
 

 

Matthias Mnich, Virginia Vassilevska Williams and and 
László A. Végh 

A 7/3-approximation for feedback vertex sets 
in tournaments 
 
Article (Published version) 
Refereed  

 Original citation: 
Mnich, Matthias, Williams, Virginia Vassilevska and Végh, László A. (2016) A 7/3-approximation 
for feedback vertex sets in tournaments. Leibniz International Proceedings in Informatics (57). 
67:1-67:14. ISSN 1868-8969 
 
DOI: 10.4230/LIPIcs.ESA.2016.67  
 
Reuse of this item is permitted through licensing under the Creative Commons: 

 
© 2016 The Authors  
CC BY 4.0 

 
This version available at: http://eprints.lse.ac.uk/69648/ 
 
Available in LSE Research Online: March 2017 

 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. You may freely distribute the URL 
(http://eprints.lse.ac.uk) of the LSE Research Online website.  
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/80784349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.67
http://eprints.lse.ac.uk/69648/


A 7/3-Approximation for Feedback Vertex Sets in
Tournaments∗

Matthias Mnich†1, Virginia Vassilevska Williams‡2, and
László A. Végh§3

1 Universität Bonn, Bonn, Germany
mmnich@uni-bonn.de

2 Computer Science Department, Stanford University, Stanford, USA
virgi@cs.stanford.edu

3 London School of Economics, London, UK
l.vegh@lse.ac.uk

Abstract
We consider the minimum-weight feedback vertex set problem in tournaments: given a tourna-
ment with non-negative vertex weights, remove a minimum-weight set of vertices that intersects
all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate
by a factor better than 2. We present the first 7/3 approximation algorithm for this problem,
improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP
2001].
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1 Introduction

Among the most basic concepts in graph theory is the notion of a feedback vertex set (FVS)
of a digraph: a subset of the vertices S such that removing S makes the digraph acyclic.
The computational problem of finding a FVS of minimum size is known as the Feedback
Vertex Set problem. A fundamental problem with numerous applications (e.g., in deadlock
recovery in operating systems), the Feedback Vertex Set problem is among Karp’s 21
original NP-complete problems [13]. Karp’s proof of NP-hardness also implies that the
problem is APX-hard. Obtaining a constant factor polynomial-time approximation algorithm
for the Feedback Vertex Set problem seems elusive and is a major open problem. The
best known approximation factor achievable in polynomial time is O(logn log logn) [8, 21].

The Feedback Vertex Set problem is particularly interesting for the special case when
the input graph is a tournament, i.e., an orientation of the complete graph. The problem
restricted to tournaments has many interesting applications, most notably in social choice
theory where it is essential to the definition of a certain type of election winners called the
Banks set [1].
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The Feedback Vertex Set problem remains NP-complete and APX-hard in tourna-
ments. Moreover, Speckenmeyer [22] gave an approximation-ratio preserving polynomial time
reduction from the Vertex Cover problem in general undirected graphs to the Feedback
Vertex Set problem in tournaments. Consequently, the FVS problem in tournaments
cannot be approximated in polynomial time within a factor better than 1.3606, unless
P = NP [6], and not within a factor better than 2 assuming the Unique Games Conjecture
(UGC) [14].

On the upper bound side, the Feedback Vertex Set problem in tournaments admits an
easy 3-approximation algorithm: while the tournament contains a directed triangle, place all
the triangle vertices in the FVS and remove them from the tournament (see also Bar-Yehuda
and Rawitz [2] for another simple 3-approximation algorithm). Cai, Deng and Zang [4]
improved the simple algorithm and gave a polynomial time algorithm with approximation
guarantee 5/2, even in the case when vertices have non-negative weights and one seeks a
solution of approximate minimum weight.

In this paper we develop a 7/3-approximation algorithm for the minimum weight Feed-
back Vertex Set problem in tournaments, obtaining the first improvement over the
eighteen year old result of Cai et al. [4]. Our result shows that the 2.5-approximation ratio is
not best possible, and gives hope that a 2-approximation algorithm, that would be optimal
under the UGC, might be achievable.

I Theorem 1. There exists a polynomial-time 7/3-approximation algorithm for finding a
minimum-weight feedback vertex set in a tournament.

In the process of proving the above theorem, we uncover a structural theorem about
tournament graphs that has interesting connections to the tournament colouring problem
investigated by Berger et al. [3]. We explain these connections in Sect. 5.

1.1 Overview

Let us first give an overview of Cai et al.’s result [4]. Let T5 denote the set of tournaments on 5
vertices where the minimum FVS has size 2 (note that every tournament on 5 vertices has a
FVS of size at most 2). Cai et al. showed that for any tournament free of subtournaments
from T5, the minimum-weight FVS problem becomes polynomial-time solvable. They in
fact show that the natural LP relaxation of the problem is integral in T5-free tournaments:
the minimum weight of a FVS equals the maximum value of a fractional directed triangle
packing.

