268 research outputs found

    Density version of the Ramsey problem and the directed Ramsey problem

    Get PDF
    We discuss a variant of the Ramsey and the directed Ramsey problem. First, consider a complete graph on nn vertices and a two-coloring of the edges such that every edge is colored with at least one color and the number of bicolored edges ERB|E_{RB}| is given. The aim is to find the maximal size ff of a monochromatic clique which is guaranteed by such a coloring. Analogously, in the second problem we consider semicomplete digraph on nn vertices such that the number of bi-oriented edges Ebi|E_{bi}| is given. The aim is to bound the size FF of the maximal transitive subtournament that is guaranteed by such a digraph. Applying probabilistic and analytic tools and constructive methods we show that if ERB=Ebi=p(n2)|E_{RB}|=|E_{bi}| = p{n\choose 2}, (p[0,1)p\in [0,1)), then f,F<Cplog(n)f, F < C_p\log(n) where CpC_p only depend on pp, while if m=(n2)ERB<n3/2m={n \choose 2} - |E_{RB}| <n^{3/2} then f=Θ(n2m+n)f= \Theta (\frac{n^2}{m+n}). The latter case is strongly connected to Tur\'an-type extremal graph theory.Comment: 17 pages. Further lower bound added in case $|E_{RB}|=|E_{bi}| = p{n\choose 2}

    A 7/3-approximation for feedback vertex sets in tournaments

    Get PDF
    We consider the minimum-weight feedback vertex set problem in tournaments: given a tournament with non-negative vertex weights, remove a minimum-weight set of vertices that intersects all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate by a factor better than 2. We present the first 7/3 approximation algorithm for this problem, improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP 2001]

    A 7/3-Approximation for Feedback Vertex Sets in Tournaments

    Get PDF
    We consider the minimum-weight feedback vertex set problem in tournaments: given a tournament with non-negative vertex weights, remove a minimum-weight set of vertices that intersects all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate by a factor better than 2. We present the first 7/3 approximation algorithm for this problem, improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP 2001]

    09511 Abstracts Collection -- Parameterized complexity and approximation algorithms

    Get PDF
    From 14. 12. 2009 to 17. 12. 2009., the Dagstuhl Seminar 09511 ``Parameterized complexity and approximation algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore