&utm_campaign=PDFCoverPages

Generative Adversarial Networks for Classic Cryptanalysis

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Deanne Charan

August 2021

© 2021

Deanne Charan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Generative Adversarial Networks for Classic Cryptanalysis

by

Deanne Charan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

August 2021

Dr. Mark Stamp Department of Computer Science

Dr. Fabio Di Troia Department of Computer Science

Dr. Mike Wu Department of Computer Science

ABSTRACT

Generative Adversarial Networks for Classic Cryptanalysis

by Deanne Charan

The necessity of protecting critical information has been understood for millennia.

Although classic ciphers have inherent weaknesses in comparison to modern ciphers,

many classic ciphers are extremely challenging to break in practice. Machine learning

techniques, such as hidden Markov models (HMM), have recently been applied with

success to various classic cryptanalysis problems. In this research, we consider the

effectiveness of the deep learning technique CipherGAN---which is based on the well-

established generative adversarial network (GAN) architecture---for classic cipher

cryptanalysis. We experiment extensively with CipherGAN on a number of classic

ciphers, and we compare our results to those obtained using HMMs.

ACKNOWLEDGMENTS

I would like to express my gratitude to my project advisor, Dr. Mark Stamp

for his encouragement, guidance and support throughout my graduate studies. He

provided the inspiration for this project by introducing the topics covered in this

research through his coursework.

A very special thanks to my committee member, to Dr. Fabio Di Troia for

helping me finalize my research topic.

I would also like to thank my committee member Dr. Mike Wu for his time and

guidance.

Finally, I would also like to thank my friends and family for their support

throughout the duration of my Master’s at San Jose State University.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Cryptography . 3

2.2 Classic Crypto Basics . 4

2.2.1 Simple Substitution Cipher 4

2.2.2 Homophonic Substitution Cipher 5

2.3 Deep Learning . 7

2.3.1 GPT-2 . 8

2.3.2 Transformers . 8

2.3.3 GAN . 9

2.3.4 CycleGAN . 9

2.3.5 CipherGAN . 10

2.4 HMM . 11

2.5 The Zodiac Cipher . 12

3 Related Work . 14

3.1 GPT-2 . 14

3.2 CipherGANs . 14

3.3 HMMs . 15

4 Experiments . 17

4.1 Data . 17

vi

vii

4.2 Overview . 17

4.3 Setup . 18

4.4 Discussion . 19

5 Conclusion . 29

LIST OF REFERENCES . 31

LIST OF TABLES

1 The key of a Caesar cipher with shift 3 5

2 The Vigenère key . 6

3 Vigenère enciphering . 7

4 Bauer’s Z340 putative decryption of first 8 lines 13

5 Hyper-parameter combinations experimented with 18

6 HMM training results . 20

7 Accuracy Of CipherGAN vs data 20

8 Accuracy Of CipherGAN for number of steps vs vocabulary size
with characters . 21

9 Accuracy Of CipherGAN for number of steps vs vocabulary size
with words . 21

10 Maximum accuracy achieved while training 27

11 Maximum accuracy achieved while training for shift cipher 27

viii

LIST OF FIGURES

1 Crypto as a black box . 3

2 English letter relative frequencies 5

3 From left to right the discriminators regularized using: nothing;
WGAN Jacobian norm regularization; and, relaxed sampling. . . 10

4 Hidden Markov model . 12

5 Accuracy vs data size vs restarts (200 iterations) 19

6 For vocab type char and key size 3: Training Steps vs Accuracy vs
Vocab size . 22

7 For vocab type words and key size 3: Training Steps vs Accuracy
vs Vocab size . 22

8 For vocab type char and key size 4: Training Steps vs Accuracy vs
Vocab size . 23

9 For vocab type words and key size 4: Training Steps vs Accuracy
vs Vocab size . 24

10 For vocab type char and key size 5: Training Steps vs Accuracy vs
Vocab size . 24

11 For vocab type words and key size 5: Training Steps vs Accuracy
vs Vocab size . 25

12 For vocab type char and key size 6: Training Steps vs Accuracy vs
Vocab size . 25

13 For vocab type words and key size 6: Training Steps vs Accuracy
vs Vocab size . 26

14 For vocab type char and key size 7: Training Steps vs Accuracy vs
Vocab size . 26

15 For vocab type words and key size 7: Training Steps vs Accuracy
vs Vocab size . 27

ix

x

16 For vocab type ’char’ and key 3: Training Steps vs Accuracy vs
Vocab size . 28

17 For vocab type ’words’ and key 3: Training Steps vs Accuracy vs
Vocab size . 28

CHAPTER 1

Introduction

Converting information into a ‘‘secret code’’ that is capable of hiding the true

meaning is defined as encryption, while decryption is the inverse operation. Cryptog-

raphy is the art and science of creating encryption and decryption systems. On the

other hand, the art of cracking encrypted messages is cryptanalysis [1].

Throughout time, people have realized the importance of keeping critical informa-

tion secret but accessible to a select few. Many classic ciphers have played a critical

role in history. For example, the successful cryptanalysis of the German Enigma and

Japanese Purple ciphers [2] shortened the World War II and saved thousands of lives.

Although classic ciphers have been supplanted by more secure modern ciphers,

many classic ciphers can be difficult to break in practice. For example, the Zodiac 340

(Z340) cipher was created in the late 1960s by the infamous Zodiac serial killer. In spite

of intense cryptanalysis, the Z340 remained unsolved for more than half a century [3].

Modern machine learning techniques have been applied to classic ciphers. For

example, Stamp et al. [4] use Hidden Markov models (HMM) to attack classic

substitution ciphers. Generative adversarial networks (GAN) have also been proposed

for classic cryptanalysis problems [5]. In this research, we carefully compare the

capabilities of Hidden Markov Models and suitably modified Generative Adversial

Networks as techniques for attacking classic substitution ciphers.