For the special case of unit weights only, their 5/2-approximation algorithm starts by
greedily choosing subtournaments in T5, and including all 5 vertices in the FVS. Once the
remaining tournament admits no more subtournaments in T5, the optimal covering algorithm
is used. The algorithm returns a 5/2-approximate solution, since every step of removing a
subtournament decreases the optimum value by at least 2, and includes 5 vertices in the
FVS. The algorithm extends to non-negative weights using the local ratio technique.

We now give an overview of our approach. We define the set T7 as the set of 7-vertex
tournaments where the minimum size of a FVS is 3. The algorithm comprises two stages.
The first stage uses the iterative rounding technique, and removes all subtournaments in T7;
the weight of the vertices included at this stage will be at most 7/3-times the decrease in the
optimum weight. In the second stage, we give a 7/3-approximate combinatorial algorithm
for the remaining T7-free tournament.
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The analogous first stage of Cai et al. obtains a worse factor 5/2. In the second stage,
their algorithm delivers an optimal solution. In contrast, we only give an approximation
algorithm in the second stage, but that is sufficient for the overall approximation guarantee.

We now provide some more detail of the two stages. In the first stage we use the iterative
rounding technique. We formulate the natural LP relaxation of the minimum-weight FVS
problem in the given tournament T , including a covering constraint for every directed triangle
of T , and further we include that every subtournament of T belonging to T7 must be covered
by at least three vertices. We consider an optimal solution of the LP relaxation. If there
is a vertex of T with fractional value at least 3/7, we include it in our FVS and remove it
from T . We then resolve the LP on the remaining tournament, and again include a vertex
with fractional value at least 3/7, if there exists one. We iterate until there are no more such
vertices. At this point, the tournament will be T7-free, and the fractional optimum value
equals exactly one third of the total weight of the vertices (see Lemma 6).

In the second stage, we develop a polynomial time combinatorial algorithm that delivers
a FVS of weight at most 7/9 times the total weight of the vertices in a T7-free tournament
(Theorem 4). This algorithm implies our main theorem, since an optimal FVS in the
remaining T7-free tournament is of size at least the optimum fractional value, which by the
previous paragraph is exactly a third of the total weight of the nodes, which itself is at least
1/3 · 9/7 = 3/7 of the size of the FVS returned.

To prove Theorem 4, we decompose the vertex set into “layers”. Our algorithm divides
the vertices into T5-free layers, while also identifying a certain vertex set S to be included in
the FVS right away. Our final FVS will be composed of the initially selected S, every second
layer, and the optimal FVS’s inside the remaining layers. To obtain these, we use Cai et al.’s
algorithm as a subroutine to find an optimal solution on a T5-free layer. The layering idea
is inspired by Cai et al.’s structural analysis of T5-free tournaments; nevertheless, we use it
quite differently.

It is natural to conjecture that our approach can be extended to lead to a (2 + ε)-
approximation for the FVS problem in tournaments, for all ε > 0. At this point it is unclear
how to improve the approximation ratio in the above second stage. Nevertheless, our paper
provides the next substantial step towards reaching the UGC-based lower bound.

1.2 Related work
Feedback vertex sets in tournaments are a well-studied subject. Dom et al. [7] showed how to
decide existence of an FVS of size at most k in time 2k · nO(1), and gave a kernel with O(k2)
vertices. An exponential-time algorithm by Fomin et al. [10] finds an FVS of minimum size
in time O(1.674n), improving on earlier algorithms [18, 7, 11, 16]. Gaspers and Mnich [11]
gave a polynomial-space algorithm to enumerate all minimal FVS of a given tournament
with polynomial delay; the currently best upper bound on their number is O(1.6667n) [10].

The related question of FVS in bipartite tournaments has also been studied, i.e., orient-
ations of the complete bipartite graph. First, Cai et al. [5] using a similar framework to
their 5/2-approximation algorithm [4], developed a 7/2-approximation algorithm for FVS in
bipartite tournaments. This was improved by Sasatte [20] giving a 3-approximation, and
finally, by van Zuylen [23] who developed a polynomial time 2-approximation algorithm.

Iterative rounding is a standard and powerful method in approximation algorithms; we
refer the reader to the book by Lau et al. [17]. The approach was made popular by Jain’s
groundbreaking 2-approximation for survivable network design [12], and the main application
area is network design. However, the same principle was already used earlier for various

ESA 2016
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Figure 1 Examples of tournaments from T5 and T7.

problems. In particular, Krivelevich used implicitly iterative rounding for the undirected
triangle cover problem [15]; our application is similar to his argument. Van Zuylen [23] used
iterative rounding for FVS in bipartite tournaments.

The Cluster Vertex Deletion problem is another restrictions of the vertex cover
problem in 3-uniform hypergraphs. Here the goal is to cover all induced paths of length 2 in
an undirected graph. A very recent paper by Fiorini et al. [9] provides a 7/3-approximation
algorithm for Cluster Vertex Deletion, improving on the previous best ratio 2.5. An
approximation-preserving reduction from the Vertex Cover problem shows that the best
possible factor is 2 under the Unique Games Conjecture. Despite these similarities, no
approximation-preserving reduction is known between Cluster Vertex Deletion and
FVS in Tournaments. The techniques used are also quite different.

