
Wolfgang Lohmann

On Language Processors

and
Software Maintenance

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

urn:nbn:de:gbv:28-diss2009-0109-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rostocker Dokumentenserver

https://core.ac.uk/display/198097011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The present work has been accepted by the Faculty of Computer Science and Electrical

Engineering at University of Rostock in May 2009 as dissertation to achieve the academic

degree Doktor-Ingenieur (Dr.-Ing.).

Referees: Prof. Dr. rer. nat. Dr. Ing. habil. Günter Riedewald (supervisor)

University of Rostock, Germany

Prof. Dr.-Ing. Ralf Lämmel

University of Koblenz-Landau, Germany

Professor Dr. Marjan Mernik

University of Maribor, Slovenia

Submission: 27th October 2008

Defence: 17th April 2009

Abstract

Software maintenance factories are infrastructures that generate tools for software main-

tenance from language descriptions and additional information. Besides the maintenance

of language specifications, software language evolution requires maintenance of software

written in that language as well as maintenance of software that transforms software writ-

ten in the evolving language. We argue that a software maintenance factory needs special

maintenance. It should provide support for maintenance of language descriptions, derived

tools, and the maintenance factory itself. As language processors can form the core of

such technology, we investigate their improvement. This is done in three areas:

Maintenance: We investigate the consequences of software language evolution. A gram-

mar change can have an effect on the words of the language and can require an adap-

tation of documents containing the words. A special case is the format evolution of

data and a necessary adaptation of the data existing. We study this problem for for-

mat evolution for DTDs. While the words of the language remain the same after

the refactoring of a context-free grammar, semantic rules have to be adapted in an

attribute grammar. We study the consequences of left-recursion removal to attribute

grammars and justify that the semantic rules can be automatically adapted while

preserving the semantics. Declarative transformation rules can transform programs

that are available as abstract syntax trees. When an underlying grammar is extended,

existing transformation rules need to be adapted. To study the problem we introduce

layout preservation to an existing language processor and demonstrate that transfor-

mation rules can be automatically adapted. By defining an aspect-oriented model

for Prolog we support modularity of language descriptions based on logic gram-

mars, and consequently, that of derived language processors, which makes them

better maintainable, replaceable, and configurable.

Technical improvement: By defining basic roles of program extension we provide a

way for more disciplined meta-programming for declarative programs including lan-

guage descriptions. Using language technology we introduce layout preservation

in existing language processors for maintenance. We analyse transformation rules

regarding their layout preservation behaviour. Besides using the analyse to for auto-

matic decisions on layout preservation, it can advice the coder of a transformation

rule to change the specification style to make layout preservation more likely.

Usability for the user: Disciplined meta-programming increases the usability, as it al-

lows to define reusable and better understandable recipes of meta-programs. We

discuss that the left recursion removal with automatic migration of semantic rules

can help to preserve readability of grammars in use. We show that complexity of

argument positions in transformation rules can be hidden by applying the approach

of grammar extension and automatically migrating the transformation rules. We

provide an object-oriented combination model for transformations. Based on it,

a workbench for visual interactive explorative transformational programming has

been implemented with grammars and transformations as first class citizens.

iii

Kewords: Software Language Engineering, Software Language Evolution, Grammarware, Soft-

ware Evolution, Software Maintenance, Program Transformation, Language Processors, Meta-

Programming, Declarative Programming, Aspect-Oriented Programming, Language Definition,

Source to Source Transformation

CR Classification: D.1.6 [Logic Programming], D.1.7 [Visual Programming], D.2.1 [Re-

quirements/Specifications], D.2.6 [Programming Environments], D.2.13 [Reusable Software], D.3.3

[Language Constructs and Features], D.3.4 [Processors], F.3.3 [Studies of Program Constructs],

F.4.2 [Grammars and Other Rewriting Systems]

iv

Zusammenfassung

Ein Konstruktionssystem für die Softwarewartung ist eine Infrastruktur, die aus Sprachbeschreibun-

gen und zusätzlicher Information Werkzeuge generiert. Neben der Wartung von Sprachbeschrei-

bungen erfordert die Evolution von Softwaresprachen sowohl die Wartung der in dieser Sprache

geschriebenen Software als auch die Wartung der Software, welche in dieser Sprache geschriebe-

ne Software transformiert. Wir argumentieren, dass so ein Konstruktionssystem spezielle Wartung

erfordert. Es sollte außerdem Unterstützung für die Wartung von Sprachbeschreibungen, für die da-

von abgeleiteten Werkzeuge und für das Konstruktionssystem selber bieten. Da Sprachprozessoren

den Kern solcher Technologie darstellen, untersuchen wir deren Verbesserung auf drei Gebieten:

Wartung dieser Werkzeuge: Wir untersuchen die Folgen der Evolution von Softwarespra-

chen. Eine Grammatikänderung kann Auswirkungen auf die Wörter der Sprache haben und

die Anpassung der Dokumente erfordern, welche diese Wörter enthalten. Ein Spezialfall

ist die Evolution von Datenformaten und die dann erforderliche Anpassung der existieren-

den Daten. Wir untersuchen das Problem anhand der Formatevolution von XML Dokumen-

ten. Während die Wörter der Sprache bei einem Refaktoring einer kontextfreien Gramma-

tik gleich bleiben, müssen semantische Regeln in einer attributierten Grammatik angepasst

werden. Wir untersuchen die Folgen der Entfernung von Linksrekursion in attributierten

Grammatiken auf die semantischen Regeln. Wir beweisen, dass diese Regeln automatisch

semantik-erhaltend angepasst werden können. Deklarative Regeln können Transformatio-

nen von Programmen beschreiben, die als abstrakte Syntaxbäume vorliegen. Wird eine zu-

grundeliegende Grammatik erweitert, müssen diese Regeln angepasst werden. Um dieses

Problem zu untersuchen, erweitern wir bestehende Sprachprozessoren, so dass sie Layout-

erhaltung unterstützen. Wir zeigen, dass die bestehenden Transformationsregeln automatisch

angepasst werden können. Wir definieren ein aspekt-orientiertes Modell für Prolog. Dadurch

unterstützen wir die Modularisierung von Sprachbeschreibungen basierend auf logischen

Grammatiken und folglich auch die Modularisierung von daraus abgeleiteten Sprachprozes-

soren, was diese besser wartbar, austauschbar und konfigurierbar macht.

Verbesserung der Werkzeuge hinsichtlich der Ausdruckskraft: Durch die Definition

von Basisoperatoren für die Erweiterung von logischen Programmen bieten wir einen Weg

für verbessertes diszipliniertesMetaprogrammieren auf deklarativen Programmen einschließ-

lich Sprachbeschreibungen. Wir erweitern die Sprachprozessoren für die Softwarewartung

mit Hilfe von Sprachtechnologie, so dass sie layouterhaltend transformieren.Wir analysieren

Transformationsregeln hinsichtlich ihres Einflusses auf die Layouterhaltung bei Transforma-

tionen. Neben der Verwendung für die automatische Anpassung von Transformationsregeln

zur Unterstützung von Layouterhaltung kann diese Analyse dem Ersteller einer Transforma-

tionsregel auf einen Stil verweisen, der die Layouterhaltung verbessert.

Usability für den Nutzer: Diszipliniertes Metaprogrammieren erhöht die Usability, da dadurch

wiederverwendbare und besser verständliche Rezepte von Metaprogrammen definiert wer-

den können. Wir diskutieren, wie die Entfernung von Linksrekursion in attributierten Gram-

matiken hilft, die Lesbarkeit der verwendeten Grammatik zu erhalten. Wir zeigen, dass die

Komplexität von Argumentpositionen in Transformationsregeln durch den Ansatz der Gram-

matikerweiterung und der automatischen Anpassung von Transformationsregeln versteckt

werden kann. Wir geben ein objekt-orientiertes Modell zur Kombination von Transforma-

tionen an. Darauf aufbauend ist ein Arbeitsplatz zur visuellen interaktiven explorativen Pro-

grammieren mit heterogenen Transformationen implementiert, bei dem Grammatiken und

Transformationen als Objekte erster Ordnung behandelt werden.

v

Acknowledgement

Research is rarely an individual performance in an empty space. I would like to thank

everybody who has helped me in several ways.

First of all, I would like to thank my advisor Prof. Günter Riedewald for his guidance.

He was always available when I needed him. He was very patient and provided me with

many advice and much freedom regarding both, the choice of research topics and the style

of working. He shaped my view of a university of a place for research and teaching. His

dedication to teaching was always a guide for me.

Next, I am very grateful to Prof. Ralf Lämmel who I consider to be an extraordinary

researcher and who continuously influenced my research interests. He also opened oppor-

tunities for research visits, which were very important for my development. Thanks for

many discussions, for repeatingly motivating me, and for introducing me to red Bordeaux.

I have visited two places repeatedly for research stays, which formed the foundation

of my research topic. First, I would like to thank the Programming Research Group at

University of Amsterdam and CWI Amsterdam, and particularly Paul Klint, who provided

me the opportunity of the research visits at UvA and CWI, and Chris Verhoef for the

opportunity of the research visit at Vrije University Amsterdam. Jurgen Vinju was very

helpful regarding all technical questions. Second, I would like to thank Marjan Mernik

and his colleagues for very kind hospitality during three research visits in Maribor. Marjan

Mernik also introduced me to the field of Aspect-Oriented Programming. We had many

fruitful discussions. Thanks to Damijan Rebernak for his help with the Lisa web service.

Also, I would like to thank my former colleagues in Rostock for their comments and

discussions; especially Jörg Harm and Elke Tetzner for sharing the office with me, and

Prof. Forbrig for his kind of humor. I would like to emphasise my thanks to Anke Dittmar

for her view on the world I share and for being a researcher who does not forget that it is

the human who should be the centre of our attention.

My thesis has profited from discussions and comments at workshops and conferences.

I would like to thank Mark van den Brand, Jim Cordy, Meike Klettke, Günter Kniesel,

Damijan Rebernak, Eelco Visser, Joost Visser, the anonymous reviewers of LOPSTR’99,

CSMR’03, LDTA’04, Object-Oriented Technologies ’06, LOPSTR’06, TOOLS’07, IET

Software Special Issue on SE ’08. Some former students contributed in some way to my

work, especially Benjamin Mesing, Markus Stoy, Guido Wachsmuth, and Thomas Zühlke.

Thanks to Axel Arnold, Heiko Kopp, Lothar Ludwig, Yves Maurischat, Georg Petry,

Arches of The Lands of Evermore, for their work in the MUD. Much of the thesis has

been influenced by the maintenance activities we have performed together.

Much of my energy and support I got from many others. Thanks to my best friends

Jörn Oldag and Henning Güldner. I am very grateful for the discussions and wine we

had together, not to speak of financial support. I would like to thank Randolf Schultz for

many delicious salads and the daily companionship at lunch (as well for many technical

discussions). Thanks to Carsten Eichholz for philosophical discussions and for showing

me that there can always be another point of view at the world and both views, though

contrary, can still be valid. Thanks to Uwe “mein Zahnarzt” Poser, who saved my set of

teeth, and Jens Neumann. I am very grateful for the motivation I got from Peggy Kronen.

vii

Finally, thanks to my brothers, who participated endless political discussions, and my

parents, especially my mother, who made my study and this thesis possible in the first

place.

As a final remark, I would like to mention that this kind of work often is done on the

expense of the family or a partner. It is important for me to acknowledge that Maryline

Roussette probably suffered and sacrificed more than me through and after all these years

to let me complete the thesis. For this, and for her love, I bow to her and say I am really

sorry that things turned out this way.

viii

����
One

������
night

������
with

����
full

������
moon

Full moon. It is there. Round.
Through the night.
Scary, the sound.
Right.

