Multiple Feasible Paths in Ant Colony Algorithm for mobile Ad-hoc Networks with Minimum Overhead

Abstract

Mobile ad-hoc networks are infrastructure-less networks consisting of wireless, possibly mobile nodes which are organized in peer-to-peer and autonomous fashion. The highly dynamic topology, limited bandwidth availability and energy constraints make the routing problem a challenging one. Ant colony optimization (ACO) is a population based meta-heuristic for combinatorial optimization problems such as communication network routing problem. In real life, ants drop some kind of chemical substances to mark the path that they used. Then on their way, back they choose the path with the highest pheromones which becomes the shortest path. But Ant net Algorithms may cause the network congestion and stagnation. Here, multiple optimal paths are proposed with negligible overhead in spite of single optimal path in Ant net routing algorithm, so that the problem of stagnation can be rectified. This paper proposes an improved Multiple Feasible Paths in Ant Colony Algorithm for mobile Ad-hoc Networks with Minimum Overhead

    Similar works