2 Description of the Algorithm

Let T = (V,A) be a tournament, equipped with a weight function w : V → R≥0. An arc
between u, v ∈ V will be denoted by (u, v) ∈ A or u→ v. The tournament T is transitive if
it does not contain any directed cycles, or equivalently, its vertices admit a topological order.
A vertex set S ⊆ V is a feedback vertex set if T [V \ S] is transitive. For a vertex set S ⊆ V ,
let T − S denote the tournament resulting from the removal of the vertex set S from T . If
S = {v} has a single element, we also use the notation T − v.

The following straightforward characterization of FVS’s in tournaments is well-known.

I Proposition 2. For any tournament T , a set S is a feedback vertex set for T if and only
if S intersects every directed triangle of T .

Let T5 denote the family of tournaments T ′ on 5 vertices that do not contain a transitive
subtournament on 4 vertices; equivalently, every FVS of T ′ has size at least 2. The set T5
contains 3 tournaments, the same ones used by Cai et al. [4]. Characterizations of many
related classes of tournaments were given by Sanchez-Flores [19].

Our main focus will be the set T7 defined as follows. Let T7 denote the family of
tournaments on 7 vertices that do not contain a transitive subtournament on 5 vertices. This
is equivalent to the property that every FVS is of size at least 3. We remark that T7 consists
of 121 tournaments.

Fig. 1 gives important examples of tournaments S5 ∈ T5 and S7 ∈ T7. The arcs not
included in the figures can be oriented arbitrarily; hence both figures represent multiple
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Algorithm 1 Tournament FVS
Input: A tournament T = (V,A) with weight function w : V → Q≥0.
Output: A feedback vertex set of T of weight at most 7

3OPT (T ).
1: Initialize F = ∅, T ′ = T .
2: Find an optimal solution x∗ to (LP).
3: while T ′ 6= ∅ and there exists a vertex v ∈ V (T ′) with x∗v ≥ 3

7 do
4: Set F := F ∪ {v : x∗v ≥ 3

7} and T
′ := T ′ \ {v : x∗v ≥ 3

7}.
5: Remove every vertex from T ′ not contained in any directed triangle; denote this

resulting tournament also by T ′.
6: Solve (LP) for T ′ to obtain an optimal solution x∗.
7: If T ′ 6= ∅ then run Algorithm Layers (Algorithm 2) for T ′, returning a FVS F ′ of T ′.
8: return F ∪ F ′.

tournaments. Tournament S5 is identical to F1 of Cai et al. [4]. We leave the proof of the
following simple claim to the reader.

I Proposition 3. For the tournaments in Fig. 1, S5 ∈ T5 and S7 ∈ T7.

For a tournament T , let ∆(T ) denote the family of vertex sets of directed triangles in T .
According to Proposition 2, T is transitive if and only if ∆(T ) = ∅. Similarly, T5(T ) and
T7(T ) denote the family of vertex sets of the subtournaments of T isomorphic to a tournament
in T5 and T7, respectively. We say that T is T5-free if T5(T ) = ∅ and T7-free if T7(T ) = ∅.

We use iterative rounding for the following LP relaxation of the FVS problem in a
tournament T = (V,A) with weight function w : V → Q≥0. For a vector x : V → R and a
set S ⊆ V , let x(S) =

∑
v∈S xv.

min wTx

x(R) ≥ 1 ∀R ∈ ∆(T )
x(Q) ≥ 3 ∀Q ∈ T7(T )

x ≥ 0

(LP)

Notice that (LP) does not impose any constraints for subtournaments in T5(T ). This is an
LP of polynomial size. Let OPT (T ) denote the optimum value of (LP).

Our algorithm (Algorithm 1), iteratively builds a FVS F of T , initialized empty. We find
an optimal solution x∗ to (LP), and as long as there exist vertices v such that x∗v ≥ 3

7 , we
include all of them in F and remove them from T . We iterate this process, by resolving the
LP for the smaller tournament T ′. By the first stage of the algorithm we mean the sequence
of these iterative rounding steps, which terminate once T ′ becomes empty (in which case we
are done), or every fractional value x∗v satisfies x∗v < 3

7 .
In this case, the current tournament T ′ must be T7-free. Indeed, the constraint on the

elements of T7(T ′) guarantees that in every T7 subtournament at least one element must
have fractional value at least 3/7. Note that this is true already after the very first iteration.
The analogous task of removing all subtournaments from T5(T ′) is done by Cai et al. [4]
using the local ratio technique. As shown by Bar-Yehuda and Rawitz [2], this could also be
done via a primal-dual algorithm. The local ratio and primal-dual techniques easily give a
3-approximation for the formulation with triangles only (given as (P) in the next section).
However, these do not seem to easily extend for our second goal with the iterative rounding,
when we only have triangle constraints left, and we proceed as long as there is a vertex of
fractional value at least 3/7.

ESA 2016
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In the second stage we apply Algorithm Layers (Algorithm 2). That is the algorithm
described in the following theorem.

I Theorem 4. There is an algorithm that, given any T7-free tournament T ′ = (V ′, A′)
with weight function w : V ′ → Q≥0, in polynomial time finds a FVS F ′ of T ′ of weight at
most 7

9w(V ′).