Magic. It develops. Strong.
It’s just enough.
Nearly. How long?
Tough.

Some Work. It is hard. Fine.
All. Well done.
Saved. In time.
Gone.

������
Futoa

Jedsjala zuto fromask
Huo tao brask
Emid eowu
Taloa penado

Tequo polo zonka bong
Yoma dola rong

Oria dra gna so
Piso wa fraso
Demi rua eh
Zunda brodame

Tequo polo zonka bong
Yoma dola rong

Bardsja yo-ima te
Fora rula nee
Demi vao ska
Oton Tunskala

Tequo polo zonka bon
Yoma dola rong

(From the Library of Tunskala, by Wolfgang Lohmann: A poem and a song of Tunskala that are somehow

related to the thesis... it may serve as an apologise for all remaining errors in the thesis, technical as well as

english.)

ix

Contents

List of Figures xvii

1 Introduction 1
1.1 Summary . 1

1.2 Bird’s eye view - The larger Context : Software Evolution 3

1.2.1 Software Maintenance . 3

1.2.2 Co-evolution . 7

1.3 Middle View: an Instance of the Co-evolution Problem 9

1.3.1 Software Maintenance Factories 10

1.3.2 Language Processors . 11

1.4 Evolution in Maintenance Tools - Experience and Research Questions . . 13

1.4.1 Change of Language Description 13

1.4.2 Migration of Source Code due to Grammar Change 14

1.4.3 Migration of Rewrite Rules due to Grammar Change 14

1.4.4 Adaptation of Language Descriptions to improve Maintenance Tools 15

1.4.5 Modularisation of Language Descriptions and Derived Tools . . . 15

1.4.6 Usability in Transformational Programming 16

1.5 Overview of the Chapters . 16

1.6 Origins of the Chapters . 18

2 Roles of Program Extension 21
2.1 Introduction . 21

2.2 The Underlying Meta-programming Framework 23

2.2.1 The Effect Space . 24

2.2.2 Object Programs . 25

2.2.3 Types at the Object Level . 27

2.2.4 Addressing Fragments . 28

2.3 Extending Computational Behaviour . 29

2.3.1 Semantics-preservation . 29

2.3.2 A Core Calculus . 30

2.3.3 Completion of the Core Calculus 32

2.3.4 Techniques . 35

2.4 Related Work . 37

2.5 Concluding Remarks . 39

3 Format Evolution 41
3.1 Introduction . 41

3.2 The Approach in a Nutshell . 43

xi

Contents

3.2.1 Restructuring . 43

3.2.2 Enrichment . 44

3.2.3 Attributes to Elements Conversion 45

3.2.4 Transformation Technology . 45

3.3 Properties of Transformations . 46

3.3.1 Well-formedness . 46

3.3.2 Validity . 47

3.3.3 Totality and Partiality . 47

3.3.4 Structure Preservation . 48

3.4 Refactoring . 49

3.4.1 Renaming . 49

3.4.2 Introduction and Elimination . 50

3.4.3 Folding and Unfolding . 51

3.4.4 Elements vs. Attributes . 52

3.5 Construction and Destruction . 54

3.5.1 Generalisation and Restriction of Expressions 54

3.5.2 First Intermezzo: Replacing Content Particles 55

3.5.3 Second Intermezzo: Matching at the XML Level 56

3.5.4 Structure Enrichment and Removal 56

3.5.5 Attributes . 57

3.6 Related Work . 58

3.7 Concluding Remarks . 60

4 Semantics-preserving Migration of Semantic Rules during Left
Recursion Removal in Attribute Grammars 63
4.1 Introduction . 63

4.2 Notions of Attribute Grammars . 64

4.3 Left Recursion Removal in an Example AG 66

4.4 Transformation Schemes for Left Recursion Removal in Multi-pass At-

tribute Grammars . 68

4.4.1 S-attributed Grammars . 68

4.4.2 Transformation for IAG . 72

4.4.3 Multi-pass Attribute Grammars 74

4.5 Practical Experiences . 75

4.6 Related Work . 76

4.7 Concluding Remarks . 78

5 Towards Automatical Migration of Transformation Rules after
Grammar Extension 79
5.1 Introduction and Running Example . 79

5.1.1 Two Problems with Maintenance Tools 80

5.1.2 Aim and Result . 82

5.1.3 Remainder of the Chapter . 83

5.2 Layout in Software Maintenance . 83

xii

Contents

5.2.1 The Need for Layout Preservation 83

5.2.2 Layout in Abstract Syntax . 84

5.3 Introducing Layout Preservation to Existing Transformation Systems . . . 84

5.3.1 Grammar Extension and Transformation Rules 84

5.3.2 Generalised Use of the Approach 85

5.4 Implementation . 87

5.4.1 Notations and Used Tool . 87

5.4.2 Generating an Internal Representation 88

5.4.3 Extending the Base Grammar 88

5.4.4 Migration of Transformation Rules 90

5.4.5 The Migration Relation . 91

5.5 Discussion and Related Work . 94

5.6 Concluding Remarks . 95

6 Automatic Layout Preservation in Declarative First Order Rewriting 97
6.1 Introduction . 97

6.1.1 Common Approach to treat Layout 98

6.1.2 Problem Description . 98

6.2 Simplifying Assumptions . 99

6.3 Notions . 100

6.4 Case Discrimination over Argument Positions 101

6.4.1 Input Position on LHS . 102

6.4.2 Input Position on RHS . 103

6.4.3 Output Position on RHS . 105

6.4.4 Output Position on LHS . 106

6.4.5 Remarks . 107

6.5 Related Work . 108

6.6 Concluding Remarks . 109

7 Aspect-Oriented Prolog in a Language Processing Context 113
7.1 Introduction . 113

7.1.1 Motivation: Modularisation for Logic Grammars 113

7.1.2 Overview on Key Concepts in the Chapter 115

7.1.3 Remainder of the Chapter . 117

7.2 Aspects in Grammars for Language Processors - a Motivating Example . 117

7.2.1 Grammar Example and a Derived Parser 117

7.2.2 Scanner Integration is a Concern 118

7.2.3 AST Construction while Parsing is a Concern 119

7.2.4 Program Analysis is a Concern 120

7.2.5 Program Transformation Based on a Generic Aspect traverse/1 . . 121

7.2.6 A Note on Description Size . 122

7.3 A Simple Running Example . 123

7.3.1 Computations on Lists . 123

7.3.2 Aspect-Oriented Description of sumlist 123

xiii

Contents

7.4 Representing Concepts of AOP in Prolog - Level 1 125

7.4.1 Control Flow in Prolog and Join points 125

7.4.2 Pointcuts and Pointcut Descriptions 126

7.4.3 Pointcut Context . 127

7.4.4 Advice . 129

7.4.5 Aspects . 130

7.4.6 Weaver . 131

7.4.7 A Note on the Implementation 132

7.5 The Aspect Library - Level 2 . 133

7.5.1 Stepwise Enhancement, Skeletons, and Techniques 133

7.5.2 Generalised Techniques . 134

7.5.3 Formalising Techniques as Generic Aspects: Calculate 134

7.6 A DSL - Level 3 . 136

7.7 Related Work . 138

7.8 Concluding Remarks . 143

8 A Lightweight Infrastructure to support Experimenting with
Heterogeneous Transformations 145
8.1 Introduction . 145

8.1.1 Experiments with Transformation Nets 145

8.1.2 Using .NET . 146

8.1.3 Resulting Prototype . 146

8.2 Trane Concept . 147

8.3 Object-Oriented Model . 148

8.3.1 First Level: Combination Infrastructure 148

8.3.2 Second Level: Interactivity and Views 150

8.3.3 Providing a New Box . 151

8.3.4 Computation Strategy . 151

8.4 Variants of Boxes . 152

8.4.1 Web Services . 152

8.4.2 Hierarchical Transformations 152

8.4.3 Use of Native Libraries . 152

8.4.4 XSLT Boxes . 154

8.4.5 Command Line Tools . 155

8.4.6 Dynamic Compilation and Integration 156

8.4.7 F# and Other Languages . 156

8.5 Related Work . 157

8.6 Concluding Remarks . 158

9 Concluding Remarks 161
9.1 Summary . 161

9.2 Achievements . 162

9.3 Outlook . 165

xiv

Contents

A Left Recursion Removal 169
A.1 Algorithm for Simple Multi-pass AG . 169

A.2 The Practical View . 171

A.2.1 An AG-like Notation in Prolog 171

A.2.2 Prototypes . 173

A.2.3 Scalability . 174

Bibliography 175

Index 197

xv

Contents

xvi

List of Figures

1.1 Selected challenges in software evolution from [MWD+05] 4

1.2 Selected research challenges from the Grammarware Agenda [KLV05a]

and contributing chapters of the thesis 10

1.3 Chapters vs. questions . 16

1.4 Contents of the chapters . 16

2.1 The effect space . 24

2.2 Interface of the abstract data type for object programs 26

2.3 Interface of the Abstract Data Type for Addressing 29

2.4 The core calculus . 31

2.5 Monadic foldr/map on lists . 32

2.6 Lifting by mmap . 33

2.7 The completed calculus . 34

2.8 Technique for Accumulation . 36

2.9 A notion of projections of programs . 38

3.1 Induced XML document migration . 42

3.2 A DTD for music albums . 43

3.3 A music album as XML document . 44

3.4 The identity transformation in XSLT . 46

3.5 Form restructuring . 51

3.6 Two inconvenient implementations of the fold problem from Section 3.2.1 59

4.1 An example use of the approach . 65

4.2 Left recursion removal for context-free grammars 67

4.3 Simple expression definition (left) with left recursion removed (right) . . 67

4.4 Attributed syntax tree for 1+2*3 (left) and without left recursion (right) 68

4.5 Expression with removed left recursion and migrated semantic rules . . . 68

4.6 Transformations of an S-attribute grammar, * representing inherited (on

left side) and synthesised (on right side) attributes of a nonterminal . . . 69

4.7 Syntax trees for the derivation of βαn 71

4.8 Transformations of an I-attribute grammar, * representing inherited (on

left side) and synthesised (on right side) attributes of a nonterminal . . . 73

4.9 Input (left) and output (right) of the prototype 75

4.10 Context-free extract from a yacc specification for expression definition . 76

4.11 Reuse of the original grammar for small maintenance transformations . . 77

5.1 Loop optimisation . 80

5.2 A grammar fragment . 80

xvii

List of Figures

5.3 Rules to extract the assignment of a loop invariant variable 81

5.4 Counting assignments of a variable . 81

5.5 Extension by explicit layout . 82

5.6 Migrated rules for layout extension . 82

5.7 Result without layout preservation . 84

5.8 Adaptation of grammar, abstract syntax and rewrite rules 85

5.9 Relations between the grammar, the extended grammar, the abstract syntax

and migrated abstract syntax, the rewrite rules, and the migrated rewrite rules 86

