2,535 research outputs found

    NASA Tech Briefs, June 2012

    Get PDF
    Topics covered include: iGlobe Interactive Visualization and Analysis of Spatial Data; Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer; Small Aircraft Data Distribution System; Earth Science Datacasting v2.0; Algorithm for Compressing Time-Series Data; Onboard Science and Applications Algorithm for Hyperspectral Data Reduction; Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data; Security Data Warehouse Application; Integrated Laser Characterization, Data Acquisition, and Command and Control Test System; Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder; Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager; High-Voltage, Low-Power BNC Feedthrough Terminator; SpaceCube Mini; Dichroic Filter for Separating W-Band and Ka-Band; Active Mirror Predictive and Requirement Verification Software (AMP-ReVS); Navigation/Prop Software Suite; Personal Computer Transport Analysis Program; Pressure Ratio to Thermal Environments; Probabilistic Fatigue Damage Program (FATIG); ASCENT Program; JPL Genesis and Rapid Intensification Processes (GRIP) Portal; Data::Downloader; Fault Tolerance Middleware for a Multi-Core System; DspaceOgreTerrain 3D Terrain Visualization Tool; Trick Simulation Environment 07; Geometric Reasoning for Automated Planning; Water Detection Based on Color Variation; Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth; Scanning Laser Infrared Molecular Spectrometer (SLIMS); Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy; Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole; Enhanced-Adhesion Multiwalled Carbon Nanotubes on Titanium Substrates for Stray Light Control; Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries 23 Ultra-Lightweight; and Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Bio-Inspired Multi-Spectral Imaging Sensors and Algorithms for Image Guided Surgery

    Get PDF
    Image guided surgery (IGS) utilizes emerging imaging technologies to provide additional structural and functional information to the physician in clinical settings. This additional visual information can help physicians delineate cancerous tissue during resection as well as avoid damage to near-by healthy tissue. Near-infrared (NIR) fluorescence imaging (700 nm to 900 nm wavelengths) is a promising imaging modality for IGS, namely for the following reasons: First, tissue absorption and scattering in the NIR window is very low, which allows for deeper imaging and localization of tumor tissue in the range of several millimeters to a centimeter depending on the tissue surrounding the tumor. Second, spontaneous tissue fluorescence emission is minimal in the NIR region, allowing for high signal-to-background ratio imaging compared to visible spectrum fluorescence imaging. Third, decoupling the fluorescence signal from the visible spectrum allows for optimization of NIR fluorescence while attaining high quality color images. Fourth, there are two FDA approved fluorescent dyes in the NIR region—namely methylene blue (MB) and indocyanine green—which can help to identify tumor tissue due to passive accumulation in human subjects. The aforementioned advantages have led to the development of NIR fluorescence imaging systems for a variety of clinical applications, such as sentinel lymph node imaging, angiography, and tumor margin assessment. With these technological advances, secondary surgeries due to positive tumor margins or damage to healthy organs can be largely mitigated, reducing the emotional and financial toll on the patient. Currently, several NIR fluorescence imaging systems (NFIS) are available commercially or are undergoing clinical trials, such as FLARE, SPY, PDE, Fluobeam, and others. These systems capture multi-spectral images using complex optical equipment and are combined with real-time image processing to present an augmented view to the surgeon. The information is presented on a standard monitor above the operating bed, which requires the physician to stop the surgical procedure and look up at the monitor. The break in the surgical flow sometimes outweighs the benefits of fluorescence based IGS, especially in time-critical surgical situations. Furthermore, these instruments tend to be very bulky and have a large foot print, which significantly complicates their adoption in an already crowded operating room. In this document, I present the development of a compact and wearable goggle system capable of real-time sensing of both NIR fluorescence and color information. The imaging system is inspired by the ommatidia of the monarch butterfly, in which pixelated spectral filters are integrated with light sensitive elements. The pixelated spectral filters are fabricated via a carefully optimized nanofabrication procedure and integrated with a CMOS imaging array. The entire imaging system has been optimized for high signal-to-background fluorescence imaging using an analytical approach, and the efficacy of the system has been experimentally verified. The bio-inspired spectral imaging sensor is integrated with an FPGA for compact and real-time signal processing and a wearable goggle for easy integration in the operating room. The complete imaging system is undergoing clinical trials at Washington University in the St. Louis Medical School for imaging sentinel lymph nodes in both breast cancer patients and melanoma patients