We defer the description of Algorithm Layers as well as the proof of Theorem 4 to
Sect. 4. We now prove the validity of Algorithm 1, provided this result.

3 Proof of Theorem 1

It is straightforward to see that the set F ∪F ′ returned by the algorithm is a FVS of T . The
next simple lemma shows that in every iterative rounding step, the weight of the elements
added to F can be bounded by the decrease of OPT (T ).

I Lemma 5. In every iteration during the first stage of the algorithm with current tourna-
ment T ′ and set F , we have

w(F ) ≤ 7
3(OPT (T )−OPT (T ′)) .

Proof. We prove the claim by induction. It is clearly true at the beginning when T ′ = T .
Whenever we remove a vertex not contained in any triangle, the left-hand side remains
unchanged and the right-hand side may only increase. It is sufficient to prove that if x∗ is an
optimal solution to (LP) for T ′ and S = {v : x∗v ≥ 3

7} 6= ∅, then OPT (T ′ \ S) + 3
7w(S) ≤

OPT (T ′).
Note that x∗ restricted to T ′ \ S is feasible to (LP) for T ′ \ S, and thus OPT (T ′ \ S) ≤

OPT (T ′)−
∑

v∈S w(v)x∗v ≤ OPT (T ′)− 3
7w(S), as required. J

As observed above, the tournament T ′ at the end of the first stage is T7-free. Theorem 4
guarantees that the FVS F ′ of T ′ returned by Algorithm Layers has weight w(F ′) ≤ 7

9w(T ′).

I Lemma 6. At the end of the first stage, OPT (T ′) = 1
3w(T ′).

Before proving this lemma, let us see how it concludes the proof of Theorem 1. According to
Theorem 4 and Lemma 6, w(F ′) ≤ 7

9w(T ′) ≤ 7
3OPT (T ′). Using Lemma 5, we see that the

weight of the constructed FVS F ∪ F ′ is w(F ∪ F ′) ≤ 7
3OPT (T ).

The proof of Lemma 6 analyzes the LP relaxation with triangle constraints only. At
the end of the first stage, T ′ is T7-free. Hence, the second set of constraints in (LP)
for T ′ is empty. Let us omit these constraints and write (LP) together with its dual:

min wTx

x(R) ≥ 1 ∀R ∈ ∆(T ′)
x : V → R+

(P)

max 1T y∑
R:v∈R

yR ≤ wv ∀v ∈ V ′

y : ∆(T ′)→ R+

(D)

Proof of Lemma 6. If ∆(T ′) 6= ∅, then T ′ is empty and the statement of the lemma holds.
Therefore, we can assume that ∆(T ′) 6= ∅, and that x∗v ≤ 3

7 for every v ∈ V ′, where
V ′ = V (T ′) is the vertex set of T ′.

I Claim 7. x∗v > 0 for every v ∈ V ′.
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Proof. For sake of contradiction, suppose that x∗v = 0 for some v ∈ V ′. Every vertex in T ′
is contained in a directed triangle; say {v, u, z} ∈ ∆(T ′). The relaxation (LP) includes a
constraint x∗v + x∗u + x∗z ≥ 1, and therefore x∗u ≥ 1

2 or x∗z ≥ 1
2 , a contradiction to x∗v ≤ 3

7 for
all v ∈ V ′. J

By primal-dual slackness, we must have
∑

u∈R yR = w(u) for all u ∈ V ′. Then

w(V ′) =
∑

u∈V ′

∑
R:u∈R

yR =
∑

R∈∆(T ′)

yR

∑
u∈R

1 = 3
∑

R∈∆(T ′)

yR = 3 ·OPT (T ′),

completing the proof. In the third equation, we used that every triangle contains exactly
three vertices. J

4 The Algorithm Layers

In this section, we present Algorithm Layers and prove Theorem 4. First, we need the
following result by Cai et al. [4, Sect. 4].

I Theorem 8 ([4]). There exists an algorithm that, given any T5-free tournament T̂ with
non-negative vertex weights, finds in polynomial time a minimum weight FVS in T̂ .

We shall refer to the algorithm as the Cai-Deng-Zang algorithm. We also need a property
of T5-free tournaments established by Cai et al. [4, Thm. 3.2].

I Proposition 9 ([4]). For any T5-free tournament T̂ with non-negative vertex weights, the
minimum weight of a FVS equals the maximum value of a fractional triangle packing.

Observe that computing the maximum value of a fractional triangle packing amounts to
solving (D) to optimality.

The next simple lemma bounds the cost of the FVS found by the Cai-Deng-Zang
algorithm in terms of the total weight of the vertices w(V̂ ).

I Lemma 10. Let T̂ = (V̂ , Â) be a T5-free tournament with weight function w : V̂ → Q≥0,
and let F̂ be an FVS of T̂ returned by the Cai-Deng-Zang algorithm applied to (T̂ , w).
Then w(F̂ ) ≤ w(V̂ )/3.