5.10 Interesting parts of a tree structure . 86

5.11 Grammar of LLL-Grammars . 87

5.12 Description of the transformation . 88

5.13 Resulting logic grammar rule . 89

5.14 Some locations for term construction . 90

5.15 Migration relation: top level . 91

5.16 Configuring the weaving and heuristics for layout preservation 92

5.17 Weaving nonterminals into terms . 93

7.1 Extended port model of the IF/Prolog-Tracer. The outer goal box contains

two clause boxes. Possible control flows are visualised by arrows. 116

7.2 A logic grammar is the starting point for derived language processors. . . 117

7.3 Result: Keywords and lexeme classes need to be scanned. 118

7.4 Result: Parsing, AST construction, and determination of free variables. . . 118

7.5 The pointcut lexeme describes positions to scan lexeme classes. 119

7.6 Weaving scanner integration into the grammar using a specialised parser

aspect. 119

7.7 Description of AST construction for let-Expressions using the generic

aspect build from the library (build/3 implements the build-technique

using AOP). 120

7.8 Generic build and its pointcuts are instantiated to describe the construction

of program analysis for unused variables. 121

7.9 Aspect edl: Describing removal of dead lets based on a generic aspect

traverse/1 similar to parser/1. 122

7.10 Computations on a list skeleton . 124

7.11 Pointcut and advice of aspect sumlist to sum up the elements of a list . 124

7.12 Parallel, parent, and left context of a goal Gi in a clause c 128

7.13 Result of weaving the sumlist aspect to list/1 of Figure 7.10 131

7.14 Generic Aspect rename/2 for renaming predicates 131

7.15 Transformations implementing advice 132

7.16 The calculate-technique can be described as a generic aspect 135

7.17 sumlist can be described based on calculate and rename 137

7.18 Grammar snippet for the DSL . 137

7.19 Mapping of Swell to Laola by example 139

8.1 Trane in action . 147

xviii

List of Figures

8.2 Class model of Trane . 149

8.3 A web service box . 153

8.4 A plain hierarchy box . 154

8.5 DLL Import . 155

8.6 Providing direct Prolog access . 155

8.7 Apply XSLT script to input . 156

8.8 Wrapping command line tools . 157

A.1 Simulation of computation of an attribute by function application 171

A.2 Delayed evaluation of attribute values 172

A.3 Example of Knuth: Converting binary to decimal numbers 172

A.4 Output of the TXL prototype for the Knuth example 173

xix

List of Figures

xx

So
ftw

are Maintenance for Software Language Tech
no

lo
gy

 fo
r

Chapter 1

Introduction

1.1 Summary

To save costs, time and avoid errors, language processors are used to (semi-)automate

software maintenance tasks. We refer to implemented maintenance tasks as transforma-
tions. Software language evolution as a special case of software maintenance requires the

maintenance of both, the software written in that language and the software that transforms

software written in the evolving language.

Software maintenance factories (SMF) are infrastructures to generate, adapt and man-

age maintenance tools. We study how to improve the SMF by increasing support for

automatic maintenance of created software maintenance tools, better support for meta-

programming and improved usability for the user of a factory. As language processors

form the heart of such technology, our research is related to the emerging discipline of

software language engineering (SLE). “[SLE] is the application of a systematic, disci-
plined, quantifiable approach to the development, use, and maintenance” of “all sorts
of artificial languages used in software development including general purpose program-
ming languages, domain-specific languages, modeling and metamodeling languages, data
models, and ontologies.” It “is concerned with all phases of the lifecycle of software lan-
guages; these include the design, implementation, documentation, testing, deployment,
evolution, recovery, and retirement of languages. Of special interest are tools, techniques,
methods and formalisms that support these activities. In particular, tools are often based
on or even automatically generated from a formal description of the language. Hence,
of special interest is the treatment of language descriptions as software artefacts, akin to
programs - while paying attention to the special status of language descriptions, subject to
tailored engineering principles and methods for modularisation, refactoring, refinement,
composition, versioning, co-evolution, and analysis.” [CFP08].

1

Chapter 1 Introduction

Maintenance for maintenance tools. We use the term language technology to ad-

dress tools, techniques, methods and formalisms that support these mentioned activities.

Besides the usual maintenance of software, software maintenance factories need special

kind of maintenance. Firstly, the language description libraries (of the SMF) have to be

maintained, new language descriptions have to be supplied, language descriptions have to

be converted, language desriptions have to be reused and adapted for new dialects of a lan-

guage, extracted languages from sources have to be maintained, etc. For this kind of task,

one needs an SMF for languages (SMFL). Secondly, changes in the language descriptions

require a re-generation of tool components, the adaptation of several generated compo-

nents, or the adaptation of user supplied information for generated components. Informa-

tion about the change in the language description is available in the language description

maintenance process, i.e., in the SMFL and the applied transformation. Therefore, SMFL

should be part of SMF to allow the adaptation of generated tools as well as user supplied

information. Thirdly, the SMF should provide the tools to maintain the SMF itself. While

SMF use software language technology for software maintenance the improvement and

maintenance of SMF means maintenance for language technology, which again can be

applied to maintain language technology itself.

Contents. We investigate construction, maintenance, and reuse of language processors

and disciplined meta-programming applicable for manipulations of language descriptions

and tools. We investigate the consequences of evolution in language descriptions to a)

software written in that language, and b) language processors derived from these language

descriptions as well as problems in those language processors arising during their evolu-

tion. We study how some of the maintenance transformations can be derived automati-

cally. We also show how language technology and evolution can be used to increase the

quality of maintenance tools, not only their design and maintainability but also their out-

put. Automatically derived meta- and meta-meta-programs play a role for improvements

of readability of language descriptions and modularity of tools, too. Thus, aspects like

usability 1 and explorative prototyping are included.

The remainder of the introduction. The following Section 1.2 introduces the wider

context of the thesis, which is concerned with software evolution. The notion of co-
evolution and resulting problems are discussed motivating the maintenance for generation

processes, and as a consequence, for maintenance transformations. Section 1.3 shortly

introduces an instance of the co-evolution problem. In the subsequent Section 1.4 we de-

velop research questions as result from experiences in refactoring and from work with lan-

guage descriptions and their maintenance resp. related tools. Section 1.5 gives an overview
of the remaining chapters in the thesis, and thus provides the guide through the thesis. Sec-

tion 1.6 completes the introduction with the origins of the core chapters as the thesis is a

cumulative work based on published papers.

1Usability: The extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use [ISO98]

2

1.2 Bird’s eye view - The larger Context : Software Evolution

1.2 Bird’s eye view - The larger Context : Software Evolution

“The ability to change and evolve software
easily, quickly and reliably is a ’grand chal-
lenge’ within software engineering.”

K. H. Bennett,V. T. Rajlich [BR00]

1.2.1 Software Maintenance

Software engineering is the systematic approach to design, construction and maintenance

of software. While design and construction aim for the creation of software, the mission
of software maintenance is to preserve its value, including to organise and perform ac-

tivities that ensure to keep it running, remove bugs, adapt it to changed technical or user

requirements, adapt documentations, and even adapt processes.

Software maintenance is underestimated in regards to the amount of time and effort that

is needed for it [RC06], although is has been estimated to be 60-80% of the overall cost

([KV98, MDDB+03]).

Instead, emphasise is put on new design and construction techniques, for example, a) to

raise the level of abstraction on which software is developed (e.g., Model Driven Engineer-

ing - MDE [Sch06, Gro]), b) to quickly produce several variants of software (e.g., Gener-

ative Programming - GP [CE00]), or c) new concepts are introduced to reduce the weak

points of older concepts (e.g., Object-Oriented Programming - OOP, for reuse or differ-

ent kind of modelling; Aspect-Oriented Programming - AOP [KLM+97b], to modularise

crosscutting concerns).

However, new techniques are often introduced without looking at the effect to what

happens to the software when it has to be changed [BR00]. No matter how good design and

construction are, experience shows that software in use always needs change, it needs to

evolve. This has been formulated in the first law of software evolution by Lehman [Leh74,

Leh97]: “Continuing Change: A[..] program that is used must be continually adapted else
it becomes progressively less satisfactory.” [Leh97]. Even worse, many changes actually

required are those that the original designers cannot even conceive of [BR00].

In Figure 1.1, we summarised actual challenges in software evolution relevant to the

thesis, which have been determined by an international group of researchers during the

International Workshop on Principles of Software Evolution 2005 [MWD+05].

Sometimes the term software evolution is used as a substitute for software mainte-

nance [BR00]. We rather agree with [RC06] to “consider evolution as the process by
which programs change shape” including, in our opinion, all activities in the software

engineering. Software maintenance is part of this process.

Software maintenance was considered a separate phase after delivery of the software

(which is reflected in the original definitions “ modification of a software product after de-
livery to correct faults, to improve performance or other attributes, or to adapt the product
to a changed environment.” [ANS] and “ The software product undergoes modification to
code and associated documentation due to a problem or the need for improvement. The
objective is to modify the existing software while preserving its integrity.” [ISO]. How-

3

Chapter 1 Introduction

1. Preserving and improving SW quality (provide tools and techniques that preserve or even

improve the quality characteristics of a SW system)

2. A common software evolution platform (issue of exploratory prototyping)

3. Support for model evolution (SW evolution techniques should be raised to a higher level of

abstraction, in order to accommodate not only evolution of programs, but also evolution of

higher-level artefacts such as analysis and design models, SW architectures, requirement

specifications, and so on.)

4. Support for co-evolution (keeping evolution of related artefacts in sync)

5. Formal support for evolution (existing formal methods provide poor support for evolving

specifications)

6. Support for multi-language systems (techniques, that are language-parametric, language

independent, language generic)

7. Need for better versioning systems (new ways of recording the evolution of SW that over-

come shortcomings of the current state-of-the-art tools)

8. Integrating data from various sources

Figure 1.1 Selected challenges in software evolution from [MWD+05]

ever, in our opinion maintenance is woven through the whole lifecycle of software, as

stated in [Pig96]: “Maintenance should begin coincident with the decision to plan a new
system.”

Source Manipulation. In the context of this thesis that part of maintenance is interest-

ing which is concerned with the (possibly automated) editing aspect, e.g., with removing

bugs, API evolution or restructuring.

Object to manipulation in maintenance are sources, i.e., the material from which the

(executable) software is constructed. From a technical point of view, there is only a small

difference (mainly the degree of abstraction) between program texts, models, or specifi-

cations. This means, similar maintenance problems occur in source-based techniques in

software engineering. (Documentation plays a special role due to the more informal and

semi-structured nature.) We use the term source to emphasise that more general artefacts

are object to maintenance than simply source-code of a general purpose programming

language.

There are several areas which work with source-based techniques (cf. [Vin05]), for ex-

ample

• Programming language definition (language tools are generated from formally de-

fined syntax and semantics),

4

1.2 Bird’s eye view - The larger Context : Software Evolution

• Compiler construction (translators are built from high level programming languages

to lower level programming languages or machine instructions),

• Software maintenance and evolution (the software is adapted in a stepwise manner

to the needs of the user) and

• Software renovation (analysing source code of legacy software systems in order to

retrieve their high-level design, then subsequently adapt the derived abstractions the

functionality after which an improved system will be derived).

But there are also techniques to increase productivity and as a side effect to “reduce

maintenance” such as

• Model Driven Engineering (develop applications on a high level descriptive and

technology independent format, for example, using UML. From these, platform de-

pendent source code is generated) and

• Generative Programming (model similar software systems such that using a concise

requirements specification: customised software can be automatically constructed).

These parts of software (the sources, source code) we name brittleware. Even small

changes quickly result in breaking the compilation or execution of the software, or worse,

it leads to producing wrong results. Consider, for example, the change of a non-local vari-

able. The “brittleness” is due to the complex dependencies between items in the software.

An important principle is separations of concerns, often cited in the context of AOP. Es-

sentially, it tries to reduce and concentrate the dependencies between different items to

defined interfaces in the software development phase, so that changing tasks, understand-

ing, etc. are easier.

Many tasks typical for maintenance are necessary even while developing the software.

A good example is refactoring, which has had much attention during the last decade and

will escort/assist us through the thesis.