The remainder of this paper is organized as follows. In Chapter 2, we introduce

topics relevant to text generation using deep learning as well as some background in

cryptography in order to better understand our approach. We then dwell on work

that inspired this paper as well as previous work related to this research in Chapter 3.

In Chapter 4 the experimental setups in which the models of interest are trained

is explained. The results are discussed alongside comparisons with previous work.

1

Finally, in Chapter 5 we summarize our findings regarding the effectiveness and

efficiency of the models studied.

2

CHAPTER 2

Background

This chapter introduces relevant concepts for a concise understanding of the

topics used in this research. We start with Cryptography essentials as a refresher,

followed by some theoretical background on the models used. The explanation is

limited to the most crucial aspects of the working of the models and the necessary

backdrop for each.

2.1 Cryptography

Cryptography is to use a system to encrypt data. That is, the data or a message,

is to be kept hidden by the means of confusion and diffusion as per Claude Shannon’s

Communication Theory of Secrecy Systems [6]. The letters of the original message need

to be jumbled up amongst each other, this is diffusion. The letters being substituted

for each other with certain rules defined within the cryptosystem, is confusion.

The original message called the plaintext is encrypted via a cipher or cryptosystem,

and the resulting encryption is called the ciphertext. If we can convert the ciphertext to

the plaintext, this process is called decryption. In classic cryptography, or symmetric

cryptography, the processes of encryption and decryption are done by using a key [1].

Figure 1 is a visual depiction of a cryptosystem.

Key

?

Plaintext -Encrypt ��B
BB�
��B
BB�
��B
BB�
��B
BB�
��B
BB��
-

Ciphertext
Decrypt

?

Key

Plaintext-

Figure 1: Crypto as a black box

If we view cryptology as some kind of black box [7], it is easy to understand the

choice of employing neural networks. Given that in neural networks we feed large

3

amounts of data to the network, guide it towards a certain learning but it devises its

own system of understanding the data.

Cryptanalysis is the art of breaking secret codes. In the case of symmetric

cryptography this is done by figuring out the key, the plaintext or both. Thus often,

a cryptanalyst’s goal is to find this key, while machine learning’s target is to find

a suitable solution in a large space of possible solutions; that is searching in large

spaces [8] is common to both cryptanalysis and machine learning.

There are various types of attacks possible in cryptanalysis, depending on the

information available to the attacker. The most basic, of course, being the ciphertext

alone by itself. If this was not available to the attacker, there would be no need for

encryption in the first place. These sorts of attacks are known as ciphertext-only

attacks.

2.2 Classic Crypto Basics

Classical encryption involves the usage of a secret key. This means that the

parties that need to access the message must know the key in order to do so. The

actual channel of transmission though, is unsafe. Therefore, the message is encrypted

and near impossible to decrypt without a key. This section introduces several classical

substitution ciphers alongside traditional cryptanalytic methods to attack them.

2.2.1 Simple Substitution Cipher

A good example of a substitution cipher is the Caesar cipher. The key size is 26,

i.e. the size of the original alphabet of the plaintext. Each symbol corresponds to a

new symbol in the cipher text. There is a one-to-one correspondence. In the case of

Caesar cipher, each letter is shifted cyclically to correspond to another letter in the

cipher text. The key in the following system in Figure 1 is 3 and English letters in

the plaintext are mapped to English letters in the ciphertext. The following key is

4

used in the encryption and decryption process.

Table 1: The key of a Caesar cipher with shift 3

Plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z
Ciphertext d e f g h i j k l m n o p q r s t u v w x y z a b c

Caesar’s cipher is usually broken using letter frequency analysis. Letter frequencies,

that is how often a letter shows up in a language can be used to match cipher symbols

and plaintext symbols. This is why confusion is simply not enough. Diffusion too must

be employed as in more advanced ciphers explained in the following Section 2.2.2.

2.2.2 Homophonic Substitution Cipher

In Homophonic Substitution, a plaintext symbol can map to more than one

ciphertext symbol [9]. This diffuses the letter frequency statistics across the ciphertext

which can be seen in Figure 2. For example, the most common alphabet in English,

‘E’, can map to 3 ciphertext symbols and have its occurrences distributed over these

symbols to throw off frequency analysis.

a b c d e f g h i j k l m n o p q r s t u v w x y z
0.00

0.05

0.10

0.15

0.
08

17
0.

01
49 0.
02

78 0.
04

25
0.

12
70

0.
02

23
0.

02
02

0.
06

09
0.

06
97

0.
00

15
0.

00
77

0.
04

03
0.

02
41

0.
06

75
0.

07
51

0.
01

93
0.

00
10

0.
05

99
0.

06
33

0.
09

06
0.

02
76

0.
00

98 0.
02

36
0.

00
15 0.

01
97

0.
00

07

R
el

at
iv

e
fre

qu
en

cy

Figure 2: English letter relative frequencies

5

2.2.2.1 Vigenère cipher

The Vigenère cipher named after a French mathematician, is an example of a

polyalphabetic cipher. An example of how it works can be explained starting with the

aid of the table in Figure 2

Table 2: The Vigenère key

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Considering an encryption with the key as "CAT" and the secret message

ATTACKNOW.

The first letter of the plaintext is A and the first letter of the key is C, so one must

look at row A and column C, which gives the letter C itself. The next letter would be

in row T until the column A which once again would be T itself. But for the third

letter, one would look at the row T until the column T which would give us the letter

M. The rest of the message would be translated as in the following Table 3.

We can see the same letter in the ciphertext such as "P", translates back to more

6

Table 3: Vigenère enciphering

Key C A T C A T C A T
Plaintext A T T A C K N O W

Ciphertext C T M C C D P O P

than one plaintext symbol, hence this is super effective against frequency analysis

type attacks.