Proof. By Proposition 9, the polyhedron (P) applied to T ′ = T̂ , and w is integral. Setting
xv = 1

3 for every v ∈ V̂ is a feasible solution, and hence w(F̂ ) ≤ w(V̂ )/3. J

4.1 Layers from a vertex
Recall that Theorem 4 takes as input a T7-free tournament T ′ = (V ′, A′) with weight function
w : V ′ → Q≥0. For a set S ⊆ V ′, let N(S) = {v /∈ S | ∃u ∈ S, v → u} denote the set of its
in-neighbours; let N(u) := N({u}) = {v | v → u}.

For any vertex z ∈ V ′ and ` ∈ {1, . . . , n}, let us define V`(z) as the set of vertices v
such that the shortest directed path from v to z has length exactly `− 1. Equivalently, let
V1(z) = {z}, V2(z) = N(z), and for ` ≥ 2 let

V`+1(z) := {v ∈ V ′ \ (V1(z) ∪ . . . ∪ V`(z)) | ∃u ∈ V`(z), v → u} .

These correspond to the layers of the BFS algorithm starting from z. We will prove the
following structural result. For two disjoint sets S,Z ⊆ V ′, let us say that Z in-dominates S
if for every s ∈ S there exists a z ∈ Z with s→ z. We say that Z 2-in-dominates S if Z has
a subset Z ′ ⊆ Z with |Z ′| ≤ 2 such that Z ′ in-dominates S.

ESA 2016
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I Theorem 11. For every vertex z of positive in-degree, the following hold:
(a) The set V3(z) is T5-free, and is 2-in-dominated by V2(z).
(b) The set V4(z) is T5-free, and is 2-in-dominated by V3(z).
(c) If z is a minimum in-degree vertex in the tournament, then V3(z) 6= ∅, and V2(z) is also
T5-free.

The proof of Theorem 11 is given in Sect. 4.4. Let us now provide some context and
motivation. Cai et al. [4] showed that for any T5-free tournament, if we select a minimum in-
degree vertex z, then every layer Vi(z) induces a transitive tournament and is 1-in-dominated
by Vi−1(z). This is an important step in their algorithm for finding the exact optimal solution
in T5-free tournaments.

Assume that the analogous property held for T7-free tournaments T ′: starting from a
minimum in-degree vertex z, every layer Vi−1(z) is T5-free. Then one could get a FVS of T ′
with weight at most 2

3w(V ′) as follows. Compare the total weight of the even and odd layers,
and include in the FVS whichever of the two is smaller. Let us assume the total weight of
the odd layers is smaller; the argument is same for the other case. For every remaining even
layer Vi(z), run the Cai-Deng-Zang algorithm to obtain a FVS Fi of Vi(z). Form the final
FVS F ′ of T ′ as the union of all odd layers and the union of the Fi’s for the even layers.
Using Proposition 10, it is easy to verify that w(F ′) ≤ 2

3w(V ′). Further, F ′ will be a FVS
of T ′, since by the construction of the Vi(z)’s, every triangle must fall on consecutive layers.
That is, it is, if a triangle T intersects layers Vi(z) and Vj(z) with i < j, then j ≤ i+ 2, and
if j = i+ 2 then T must also intersect layer Vi+1(z).

However, Theorem 11 only claims T5-freeness of layers Vi(z) for i ≤ 4. This property
might not hold for higher values of i. To overcome this difficulty, we modify the layering
procedure. While the layers are constructed, we already include certain vertices in the
final FVS. This is to make sure that for every layer Ui, it holds that Ui = Vj(z′) in some
subtournament of T , for a certain vertex z′ in a previous layer and j = 3 or j = 4. Hence
Theorem 11 guarantees that all constructed layers are T5-free. The construction of the final
FVS will be a modification of the simple argument above.

4.2 Description of the layering algorithm
The algorithm (Algorithm 2) first partitions the vertex set V ′ into S ∪

⋃2k
j=1 Uj for some

2k ≤ n. We now describe how the layers are constructed in Steps 1-11. We start by
setting U1 = {z1} for a vertex z1 of minimum in-degree. We let U2 = N(z1) be the set of
in-neighbours of z1. The set W will denote the set of vertices not yet included in some Uk or
in S; at this point, W = V ′ \ (U1 ∪ U2).

While W is not empty, we construct an odd layer U2k+1, an even layer U2k+2, and S2k+1
as follows. First consider the case when U2k has at least one in-neighbour in W . We set
U2k+1 = N(U2k) ∩ W , and remove U2k+1 from W . Let U ′ be the set of in-neighbours
of U2k+1 in W . We note that U ′ = ∅ is possible. We partition U ′ into U2k+2 and S2k+2, and
remove U ′ from W . To obtain this partitioning, we pick a vertex z2k+1 ∈ U2k+1 such that
w(N(z2k+1) ∩ U ′) ≥ w(U ′)/2. The existence of such a vertex z2k+1 is non-trivial, and will
be proved in Lemma 12(c). We set U2k+2 = N(z2k+1) ∩ U ′, and S2k+2 = U ′ \ U2k+2; the
set S2k+2 will be part of S.

Let us now address the case when U2k does not have any in-neighbours in W . In this
case, we select U2k+1 = {z} for a vertex z ∈W that has minimum in-degree inside W . We
refer to the latter scenario as a fresh start. We set U2k+2 as the set of in-neighbours of z
in W , and remove these vertices from W ; here U2k+2 = ∅ is possible.