Refactoring as main(tenance) example. “Refactoring is [..] changing a software
system in such a way that it does not alter the external behaviour of the code yet it improves
its internal structure” [FBB+99]. Refactoring has been done ever since writing programs,

but it was not until 1991, when Opdyke examined the topic from a more scientific point of

view [Opd92], and 1999, when Fowler wrote [FBB+99] that the greater audience became

aware of a more systematic way of restructuring. The achievement of Opdyke was to

formally describe a list of refactorings relevant in C++ programs and also give pre- and

postconditions that, when met, ensure that the modification does not change the observable

behaviour. The credit of Fowler was to create a list of recipes (for programs written in Java)

that was less formal, easy to understand, and easy to apply by programmers.

An example of refactoring is Extract Method (cf. [FBB+99]): a set of declarations and

method calls in the body of some method are replaced with a single call of a method

whose body is formed by the replaced declarations and method calls. This corresponds to

fold-operation known from program transformations [PP96].

5

Chapter 1 Introduction

The pre- and postconditions as given by Opdyke and the recipes of Fowler (and many

others by now) actually ensure that the dependencies are not destroyed. This is addition-
ally supported by the consistent use of unit testing [Bec94]. Refactoring and unit testing

also play a central role in the method of Extreme programming that puts change (of soft-

ware) as a welcome fact expressed by the slogan “embrace the change” [Bec00].

Besides improving the design of existing code, refactoring can be and has been applied

to achieve other aims. While in the beginning of this trend refactoring has been applied

on object-oriented programming languages mainly, it (and similar manipulations) has now

been investigated and partially automated for programs of several languages including

modelling languages, e.g., for UML models, XML documents, and more.

Refactoring for declarative languages has been investigated. For the thesis, the applica-

tion to Prolog is interesting, e.g., by a master thesis directed by us [Ste03] or in [SS04].

Also important for the thesis are the articles on evolution of rule based systems [Läm04b]

and on grammar adaptations [Läm01]. However, the authors in [KLV05a] claim that there

is still much work to be done.

Automated changes. Many changes to be applied are similar in nature, which re-

sulted, for example, in a catalog of refactorings. Many changes have to be done repeatedly

at several places in the source. Manual editing is not only inefficient, i.e., it does not scale

up for larger applications. It is also boring, demotivating, and error-prone work. As much

of it as possible should be automated. Scripts with tools based on regular expressions are

gladly used, e.g., scripts based on the famous find, grep, awk and sed known from

Unix. But these scripts are very restricted. For example, source manipulations depending

on conditions are nearly impossible. They have their advantage, however: a simple global

search and replace is very easy to describe, and what is more, it is mostly layout preserv-
ing. Layout preserving transformations are very important as they produce results with

only the changes necessary. The source code looks as similar to the original as possible.

In a reduced version, at least the comments in the source are preserved.

For more sophisticated tools, it is required to parse the source, analyse it, perform

the manipulation, and write it out as source again. This is typically called source-to-

source transformation or more general, a meta-program. We call the construction of meta-

programs meta-programming.

These tools are often specialised on one language and dedicated to one task such as

refactoring tools for Smalltalk [RBJ97] or Java [KG98, WWWd]. More general tools such

as Eclipse [WWWb] and IntelliJ IDEA [WWWc] are configurable for several languages.

Systems for meta-programming. Especially the use of declarative languages and

rule based systems allows for tools that are more language parametric and allow the main-

tenance programmer to (meta-)program new transformations.

Examples for such systems are DMS [BP97], TAMPR [BHW97], TXL [CDMS02] and

Stratego/XT [Vis01, JVV01, BKVV06]. We refer to [WWWa] for a more extensive list of

rewriting systems. We especially emphasise theMetaEnvironment with ASF+SDF [Kli93],

as this is our archetype of a meta-programming system that is open to extension and pro-

6

1.2 Bird’s eye view - The larger Context : Software Evolution

vides a graphical user interface. Finally, Prolog [SS97] is our example for a declarative

language applied for meta-programming. This language will escort us through most of the

examples in the thesis as object language and meta-programming language.

These systems are applicable very flexibly. However, one disadvantage (which is inter-

esting for our thesis) is the often insufficient support for layout preservation. We will go

in for it in Chapters 5 and 6. Another drawback is that unrestricted meta-programming

is difficult to manage. Note, meta-programs are programs, too, and have to be main-

tained as well. A good example for the problem is the maintenance of Prolog transforma-

tions which manipulate Prolog sources. Meta-program and object-program are amalga-

mated. Moreover, the meta-language and the object-language are the same, which makes

it difficult to distinguish the different levels in a program. This is in contrast of, for

example, TyRuBa [dV98], where the logic meta-language combines strings containing

Java-program fragments. Also, Prolog is extremely flexible regarding term manipulation.

Here, too, restrictions are desirable to allow a systematic approach to (disciplined) meta-
programming and to support the development of meta-programming recipes to increase

understanding and reusability. We will consider this problem in Chapters 2 and 7. Note,

automating the maintenance of the meta-level leads to meta-meta-programs.

1.2.2 Co-evolution

The application of source-based techniques discussed above implies that there are several

views on the software constructed. We call these views layers as they provide a differ-

ent degree of abstraction (e.g., model vs. model implementation), or a different degree of

extension in the derivation of software from software artefacts (e.g., grammar vs. parser).

Note, the manipulations like refactoring often addressed are performed at one layer, e.g.,
at model layer or at implementation language layer. Due to the dependencies between

these layers the evolution of software is mirrored on several layers. In the thesis, we are

interested how changes on one layer affect more than one layer. We use “[..] the term
co-evolution implying that managing evolution requires the synchronisation between dif-
ferent layers (or views) in the software development process.” [DDVMW00]. If software

evolution on more than one layer can be described each by a transformation one speaks of

coupled transformations [Läm04a], co-transformations [CH06], or two-level transforma-

tion [COV06].

Derived software needs maintenance. Co-evolution is not perceived if all what

is changed are the sources of a generation process. For example, a parser reflects the

modifications in a grammar as long as the parser is derived from the grammar. Simi-

larly, when a model is changed the corresponding implementation is simply generated

again. Co-evolution is a challenge, however, when there is no direct transformation avail-

able. Here, changes at more than one layer are necessary. For example, D’Hondt et

al. [DDVMW00, Tou02, TM03] examine co-evolution of documentation of designs to im-

plementation, and give methods to identify inconsistencies.

Also, it can be necessary to modify the generated results. This leads to two problems.

First, extensions / refinements (e.g., framework completetion code, cf. [AC06]) of the

7

Chapter 1 Introduction

generated results need to be preserved when the generation process is initiated again due

to modifications on a higher layer. For example, a YACC specification can be generated

from some other form of reference grammar, e.g., from some existing code base or a

specification of the grammar during the development of a language. As soon as further

code is added, changes of the original grammar lead to conflicts in the implementation.

Second, it is desired that changes in the lower layer are propagated to the higher level,

e.g., the model reflects the extensions made at generated results. Propagating changes

between the layers (e.g., from models to code and vice versa) is called Round trip en-
gineering and is examined, for example, by Czernacki et al. [AC06, AC08]. Bidirec-

tional model transformations to keep several layers consistent are investigated, for exam-

ple, in [EEE+07, Ste07].

Co-evolution between software and software language. Software maintenance

is usually considered to be caused by reasons such as change of technical, political or user

desired requirements, or the repair to remove bugs. However, another important reason for

maintenance of software is that software languages evolve, too [Fav05, PJ07]. Here, the

co-evolution happens between the language and words of the language, if existing sources

have to be adapted [VV08]). The development of domain-specific language shows this

clearly [PJ07]. Software language evolution is related to format evolution (cf. [COV06]).

We investigate the format evolution for XML documents in Chapter 3.

Generation processes need maintenance. Additionally, the generation process

(e.g., a meta-program) itself underlies evolution because the transformations are software

and probably have their bugs, too. This does not necessarily correspond to a co-evolution

of sources. Ideally, it has no direct consequences to the sources used for generation. This

corresponds to the (internal) evolution in language processors. Furthermore, the genera-

tion process can be subject to improvement and might require adaptations on other layers

(targets of the generation) when the target format is changed.

Maintenance of a generation process is also enforced, when the format of the input, i.e.,

the language evolves (e.g., the development of UML, versions 1.3 - 2.1.2 [OMG]), or the

formats into which the source is generated evolve, for example, the deployment platforms

inMDD [AK03] or XMI (XMLMetadata Interchange) [OMG08], to store UML-diagrams.

Applying (automated) maintenance on the generation process is meta-meta-programming,

i.e., manipulating a transformation as first order citizen.

“Who maintains the maintenance tools?”
Plato[Pla]

freely adapted

Maintenance transformations needmaintenance. Transformations that map soft-

ware to a new version are potentially reusable. Examples are implementations of refactor-

ings or converters from an old to a new language version. This immediately leads to the

need to maintain this software.

8

1.3 Middle View: an Instance of the Co-evolution Problem

Thus, meta-programs should be readable, too. Restricting the way they are defined

supports understandability. A disciplined way to create such programs is required, as the

use of meta-programming quickly leads to confusion, especially, if different levels are

mixed. We repeatingly refer to meta-programs written in Prolog for manipulating Prolog

programs. Another example is ASF+SDF [Deu96], where concrete syntax for specification

is used. For example, variable names can confuse the reader as it might not be clear

immediately, whether the name denotes a part of the object program or whether the name

denotes a variable of the specification.

Observation. It is necessary to find the dependencies between the layers discussed

and to examine their kind. This helps to create improved support for evolution. The

thesis examines a small part of co-evolution in a language setting. We try to automate

part of the transformations required to ensure adaptation and consistency. Also, we try

to derive part of these transformations automatically. We provide ways for disciplined

meta-programming (Chapters 2 and 7) and contribute to usability of maintenance tools.

1.3 Middle View: an Instance of the Co-evolution Problem

In the previous section we have discussed that language technology is applied to support

maintenance. Language technology is also the base for the generation process in source

based techniques.

As mentioned, the generation process needs maintenance. When the format of the input

changes, both, the sources and the generation process need to be treated. This corresponds

more generally to evolution of language descriptions while keeping derived tools (or tools

partially derived and manually completed) in sync. Maintenance of language descriptions

and derived tools therefore also underlie the problem of co-evolution (cf. [PJ07]). We also

argued that the maintenance transformations evolve and therefore need maintenance. Thus,

we are interested in consequences of evolution in language descriptions and in derived

tools investigate how we can automate necessary changes.

Since grammars play a central role, we list selected research challenges for grammars

from [KLV05a] in Figure 1.2 together with the relevant chapter; we summarise in Fig-

ure 1.4, where the thesis contributes.

As we are talking about maintenance, we will use language processors for maintenance

as object to maintenance as special application. This simultaneously allows for the support

of maintenance of maintenance tools. For example, in Chapters 5 and 6 transformation

rules (e.g., to describe a refactoring) are automatically extended to improve quality of

the maintenance tool for both, its output and its usability. The detailed context is the

improvement of software maintenance factories (SMF) with the management of language

processors being at their heart.

9

Chapter 1 Introduction

1. A collection of grammarware properties (e.g., what is/ are distance between grammars (4,

5), perservation properties (2), grammar slices (7), grammar modules (7))

2. An interoperational web of grammar forms (mappings between different notations of

grammars (8))

3. A framework for grammar transformations (transformations accross grammar notation,

data and grammar integration by grammar transformation (3), reuse pure grammar

transformations in the context of customisation for grammar use cases (4), grammar

refactoring(4) and enhancement (5))

4. Co-evolution of grammar-dependent software (3, 4, 5)

5. Parsing technology revisited (e.g., migration between parsing styles (4), engineering as-

pects of parser development (7))

6. Modular grammarware development (generic aspects for grammar-dependent functional-

ity (7))

7. Grammarware life cycling (e.g., evolution and customisation (3, 4, 5))

8. Comprehensive grammarware tooling (interactive and batchmode transformations (8), co-

evolution of grammar-dependent programs (3, 4, 5))

Figure 1.2 Selected research challenges from the Grammarware Agenda [KLV05a]

and contributing chapters of the thesis

1.3.1 Software Maintenance Factories

A software maintenance factory (SMF) (e.g., [SV99]) is an infrastructure that generates

tools from language descriptions and additional information. These tools can be used,

configured and extended by the maintenance teams so that they can develop assembly

lines for automated maintenance. Parts of the tool chains are created manually based on

generated components, e.g., transformations that map between a certain kind of abstract

syntax trees (AST). Several language descriptions to generate tools from are collected

libraries of the factory. Reusable meta-programs, i.e., generation tools to create new tools

and reusable tools, are also collected in libraries.

