55 research outputs found

    Optimization under uncertainty and risk: Quadratic and copositive approaches

    Get PDF
    Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncertainty inherent in almost all real-world optimization problems. The core principle of robust optimization is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite constraints can be reduced to finitely many convex constraints, so that the resulting optimization problem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain convexity requirements on various objects. However, a recent strain of literature has sought to expand applicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows to handle situations where convexity requirements are not met immediately, but rather intermediately. In the domain of (possibly nonconvex) quadratic optimization, the principles of copositive optimization act as a bridge leading to recovery of the desired convex structures. Copositive optimization has established itself as a powerful paradigm for tackling a wide range of quadratically constrained quadratic optimization problems, reformulating them into linear convex-conic optimization problems involving only linear constraints and objective, plus constraints forcing membership to some matrix cones, which can be thought of as generalizations of the positive-semidefinite matrix cone. These reformulations enable application of powerful optimization techniques, most notably convex duality, to problems which, in their original form, are highly nonconvex. In this text we want to offer readers an introduction and tutorial on these principles of copositive optimization, and to provide a review and outlook of the literature that applies these to optimization problems involving uncertainty

    Adjustable Robust Two-Stage Polynomial Optimization with Application to AC Optimal Power Flow

    Full text link
    In this work, we consider two-stage polynomial optimization problems under uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed and the rest of optimization variables (state variables) are set up as a solution to a known system of possibly non-linear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems. We combine tools from polynomial and robust optimization to provide a framework for general adjustable robust polynomial optimization problems. In particular, we propose an iterative algorithm to build a sequence of (approximately) robustly feasible solutions with an improving objective value and verify robust feasibility or infeasibility of the resulting solution under a semialgebraic uncertainty set. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the non-linearity of other constraints. The algorithm allows for additional simplifications in case of possibly non-convex quadratic problems under ellipsoidal uncertainty. We implement our approach for AC Optimal Power Flow and demonstrate the performance of our proposed method on Matpower instances.Comment: 28 pages, 3 table

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...
    corecore