2.3 Deep Learning

Neural Networks with a lot of hidden layers and a large number of parameters

have been on a steady rise. Especially among larger corporations which can afford to

invest in the resource intensive technology. Neural Networks are a series of layers,

each of which are comprised of nodes. These nodes perform a series of computations

on the input sequence, that converts the input into a desired output. The training

phase is what controls and enables this “desirable” result. Depending on the task at

hand, if it’s classification of the data, the output would be whichever corresponding

class, represented by a number that the input sequence belongs to. This is done by

“telling” the network, the correct class for each of the training data sequences. Thus,

this is called Supervised training [10], where the desired output is labelled for the

network via the training data.

Unsupervised training involves feeding in a large amount of data to the Neural

Network and it must learn to recognize patterns in this data [11]. Note that in both

Unsupervised and Supervised learning, a technique called backpropagation [12] is

used to train the model. That is, the parameters under training that are used for the

computations in the nodes are updated based on the gradient of the derivatives using

the chain rule. The gradient itself is like a feedback signal (that is directed to flow

backwards through the nodes, hence "backwards propagation") to denote how close

the output of this particular training round was to the actual desirable output.

7

2.3.1 GPT-2

GPT-2 [13] is a large transformer-based language model with 1.5 billion parameters,

trained on a dataset of 8 million web pages. GPT-2 is trained with a simple objective:

predict the next word, given all of the previous words within some text. GPT-2

generates synthetic text samples in response to the model being primed with an

arbitrary input. The model is chameleon-like—it and adapts to the style and content

of the conditioning texts. GPT-2 achieves state-of-the-art scores on a variety of

domain specific language modeling tasks.

The model is not trained on any of the data specific to any of these tasks and

is only evaluated on them as a final test; this is known as the “zero-shot” setting.

GPT-2 outperforms models trained on domain-specific datasets (e.g. Wikipedia, news,

books) when evaluated on those same datasets. This makes it perfect for imitating

the manner of speaking of a particular style of writing.

2.3.2 Transformers

Transformers of Vaswani et al. [14] have become supremely popular and successful

with sequence modelling applications such as text generation. The main operation of a

transformer is the self-attention mechanism. The purpose of which is to determine how

important all other words in a sentence are w.r.t. a particular word. Since it is a kind

of weighted average this makes in highly parallelizable. In the case of text generation,

each word is converted into an embedding vector. If we feed this embedding layer

into the self-attention layer, the output is another sequence of vectors.

A key reason for using the self-attention mechanism is that it sees the input as

a set, not a sequence. This makes sense at an intuitive level, as the ciphertext will

belong to one set of mappings withing the cryptosystem. Though it must be noted

that self-attention ignores the sequential nature of the input since it is permutation

8

equivariant. This is compensated either by having position embeddings or encodings.

2.3.3 GAN

Generative Adversial Networks which were introduced by Goodfellow et al. [15]

consists of a generator and a discriminator. The generator usually produces an image

belonging to a target domain, while the discriminator that’s been trained on the actual

data of that domain, tries to correctly guess whether or not an image is sampled from

the domain or generated by the Generator. Traditionally GANs are used for image

synthesis and not usually applied to a discrete domain like language, this is addressed

in a later section.

2.3.4 CycleGAN

CycleGANs [16] are capable of learning unsupervised translation between two

groups of image data. CycleGANs take two pairs of GANs and train them simultane-

ously. The purpose is to maintain what is known as cycle consistency. A new cycle

loss term is added along with the usual loss terms associated with the GAN pair. It is

to be noted that the optimization is to be done with both of the pairs of GANs being

trained and the cycle loss term. The purpose of the cycle loss can be explained with

the help of an example.

Suppose the CycleGAN needs to learn to convert images of nature from summer

(𝑋) to winter (𝑌). The GANs will be broken up as follows. The first generator 𝐹

learns to generate a winter image of a summer input image, i.e., from 𝑋 to 𝑌 . The

discriminator 𝐷𝑌 distinguishes between real images of 𝑌 and 𝑌 . The second GAN

pair is trained to convert and distinguish in the opposite direction i.e. from 𝑌 to 𝑋

and between 𝑋 and 𝑋̃ correspondingly. The most important point to note is that

the second GAN could aim to convert the images 𝑌 to 𝑋̃ while the GANs are being

trained. Thus, for a cycle of converting one image to winter and then back to summer

9

the images must be consistent, which is known as cycle consistency [16].

2.3.5 CipherGAN

CipherGANs are a neural network architecture based on CycleGANs that are

capable of unsupervised machine translation between two “languages” [5]. In this case

it is capable of learning to translate between plaintext and ciphertext banks of data

of a particular encryption key for certain crypto-systems.

CipherGAN addresses the problem of uninformative discrimination that usually

shows up when the data is discrete. Compare this scenario, of a continuous distribution

over a discrete distribution, to the data being represented as a standard simplex of

dimension 𝑘. If a produced sample lies somewhere within the simplex as opposed to a

vertex (where the vertex is a possible desired discrete point), the discriminator must

be able to distinguish between a point closer to the desired vertex. This problem was

addressed in Gomez et al. [5] by using an appropriate regularization term coupled

with continuous relaxations of the discrete random variables. The latter was done

by having the discriminator operate over the embedding space rather than directly

on the Softmax vectors [17]. This was called the relaxed sampling technique and it

was capable of dividing the space within the simplex (considering the data is discrete)

as illustrated in the Figure 3, taken directly from the CipherGAN paper [5] with the

right-most being the most informative. The shaded colors represent the ability to

discriminate between a point closer to the desired simplex (the bottom right vertex in

this case) and one further away from it, such as in the darker regions.