Software maintenance factories need special maintenance. We have discussed

that language based tools are affected by evolution, and consequently they should also be

subject to maintenance. Besides the “common” maintenance tasks of software there are de-

pendencies between the generated language processor and the software language causing

a stronger maintenance effort. The generated language processor as well as the generation

process of the SMF itself has to be adapted.

10

1.3 Middle View: an Instance of the Co-evolution Problem

Especially, adaptations of the language descriptions do occur, e.g., to provide a tool

for a further variant of the language ([LV01a]). Some transformation rules written for a

certain language are not applicable for a similar language dialect, or are unusable after

a language change. Also, languages themselves are object to evolution [Fav05, PJ07].

Also, transformation tools derived do no longer work together with other tools in the li-

brary. Hence, maintenance is required for language dependent components. Furthermore,

changes should be propagated through to the constructed assembly lines. As a conse-

quence, SMF underlie an evolution, too.

SMF for language descriptions are needed. To generate the maintenance tools,

language descriptions are needed. These are collected by the SMF in a library. Maintaining

the generation for these tools requires that language artefacts, too, have to be maintained

as they evolve. Also, sometimes in maintenance languages have to be extracted from exist-

ing code and documents. Many language descriptions are not described formally enough,

leave room for interpretation or are available in an unsuitable format, which requires mod-

ification to allow technical use. For example, several tools cannot work with left recursion.

In Chapter 4 we study how left recursion in attribute grammars can be removed automati-

cally and at the same time preserving the semantics.

These tasks can be supported by specialised software maintenance factories – software

maintenance factories for languages (SMFL) – because language descriptions can be con-

sidered as programs of special DSLs such as EBNF.

SMFL should be part of SMF. It seems a special SMF for languages is needed.

However, once maintenance tools (and then tool chains) have been constructed, every

change of a language description also has consequences to these tools in a tool chain.

Maintenance of these tools should be coupled to maintenance of language descriptions,

because in the change of the language the knowlege is hidden of what has to be changed

in derived tools, according to the co-evolution problem. Also, it may be that the language

description is developed to just another version of the language. Additionally, evolving

language descriptions, especially in the area of language prototyping, might require the

evolution of programs already existing for that language. For their adaptation, the SMF

should provide tools as far as possible, which again could be derived partially from the

change in language descriptions. Hence, we argue, the SMFL should be part of each SMF.

Moreover, an SMF should contain tools for self-maintenance and extension.

1.3.2 Language Processors

The tools managed by an SMF can be considered as specialised language processors. We

focus on language processors that are specified based on rule-based systems and declara-

tive languages.

The main property of these language processors in this context is their simplicity com-

pared to a fully implemented compiler. They can be quickly provided, are well-suited for

experiments and are simple enough for quick modifications, and thus they allow an ex-

ploration of the solution space. Parsing needs to be just fast enough for experiments on

11

Chapter 1 Introduction

small examples. Declarative languages are well-suited for these tasks as they allow an easy

mapping between syntax trees, and thus they simplify a specification of the transformation.

The speed of the tool is secondary. It is more important to increase the productivity of

the maintenance programmer, i.e., to enable him to quickly create a tool for his task. Some

transformations are applied once only. It is rather important to get the language processor

and small examples quickly to work.

For software maintenance, the distance between source and target language is small or

the languages are the same. Base parsers and unparsers can be derived from grammars, if

these are present in a suitable format. The transformations are simply mappings between

terms.

Language processors in our context often consist of mainly three components: a parser,

one or more transformations and an unparser. Parser and unparsers are usually generated

based on a grammar. Transformations are written manually or partially generated using

libraries of transformations and program fragments. The language processors can use part

of the infrastructure of the generating environment, e.g., libraries of grammar or program

fragments.

Prolog for language processors. Prolog is the main vehicle for our experiments

with some exceptions. It is very suitable for language processing and related

problems [Rie91, Paa91, LR01, CH87, War80, BP89, SK94]. Due to its facilities for sym-

bolic termmanipulation, Prolog is particularly suited for the phases of language processing

which can be performed at the level of abstract representations. It is well established that

logic programs are well-suited to describe analysis, evaluation and transformation of ab-

stract representations. Additionally, Prolog programs are structured grammar-like. This

simplifies representations of grammars including attribute grammars. Thus, language pro-

cessing can be mapped easily to Prolog.

(At least) two tools exploited this in our working group. LDL (Language Develop-

ment Laboratory) [Rie92, HLR97] makes use of grammars of syntactical functions (GSF)

and supports modularisation into language fragments. Laptob (Language processing tool-

box) [LR01], the successor of LDL, focuses on logic grammars to obtain a more light-

weight approach to achieve prototype interpreters.

Logic grammars. It is very easy to derive language processors from logic grammars

[LR01]. A logic grammar (as described in [LR01]) is a Prolog program where predicates

represent nonterminals and terminals are represented by strings or are constructs espe-

cially marked by operators. When these operators are interpreted as predicates consuming

lexemes, Prolog’s evaluation mechanism immediately provides a recursive descent parser

with backtracking already included. Logic grammars are interesting because transforma-

tions on grammars are conventional meta-programs on Prolog programs, which is natural

in Prolog. In contrast to definite clause grammars [PW80] their external and internal rep-

resentation do not differ. This simplifies treatment of grammars in several transformation

steps. Logic grammars can easily be extended with semantics by adding variables and

other predicates which, when deriving a prototype interpreter, perform several kinds of

12

1.4 Evolution in Maintenance Tools - Experience and Research Questions

analysis or other tasks in a language processor. This resembles defining a language using

attribute grammars. A logic grammar can then be considered as a special kind of attribute

grammar. The strong relationship between Prolog and attribute grammars has been dis-

cussed in [DM93, RL88, DM85].

The tool Laptob mentioned provides additional libraries that contain meta-programs on

Prolog programs to manipulate this kind of grammars as well as several general traversals

on heterogeneous data structures such as fold to collect/compute data. It has been the base

for most of the experiments for the thesis.

1.4 Worm’s-eye View: Evolution in Maintenance Tools -
Experience and Research Questions

We show starting from the standard example of refactoring where problems arise.

The SMF presented in [SV99] has been implemented in the ASF+SDF MetaEnviron-

ment [Kli93]. Tools based on the MetaEnvironment (ME) can be connected to the tool-

bus [BK96], which allows tools to communicate with each other based on a process algre-

bra, or they are specified using SDF (Syntax Definition Formalism) and ASF (Algebraic

Specification Formalism) [Deu96]. While with SDF the syntax of a language can be spec-

ified, ASF is used to describe rewrite rules in form of conditional equations to specify the

semantics. Specifying programs using these formalisms means writing language descrip-

tions from which language processors are generated.

In year 2000, we used ASF+SDF (SDF2 [Vis97b]) to perform a case study for cre-

ating transformation support for refactoring on Java programs. (The MetaEnvironment

was under rewrite that time, which underlines the need for maintenance of these tools).

While [FBB+99] describes refactoring for Java in an informal way, we wanted to spec-

ify operations more formally together with necessary preconditions similar to those given

by [Opd92] for C++ to allow a more automatic modification of source code and avoid

introduction of bugs due to editing errors or conditions overseen. We used an existing

Java-grammar in SDF.

The practical experiment was supposed to get us aquainted with refactoring and term

rewriting, and did not lead to published results. However, we encountered a number of

problems that suggested research questions for a coherence work on language processing

and software maintenance.

1.4.1 Change of Language Description

Grammar part The grammar we reused was incomplete and also it contained errors.

This included undefined Java constructs, too restrictive grammar rules, and too lib-

eral grammar rules. Also, we cleaned up (refactored) the grammar on some posi-

tions to simplify the specification task, hence we did language-preserving as well

as language-modifiying changes. The adaptations of the grammar have been done

manually.

13

Chapter 1 Introduction

Semantics part While developing different refactoring specifications, we had to change
larger portions of the equations for several reasons. First, the underlying compiler

was under reconstruction. Our specification revealed bugs. Their removal and other

changes in the compiler required adaptations in our specification. Secondly, we

modified the specification while we learnt more a) about the Java semantics and

could describe conditions more elegantly, b) we learnt more about ASF and could

be more expressive in the specification. Thirdly, grammar changes required several

equations directly depending on the syntactic structure. Next, we identified patterns

that could be reused in more equations and applied manual refactoring to the specifi-

cation, which was very error-prone. Finally, we had to rewrite parts which contained

errors due to misunderstanding.

From a declarative perspective, the language descriptions consisting of grammar rules and

rewrite rules are declarative programs.

Research Question 1 (Evolution Support for Declarative Programs): How can we sup-

port evolution for declarative formalisms for describing grammars or rewrite rules in a

more disciplined way while preserving certain properties of programs?

1.4.2 Migration of Source Code due to Grammar Change

Grammars are subject to change in the development of domain-specific languages. As a

consequence, words for the language generated by the grammar (i.e., programs for that

language) have to be adapted (cf. [PJ07]). We study the special case of format evolution

of XML documents, which need a migration after the DTD has been changed. It would be

nice, if this forced migration could be done automatically. Can such a tool exist?

Research Question 2 (Program Migration): Can structural evolution in a grammar

induce necessary migrations of program texts to meet the new grammar?

1.4.3 Migration of Rewrite Rules due to Grammar Change

Rewrite rules/ transformation rules directly depend on syntactic structures, which depend

on the grammar. As mentioned in Section 1.4.1, the grammar was subject to structural

evolution. It required the already written specifications (rewrite rules) to be migrated to

work with the modified grammar.

Research Question 3 (Rule Migration): Is there structural evolution in a grammar,

where specifications can be migrated automatically?

14

1.4 Evolution in Maintenance Tools - Experience and Research Questions

1.4.4 Adaptation of Language Descriptions to improve Maintenance Tools

The problems above are related with co-evolution.

Later, we realised another problem that also required the adaptation of the grammar.

Refactorings as described by [FBB+99] or [Opd92] do not consider comments and layout

in source texts, which is no problem if the migration is done manually. Tools based on

rewrite rules with abstract syntax can either neglect the layout and skip it or have to find

a technical solution. One way is to add layout nonterminals to the grammar. If a parser is

derived, parsing adds layout information to the abstract syntax tree, and thus it gives the

rewriter access to layout. However, the treatment of layout is distracting during the actual

specification task. Also, there can be many reusable transformations specified already.

Research Question 4 (Introduction of Layout Preservation): Can language technology

help with introduction of layout preservation? More specifically: Can support for layout

preservation be integrated in existing transformation tools? Can existing transformation

rules be adapted automatically? Can this be made transparent to the user?

Adding layout preservation support to existing transformation tools by extending the

grammar requires an adaptation of transformation rules to work on a changed grammar.

To perform this adaptation automatically requires an analysis of these rules to extend them

with meaningful behaviour.

Research Question 5 (Analysis of Transformation Rules): How does the form of a

transformation rule control its migration?

1.4.5 Modularisation of Language Descriptions and Derived Tools

Modularisation is one way to increase maintainability. For language based tools, modular-

ity can appear on the level of language descriptions or in the implementation of the tools.