M. Mnich, V. Vassilevska Williams, and L. A. Végh 67:9

Algorithm 2 Layers
Input: A T7-free tournament T ′ = (V ′, A′) with weight function w : V ′ → Q≥0.
Output: A feedback vertex set F ′ of T ′ of weight at most 7

9w(V ′).
1: Choose z1 as a vertex of minimum in-degree.
2: Set U1 := {z1},
3: Set U2 := N(z1), W := V ′ \ (U1 ∪ U2), k := 1.
4: while W 6= ∅ do
5: if N(U2k) ∩W 6= ∅ then
6: Set U2k+1 := N(U2k) ∩W ,
7: W := W \ U2k.
8: Set U ′ := N(U2k+1) ∩W , W := W \ U ′.
9: Choose z2k+1 ∈ U2k+1 such that w(U ′ ∩N(z2k+1)) ≥ w(U ′)/2.
10: Set U2k+2 := U ′ ∩N(z2k+1); S2k+2 := U ′ \N(z2k+1).
11: else //fresh start
12: Choose z ∈W with |N(z) ∩W | minimal.
13: Set U2k+1 := {z}, U2k+2 := N(z) ∩W , and S2k+2 := ∅.
14: Set W := W \ (U2k+1 ∪ U2k+2).
15: Set k := k + 1.
16: Set L0 := ∪k

j=1U2j , L1 := ∪k−1
j=0U2j+1, and S := ∪k

j=1S2j .
17: if w(L0) ≥ w(L1) then
18: Run the Cai-Deng-Zang algorithm for every U2j to obtain a FVS F2j of U2j .
19: Set F ′ := (∪k

j=1F2j) ∪ S ∪ L1.
20: else
21: Run the Cai-Deng-Zang algorithm for every U2j+1 to obtain a FVS F2j+1 of U2j+1.
22: Set F ′ := (∪k−1

j=0F2j+1) ∪ S ∪ L0.
23: return F ′.

The layering procedure finishes once W = ∅. At this point, we denote by L0 =
⋃k

j=1 U2j

the set of all even and by L1 =
⋃k−1

j=0 U2j+1 the set of all odd layers, and by S =
⋃k

j=1 S2j the
set of vertices removed during the procedure. Thus, V ′ = S ∪ L0 ∪ L1. Given the layering,
the algorithm constructs a FVS in Steps 12-18 as follows. If w(L0) ≥ w(L1), then we use the
Cai-Deng-Zang algorithm to find an optimal FVS F2j in all even layers U2j . We set the
entire FVS as F ′ := (∪k

j=1F2j) ∪ S ∪ L1. Otherwise, we use the Cai-Deng-Zang algorithm
in all odd layers to find optimal FVS’s F2j+1, and set F ′ := (∪k−1

j=0F2j+1) ∪ S ∪ L0.
The algorithm clearly runs in polynomial time: every while cycle decreases the size of W

by at least one, and every step amounts to examining in-neighbourhoods of vertices and
comparing weights of sets.

4.3 Proof of correctness
The following lemma summarizes the essential properties of the layering obtained.

I Lemma 12. The sets S and Ui returned by Algorithm Layers satisfy the following
properties.
(a) If i > j + 1, then u→ v for every u ∈ Uj and v ∈ Ui.
(b) Every subtournament T ′[Ui] is T5-free.
(c) There always exists a vertex z2i+1 ∈ U2i+1 as required in line 9 of the algorithm.
(d) w(S) ≤ w(L0).
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Proof. Part (a) is immediate, since if u ∈ Uj , then N(u) ⊆ ∪j+1
`=0(U` ∪ S`) (let us use the

convention S` = ∅ for all odd values of `).
We prove parts (b) and (c) simultaneously. We prove it for all layers before the first fresh

start happens. If N(z1) = ∅, then U2 = ∅, hence U1 and U2 are trivially T5-free, and U3 will
be obtained by a fresh start. Otherwise, part (b) is a direct consequence of Theorem 11 for
layers 1 ≤ i ≤ 4, as z1 was chosen as a minimum in-degree vertex; note that V3(z1) 6= ∅ and
hence U3 = V3(z1) was not obtained by a fresh start. In this case, the existence of vertex
z3 ∈ U3 follows by Theorem 11(c): U ′ = V4(z1), and thus U ′ is 2-in-dominated by U3. This
means that there exist z, z′ ∈ U3 such that N(z) ∪N(z′) ⊇ U ′ (we allow z = z′). Without
loss of generality, we may assume w(U ′ ∩ N(z)) ≥ w(U ′ ∩ N(z′)). Then z3 = z gives an
appropriate choice.

Assuming that U5 is not obtained by a fresh start, let us apply Theorem 11 in the
tournament T ′′ that is the restriction of T ′ to the ground set {z3} ∪ U4 ∪ U5 ∪ (U6 ∪ S6). In
T ′′ we have V3(z3) = U5 and V4(z3) = U6∪S6, and therefore U5 and U6 ∪S6 are both T5-free.
Further, U6 ∪S6 is 2-in-dominated by U5 and therefore we can choose an appropriate z5 ∈ U5
as above. The same argument works for all values of i ≥ 3: consider the restriction of T ′ to
{z2i−1} ∪ U2i ∪ U2i+1 ∪ (U2i+2 ∪ S2i+2, and apply Theorem 11. We obtain that U2i+1 and
U2i+2 ∪ S2i+2 are T5-free as well as the choice of z2i+1 ∈ U2i+1.