    NASA Tech Briefs, December 2007

    Get PDF
    Topics include: Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission; Reusable, Extensible High-Level Data-Distribution Concept; Processing Satellite Imagery To Detect Waste Tire Piles; Monitoring by Use of Clusters of Sensor-Data Vectors; Circuit and Method for Communication Over DC Power Line; Switched Band-Pass Filters for Adaptive Transceivers; Noncoherent DTTLs for Symbol Synchronization; High-Voltage Power Supply With Fast Rise and Fall Times; Waveguide Calibrator for Multi-Element Probe Calibration; Four-Way Ka-Band Power Combiner; Loss-of-Control-Inhibitor Systems for Aircraft; Improved Underwater Excitation-Emission Matrix Fluorometer; Metrology Camera System Using Two-Color Interferometry; Design and Fabrication of High-Efficiency CMOS/CCD Imagers; Foam Core Shielding for Spacecraft CHEM-Based Self-Deploying Planetary Storage Tanks Sequestration of Single-Walled Carbon Nanotubes in a Polymer PPC750 Performance Monitor Application-Program-Installer Builder Using Visual Odometry to Estimate Position and Attitude Design and Data Management System Simple, Script-Based Science Processing Archive Automated Rocket Propulsion Test Management Online Remote Sensing Interface Fusing Image Data for Calculating Position of an Object Implementation of a Point Algorithm for Real-Time Convex Optimization Handling Input and Output for COAMPS Modeling and Grid Generation of Iced Airfoils Automated Identification of Nucleotide Sequences Balloon Design Software Rocket Science 101 Interactive Educational Program Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators Benchtop Detection of Proteins Recombinant Collagenlike Proteins Remote Sensing of Parasitic Nematodes in Plants Direct Coupling From WGM Resonator Disks to Photodetectors Using Digital Radiography To Image Liquid Nitrogen in Voids Multiple-Parameter, Low-False-Alarm Fire-Detection Systems Mosaic-Detector-Based Fluorescence Spectral Imager Plasmoid Thruster for High Specific-Impulse Propulsion Analysis Method for Quantifying Vehicle Design Goals Improved Tracking of Targets by Cameras on a Mars Rover Sample Caching Subsystem Multistage Passive Cooler for Spaceborne Instruments GVIPS Models and Software Stowable Energy-Absorbing Rocker-Bogie Suspension

    Wearable, low-power CMOS ISFETs and compensation circuits for on-body sweat analysis

    Get PDF
    Complementary metal-oxide-semiconductor (CMOS) technology has been a key driver behind the trend of reduced power consumption and increased integration of electronics in consumer devices and sensors. In the late 1990s, the integration of ion-sensitive field-effect transistors (ISFETs) into unmodified CMOS helped to create advancements in lab-on-chip technology through highly parallelised and low-cost designs. Using CMOS techniques to reduce power and size in chemical sensing applications has already aided the realisation of portable, battery-powered analysis platforms, however the possibility of integrating these sensors into wearable devices has until recently remained unexplored. This thesis investigates the use of CMOS ISFETs as wearable electrochemical sensors, specifically for on-body sweat analysis. The investigation begins by evaluating the ISFET sensor for wearable applications, identifying the key advantages and challenges that arise in this pursuit. A key requirement for wearable devices is a low power consumption, to enable a suitable operational life and small form factor. From this perspective, ISFETs are investigated for low power operation, to determine the limitations when trying to push down the consumption of individual sensors. Batteryless ISFET operation is explored through the design and implementation of a 0.35 \si{\micro\metre} CMOS ISFET sensing array, operating in weak-inversion and consuming 6 \si{\micro\watt}. Using this application-specific integrated circuit (ASIC), the first ISFET array powered by body heat is demonstrated and the feasibility of using near-field communication (NFC) for wireless powering and data transfer is shown. The thesis also presents circuits and systems for combatting three key non-ideal effects experienced by CMOS ISFETs, namely temperature variation, threshold voltage offset and drift. An improvement in temperature sensitivity by a factor of three compared to an uncompensated design is shown through measured results, while adding less than 70 \si{\nano\watt} to the design. A method of automatically biasing the sensors is presented and an approach to using spatial separation of sensors in arrays in applications with flowing fluids is proposed for distinguishing between signal and sensor drift. A wearable device using the ISFET-based system is designed and tested with both artificial and natural sweat, identifying the remaining challenges that exist with both the sensors themselves and accompanying components such as microfluidics and reference electrode. A new ASIC is designed based on the discoveries of this work and aimed at detecting multiple analytes on a single chip. %Removed In the latter half of the thesis, Finally, the future directions of wearable electrochemical sensors is discussed with a look towards embedded machine learning to aid the interpretation of complex fluid with time-domain sensor arrays. The contributions of this thesis aim to form a foundation for the use of ISFETs in wearable devices to enable non-invasive physiological monitoring.Open Acces

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024×1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware
    • …
    corecore