Besides the common hierarchical modularisation, aspects (as in AOP [KLM+97b]) can be

of use here, too.

The layout preservation problem can be considered as aspect in the grammar G, in the

abstract syntax and in patterns of transformation rules that describe manipulation of pro-

grams of G. The layout aspect in transformation rules should be hidden from the program-

mer so he can concentrate on the important content of the transformation.

We also demonstrate how AOP is integrated in Prolog, and thus it allows several kinds

of aspects. This is demonstrated by specifying components of a language processor as

aspect.

Research Question 6 (Modularisation in Language Description): Can AOP improve

modularisation in language descriptions and modularisation of derived tools?

15

Chapter 1 Introduction

1.4.6 Usability in Transformational Programming

Many transformation rules carry many arguments which are not of interest in a certain

context. It would help to hide unnecessary argument positions. For example, layout infor-

mation carried in an AST obfuscates the “interesting” part. Also, technical needs force the

use of grammars that are often unreadable or they have rules that differ from those in the

reference manual making them more difficult to understand and to compare whether the

rules are correct. A typical example is the left recursion removal when the tool of choice

uses of top-down parsing. Many transformations are developed in a rather explorative

way. A good transformation development tool should allow exploration of alternative im-

plementations.

Also, though the changes in a language description, the refactorings in a grammar or on

transformation programs, in the abstract syntax and the programs are on different levels,

the maintenance tasks are rather similar. Thus, these maintenance tasks use should also

be supported similarly. Many different transformation programs exist written in different

languages. It would be nice if these transformations could be reused together in a common

setting.

Research Question 7 (Usability): How can the usability of transformation tools be im-

proved? More specifically: Can language technology support better usability? Can

existing transformation tools be combined in a transparent, visual and easy way? How

can performing experiments with transformations be supported?

1.5 Overview of the Chapters

The Chapters 2-8 address the given research questions. As the thesis is organised in a

cumulative way based on published papers the chapters address several questions. Fig-

ure 1.3 lists the research questions with the chapters that contribute to it. Figure 1.4 gives

an overview on the chapters. The order of the chapters are organised as follows.

Question Chapters

1 (Evolution Support) 2,7, 8

2 (Program Migration) 3

3 (Rule Migration) 4,5,6

4 (Layout Preservation) 5, 6

5 (Transformation Rules) 6

6 (Modularity) 7

7 (Usability) 8,4,5,7

Figure 1.3 Chapters vs. questions

Chapter Questions Publication Grammarware

2 1 [LRL00] 1, 3

3 2 [LL01] 3, 4, 5, 7, 8

4 3,7 [LRS04] 1, 3, 4, 7, 8

5 3,4,7 [LR03b] 1, 3, 4, 7, 8

6 3,4,5 [LR03a] 7

7 1,6,7 [LRW08] 1, 5, 6,7

8 1,7 [LRZ06] 2, 8

Figure 1.4 Contents of the chapters

16

1.5 Overview of the Chapters

Chapter 2. In the chapter we focus on the support for systematic manipulation of pro-
grams written in a (first order) declarative formalism. We present an approach based on

concepts of program transformation and meta-program technology. Basic roles for extend-

ing program behaviour are identified: adding parameters, applying substitutions, renaming

symbols, inserting literals in bodies of clauses, adding definitions for predicate symbols. A

framework for meta-programming is defined that ensures the construction of well-formed

object programs. Object programs are logic programs. This forms a basis for evolution

of language processors that build on declarative transformations. Using the framework we

formalise the basic roles by functional meta-programs. We give an example demonstrating

that high-level abstractions of common adaptations of programs can be defined to support

stepwise enhancement as known in logic programming [JS94]. The defined roles allow

disciplined meta-programming.

Chapter 3. A grammar change can have an effect on the words of the language gen-

erated by the grammar and require an adaptation of documents containing the words. A

special case is the format evolution of data and a necessary adaptation of the data existing.

We study this problem for format evolution of XML-based formats. Changes in the for-

mats are represented as stepwise transformations on the underlying DTDs (i.e., grammar).

The corresponding migration of the XML documents is largely induced by the DTD trans-

formations. This is related to other recent work on format evolution, e.g., [COV06, Kle07].

Chapter 4. While the words of the language remain the same after a grammar refactor-
ing, semantic rules might have to be adapted. In the chapter we study the consequences of

left recursion removal to semantic rules in attribute grammars. We justify that the semantic

rules can be automatically adapted.

Chapter 5. In this chapter we are interested in consequences of a grammar extension
on transformation rules. To study the problem we extend the grammar with nonterminals

and terminals representing layout to introduce layout preservation for declarative transfor-

mation rules. To avoid that existing transformation rules break with the extended abstract

program representations derived from the grammar and input programs, those transforma-

tion rules are migrated accordingly. This migration is derived automatically.

To hide the new complexity of patterns (for new rules to be written in future, too), the

migration is done as a subsequent pass. This requires automatic decisions on which layout

is to be preserved. Heuristics are used to decide on the mapping of layout. We argue that

the approach is applicable to hide complexity of argument positions in other areas as well.

Chapter 6. Automatic migration of transformation rules (meta-programs) according

to a grammar extension requires an analysis of transformation rules (meta-programs)

necessary to derive a required meta-meta-program.

This chapter systematically examines the cases of transformation rules wrt. the layout

preservation problem to decide how the migration should be performed. For that purpose

we ask, to what extent the layout preservation problem can be solved. The analysis forms

17

Chapter 1 Introduction

the basis for assumptions that the style in which transformation rules are programmed

determines the quality of layout preservation.

Chapter 7. In the chapter we study aspects in language descriptions (crosscutting con-

cerns, cf. AOP [KLM+97b]). The previous chapter addressed the aspect of layout in gram-

mars and aspect of layout preservation in transformation rules. Here, we demonstrate that

several concerns in a language processor such as parsing, analysis, transformations can be

specified as aspects of a logic grammar. A logic aspect-oriented language is developed,

which is integrated into Prolog in a systematic way. Thus, we support a modularisation in

language descriptions that is not restricted to hierarchical decomposition. This modulari-

sation also increases modularity of language based tools.

Chapter 8. We develop an interactive workbench for visual transformational pro-
gramming. Grammars and programs are available as first class data. We give an object-

oriented transformation model that forms the base for an combination infra-structure. It

allows combination of transformations available in different formats (e.g., command line

tools, native libraries such as SWI-Prolog, hierarchical transformations) and languages

(e.g., XSLT, C#, F#, Yacc, Stratego, Prolog). In the example a compiler hosted in Maribor

as a web service is used within a locally defined transformation pipeline. On a second

level, interactivity and views are added allowing explorative compositions of transforma-

tions.

Chapter 9. The last chapter summarises the thesis and gives an overview over the

achieved results of the thesis. Then it finishes with an outlook.

1.6 Origins of the Chapters

The thesis is designed as a cumulative thesis. Chapters are previously published papers.

The changes consist in formatting and removing of typos, as well as replacing references

to own articles with references to corresponding chapters of the thesis. The papers are col-

laborate work. Parts we have not contributed to are pointed out with an acknowledgement.

Chapter 2, “Roles of Program Extension”, is collaborative work with Ralf Lämmel. It

was published at LOPSTR’99 [LRL00]. Acknowledgement: The core calculus and the

specification of the accumulate-technique has been done by Ralf Lämmel alone.

Chapter 3, “Format Evolution”, is collaborative work with Ralf Lämmel, too. It was

published in the Proceedings of the 7th International Conference on Reverse Engineering

for InformationSystems (RETIS 2001) [LL01].

Chapter 4, “Semantics-preserving Migration of Semantic Rules during Left Recursion

Removal in Attribute Grammars”, is collaborative work with Günter Riedewald andMarkus

Stoy and has been published in ENTCS 110C [LRS04]. An earlier version was accepted

for 4th Workshop on Language Descriptions, Tools and Applications (LDTA 2004). Sec-

tion 4.4 comes from an later revision. It replaces its counter parts from [LRS04]. It con-

tains a more readable and corrected proof.

18

1.6 Origins of the Chapters

Chapter 5, “Towards Automatical Migration of Transformation Rules after Grammar

Extension”, is collaborative work with Günter Riedewald and published in Proceedings of

7th European Conference on Software Maintenance and Reengineering [LR03b].

Chapter 6, “Automatic Layout Preservation in Declarative First Order Rewriting” has

been taken from the technical report “Layout Preservation for non-trivial Traversal Schemes

in Declarative First Order Rewriting”. It is collaborative work with Günter Riedewald and

published in Rostocker Informatik-Berichte 28 [LR03a].

Chapter 7, “Aspect-Oriented Prolog in a Language Processing Context”, is collabora-

tive work with Günter Riedewald and Guido Wachsmuth. It is published in the journal

IET Software 2008 [LRW08]. Acknowledgement: The initial idea to implement aspect-

oriented programming in Prolog we got from Ralf Lämmel during a research stay at CWI

Amsterdam. The original idea to use the context as addressing and communication concept

is by Guido Wachsmuth. The calculate-technique has also been specified by Guido

Wachsmuth.

Chapter 8, “A Lightweight Infrastructure to support Experimenting with Heterogeneous

Transformations”, is collaborative work with Günter Riedewald and Thomas Zühlke. It

was published in the Proceedings of 3rd International Conference on .NET Technolo-

gies [LRZ06].

19

Chapter 1 Introduction

20

Chapter 2

Roles of Program Extension

A formal and effective approach to the extension of the computational be-
haviour of logic programs is presented. The approach builds upon the fol-
lowing concepts. The extension of computational behaviour is modelled by
semantics-preserving program transformations. Several basic roles involved
in such transformations are identified. Every transformation defined solely in
terms of the basic roles will be semantics-preserving by definition. Functional
meta-programs on logic object programs are used to specify the basic roles
and to derive programming techniques in the style of stepwise enhancement.
Thus, the process of extending the computational behaviour of logic programs
is regarded as disciplined meta-programming.

2.1 Introduction

This chapter is about adding functionality to declarative programs. We present a rigor-

ous approach which relies on program transformation concepts and meta-programming

technology. Transformations are used to model the enhancement of programs, i.e., the ex-

tension by computational behaviour. The approach is spelled out in this chapter for logic

programs (definite clause programs), but it is also applicable to several other declarative

languages such as attribute grammars and algebraic specifications as discussed to some

extent in [Läm99b, Läm99a, LR99]. The chapter identifies the following basic roles in-

volved in semantics-preserving transformations facilitating the extension of computational

behaviour:

• adding parameters,

• applying substitutions,

• renaming symbols,

• inserting literals in bodies of clauses,

• adding definitions for predicate symbols.

The basic roles will be defined in terms of functional meta-programs. They also will

be illustrated by deriving programming techniques in the style of stepwise enhancement

[SS97, Lak89, KMS96].

21

Chapter 2 Roles of Program Extension

Example 1. The following example has been adopted from [Jai95]. Let us start with a

very simple program for traversing AND-OR trees: 1

traverse(↓ tree(OP, NODE, TREE�
child)) ⇐ traverse_list(↓ TREE�

child).
traverse_list(↓ []).
traverse_list(↓ [TREE|TREE�]) ⇐ traverse(↓ TREE), traverse_list(↓ TREE�).