Assume now that a certain layer U2i+1 is obtained by a fresh start. Then we can apply
the same argument as above to show parts (b) and (c) for all subsequent layers until the
next fresh start: we restrict the tournament from V to the ground set W at the beginning of
the iteration when U2i+1 is constructed.

Finally, part (d) is straightforward, since w(U2i+2) ≥ w(S2i+2) by the choice of z2i+2. J

We are ready to prove the correctness and approximation ratio of the algorithm.

Proof of Theorem 4. By Lemma 12(b), the Cai-Deng-Zang algorithm can be applied in
all layers Ui and finds an optimal FVS Fi in polynomial time.

First, let us show that the set F ′ returned by Algorithm Layers is indeed a FVS of T ′.
For a contradiction, assume V ′ \ F ′ contains a directed triangle uvs.

Let us assume w(L0) ≥ w(L1); the other case follows similarly. In this case, V ′ \F ′ ⊆ L0.
The three vertices u, v and s cannot fall into the same layer U2i, as in every such layer we
removed a FVS F2i. Hence they must fall into at least two different U2i’s. By Lemma 12(a),
if vertices fall into different even layers, then all arcs from the lower layers point towards the
higher layers, excluding the possibility of such a triangle.

The proof is complete by showing w(F ′) ≤ 7
9w(V ′), or equivalently, w(V ′ \F ′) ≥ 2

9w(V ′).

Case I: w(L0) ≥ w(L1). In this case, w(V ′ \ F ′) = ∪k
j=1(U2j \ F2j). By Proposition 10,

w(F2j) ≤ w(U2j)/3 for all layers, and thus w(V ′ \ F ′) ≥ 2
3w(L0). Using Lemma 12(d),

w(L0) ≥ max{w(L1), w(S)}, and thus w(L0) ≥ w(V ′)/3. Thus w(V ′ \F ′) ≥ 2
9w(V ′) follows.

Case II: w(L0) < w(L1). Using the same argument as in the previous case, we obtain
w(V ′ \ F ′) ≥ 2

3w(L1). Again using Lemma 12(d), w(L1) > w(L0) ≥ w(S), and therefore
w(L1) ≥ w(V ′)/3, implying w(V ′ \ F ′) ≥ 2

9w(V ′). J

4.4 Proof of Theorem 11
Let us first verify part (c):
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I Lemma 13. Let z be a minimum in-degree vertex in a T7-free tournament. Then V2(z) is
T5-free. If V2(z) 6= ∅, then V3(z) 6= ∅.

Proof. The claim is trivial if V2(z) = ∅. Hence we assume V2(z) 6= ∅ in the sequel. We first
claim that for every u ∈ V2(z) there must exist a v ∈ V3(z) with v → u. Indeed, assume
that for some u there exists no such v. Then N(u) ( V2(z) = N(z) must hold. This is a
contradiction to the choice of z with |N(z)| minimum. This already shows that V3(z) 6= ∅.

Consider a subset H ⊆ V3(z) containing at least one vertex v with v → u for every
u ∈ V2; choose H minimal for containment. If |H| ≥ 3, then there must be three vertices
v1, v2, v3 ∈ H, and three vertices u1, u2, u3 ∈ V2(z) such that vi → ui for i = 1, 2, 3, while
ui → vj if i 6= j. Then z and these vertices together form an S7 ∈ T7 subtournament as in
Fig. 1(b), a contradiction.

Hence |H| ≤ 2. For a contradiction, assume X ⊆ V2(z) forms a T5-graph (|X| = 5).
There exists a v ∈ H with |{s ∈ X : v → s}| ≥ 3. We claim that X ∪ {v, z} ∈ T7. Indeed,
assume it contains a transitive tournament Y on 5 vertices. Since X ∈ T5, |X ∩ Y | ≤ 3;
hence v, z ∈ Y and |X ∩ Y | = 3. There must be a vertex t ∈ X ∩ Y with v → t, and thus vtz
is a directed triangle, a contradiction. J

For (a) and (b) of Theorem 11, we show that the 2-in-domination claim implies T5-freeness:

I Lemma 14. Let z be an arbitrary vertex in a T7-free tournament. For i ≥ 3, if Vi(z) is
2-in-dominated by Vi−1(z), then Vi(z) is T5-free.

Proof. Consider a T5-subtournament X in Vi(z). By 2-in-domination, there must be a
v ∈ Vi−1(z) such that |N(v) ∩X| ≥ 3. Let s ∈ Vi−2(z) be such that v → s. We obtain a
contradiction as in the previous proof, showing that X ∪ {v, s} ∈ T7. Indeed, assume that
X ∪ {v, s} has a transitive subtournament Y of size 5. We have |X ∩ Y | ≤ 3 since X is T5;
thus |X ∩ Y | = 3, and v, s ∈ Y . But then there exists a vertex t ∈ X ∩ Y ∩N(v). We have
s→ t because N(s) ∩ Vi−1(z) = ∅. Thus stv is a directed triangle. J

The proof of Theorem 11 is complete by the following two lemmata, that show that
both V3(z) and V4(z) are 2-in-dominated by the previous layer.