Figure 3: From left to right the discriminators regularized using: nothing; WGAN
Jacobian norm regularization; and, relaxed sampling.

10

Additionally, the discriminator was made to operate in the embedding space

instead of over the end vectors from a SoftMax output. This was proven to work

and justified with the understanding that the embedding vectors act as continuous

relaxations of the discrete variables, these continuous relaxations allow for better

feedback during the training phase in the form of a stronger, more informative gradient

signal. Thus, addressing the problem called uninformative discrimination.

2.4 HMM

Hidden Markov Models(HMM) are a part of statistical Markov models.The system

being modeled is assumed to be a Markov process which can be explained with the help

of an example taken from Stamp et al. [18]. Consider a process 𝑌 that is observable

(such as rings in a tree), but depends on another hidden process (Average annual

temperature of that year corresponding to each ring), considered the Markov process

(in this case we cannot go back in time therefore it is hidden). That is, the states

themselves are not observable, and we can only determine probabillistically which

state we are in at a given time, hence the Hidden in HMMs [19]. Suppose a hot year

corresponds to a large ring width and the opposite is true for a colder year. Given the

size of the ring, a probability can be derived using HMMs for the temperature that

year.

Figure 4 is a illustration of the flow of the HMM discussed in the example.

The HMM model can be specified as 𝜆 = (𝐴, 𝐵, 𝜋) [20].The matrix 𝐴 represents

the probability of transition from one state to another. While the matrix 𝐵 is the

probability the process was in a particular state given the observation. The matrix 𝜋

is simply the probability of the initializing in either of the states. All three of these

matrices are row stochastic, that is, each row satisfies the conditions of a discrete

probability distribution.

11

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇 −1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇 −1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 4: Hidden Markov model

Note that the dimensions of (𝐴, 𝐵, 𝜋) correspond to 𝑁 × 𝑁 , 𝑁 × 𝑀 and 1 × 𝑁

respectively. Here, 𝑁 is the number of hidden states(hot or cold year) and 𝑀 is the

number of distinct observation symbols to be determined during training. Training

the HMM is a kind of hill climbing algorithm that optimizes these matrices to converge

to the right solution. Given the nature of the hill climb problem the initializations or

starting values of these matrices before training determines “closest” optima. Thus,

random restarts [21] with different initializations are performed and the best HMM is

obtained.

2.5 The Zodiac Cipher

The Zodiac was a serial killer in the late 60s in California. He sent encrypted

letters describing his crime. He has not been caught yet and one of his letters the Z340

had long haunted cipher experts across the globe. A recent claim had stated that only

the first 8 lines were to be considered. And the entire message is a reverse homophonic

substitution cipher. However this leaves room for a lot of possible alternate solutions

that make perfect sense in English that all fit the reverse homophonic substitution

conditions [3]. Because a single cipher symbol can map to more that one overlapping

plaintext symbol, there can be a very large set of possible solutions, of which many

are likely to make coherent sense in English along with the 1 of these many possible

12

solutions that Bauer which can be seen in the Table 4.

Table 4: Bauer’s Z340 putative decryption of first 8 lines
Row

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
H E R E I T I S I K I L L B O T H

2 17 4* 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
N I G H T A N D D A Y . I L I V E

3 19 33 34 35 36 18* 37 38 14 25* 20 32* 12* 21* 39 0 40
B Y T H E G U N B A R(R)E L A I M ␣

4 41 4 4 42 6* 5* 43 29 7* 44 4* 22* 18* 18 2 30 15
S O Q U I T W I S H I N G F O R G

5 45 46 36* 18 39 47 48 16 10 49 50 8* 18* 51 52 9 53
A M E T O B E O V E R(P)I G I S ␣ M

6 4* 43* 2* 6* 50 5* 22* 54 29* 16* 55 9* 50* 3 15 24 20
I W R I S T N I L O C K S ? N O W

7 21* 49 18* 30* 56 23* 57 15* 37 35 58 14* 7* 27* 39 12 10*

A N G R Y D A N G E R O(U)S . ␣ ␣ I

8 20* 14* 15* 40 31 48 21* 22* 18* 45* 17* 26* 39* 18* 59 12 46*

W O N T C H A N G(E)A N Y O F G A M(E)

If a solution can be found, that minimizes the number of cipher symbols used

as reverse homophones to say, 0: that would be a regular homophonic substitution

cipher. However, this solution was recently proved false by a more plausible solution

to the Z340 which was a complex polyalphabetic substitution cipher along with a

some kind of diagonal transposition after breaking up the ciphertext into chunks.

13

CHAPTER 3

Related Work
3.1 GPT-2

Ciphertext to plaintext can be seen as a kind of unsupervised language translation

as mentioned even in the CipherGAN paper, thus a generative model GPT-2 [13] was

considered for plaintext generation. The model which has been trained on a large

corpus of text data available on the internet is capable of producing coherent sounding

English. The transformer based architecture has good positional understanding and a

very large parameter set. Therefore, while training it for a specialised task, one must

only fine tune it on a smaller data set in order to obtain reasonably compelling results.

Thus, the model was trained to imitate the style of writing of the Zodiac and even

produced several “secret messages” based on different seed words. One could conclude

that the messages make sense to an English reader, albeit with a few grammatical

mistakes, that could be taken as purposeful attempts to mislead attackers. Secondly,

what came about was a very characteristic and convincing style of writing, which

meant that the text produced was not too general to be a possible kind of writing

that is like secretive messages.

