240 research outputs found

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail

    What Does Aspect-Oriented Programming Mean for Functional Programmers?

    Get PDF
    Aspect-Oriented Programming (AOP) aims at modularising crosscutting concerns that show up in software. The success of AOP has been almost viral and nearly all areas in Software Engineering and Programming Languages have become "infected" by the AOP bug in one way or another. Interestingly the functional programming community (and, in particular, the pure functional programming community) seems to be resistant to the pandemic. The goal of this paper is to debate the possible causes of the functional programming community's resistance and to raise awareness and interest by showcasing the benefits that could be gained from having a functional AOP language. At the same time, we identify the main challenges and explore the possible design-space

    Metamodel for Tracing Concerns across the Life Cycle

    Get PDF
    Several aspect-oriented approaches have been proposed to specify aspects at different phases in the software life cycle. Aspects can appear within a phase, be refined or mapped to other aspects in later phases, or even disappear.\ud Tracing aspects is necessary to support understandability and maintainability of software systems. Although several approaches have been introduced to address traceability of aspects, two important limitations can be observed. First, tracing is not yet tackled for the entire life cycle. Second, the traceability model that is applied usually refers to elements of specific aspect languages, thereby limiting the reusability of the adopted traceability model.We propose the concern traceability metamodel (CTM) that enables traceability of concerns throughout the life cycle, and which is independent from the aspect languages that are used. CTM can be enhanced to provide additional properties for tracing, and be instantiated to define\ud customized traceability models with respect to the required aspect languages. We have implemented CTM in the tool M-Trace, that uses XML-based representations of the models and XQuery queries to represent tracing information. CTM and M-Trace are illustrated for a Concurrent Versioning System to trace aspects from the requirements level to architecture design level and the implementation

    Developing a Generic Debugger for Advanced-Dispatching Languages

    Get PDF
    Programming-language research has introduced a considerable number of advanced-dispatching mechanisms in order to improve modularity. Advanced-dispatching mechanisms allow changing the behavior of a function without modifying their call sites and thus make the local behavior of code less comprehensible. Debuggers are tools, thus needed, which can help a developer to comprehend program behavior but current debuggers do not provide inspection of advanced-\ud dispatching-related language constructs. In this paper, we present a debugger which extends a traditional Java debugger with the ability of debugging an advanced-dispatching language constructs and a user interface for inspecting this

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    A Systematic Aspect-Oriented Refactoring and Testing Strategy, and its Application to JHotDraw

    Full text link
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migrations.Comment: 25 page

    Pluggable AOP: Designing Aspect Mechanisms for Third-party Composition

    Full text link
    Studies of Aspect-Oriented Programming (AOP) usually focus on a language in which a specific aspect extension is integrated with a base language. Languages specified in this manner have a fixed, non-extensible AOP functionality. In this paper we consider the more general case of integrating a base language with a set of domain specific third-party aspect extensions for that language. We present a general mixin-based method for implementing aspect extensions in such a way that multiple, independently developed, dynamic aspect extensions can be subject to third-party composition and work collaboratively

    Experiences In Migrating An Industrial Application To Aspects

    Get PDF
    Aspect-Oriented Software Development (AOSD) is a paradigm aiming to solve problems of object-oriented programming (OOP). With normal OOP it’s often unlikely to accomplish fine system modularity due to crosscutting concerns being scattered and tangled throughout the system. AOSD resolves this problem by its capability to crosscut the regular code and as a consequence transfer the crosscutting concerns to a single model called aspect. This thesis describes an experiment on industrial application wherein the effectiveness of aspect-oriented techniques is explained in migration the OOP application into aspects. The experiment goals at first to identify the crosscutting concerns in source code of the industrial application and transform these concerns to a functionally equivalent aspect-oriented version. In addition to presenting experiences gained through the experiment, the thesis aims to provide practical guidance of aspect solutions in a real application

    Effective Aspects: A Typed Monadic Embedding of Pointcuts and Advice

    Get PDF
    International audienceAspect-oriented programming(AOP) aims to enhance modularity and reusability in software systems by offering an abstraction mechanism to deal with crosscutting concerns. However, in most general-purpose aspect languages aspects have almost unrestricted power, eventually conflicting with these goals. In this work we present Effective Aspects: a novel approach to embed the point- cut/advice model of AOP in a statically-typed functional programming language like Haskell. Our work extends EffectiveAdvice, by Oliveira, Schrijvers and Cook; which lacks quantification, and explores how to exploit the monadic setting in the full pointcut/advice model. Type soundness is guaranteed by exploiting the underlying type system, in particular phantom types and a new anti-unification type class. Aspects are first-class, can be deployed dynamically, and the pointcut language is extensible, therefore combining the flexibility of dynamically-typed aspect languages with the guarantees of a static type system. Monads enables us to directly reason about computational effects both in aspects and base programs using traditional monadic techniques. Using this we extend Aldrich's notion of Open Modules with effects, and also with protected pointcut interfaces to external advising. These restrictions are enforced statically using the type system. Also, we adapt the techniques of EffectiveAdvice to reason about and enforce control flow properties. Moreover, we show how to control effect interference us- ing the parametricity-based approach of EffectiveAdvice. However this approach falls short when dealing with interference between multiple aspects. We propose a different approach using monad views, a recently developed technique for han- dling the monad stack. Finally, we exploit the properties of our monadic weaver to enable the modular construction of new semantics for aspect scoping and weaving. These semantics also benefit fully from the monadic reasoning mechanisms present in the language. This work brings type-based reasoning about effects for the first time in the pointcut/advice model, in a framework that is both expressive and extensible; thus allowing development of robust aspect-oriented systems as well as being a useful research tool for experimenting with new aspect semantics

    On Language Processors and Software Maintenance

    Get PDF
    This work investigates declarative transformation tools in the context of software maintenance. Besides maintenance of the language specification, evolution of a software language requires the adaptation of the software written in that language as well as the adaptation of the software that transforms software written in the evolving language. This co-evolution is studied to derive automatic adaptations of artefacts from adaptations of the language specification. Furthermore, AOP for Prolog is introduced to improve maintainability of language specifications and derived tools.Die Arbeit unterstützt deklarative Transformationswerkzeuge im Kontext der Softwarewartung. Neben der Wartung der Sprachbeschreibung erfordert die Evolution einer Sprache sowohl die Anpassung der Software, die in dieser Sprache geschrieben ist als auch die Anpassung der Software, die diese Software transformiert. Diese Koevolution wird untersucht, um automatische Anpassungen von Artefakten von Anpassungen der Sprachbeschreibungen abzuleiten. Weiterhin wird AOP für Prolog eingeführt, um die Wartbarkeit von Sprachbeschreibungen und den daraus abgeleiteten Werkzeugen zu erhöhen
    corecore