2,352 research outputs found

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

    Get PDF
    Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.Comment: 16 pages and 5 figures for the article (excluding appendix

    INVESTIGATION OF THE K2 ALGORITHM IN LEARNING BAYESIAN NETWORK CLASSIFIERS

    Get PDF
    This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Applied Artificial Intelligence, 25:74–96, 201

    A survey of Bayesian Network structure learning

    Get PDF

    Problem dependent metaheuristic performance in Bayesian network structure learning.

    Get PDF
    Bayesian network (BN) structure learning from data has been an active research area in the machine learning field in recent decades. Much of the research has considered BN structure learning as an optimization problem. However, the finding of optimal BN from data is NP-hard. This fact has driven the use of heuristic algorithms for solving this kind of problem. Amajor recent focus in BN structure learning is on search and score algorithms. In these algorithms, a scoring function is introduced and a heuristic search algorithm is used to evaluate each network with respect to the training data. The optimal network is produced according to the best score evaluated. This thesis investigates a range of search and score algorithms to understand the relationship between technique performance and structure features of the problems. The main contributions of this thesis include (a) Two novel Ant Colony Optimization based search and score algorithms for BN structure learning; (b) Node juxtaposition distribution for studying the relationship between the best node ordering and the optimal BN structure; (c) Fitness landscape analysis for investigating the di erent performances of both chain score function and the CH score function; (d) A classifier method is constructed by utilizing receiver operating characteristic curve with the results on fitness landscape analysis; and finally (e) a selective o -line hyperheuristic algorithm is built for unseen BN structure learning with search and score algorithms. In this thesis, we also construct a new algorithm for producing BN benchmark structures and apply our novel approaches to a range of benchmark problems and real world problem

    Bayesian network structure learning using characteristic properties of permutation representations with applications to prostate cancer treatment.

    Get PDF
    Over the last decades, Bayesian Networks (BNs) have become an increasingly popular technique to model data under presence of uncertainty. BNs are probabilistic models that represent relationships between variables by means of a node structure and a set of parameters. Learning efficiently the structure that models a particular dataset is a NP-hard task that requires substantial computational efforts to be successful. Although there exist many families of techniques for this purpose, this thesis focuses on the study and improvement of search and score methods such as Evolutionary Algorithms (EAs). In the domain of BN structure learning, previous work has investigated the use of permutations to represent variable orderings within EAs. In this thesis, the characteristic properties of permutation representations are analysed and used in order to enhance BN structure learning. The thesis assesses well-established algorithms to provide a detailed analysis of the difficulty of learning BN structures using permutation representations. Using selected benchmarks, rugged and plateaued fitness landscapes are identified that result in a loss of population diversity throughout the search. The thesis proposes two approaches to handle the loss of diversity. First, the benefits of introducing the Island Model (IM) paradigm are studied, showing that diversity loss can be significantly reduced. Second, a novel agent-based metaheuristic is presented in which evolution is based on the use of several mutation operators and the definition of a distance metric in permutation spaces. The latter approach shows that diversity can be maintained throughout the search while exploring efficiently the solution space. In addition, the use of IM is investigated in the context of distributed data, a common property of real-world problems. Experiments prove that privacy can be preserved while learning BNs of high quality. Finally, using UK-wide data related to prostate cancer patients, the thesis assesses the general suitability of BNs alongside the proposed learning approaches for medical data modeling. Following comparisons with tools currently used in clinical settings and with alternative classifiers, it is shown that BNs can improve the predictive power of prostate cancer staging tools, a major concern in the field of urology
    • …
    corecore