Broadly, the two main criteria of this experiment, are applicable to even general

classic cryptanalysis in the following way. The first criteria, was the “Englishness” of

these messages generated, that is they should convey a meaning. The second criteria

were to minimize the number of inconsistencies of plaintext to ciphertext translation

with respect to the cipher key resulting from the generated plaintext in order to

achieve an optima.

3.2 CipherGANs

After having experimented with text generation using neural networks another

type of generation was considered. As explained in the background section, the

14

CipherGAN model is trained for a particular key. Ciphertext samples are generated

with a chosen key for a particular enciphering method. These, along with plaintext

samples are fed into the GAN pairs of the CycleGAN as the corresponding 𝑋 and

𝑌 distributions. The CipherGAN’s accuracy is evaluated on a part of the corpus

excluded from the training source [14] via which the ground-truth accuracy for each

of the two distributions is obtained.

The vocabulary of the CipherGAN is the number of symbols it can understand or

translate. Since it converts all symbols into integers and then finally has an embedding

vector scheme, it is capable of learning a very large set of both plaintext and ciphertext

symbols. It must be noted that the embedding vectors are trained as parameters of

the network.

3.3 HMMs

The ability of an HMM to attack the Vigenère cipher was studied in Stamp et

al. [4]. The finding that the matrix 𝐴 converges when the cipher key length is equal

to the number of hidden states 𝑁 , is intuitive to understand when one considers the

Vigenère encryption process as elaborated in the Table 3 in Chapter 2. It is almost

as if each of the letters of the key, when repeated across the length of the plaintext,

behave as the distinct hidden states with unique rules of converting each of the letters

that are fed through these hidden states.

The HMMs were trained by feeding in the ciphertext data into them. The Brown

corpus [22] was used after "cleaning" the textual data off punctuation, etc. to reduce

it to 26 (or 27) symbols. The 𝐵 matrix was observed to converge with 𝑀 = 26

observation symbols.

Getting the matrices to converge required a decent amount of training with

random restarts [21]. Stamp et al. [4] used 100 random restarts. The random restarts

15

which shuffle about the initial values of the matrices, increase the chances of finding the

global optima as opposed to the local optima after training at the point of convergence.

Another key factor for convergence is the amount of training data, which in this case

was the ciphertext itself.

Although, an unlimited amount of ciphertext would be ideal for training purposes,

in most real case scenarios ciphertext is limited. Therefore, finding a lower-bound on

the amount of ciphertext required for convergence was studied. They experimented

on keywords of different sizes followed by experiments on the minimum amount of

ciphertext needed for each of these keyword sizes.From their findings, Stamp et al. [4]

concluded that HMMs were more informative than the CipherGAN with respect to a

understanding the underlying encryption process.

16

CHAPTER 4

Experiments
4.1 Data

The Brown corpus English text dataset [22], is used for both the HMM and the

CipherGANs. For the CipherGAN, when a model is being trained for one particular

key, from the corpus is selected two batches one of which is passed through encryption

for ciphertext generation and are fed to the CipherGAN as the 𝑋 and 𝑌 distributions.

For the natural language plaintext data, taken from the brown corpus which consists

of over one million words in more than 50,000 sentences, the top 𝑘 most frequent

words are included as part of the vocabulary and the rest are represented as unknown

tokens. The average sentence length is 20 tokens, while the max and min are 180 and

1 respectively. The capability of the CipherGAN to crack codes not only at character

level but at word level too, must be noted over here.

4.2 Overview

The experiments consist of applying CipherGANs to classic encryption systems

in order to study their capabilities exhaustively. A brief overview of the following

experimental setups is as follows. The CipherGAN can be trained to attack a cipher

at either a character level or word level as explained, thus that is one of the hyper-

parameters. The other main hyper-parameter is the vocabulary size, or the number

of symbols used in the classic encryption system. The ground-truth accuracy of the

CipherGAN is noted at each training step of the CipherGAN, and it is the accuracy

that is the metric of focus in these experiments as that is what would be useful in

applying the CipherGAN to crack a cipher system. The next hyper-parameter is

the encryption system itself, along with its unique key. For example, in a Vigenère

encryption system, there are a choice of multiple keys of multiple sizes and for each

of these keys must a new CipherGAN be trained. The Table 5 summarizes the

17

Table 5: Hyper-parameter combinations experimented with

Vocabulary size
Cipher type/ Vocab type chars words

26 200
58 500
100 1000

2000
Vigenère Cipher (key range 3 through 7)

5000
26 200
100 2000Shift Cipher/ Ceasar’s Cipher

5000

hyper-parameters; the combinations of which have been thoroughly experimented on

in this report. To explain for example, one can see a total of 8 types of experiments

for the Vigenère cipher alone, this whole set of experiments were performed repeatedly

for each of the unique Vigenère keys of varying sizes.

4.3 Setup

The architecture is adapted from the Gomez et al. [14]. It is run on 2.20

GHz processor with a 16Gb total memory configuration over a virtual machine on

Google Colab on a Linux system. The Generators are fed a sequence of vectors in

embedding space. The embedding vectors are jointly trained as parameters of the

model with 256 dimensions. The output of the Generators is a Softmax distribution

over the vocabulary while that of the Discriminators are a scalar output. The loss

for each GAN pair is ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑌 , 𝑋, 𝑌) = E𝑦v𝑌 [(𝐷𝑌 (𝑦 · 𝑊 ⊤
𝐸𝑚𝑏))2] + E𝑥v𝑋 [(1 −

𝐷𝑌 (𝐹 (𝑥 · 𝑊 ⊤
𝐸𝑚𝑏) · 𝑊 ⊤

𝐸𝑚𝑏))2] + 𝛼 · E𝑦v𝑌 [(1 − ‖∇𝑦𝐷𝑌 (𝑦)‖2)2] while the total loss of the

CipherGAN is ℒ𝑇 𝑜𝑡𝑎𝑙(𝐹, 𝐺, 𝐷𝑋 , 𝐷𝑌 , 𝑋, 𝑌) = ℒ𝑐𝑦𝑐(𝐹, 𝐺, 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑌 , 𝑋, 𝑌) +

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑋 , 𝑋, 𝑌)

The regularization coefficient for the cycle loss is 𝜆 = 1. Squared loss instead

of log likelihood which is usually used in GANs for each of the GAN pairs. Adam

optimizer [23] is used with learning rate 2𝑒 − 4, 𝛽1 = 0 and 𝛽2 = 0.9. The percentage

18

of the corpus used for training is at 0.9 while the rest is used for testing.

