1,102 research outputs found

    Analysis of SHRP2 Data to Understand Normal and Abnormal Driving Behavior in Work Zones

    Get PDF
    This research project used the Second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study(NDS) to improve highway safety by using statistical descriptions of normal driving behavior to identify abnormal driving behaviors in work zones. SHRP2 data used in these analyses included 50 safety-critical events (SCEs) from work zones and 444 baseline events selected on a matched case-control design.Principal components analysis (PCA) was used to summarize kinematic data into “normal” and “abnormal”driving. Each second of driving is described by one point in three-dimensional principal component (PC) space;an ellipse containing the bulk of baseline points is considered “normal” driving. Driving segments without-of-ellipse points have a higher probability of being an SCE. Matched case-control analysis indicates that thespecific individual and traffic flow made approximately equal contributions to predicting out-of-ellipse driving.Structural Topics Modeling (STM) was used to analyze complex categorical data obtained from annotated videos.The STM method finds “words” representing categorical data variables that occur together in many events and describes these associations as “topics.” STM then associates topics with either baselines or SCEs. The STM produced 10 topics: 3 associated with SCEs, 5 associated with baselines, and 2 that were neutral. Distractionoccurs in both baselines and SCEs.Both approaches identify the role of individual drivers in producing situations where SCEs might arise. A countermeasure could use the PC calculation to indicate impending issues or specific drivers who may havehigher crash risk, but not to employ significant interventions such as automatically braking a vehicle without-of-ellipse driving patterns. STM results suggest communication to drivers or placing compliant vehicles in thetraffic stream would be effective. Finally, driver distraction in work zones should be discouraged

    A Game Theory Based Model of Human Driving with Application to Autonomous and Mixed Driving

    Get PDF
    In this work, I consider the development of a driver model to better understand human drivers’ various behaviors in the upcoming mixed situation of human drivers and autonomous vehicles. For this, my current effort focuses on modeling the driver’s decisions and corresponding driving behaviors. First, I study an individual driver’s reasoning process through game theoretic investigation. The driver decision model is modeled as the Stackelberg game, which is based on the backward information propagation. In the driver decision model, I focus on the drivers’ insensible desires and corresponding unwanted traffic situations. With the comparison of the model and the field data, it is shown that the model reproduces the relationship between the driver’s inattentiveness and collisions in the real world. Next, the driving behavior control is presented. I propose a human-like predictive perception model of potential collision with an adjacent vehicle. The model is based on hybrid systematic approach. In turn, with the predictive perceptions, a driving safety controller is designed based on model predictive control. The model shows adequate predictive responses against the other vehicles with respect to the driver’s rationality. In sum, I present a driver model that corresponds to and predicts traffic situations according to a human driver’s irrationality factor. This model shows a meaningful similarity to the real-world crashes and predictive behaviors according to the driver’s irrationality

    Game Theoretic Model Predictive Control for Autonomous Driving

    Get PDF
    This study presents two closely-related solutions to autonomous vehicle control problems in highway driving scenario using game theory and model predictive control. We first develop a game theoretic four-stage model predictive controller (GT4SMPC). The controller is responsible for both longitudinal and lateral movements of Subject Vehicle (SV) . It includes a Stackelberg game as a high level controller and a model predictive controller (MPC) as a low level one. Specifically, GT4SMPC constantly establishes and solves games corresponding to multiple gaps in front of multiple-candidate vehicles (GCV) when SV is interacting with them by signaling a lane change intention through turning light or by a small lateral movement. SV’s payoff is the negative of the MPC’s cost function , which ensures strong connection between the game and that the solution of the game is more likely to be achieved by a hybrid MPC (HMPC). GCV’s payoff is a linear combination of the speed payoff, headway payoff and acceleration payoff. . We use decreasing acceleration model to generate our prediction of TV’s future motion, which is utilized in both defining TV’s payoffs over the prediction horizon in the game and as the reference of the MPC. Solving the games gives the optimal gap and the target vehicle (TV). In the low level , the lane change process are divided into four stages: traveling in the current lane, leaving current lane, crossing lane marking, traveling in the target lane. The division identifies the time that SV should initiate actual lateral movement for the lateral controller and specifies the constraints HMPC should deal at each step of the MPC prediction horizon. Then the four-stage HMPC controls SV’s actual longitudinal motion and execute the lane change at the right moment. Simulations showed the GT4SMPC is able to intelligently drive SV into the selected gap and accomplish both discretionary land change (DLC) and mandatory lane change (MLC) in a dynamic situation. Human-in-the-loop driving simulation indicated that GT4SMPC can decently control the SV to complete lane changes with the presence of human drivers. Second, we propose a differential game theoretic model predictive controller (DGTMPC) to address the drawbacks of GT4SMPC. In GT4SMPC, the games are defined as table game, which indicates each players only have limited amount of choices for a specific game and such choice remain fixed during the prediction horizon. In addition, we assume a known model for traffic vehicles but in reality drivers’ preference is partly unknown. In order to allow the TV to make multiple decisions within the prediction horizon and to measure TV’s driving style on-line, we propose a differential game theoretic model predictive controller (DGTMPC). The high level of the hierarchical DGTMPC is the two-player differential lane-change Stackelberg game. We assume each player uses a MPC to control its motion and the optimal solution of leaders’ MPC depends on the solution of the follower. Therefore, we convert this differential game problem into a bi-level optimization problem and solves the problem with the branch and bound algorithm. Besides the game, we propose an inverse model predictive control algorithm (IMPC) to estimate the MPC weights of other drivers on-line based on surrounding vehicle’s real-time behavior, assuming they are controlled by MPC as well. The estimation results contribute to a more appropriate solution to the game against driver of specific type. The solution of the algorithm indicates the future motion of the TV, which can be used as the reference for the low level controller. The low level HMPC controls both the longitudinal motion of SV and his real-time lane decision. Simulations showed that the DGTMPC can well identify the weights traffic vehicles’ MPC cost function and behave intelligently during the interaction. Comparison with level-k controller indicates DGTMPC’s Superior performance