An enhancement of this simple program is the following version which additionally

computes labels for each node. A node is labelled with true or false according to the

conventions of an AND-OR tree, i.e., all AND leaf-nodes are considered as successful and

all OR leave-nodes are considered as failed:

label(↓ tree(OP, NODE, TREE�
child) , ↑ LABEL) ⇐

init_label(↓ OP, ↑ LABELinit),

label_list(↓ TREE�
child , ↓ OP, ↓ LABELinit , ↑ LABEL).

label_list(↓ [] , ↓ OP, ↓ LABEL, ↑ LABEL).

label_list(↓ [TREE|TREE�] , ↓ OP, ↓ LABELin , ↑ LABELout) ⇐
label(↓ TREE) , ↑ LABEL),

and_or(↓ OP, ↓ LABLEin , ↓ LABEL, ↑ LABELtemp),

label_list(↓ TREE� , ↓ OP, ↓ LABELtemp , ↑ LABELout).

init_label (↓ and, ↑ true) .
init_label (↓ or, ↑ false) .

and_or (↓ and, ↓ false, ↓ false, ↑ false) .
and_or (↓ and, ↓ false, ↓ true, ↑ false) .
...

The label computed, for example, for the AND-OR tree

tree(and,n1, [tree(and,n2, []), tree(or,n3, [])])

is false, where, n1, n2 and n3 are some values at the nodes. Note that the boxed clauses,

literals and parameters had to be projected away in order to derive the basic program

from the enhanced program. Moreover, renaming is involved in the sense that the symbols

traverse and traverse_list used in the basic program are called label and label_list resp. in
the enhanced version.

The rest of the chapter is structured as follows.

• In Section 2.2, a general meta-programming framework for specifying and execut-

ing program transformations is developed. The framework is not yet tuned towards

1The arrows ↑ and ↓ are used in the logic programs in this chapter to indicate the mode of the positions

(input versus output).

22

2.2 The Underlying Meta-programming Framework

the particular kind of semantics-preserving transformations we have in mind. Trans-

formations are represented as functional programs in this framework. There is an

abstract data type for object programs, i.e., logic programs.

• Section 2.3 is the central part of the chapter. First, the basic roles listed above

are investigated more carefully with emphasis on semantics-preservation. Second,

the basic roles are specified in the meta-programming framework from the previous

section. Third, the operators are shown to be useful to derive common programming

techniques such as accumulators.

• In Section 2.5, related work is discussed, results are summarised and some topics

for future work are indicated.

2.2 The Underlying Meta-programming Framework

The meta-programming framework used to specify program transformations in this chapter

can be characterised as follows:

• Program transformations are regarded as functions and finally represented as pure
functional programs in Haskell. 2

• Monads [Mog91, Wad92, Esp95] are used to model two effects involved in meta-

programs, namely errors and a state for generating fresh symbols and other entities.

• Meta-programs do not operate on concrete representations of object programs. Con-

struction and destruction of object programs are supported by a corresponding ab-

stract data type. Thereby, well-formedness / well-typedness can be enforced for

constructed object programs.

• Parameter positions are associated with modes and types. These annotations can be

used in order to enforce a certain type system of the object language. Modes and

types are also used to control meta-programs. This role is also sensible for untyped

object languages.

• While modes and types support more conceptual addressing methods, internally un-

ambiguous selectors are used at several levels of addressing.

To the best of our knowledge, this setting is unique. Some of the characteristics are ex-

plained in detail in the subsequent subsections. The framework is discussed in more detail

in [Loh99].

2We assume familiarity with functional programming (in Haskell), in particular with curried functions,

standard higher-order functions like map and foldr , and monads. We do not rely on lazy evaluation.

Other typed functional languages, e.g., languages from the SML family, would be applicable, too.

23

Chapter 2 Roles of Program Extension

2.2.1 The Effect Space

In our setting, meta-programs need to cope with two global effects, that is to say propagat-

ing errors and generating fresh symbols, variables and others.

Errors It is an inherent property of program transformations to be partially defined. Usu-

ally, transformations are only applicable if certain preconditions are satisfied. If

a precondition for a meta-program is not satisfied, it should fail. Meta-programs

are functions. Thus, the functions used in a meta-program return an error value to

encode failure.

States It is also very common for program transformations to require fresh entities, e.g.,

fresh variables in Example 1. Thus, we need to keep track of entities in use and we

need a scheme to generate fresh entities.

Assuming a pure style of functional meta-programming, monads [Mog91, Wad92, Esp95]

seem to be most appropriate to deal with effects. Consequently, the functions in the meta-

programming framework are supposed to be computed in an effect space; refer to Fig-

ure 2.1 3 for an illustration and a definition of the type constructors of the relevant mon-

ads. The error monad E is adopted to deal with errors and especially strict error handling

(propagation). The state monad S hides states used for the generation of fresh symbols,

variables and others. ES denotes the composed monad. 4 M is used in the text whenever

an explanation applies to an arbitrary monad.

S α = State → (State× α)
E α = α + {error}
ES α = State → ((State× α) + {error})

α
�������

�������

�

ESα

Sα�������

Eα�������

unitES

unitS

↑ESS

unitE

↑ESE

Figure 2.1 The effect space

For convenience, we recall some facts on monads. A monad can be regarded as a triple

〈M, unitM,�=M〉, whereM is a type constructor, and unitM (sometimes also called re-
turn) and�=M (usually called bind) are polymorphic functions with the following types:

3We only use Haskell-notation in Hakell-code. Otherwise, we use mathematical notation: × for products;

+ for disjoint unions; � and + for list types; P for power sets; 〈 and 〉 to enclose tuples and sequences;

π1, π2, . . . , for projections operators, i.e., πi〈d1, . . . , dn〉 = di; #s for the length of the sequence s;++
for list concatenation.

4Monad transformers could be used in order to derived ES in a more modular way.

24

2.2 The Underlying Meta-programming Framework

unitM : α → M α
�=M : M α → (α → M β) → M β

The type constructor M models “computations” for a certain effect. It takes a type –

the type of “values” – and returns the corresponding type of computations. unitM lifts

a simple value to a computation in M. The infix operator �=M is used to sequence

computations and to pass intermediate results. unitM and�=M have to obey the common

monad laws. In the effect space in Figure 2.1, the functions ↑ESS and ↑ESE are used to lift

computations in S resp. E to ES. The definitions are straightforward; refer to [Mog91,

Wad92, Esp95] for similar definitions.

2.2.2 Object Programs

Logic programs are regarded as object programs in the meta-programming framework.

Actually, the terminology used below will occasionally deviate from logic programming

terminology because the framework is more generic in the sense that it also supports other

declarative languages as discussed in [Läm99b, Loh99]. Object programs are modelled by

an abstract data type whose interface is defined in Figure 2.2.

The structure of object programs can be best understood by looking at the types of

the constructor functions in Figure 2.2.5 A complete program consists of a number of

definitions, that is to say groups of rules. The rules in such a group are meant to define

one “operator” corresponding to the definite clauses for a certain predicate symbol in logic

programming. A rule consists of a kind of tag, a LHS (left-hand side; the head in a definite

clause) and a RHS (right-hand side; the body in a definite clause). A LHS is just a literal,

whereas a RHS is a list of literals each qualified with a selector to facilitate addressing. A

literal, in turn, is a parameterised operator (say, predicate symbol). Each parameter of a

literal is associated with a selector and a mode. Finally, parameters are either variables or

compound terms and they are associated with a type.

Example 2. The initial program in Example1 consists of two definitions, one for traverse
and another for traverse_list. The definition of traverse_list consists of two rules. There

are only parameters with the mode ↓. The program is not explicitely annotated with selec-

tors.

It is an important observation that most constructor functions in Figure 2.2 are computa-

tions in E , i.e., it is assumed that the construction of object program fragments might fail.

That is indeed necessary because the framework has to prevent meta-programs from con-

structing and observing improper object program fragments as constrained by straightfor-

ward notions of well-formedness and well-typedness. The attempt to construct an ill-typed

logic program must result in an error. The fresh-constructors in Figure 2.2 are computa-

tions rather in S than in E . These constructors serve for the generation of certain kinds of

entities.

5We should mention that some uses of � or + versus P are debatable. We prefer lists rather than power sets

for minor implementational reasons.

25

Chapter 2 Roles of Program Extension

Sorts of object program fragments

Program – complete programs

Definition – groups of rules

Rule – tagged rules consisting of LHS and RHS

Literal – parameterised operators

Parameter – variables and compound parameters

Variable – variables

Term – compound parameters

Operator – symbols used in literals

Constructor – symbols used in terms

Selector – selectors for addressing

Type – object type expressions

Mode = ↓, ↑, . . .– parameter modes

Functions to construct object programs

program : Definition� → E Program
definition : Rule+ → EDefinition
rule : Selector → Literal → (Selector× Literal)� → E Rule
literal : Operator→ (Selector×Mode× Parameter)� → E Literal
term : Constructor→ (Selector× Parameter)� → Type → E Parameter
freshVariable : Type → S Parameter
freshα : S α for α = Selector, Operator, Constructor

Functions to destruct object programs

definitions : Program→ Definition�

defines : Definition→ Operator
rules : Definition→ Rule+

tag : Rule → Selector
lhs : Rule → Literal
rhs : Rule → (Selector× Literal)�

operator : Literal→ Operator
parameterization : Literal→ (Selector×Mode× Parameter)�

typeOf : Parameter → Type
descend : (Variable→ α) → (Constructor→

(Selector× Parameter)� → α) → Parameter → α

Figure 2.2 Interface of the abstract data type for object programs

Example 3. Consider a list of definitions. To qualify it as a proper program, the construc-

tor program has to be used. The application of the constructor might fail for two reasons.

Either the types of the symbols involved in the different definitions are not compatible, or

there are two or more definitions for the same symbol.

26

2.2 The Underlying Meta-programming Framework

There are no effects involved in the destruction of object programs. The destructor

functions should be self-explanatory by their types. descend is a kind of case construct

on parameters. Two functions need to be supplied to descend, one to handle variables,

another one for compound parameters.

Consequently, program transformations are modelled as functions of type

Trafo = Program → ES Program. By now, the utility of monads should also be clear.

They enforce some discipline of meta-programming, and they facilitate reasoning about

meta-programs. Without encapsulating the error effect, the strict propagation of errors

could not be guaranteed. Without encapsulating the state effect, freshness of entities could

hardly be ensured. Besides, meta-programs get tangled if they had to deal with the effects

explicitely.

2.2.3 Types at the Object Level

Types (including modes of parameter positions) at the object level are relevant in the meta-

programming framework in two important ways:

1. Types are regarded as annotations of object programs useful to provide more in-

formation about the sorts of data and the data flow. Types can be used to address,

for example, parameter positions. This conceptual role of types is used to control

meta-programs.

2. If the object language is typed, e.g., Gödel [HL94], the type system should be re-

spected by the meta-programming framework in the sense that well-typedness is

enforced. For untyped languages like Prolog, still a kind of “conceptual” well-

typedness in the sense of 1. should be enforced.

The notion of typing we use corresponds, essentially, to many-sorted (like in

Gödel [HL94] directional [BM97] types. Note, however, that the framework is not re-

stricted to typed logic programs as explained above. Technically, a type of a program or

some fragment is just a collection of profiles for the symbols in the program as modelled

by Sigma:

Sigma = P(Operator × (Selector × Mode × Type)�)
× P (Constructor × (Selector × Type)� × Type)

It is assumed that overloading is not supported, i.e., ∀Σ ∈ Sigma : ∀p, p′ ∈ πi(Σ) :
π1(p) = π1(p

′) ⇒ p = p′,where i = 1, 2. T YPE(P) ∈ Sigma denotes the type of a

program P ∈ Program. It is easily defined by traversing P and accumulating the profiles

of the operators and constructors.