The HMMs are trained using data from the brown corpus converted to ciphertext.

For the particular homophonic substitution crypto system, the 𝐴 and 𝐵 matrix reveal

the cipher key length and cipher key respectively. 𝑁 is increased or decreased until

the matrix 𝐴 converges and this reveals the cipher key length to be equal to 𝑁 . Then

the expected frequency statistics are compared for each of the states in the 𝐵 matrix

and the ‘shift’ is the corresponding keyword letter [3]. Then the minimum ciphertext

required for convergence is reduced gradually in successive experiments.

4.4 Discussion

The ability of the HMM from Vobbilisetty et al. [24] for HMM on homophonic

substitution cipher as seen in Figure 5 can be compared to that for the Vigenère

cipher. The graph describes the success rate as it climbs and falls based on the data

size which here is the ciphertext available and the number of random restarts.

200 400 600 800 1000 1200
101

103

105

0
20

40

60

80
100

Ciphertext Length

Re
sta

rts

A
cc

ur
ac

y

Figure 5: Accuracy vs data size vs restarts (200 iterations)

A result with a little more depth of the underlying cipher system is from Stamp

et al. [3] where they also include the key length in the discussion as can be seen in

19

Table 6 for an HMM trained with 100 random restarts.

Table 6: HMM training results

Keyword Keyword length Minimum ciphertext
IT 2 175

DOG 3 250
MORE 4 450
NEVER 5 1200
SECURE 6 1400
ZOMBIES 7 1300

The CipherGAN that can be trained for both words as tokens as well as on the

character level has an accuracy of mentioned in the paper. However, while replicating

the experiments, the loss was minimized and after stabilization the accuracy was

found to be 60% where it was 75% in the paper which is as per the Table 7 [14].

Table 7: Accuracy Of CipherGAN vs data

Word/Char (Vocab Size) Brown-C (10) Brown-W (200) Brown-C (58)
Shift 100% 98.7% 99.8%

Vigenère 99.7% 75.7% 99.0%

Note that vocabulary is the set of characters used to formulate the plaintext.

The ciphertext amount when compared to HMMs is far, far larger. The total

training samples used is at around 50,000 and testing is at 5000. Though the maximum

number of characters per record is at 100, even so, this is incomparably larger than

the amount of ciphertext used in training the HMMs. However the strengths of the

CipherGAN are that this amount of data works for even much larger keyword sizes

and larger vocabulary size of 200.

The Table 8 compares the hyper-parameters over the various experiments and

the resulting metrics with respect to a Vigenère Cipher with key size 3.For Character

level the following table is the accuracy of the network for every thousand steps vs the

20

Table 8: Accuracy Of CipherGAN for number of steps vs vocabulary size with
characters

Vocab/ Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
26 6.79 7.74 4.04 2.88 3.75 5.70 3.61 6.29 6.58 8.12
58 0.17 6.06 10.98 8.10 9.90 8.24 6.64 6.82 6.71 6.87
100 6.18 5.41 6.48 6.11 6.14 5.33 4.71 2.03 7.14 5.58

Table 9: Accuracy Of CipherGAN for number of steps vs vocabulary size with words

Vocab/ Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200 8.32 36.79 51.94 51.44 53.50 57.12 57.43 57.80 57.83 57.82
500 0.04 8.15 39.89 42.22 40.30 36.38 47.80 50.95 51.78 52.29
1000 0.04 17.75 18.58 9.40 28.78 34.93 38.36 41.74 43.34 45.60
2000 0.00 4.89 0.00 0.00 0.00 6.15 17.84 25.24 22.78 22.24
5000 13.21 5.41 2.59 0.08 3.64 0.00 0.00 0.00 0.00 0.00

vocabulary size of the plaintext. In this case it is the number of characters (26 letters

of the alphabet for the first column, some punctuation marks and special characters

for the second column). Some of hyper-parameters were purely experimental. The

vocabulary size in these remain limited to the maximum possible number of characters,

but also include the additional blank token.

The Table 9 compares the hyper-parameters over the various experiments and

the resulting metrics with respect to a Vigenère Cipher with key size 3 but at word

level. That is, the vocabulary of the plaintext is actually directly English words in this

case from the Brown corpus. The upper limit on the number of words being trained

on is kept to 5000 which has a coverage of 98.5% of the vocabulary in a teen novel as

per a well established study on the English language [25].The Table 8 is the accuracy

of the network for every thousand steps vs the vocabulary size of the plaintext in

words.

Following the above tables, surface graphs were plotted as in Figure 6 and

Figure 9, corresponding to Table 8 and Table 9 respectively. All future visualizations

of the experiments are based on corresponding tables like Table 8 and Table 9.

21

10 20 30 40 50 60 70 80 90 10026

58

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 6: For vocab type char and key size 3: Training Steps vs Accuracy vs Vocab
size

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 7: For vocab type words and key size 3: Training Steps vs Accuracy vs Vocab
size

The following graphs plot the results of multiple extensive experiments of training

the CipherGAN network from scratch in order to study the effects of increasing the

key size. A key size of up to 7 was studied on several runs of the CipherGAN and the

22

metrics are as studied in the previous two tables. Recall that, the vocab type can be

char level or word level, which denote the tokenization of the English language data.