    An advanced deep learning model for maneuver prediction in real-time systems using alarming-based hunting optimization

    Get PDF
    The increasing trend of autonomous driving vehicles in smart cities emphasizes the need for safe travel. However, the presence of obstacles, potholes, and complex road environments, such as poor illumination and occlusion, can cause blurred road images that may impact the accuracy of maneuver prediction in visual perception systems. To address these challenges, a novel ensemble model named ABHO-based deep CNN-BiLSTM has been proposed for traffic sign detection. This model combines a hybrid convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with the alarming-based hunting optimization (ABHO) algorithm to improve maneuver prediction accuracy. Additionally, a modified hough-enabled lane generative adversarial network (ABHO based HoughGAN) has been proposed, which is designed to be robust to blurred images. The ABHO algorithm, inspired by the defending and social characteristics of starling birds and Canis kojot, allows the model to efficiently search for the optimal solution from the available solutions in the search space. The proposed ensemble model has shown significantly improved accuracy, sensitivity, and specificity in maneuver prediction compared to previously utilized methods, with minimal error during lane detection. Overall, the proposed ensemble model addresses the challenges faced by autonomous driving vehicles in complex and obstructed road environments, offering a promising solution for enhancing safety and reliability in smart cities

    Coordination for Connected Automated Vehicles at Merging Roadways in Mixed Traffic Environment

    Full text link
    In this paper, we present a two-level optimal control framework to address motion coordination of connected automated vehicles (CAVs) in the presence of human-driven vehicles (HDVs) in merging scenarios. Our framework combines an unconstrained trajectory solution of a low-level energy-optimal control problem with an upper-level optimization problem that yields the minimum travel time for CAVs. We predict the future trajectories of the HDVs using Newell's car-following model. To handle potential deviations of HDVs' actual behavior from the one predicted, we provide a risk-triggered re-planning mechanism for the CAVs based on time-to-conflict. The effectiveness of the proposed control framework is demonstrated via simulations with heterogeneous human driving behaviors and via experiments in a scaled environment.Comment: first manuscript, 7 page

    The Application of Driver Models in the Safety Assessment of Autonomous Vehicles: A Survey

    Full text link
    Driver models play a vital role in developing and verifying autonomous vehicles (AVs). Previously, they are mainly applied in traffic flow simulation to model realistic driver behavior. With the development of AVs, driver models attract much attention again due to their potential contributions to AV certification. The simulation-based testing method is considered an effective measure to accelerate AV testing due to its safe and efficient characteristics. Nonetheless, realistic driver models are prerequisites for valid simulation results. Additionally, an AV is assumed to be at least as safe as a careful and competent driver. Therefore, driver models are inevitable for AV safety assessment. However, no comparison or discussion of driver models is available regarding their utility to AVs in the last five years despite their necessities in the release of AVs. This motivates us to present a comprehensive survey of driver models in the paper and compare their applicability. Requirements for driver models in terms of their application to AV safety assessment are discussed. A summary of driver models for simulation-based testing and AV certification is provided. Evaluation metrics are defined to compare their strength and weakness. Finally, an architecture for a careful and competent driver model is proposed. Challenges and future work are elaborated. This study gives related researchers especially regulators an overview and helps them to define appropriate driver models for AVs

    Probabilistic Framework for Behavior Characterization of Traffic Participants Enabling Long Term Prediction