I Lemma 15. For an arbitrary vertex z in a T7-free tournament T ′, the set V3(z) is 2-in-
dominated by V2(z).

Proof. Let H ⊆ V2(z) be a minimal set for containment that in-dominates V3(z). We show
that |H| ≤ 2. Indeed, if |H| ≥ 3, then again there must be a tournament S7 ∈ T7 as in
Fig. 1(b), formed by z, three vertices in V2(z) and three in V3(z). J

In the sequel, let {a, b} ⊆ V2(z) be a set that 2-in-dominates V3(z).

I Lemma 16. For an arbitrary vertex z in a T7-free tournament T ′, the set V4(z) is 2-in-
dominated by V3(z).

Proof. For sake of contradiction, assume that any minimal set in V3(z) that 2-in-domi-
nates V4(z) has size at least 3. Then there must exists vertices u1, u2, u3 ∈ V3(z) and
v1, v2, v3 ∈ V4(z) such that vi → ui for i = 1, 2, 3, while ui → vj if i 6= j.

If all u1, u2, u3 ∈ N(a), then {a, u1, u2, u3, v1, v2, v3} forms a tournament in T7, a contra-
diction. A similar argument applies for b. We may therefore assume (by possibly renaming
the indices) that u1 → a, u2 → a, u3 → b, a→ u3, and b→ u2. See Fig. 2.
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a b

u2
u1 u3

v2

z

v1

Figure 2 Illustration of the proof of Lemma 16. A few directed edges that are not portrayed are:
from z to each one of {u1, u2, u3, v1, v2} and from each of {a, b} to each of {v1, v2}.

Since T ′ is T7-free, then every 7-vertex subgraph of {z, a, b, u1, u2, u3, v1, v2, v3} must
contain a transitive tournament on 5 vertices. Let Q = {z, a, b, u2, u3}, and for i = 1, 2, let
Qi = Q ∪ {u1, vi}. Let Ti be a transitive tournament on 5 nodes in Qi.

Notice that Q forms a T5. Because of this, for i = 1, 2 it holds {u1, vi} ⊆ Ti. Furthermore,
b, u3, z cannot all be in Ti since they form a directed triangle; so {a, u2}∩Ti 6= ∅. A symmetric
argument shows that {b, u3} ∩ Ti 6= ∅ as well.

Now, since either u2 → u1 or u1 → u2, either u2u1v2 or u1u2v1 forms a directed triangle.
Thus, u2 /∈ Ti for either i = 1 or i = 2. For the same i, a ∈ Ti because of {a, u2} ∩ Ti 6= ∅.
Then z cannot be in Ti because u1az forms a directed triangle. Hence Ti = {a, b, u1, u3, vi},
and this implies that (i) a→ b since a→ u3 → b, (ii) u1 → u3 since u1 → a→ u3, and (iii)
u1 → b since u1 → a→ b, using (i).

As noted above, {u1, v1} ⊆ T1. By (ii), v1u1u3 forms a directed triangle, and by (iii),
v1u1b forms a triangle. Hence, neither u3 nor b can be contained in T1, contradicting that
{b, u3} ∩ T1 6= ∅. This completes the proof of Lemma 16. J

5 Connections to Tournament Colouring

We explore a connection to the notion of heroes and celebrities in tournaments studied by
Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé [3]. Colouring
a tournament means partitioning its vertex set into transitive subtournaments; the chromatic
number of a tournament is the minimum number of colours needed. A tournament H is
called a hero, if there exists a constant cH such that every H-free tournament has chromatic
number at most cH . Further, H is called a celebrity, if for some constant c′H > 0, every
H-free tournament T has a transitive subtournament of size at least c′H |V (T )|. Clearly,
every hero is a celebrity; Berger et al. show that the converse also holds: every celebrity is a
hero. Their work gives a characterization of all tournaments that are heros (or equivalently,
celebrities).

In this context, our Theorem 4 shows that T7 collectively form a celebrity set. Further,
our constant c′ = 2/9 seems much better than the constants that could be derived using
the techniques of Berger et al. [3]. The set T7 includes some heros as well as some non-hero
tournaments. In contrast, the set T5 is precisely the set of heros on 5 vertices.

Berger et al.’s [3] characterization rules out the following possible modification of our
algorithm to obtain a 2-approximation for the Feedback Vertex Set in tournaments
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problem. Instead of T7, one could use the single tournament ST6, the unique 6-vertex
tournament not containing a transitive subtournament of order 4 [19]. All copies ST6 can
be removed from the input tournament by losing a factor 2 in the approximation ratio only
(instead of losing 7/3 by removing copies of subtournaments from T7). However, according to
Berger et al. [3, Thm. 1.2], ST6 is not a hero, and hence there is no hope to prove a version
of Theorem 4 for this setting.
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