The graphs in Figure 10 and Figure 11 are the surface plots with the number of

training steps on the x-axis, the percentage accuracy on the y-axis and the vocabulary

size on the z-axis for Vigenère cipher key size 4.

10 20 30 40 50 60 70 80 90 10026

58

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 8: For vocab type char and key size 4: Training Steps vs Accuracy vs Vocab
size

The graphs in Figure 10 and Figure 11 are the surface plots with the number of

training steps on the x-axis, the percentage accuracy on the y-axis and the vocabulary

size on the z-axis for Vigenère cipher key size 5.

The graphs in Figure 12 and Figure 13 are the surface plots with the number of

training steps on the x-axis, the percentage accuracy on the y-axis and the vocabulary

size on the z-axis for Vigenère cipher key size 6.

The graphs in Figure 14 and Figure 15 are the surface plots with the number of

training steps on the x-axis, the percentage accuracy on the y-axis and the vocabulary

size on the z-axis for Vigenère cipher key size 7.

23

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 9: For vocab type words and key size 4: Training Steps vs Accuracy vs Vocab
size

10 20 30 40 50 60 70 80 90 10026

58

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 10: For vocab type char and key size 5: Training Steps vs Accuracy vs Vocab
size

The following Table 10 summarizes the results for all the previous experiments.

Note that the maximum accuracy throughout the training period is considered and

not just the accuracy at the final training step. The ac curacies are plotted for key

24

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 11: For vocab type words and key size 5: Training Steps vs Accuracy vs Vocab
size

10 20 30 40 50 60 70 80 90 10026

58

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 12: For vocab type char and key size 6: Training Steps vs Accuracy vs Vocab
size

size vs vocab size.

From the experiments and previous work [24], it can be seen that the HMMs

perform better with limitations in training resources and especially so for a limited

25

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 13: For vocab type words and key size 6: Training Steps vs Accuracy vs Vocab
size

10 20 30 40 50 60 70 80 90 10026

58

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 14: For vocab type char and key size 7: Training Steps vs Accuracy vs Vocab
size

amount of ciphertext at the char level. Thus, the CipherGANs were further ex-

perimented to investigate if higher accuracies were achievable for networks aimed

at cracking a computationally "easier cipher", the shift cipher or Caesar’s cipher as

26

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 15: For vocab type words and key size 7: Training Steps vs Accuracy vs Vocab
size

Table 10: Maximum accuracy achieved while training

Key Size/ Vocab (Char/Word) 26c 58c 100c 200w 500w 1000w 2000w 5000w
3 8.12 10.98 7.14 57.83 52.29 45.60 22.78 13.21
4 8.11 9.12 8.96 68.87 50.75 40.11 21.43 2.15
5 9.37 11.95 8.15 61.52 38.04 40.85 27.66 16.01
6 9.35 11.95 7.71 66.84 55.77 32.06 10.83 7.42
7 9.68 7.63 8.98 58.39 45.94 34.04 20.84 8.11

explained in Section 2.2.1 of Chapter 2.

The graphs in Figure 16 and Figure 17 are the surface plots with the number of

training steps on the x-axis, the percentage accuracy on the y-axis and the vocabulary

size on the z-axis for a Shift cipher with a key of 3.

A summary of which can be found in Table 11.

Table 11: Maximum accuracy achieved while training for shift cipher

Vocabulary size (type: c/w) 26c 100c 200w 2000w 5000w
Accuracy (%) 9.31 7.83 68.30 44.57 15.00

27

10 20 30 40 50 60 70 80 90 10026

100

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA
cc

ur
ac

y

Figure 16: For vocab type ’char’ and key 3: Training Steps vs Accuracy vs Vocab size

10 20 30 40 50 60 70 80 90 100
2000

4000

0
20

40

60

80
100

Number of steps / 100 Voc
ab

ula
ry

Siz
eA

cc
ur

ac
y

Figure 17: For vocab type ’words’ and key 3: Training Steps vs Accuracy vs Vocab
size

28

CHAPTER 5

Conclusion

For simple substitution encryption the models both displayed good results, how-

ever there already are many resource-wise cheaper methods for solving simple substi-

tution ciphers, such as the basic frequency analysis. Polyalphabetic ciphers were the

answer the next step in the development of cryptology in order to flatten frequency

analysis. Therefore, this paper’s study of applying machine learning to polyalphabetic

ciphers is a crucial gap in the literature that has been filled.

The HMM models with various numbers of random restarts did well on these

polyalphabetic ciphers [24]. The CipherGAN too proved to be powerful and capable

of solving the polyalphabetic Vigenère cipher. However, the large amount of training

data and training steps must be kept in mind and is a serious shortcoming, especially

when compared to the HMMs that are capable of cracking the code with a relatively

small amount of ciphertext [3].

Thus although the CipherGANs are a compelling demonstration of unsupervised

language translation their applicability to cryptanalysis is debatable. They may be

more suitable for general unsupervised translation for language generation purposes.

Though, it must be noted that the CipherGANs capacity to solve for relatively

large vocabulary sets, is remarkable. This could have applications in advanced

cryptography which commonly use S-boxes that act as a sort of scale-up or scale-down

for the vocabulary set in the encryption and decryption process.

Future work could try more advanced polyalphabetic ciphers and compare and

test the advantages of the CipherGAN over other models. Additionally transfer

learning can be experimented with on the CipherGAN against various encryption

systems to see if it can learn each system and use that to crack a similar system. Such

as, keeping the enciphering method common but having different keys, or with closely

29

related polyalphabetic crypto-systems. Thus, the efficiency and effectiveness of the

classic HMMs and the deep learning model CipherGAN were compared for classic

cryptanalysis.