    Get PDF
    This research aims at developing new methods that predict the behaviors of the human driven traffic participants to enable safe operation of autonomous vehicles in complex traffic environments. Autonomous vehicles are expected to operate amongst human driven conventional vehicles in the traffic at least for the next few decades. For safe navigation they will need to infer the intents as well as the behaviors of the human traffic participants using extrinsically observable information, so that their trajectories can be predicted for a time horizon long enough to do a predictive risk analysis and gracefully avert any risky situation. This research approaches this challenge by recognizing that any maneuver performed by a human driver can be divided into four stages that depend on the surrounding context: intent determination, maneuver preparation, gap acceptance and maneuver execution. It builds on the hypothesis that for a given driver, the behavior not only spans across these four maneuver stages, but across multiple maneuvers. As a result, identifying the driver behavior in any of these stages can help characterize the nature of all the subsequent maneuvers that the driver is likely to perform, thus resulting in a more accurate prediction for a longer time horizon. To enable this, a novel probabilistic framework is proposed that couples the different maneuver stages of the observed traffic participant together and associates them to a driving style. To realize this framework two candidate Multiple Model Adaptive Estimation approaches were compared: Autonomous Multiple Model (AMM) and Interacting Multiple Model(IMM) filtering approach. The IMM approach proved superior to the AMM approach and was eventually validated using a trajectory extracted from a real world dataset for efficacy. The proposed framework was then implemented by extending the validated IMM approach with contextual information of the observed traffic participant. The classification of the driving style of the traffic participant (behavior characterization) was then demonstrated for two use case scenarios. The proposed contextual IMM (CIMM) framework also showed improvements in the performance of the behavior classification of the traffic participants compared to the IMM for the identified use case scenarios. This outcome warrants further exploration of this framework for different traffic scenarios. Further, it contributes towards the ongoing endeavors for safe deployment of autonomous vehicles on public roads

    An Interaction-Aware Approach for Online Cut-in Behavior Prediction and Risk Assessment for Autonomous Driving

    Get PDF
    The development of autonomous driving has become one of the biggest trends of the 21st century's technology. However, the promotion and the mass production of autonomous vehicles are still at the beginning stage. The human-driven vehicles will still predominate the traffic. Therefore, understanding the interaction and decision logic between human-driven vehicles, and utilizing it to predict their driving behavior are the keys to the development of autonomous driving techniques. Cut-in behavior is one of the top priorities due to its high risks. Rear-end collisions happen a lot when the lag vehicles cannot predict this abnormal lane change behavior of the front vehicles and response in time. However, related studies on cut-in event prediction and risk assessment have rarely been presented in autonomous driving field. A phase-based design framework is proposed in this work to realize online prediction and risk estimation of the cut-in behavior considering interactions between the involved vehicles. After preprocessing and analyzing of a naturalistic driving dataset, a cut-in behavior predictor and a risk estimator are devised based on Gaussian mixture model and Gaussian mixture regression method. Compared with baseline approaches, both the predictor and estimator designed following the proposed framework achieve enhanced results, which can further improve the driving safety of autonomous vehicles when cut-in behavior occurs

    Methods and models for safety benefit assessment of advanced driver assistance systems in car-to-cyclist conflicts

    Get PDF
    To help drivers avoid or mitigate the severity of crashes, advanced driver assistance systems (ADAS) can be designed to provide warnings or interventions. Prospective safety assessment of ADAS is important to quantify and optimise their safety benefit. Such safety assessment methods include, for example, virtual simulations and test-track testing.Today, there are many components of virtual safety assessment simulations with models or methods that are missing or can be substantially improved. This is particularly true for simulations assessing ADASs that address crashes involving cyclists—a crash type that is not decreasing at the same rate as the overall number of road crashes in Europe. The specific methodological gaps that this work addresses are: a) computational driver models for car-to-cyclist overtaking, b) algorithms for model fitting and efficient calculation of ADAS intervention time, and c) a method for merging data from different data sources into the safety assessment.Specifically, for a), different driver models for everyday driver behaviour while overtaking cyclists in a naturalistic driving setting were derived and compared. For b), computationally efficient algorithms to fit driver models to data and compute ADAS intervention time were developed for different types of vehicle models. The algorithms can be included in ADAS both for offline use in virtual assessment simulations and online real-time use in in-vehicle ADAS. Lastly, for c), a method was developed that uses Bayesian statistics to combine results from different data sources, e.g., simulations and test-track data, for ADAS safety benefit assessment.In addition to presenting five peer-reviewed scientific publications, which address these issues, this compilation thesis discusses the use of different data sources; introduces the fundamentals of Bayesian inference, linear programming, and numerical root-finding algorithms; and provides the rationale for methodological choices made, where relevant. Finally, this thesis describes the relationships among the publications and places them into context with existing literature.This work developed driver models for the virtual simulations and methods for the reliable estimation of the prospective safety benefit, which together have the potential to improve the design and the evaluation of ADAS in general, and ADAS for the car-to-cyclist overtaking scenario in particular
    • …
    corecore