5,982 research outputs found

    Path planning of mobile robot based on hybrid improved artificial fish swarm algorithm

    Get PDF
    The artificial fish swarm algorithm is easy to fall into the local optimum for robot global path planning. A hybrid improved Artificial Fish Swarm Algorithm (HIAFSA) is proposed. Firstly, the sub-optimal path is determined by A* algorithm, and then the adaptive behavior of artificial fish swarm algorithm is improved based on the inertia weight factor, and the attenuation function α is introduced to improve the visual range and moving step length of the artificial fish, balance the global path planning and local path planning, and further improve the convergence speed and quality of the solution. The experimental results show that the hybrid improved artificial fish swarm algorithm has been improved in avoiding local optimum, convergence speed and precision

    Path planning of mobile robot based on hybrid improved artificial fish swarm algorithm

    Get PDF
    The artificial fish swarm algorithm is easy to fall into the local optimum for robot global path planning. A hybrid improved Artificial Fish Swarm Algorithm (HIAFSA) is proposed. Firstly, the sub-optimal path is determined by A* algorithm, and then the adaptive behavior of artificial fish swarm algorithm is improved based on the inertia weight factor, and the attenuation function α is introduced to improve the visual range and moving step length of the artificial fish, balance the global path planning and local path planning, and further improve the convergence speed and quality of the solution. The experimental results show that the hybrid improved artificial fish swarm algorithm has been improved in avoiding local optimum, convergence speed and precision

    Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    Get PDF
    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA

    Structural multi-damage identification based on strain energy and micro-search artificial fish swarm algorithm

    Get PDF
    A two-stage damage detection method based on strain energy and micro-search artificial fish swarm algorithm (MSAFSA) is presented for solving structural multi-damage problem. First, structural modal strain energy and energy dissipation process are analyzed and an improved modal strain energy dissipation ration index (IMSEDRI) is proposed to preliminarily detect suspected damage elements. Then, artificial fish swarm algorithm (AFSA) is used to identify damage extent of suspected damage elements. In general, the search efficiency of a basic AFSA isn’t very efficient for the search procedure. So, a micro-search artificial fish swarm algorithm is presented in this paper. The simulation results demonstrate that the damage detection method can estimate the damage locations and extent with good accuracy, and the calculated results of the proposed MSAFSA are obviously superior to those of both the basic AFSA and the AFSA with visual-step change strategy

    An Improved Artificial Fish Swarm Algorithm

    Get PDF
    The purpose of this paper is to improve the performance of the original AFSA algorithm at the optimal accuracy rate and overcome the weakness of the algorithm which is also trapped in the local optimum. To this end, the original AFSA was further improved based on the tabu strategy. Specifically, the reproduction and death were introduced to protect the best individuals and eliminate poor quality fish, so as to increase convergence and accuracy. Through simulation, it is proved that our solution can achieve high accuracy, good global convergence, and strong resistance to local minimum. The findings bring new light on the application of AFSA and provide valuable reference to studies in related fields

    Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    Get PDF
    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm

    NONLINEAR SYSTEM IDENTIFICATION USING A NOVEL IMMUNE ARTIFICIAL FISH SWARM ALGORITHM

    Get PDF
    This paper proposes a functional link artificial neural network(FLANN) model trained using a modified fish swarm optimization (FSO) algorithm for nonlinear system identification. The system modelling problem has been reformulated as an optimization problem. The FSO algorithm has been modified by incorporating the immunity features of the artificial immune systems. Simulation study reveals improved performance of the proposed algorithm over the conventional FSO algorithm for nonlinear system identification

    Load frequency control of power system based on improved AFSA-PSO event-triggering scheme

    Get PDF
    Aiming at the impact of redundant information transmission on network resource utilization in current power systems, an improved event-triggered scheme based on particle swarm optimization and artificial fish swarm algorithm for power system load frequency control (LFC) with renewable energy is proposed. First of all, to keep the stability and security of power systems with renewable energy, the load frequency control scheme is investigated in this paper. Then, to relieve the communication burden and increase network utilization, an improved event-triggered scheme based on the particle swarm algorithm and artificial fish swarm algorithm is explored for the power system load frequency control. Then, by utilizing improved Lyapunov functional and the linear matrix inequality method, sufficient condition for the H∞ stability of the load frequency control system is established. Finally, a two-area load frequency control system and IEEE-39 node simulation models are constructed to verify the effectiveness and applicability of the proposed method

    Image Restoration Algorithm Based on Artificial Fish Swarm Micro Decomposition of Unknown Priori Pixel

    Get PDF
    In this paper, we put forward a new method to holographic reconstruct image that prior information, module matching and edge structure information is unknown. The proposed image holographic restoration algorithm combines artificial fish swarm micro decomposition and brightness compensation. The traditional method uses subspace feature information of multidimensional search method, it is failed to achieve the fine structure information of image texture template matching and the effect is not well. Therefore, it is difficult to holographic reconstruct the unknown pixels. This weakness obstructs the application of image restoration to many fields. Therefore, we builds a structure texture conduction model for the priority determination of the block that to be repaired, then we use subspace feature information multidimensional search method to the confidence updates of unknown pixel. In order to maintain the continuity of damaged region in image, the artificial fish swarm algorithm decomposition model is combined with the image brightness compensation strategy of edge feature. The simulation result shows that it has a good visual effect in image restoration of a priori unknown pixel, recovery time and computation costs are less, the stability and convergence performance is improved
    corecore