30

LIST OF REFERENCES

[1] F. L. Bauer, Decrypted secrets: methods and maxims of cryptology. Springer
Science & Business Media, 2002.

[2] T. Dao, ‘‘Purple cipher: Simulation and improved hill-climb attack,’’ http:
//www.cs.sjsu.edu/faculty/stamp/papers/180H.pdf, 2005.

[3] P. K. Basavaraju, ‘‘Heuristic search cryptanalysis of the zodiac 340 cipher,’’ in
Master’s Projects., vol. 56. Department of Computer Science, San Jose, 2009.
[Online]. Available: https://doi.org/10.31979/etd.4krr-6vhr

[4] M. Stamp, F. D. Troia, and J. Huang, ‘‘Hidden markov models for vigenère
cryptanalysis,’’ in Linköping Electronic Conference Proceedings, vol. 149,
no. 11, 2018, pp. 39--46, accessed on: Feb. 10, 2021. [Online]. Available:
https://ep.liu.se/ecp/149/011/ecp18149011.pdf

[5] A. N. Gomez, S. Huang, I. Zhang, B. M. Li, M. Osama, and L. Kaiser, ‘‘Unsuper-
vised cipher cracking using discrete gans,’’ arXiv preprint arXiv:1801.04883, Jan.
2018.

[6] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ The Bell System
Technical Journal, vol. 28, no. 4, pp. 656--715, 1949.

[7] M. Stamp, Introduction to machine learning with applications in information
security. CRC Press, 2017.

[8] M. M. Alani, ‘‘Applications of machine learning in cryptography: A
survey,’’ in Proceedings of the 3rd International Conference on Cryptography,
Security and Privacy, ser. ICCSP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 23–27. [Online]. Available: https:
//doi.org/10.1145/3309074.3309092

[9] A. Dhavare, R. M. Low, and M. Stamp, ‘‘Efficient cryptanalysis of homophonic
substitution ciphers,’’ Cryptologia, vol. 37, no. 3, pp. 250--281, 2013. [Online].
Available: https://doi.org/10.1080/01611194.2013.797041

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification with
deep convolutional neural networks,’’ Advances in Neural Information Processing
Systems, vol. 25, pp. 1097--1105, 2012.

[11] H. B. Barlow, ‘‘Unsupervised learning,’’ Neural Computation, vol. 1, no. 3, pp.
295--311, 1989.

31

http://www.cs.sjsu.edu/faculty/stamp/papers/180H.pdf
http://www.cs.sjsu.edu/faculty/stamp/papers/180H.pdf
https://doi.org/10.31979/etd.4krr-6vhr
https://ep.liu.se/ecp/149/011/ecp18149011.pdf
https://doi.org/10.1145/3309074.3309092
https://doi.org/10.1145/3309074.3309092
https://doi.org/10.1080/01611194.2013.797041

[12] P. J. Werbos, ‘‘Backpropagation through time: what it does and how to do it,’’
Proc. of the IEEE, vol. 78, no. 10, pp. 1550--1560, 1990.

[13] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, ‘‘Language
models are unsupervised multitask learners,’’ OpenAI Blog, vol. 1, no. 8, p. 9,
2019.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, ‘‘Attention is all you need,’’ arXiv preprint arXiv:1706.03762,
2017.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in Advances in
Neural Information Processing Systems, vol. 27, no. 5, 2014, pp. 2672--2680.

[16] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks,’’ in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2223--2232.

[17] E. Jang, S. Gu, and B. Poole, ‘‘Categorical reparameterization with gumbel-
softmax,’’ arXiv preprint arXiv:1611.01144, 2016.

[18] M. Stamp, ‘‘A revealing introduction to hidden markov models,’’ Department
of Computer Science San Jose State University, pp. 26--56, 2004. [Online].
Available: https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[19] R. Cave, ‘‘Hidden markov models for english,’’ Proceedings Symposium on the
Application of Hidden Markov Models to Text and Speech, pp. 16--56, 1980.

[20] L. Rabiner and B. Juang, ‘‘An introduction to hidden markov models,’’ IEEE
ASSP Mag., vol. 3, no. 1, pp. 4--16, 1986.

[21] T. Berg-Kirkpatrick and D. Klein, ‘‘Decipherment with a million random restarts,’’
in Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, 2013, pp. 874--878.

[22] W. N. Francis and H. Kucera, ‘‘Brown corpus,’’ Dept. of Linguistics, Brown
Univ., Providence, Rhode Island, vol. 1, 1964.

[23] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv
preprint arXiv:1412.6980, 2014.

[24] R. Vobbilisetty, F. Di Troia, R. M. Low, C. A. Visaggio, and M. Stamp, ‘‘Classic
cryptanalysis using hidden markov models,’’ Cryptologia, vol. 41, no. 1, pp. 1--28,
2017.

[25] N. Schmitt and M. Mccarthy, Vocabulary: Description, Acquisition and Pedagogy.
Cambridge University Press, 1997.

32

https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

	Generative Adversarial Networks for Classic Cryptanalysis
	Introduction
	Background
	Cryptography
	Classic Crypto Basics
	Simple Substitution Cipher
	Homophonic Substitution Cipher

	Deep Learning
	GPT-2
	Transformers
	GAN
	CycleGAN
	CipherGAN

	HMM
	The Zodiac Cipher

	Related Work
	GPT-2
	CipherGANs
	HMMs

	Experiments
	Data
	Overview
	Setup
	Discussion

	Conclusion
	LIST OF REFERENCES

