262 research outputs found

    Multiple Feasible Paths in Ant Colony Algorithm for mobile Ad-hoc Networks with Minimum Overhead

    Get PDF
    Mobile ad-hoc networks are infrastructure-less networks consisting of wireless, possibly mobile nodes which are organized in peer-to-peer and autonomous fashion. The highly dynamic topology, limited bandwidth availability and energy constraints make the routing problem a challenging one. Ant colony optimization (ACO) is a population based meta-heuristic for combinatorial optimization problems such as communication network routing problem. In real life, ants drop some kind of chemical substances to mark the path that they used. Then on their way, back they choose the path with the highest pheromones which becomes the shortest path. But Ant net Algorithms may cause the network congestion and stagnation. Here, multiple optimal paths are proposed with negligible overhead in spite of single optimal path in Ant net routing algorithm, so that the problem of stagnation can be rectified. This paper proposes an improved Multiple Feasible Paths in Ant Colony Algorithm for mobile Ad-hoc Networks with Minimum Overhead

    Performance Analysis of Swarm Intelligence-Based Routing Protocol for Mobile Ad Hoc Network and Wireless Mesh Networks

    Get PDF
    Ant colonies reside in social insect societies and maintain distributed systems that present a highly structured social organization despite of the simplicity of their individuals. Ants’ algorithm belongs to the Swarm Intelligence (SI), which is proposed to find the shortest path. Among various works inspired by ant colonies, the Ant Colony Optimization (ACO) metaheuristic algorithms are the most successful and popular, e.g., AntNet, Multiple Ant Colony Optimization (MACO) and AntHocNet. But there are several shortcomings including the freezing problem of the optimum path, traffic engineering, and to link failure due to nodes mobility in wireless mobile networks. The metaheuristic and distributed route discovery for data load management in Wireless Mesh Networks (WMNs) and Mobile Ad-hoc Network (MANET) are fundamental targets of this study. Also the main aim of this research is to solve the freezing problem during optimum as well as sub-optimum path discovery process. In this research, Intelligent AntNet based Routing Algorithm (IANRA) is presented for routing in WMNs and MANET to find optimum and near-optimum paths for data packet routing. In IANRA, a source node reactively sets up a path to a destination node at the beginning of each communication. This procedure uses ant-like agents to discover optimum and alternative paths. The fundamental point in IANRA is to find optimum and sub-optimum routes by the capability of breeding of ants. This ability is continuation of route that was produced by the parent ants. The new generations of ants inherit identifier of their family, the generation number, and the routing information that their parents get during their routing procedure. By this procedure, IANRA is able to prevent some of the existing difficulties in AntNet, MACO and Ad hoc On Demand Distance Vector (AODV) routing algorithms. OMNeT++ was used to simulate the IARNA algorithm for WMNs and MANET. The results show that the IANRA routing algorithm improved the data packet delivery ratio for both WMNs and MANET. Besides, it is able to decrease average end-to-end packet delay compared to other algorithms by showing its efficiency. IANRA has decreased average end-to-end packet delay by 31.16%, 58.20% and 48.40% in MANET scenario 52.86%, 64.52% and 62.86% by increasing packet generation rate in WMNs compared to AntHocNet, AODV and B-AntNet routing algorithms respectively with increased network load. On the other hand, IANRA shows the packet delivery ratio of 91.96% and 82.77% in MANET, 97.31% and 92.25% in WMNs for low (1 packet/s) and high (20 packet/s) data load respectively

    Ant colony optimization routing mechanisms with bandwidth sensing

    Get PDF
    The study and understanding of the social behavior of insects has contributed to the definition of some algorithms that are capable of solving several types of optimization problems. In 1997 Di Caro and Dorigo developed the first routing algorithm for wired networks, called AntNet, using an approach which was inspired in the behavior of ant colonies. At each node, AntNet, similar to others Ant Colony Optimization (ACO) based algorithms, forward ants based in the amount of pheromones present in the links and in response to the node's queue lengths. In this paper, an adaptation of the e-DANTE algorithm for discrete problems, as an IP based routing mechanism, was implemented. We also propose the inclusion of a new parameter for the computation of paths for both the AntNet and the newly proposed algorithm: the available bandwith. Those methods were tested in ns-2 using two dense network architectures and their efficiency is compared with the original AntNet and a Link-State routing algorithm, when considering the transmission of competing traffic flows between distinct nodes. © 2011 IEEE

    An efficient innovative method to decrease routing table size in packet switched networks

    Get PDF
    Appropriate routing for supporting the requirements of various high quality applications emerged in current communication networks is a challenging problem that can lead to improved routing algorithms. Taking into consideration the highly distributed character of networks, numerous multi-agent based algorithms, and particularly ant colony based algorithms, have been proposed in recent years. However, considering the need for decreasing overhead and increasing the scalability of these algorithms remains an elusive challenge. Our goal here is to reduce the overhead and the process complexity in nodes by decreasing the size of routing tables of network nodes in an innovative manner. More specifically, data routing tables which are established in the AntNet algorithm and keep the information of all destination nodes in network convert to tables that only keep the information of popular destinations of network. The resulting algorithm, the ‘‘D-T-SAntNet,’’ is then simulated via Omnet++ onUUNET network topology. The network performance is evaluated under various node-failure and node added conditions. Statistical analysis of results confirms that the new method can significantly reduce the average packet delivery time and rate of convergence to the optimal route when compared with standard AntNet

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    The Evolution of Internet Routing Metrics and Cost Calculations

    Get PDF
    In this paper we examine how metrics impact route selection, looking at which metric(s) are selected and how these metrics are used to calculated cost. Examining multiple and dynamic metrics currently in use and looking toward a proposal of agent carrying dynamic metric information across an autonomous system
    corecore