Example 4. Using some standard notation for profiles, the predicate symbols for the en-

hanced program in Example 1 are of the following types:

label : TREE → LABEL
label_list : TREE� × OP × LABEL → LABEL

27

Chapter 2 Roles of Program Extension

init_label : OP → LABEL
and_or : OP × LABEL × LABEL → LABEL

Based on modes, parameter positions can be subdivided into applied and defining po-

sitions. LHS positions with mode ↑ and RHS positions with mode ↓ are called applied

positions; complementary for defining positions. The intuition behind these terms is that

variables on applied positions are expected to be “computed” in terms of variables on defin-

ing positions. These terms are actually used in much the same way in extended attribute

grammars [WM77]. The concept of applied and defining positions is relevant for meta-

programming, for example, if certain positions need to be computed from other positions

according to some scheme like accumulation or reduction.

2.2.4 Addressing Fragments

It is clear that fragments of object programs need to be addressed during

meta-programming. We should discuss all the various ways to address fragments. At

the top level, a certain definition in a program can be addressed by the symbol on the LHS

which have all the rules in a definition in common. At the next level, a certain rule in a def-

inition can be addressed by its tag. At the level of a rule, first, either the LHS or the RHS

has to be selected. For RHS, a certain literal can be addressed using a selector. Finally,

a possibly nested parameter position can be addressed by a non-empty selector sequence.

Consequently, it is maybe more convenient to use modes and types instead of selectors.

Example 5. Let us consider the first rule in the enhanced program in Example 1. The

additional computational behaviour as manifested by new parameter positions of label and
label_list, and the new literal init_label(. . .) refers to some variables of the initial program.

Thus, a transformation performing the enhancement would have to address these variables.

Using an ad hoc notation for references, the variable OP, for example, can be addressed

by LHS →↓ TREE → tree.OP, i.e., first, the LHS of the rule is addressed, then the input

position of type TREE s selected, and, finally, the nested parameter of type OP rooted by

the constructor tree is selected.

It is debatable whether there should be different kinds of selectors (rule tags, selectors

for RHS literals, etc.). Of course, it is a basic well-formedness requirement that selec-

tors are pairwise distinct at any level of addressing. Moreover, selectors also contribute

to “conceptual” well-typedness in a straightforward sense. The selectors used for the pa-

rameter positions of literals, for example, have to be the same for all literals with a certain

symbol in a program. Note also that object programs do not necessarily need to define

selectors explicitly. Selectors might be generated automatically during the construction

of the internal representation so that they can be observed by meta-programs traversing

object programs.

The interface of a corresponding abstract data type for addressing is shown in part in

Figure 2.3. The central type is Reference modelling references to a literal within a rule

and in turn to a parameter in a literal. deref returns the parameter according to a reference.

28

2.3 Extending Computational Behaviour

deref : Reference → Rule → E Parameter – dereferencing

references : Rule → Reference� – return all references

lhsOrRhs : α → (Selector → α) → Reference → α – handle LHS/RHS reference

operator : Reference → Operator – referenced operator

typeOf : Reference → Type – type of the reference

refersToAP : Reference → Bool – applied position

refersToDP : Reference → Bool – defined position

leq : Reference → Reference → Rule → E Bool− ≤ on Reference
rightmost : Reference� → Rule → E Reference – maximum on Reference

Figure 2.3 Interface of the Abstract Data Type for Addressing

When a meta-program has to iterate on the parameters of a rule, all the references can be

accumulated with references. The function lhsOrRhs provides a case construct on refer-

ences to process LHS resp. RHS references differently. References have a type, which can

be selected with typeOf. The remaining functions in Figure 2.3 deal with data flow issues.

refersToAP and refersToDP check if a given reference refers to an applied or a defining

position. The operation leq defines a left-to-right order on Reference. LHS input positions

are the smallest positions. The order of the RHS respects the order of the literals where

the input positions of a literal are smaller than the output positions of the same literal. The

LHS output positions are the greatest positions. This order is useful in order to enforce a

certain data flow from left to right (or vice versa), e.g., in accumulation.

2.3 Extending Computational Behaviour

In Subsection 2.3.1, the basic roles listed in the introduction will be reviewed w.r.t. seman-

tics-preservation. In Subsection 2.3.2, a core calculus supporting these roles is defined in

the meta-programming framework. In Subsection 2.3.3, the core calculus is completed to

get transformation operators operating at the level of complete object programs. Finally,

it is illustrated in Subsection 2.3.4 that the developed calculus is useful to derive common

programming techniques.

2.3.1 Semantics-preservation

When extending a program, a crucial question is whether the computational behaviour is

preserved. Kirschbaum, Sterlin and Jain have shown in [KSJ93] that program maps, which

capture most transformations derivable in our framework, preserve the computational be-

haviour of a logic program, if it is assumed that behaviour is manifested by the (SLD-)

computations of the program. In contrast, we will discuss here in an informal way why

the roles identified by us are semantics-preserving. Given a logic program P and an en-

hancement P’, the discussion of the correctness of the transformation will be based on the

29

Chapter 2 Roles of Program Extension

proof-tree semantics for P and P’.6 We should point out that we have correctness but not

completeness, i.e., each proof tree for P’ can be projected onto a proof tree of P, but not
vice versa.

Adding parameters Correctness holds because the new parameters in P’ can also be

projected away in its proof trees. Completeness does not hold in general because

the new parameters might constrain variables from P too much or the unification

involved in unfolding fails in the new parameter positions. Several schemes to add

parameters can be proved to imply completeness.

Applying substitutions Correctness holds because the substitution can also be applied

to proof trees of P. Completeness does not hold because a substitution might instan-

tiate variables, and thereby certain unfolding steps are not possible any longer.

Renaming symbols It is clear that a proper renaming is performed consistently. It is

very common to require that a renaming does not confuse symbols. In this case,

correctness and completeness follows trivially. We also consider renamings, where

the parameters of an open program might be confused with each other or with sym-

bols already defined by the program. This is a sensible design decision for open

programs.

Inserting literals Proof trees in P’ will contain additional subtrees which can be pro-

jected away to obtain P. Completeness cannot be ensured because a proof subtree

for a new literal might not exist, or variables of P might be constrained by all possi-

ble subtrees for the new literal too much.

Adding definitions The extension of a definition for a symbol by new rules needs to

be forbidden. Providing definitions for a symbol s previously not defined by P is

correct. There are two cases. If s has not been used in P, then the proof-tree seman-

tics for P and P’ are equivalent. Otherwise, P is an open program with parameter s.
Providing a definition is sensible.

2.3.2 A Core Calculus

In defining transformation operators corresponding to the basic roles, less complex types

of object program fragments are preferably chosen, and the state effect is ignored when-

ever possible. Renaming predicates, for example, can essentially be defined at the literal

level, and indeed the state effect is not relevant for renaming. The resulting core calculus

is completed in the next subsection by lifting all the operators to the type

Trafo = Program→ ESProgram in a simple and natural way.

The definition of the core calculus is presented in Figure 2.4. States are only involved

in adding parameters (add0). Note that it is not possible to abstract from errors at all

because all operators construct object program fragments, i.e., the operators are inherently

6Our arguments for the correctness of the roles do not rely on certain technical conditions assumed for the

rigorous proof in [KSJ93].

30

2.3 Extending Computational Behaviour

partial. Adding parameters (add0) and renaming operators (rename0) can be defined at

the Literal level. Substitution (substitute0) can even be defined at the Parameter level.

On the other hand, inserting literals (insert0) must be defined at the Rule level and the

definition of operators (define0) has even to be defined at the top level, i.e., at the Program
level.

add0 : Operator→ Selector → Mode→ Type → Literal → ES Literal
substitute0 : Substitution→ Parameter → E Parameter
rename0 : Operator→ Operator→ Literal → E Literal
insert0 : Reference → Selector → Operator→ Rule → E Rule
define0 : Definition→ Program→ E Program

add0 op sel m t lit =
if (operator lit)
= op

then unitES lit
else ↑ESS (freshVariable t) �=ES λp →

↑ESE (literal (operator lit) ((parameterization lit) ++ [(sel ,m, p)]))

substitute0 subst p = descend sv st p
where

sv v = apply subst v (typeOf p)
st sym paras = mmap f paras �=E λparas ′ → term sym paras ′ (typeOf p)
f (sel , p) = substitute0 subst p �=E λp′ → unitE(sel , p′)

rename0 op op′ lit =
literal (if (operator lit)
= op then (operator lit) else op′) (parameterization lit)

insert0 ref sel op r =
deref ref r �=E λ_→
literal op [] �=E λlit0 →
rule (tag r) (lhs r) (f (sel , lit0))
where

f new = lhsOrRhs il ir ref
where

il = if refersToAP ref then new : (rhs r) else (rhs r) ++ [new]
irsel ′ = g(rhsr)
where

g(qlit@(sel ′′, lit) : qlits) =
if and [sel ′ == sel ′′, (operator ref) == (operator lit)]

then if refersToAP ref then [new , qlit] ++ qlits else [qlit ,new] ++ qlits
else qlit : (g qlits)

define0 d p = program (definitions p ++[d])

Figure 2.4 The core calculus

31

Chapter 2 Roles of Program Extension

mfoldr : (α → β →Mβ) → β → α� →M β
mfoldr f e l = foldr g (unitM e) l

where
g x c = c �=M λ v → f x v

mmap : (α →Mβ) → α� →M β�

mmap f = mfoldr g []
where

g x l = f x �=M λx ′ → unitM (x ′ : l)

Figure 2.5 Monadic foldr/map on lists

There is the following rationale for the definition of add0 intended to add positions to

literals. If the given literal lit has an operator which is different from op, the whole literal

is preserved. Otherwise, first a fresh variable of type t is generated. Then, the given literal

is reconstructed preserving the operator and extending the list of parameters by the new

parameter associating it with the given selector sel and mode m. Generating fresh variables

is performed in the state monad S, whereas fragment construction is performed in the error

monad E . To compose these computations, they are lifted to ES by ↑ESS and ↑ESE .

The definition of substitute0 uses the function descend to destruct parameters. Conse-

quently, there are two cases corresponding to the functions sv and st. Variables are replaced
by the term according to the supplied substitution subst. The auxiliary function apply per-

forms the required table lookup and it behaves like identity if there is no entry for v. The
monadic map for lists defined in Figure 2.5 is used for the traversal of nested parameters.

We should comment on the design of the insert0 operator. For reasons of orthogonality,

the inserted literal carries an empty list of parameters because parameters can be added

subsequently by add0. There should be some way to define the actual target position

on the RHS of a rule. Note that the order of the RHS literals may be significant for the

data-flow or control-flow in the object program, or for the performance of subsequent

transformations. References are a suitable abstract means of specifying a RHS position.

The idea is that the literal is inserted next to the literal referred to by the reference passed

to insert0, also using the concept of applied and defining positions.

2.3.3 Completion of the Core Calculus

The core calculus is completed by lifting the operators from the previous subsection to

Trafo. Lifting means here that a function defined on a certain fragment type α is lifted to a

more complex type α′ and finally to Program – the type of the complete object programs.

To model that kind of lifting, generalised and monadic maps [MJ95] are useful. 7 The

meta-programming framework provides monadic maps for all the fragment types of object

programs. The symbol mmap is overloaded to denote all monadic map functions, including

7The adventive generalised means other types than just α and α� are associated. The adjective monadic
means that computations in a monad can be involved, i.e., a function f : τ →Mσ (rather than f : τ →
σ) is lifted to a function f ′ : τ ′ →Mσ′ (rather than f ′ : τ ′ → σ′).

32

2.3 Extending Computational Behaviour

the common monadic map for lists as defined in Figure 2.5. In Figure 2.6, all the types

related to each other by mmap are illustrated. The figure also defines an instance of mmap,
namely the instance for lifting functions on literals to functions on rules.

α Paramter → E Parameter Paramter → ES Parameter
� � �

α� Literal → E Literal Literal → ES Literal
� �

Rule → E Rule Rule → ES Rule
� �

Definition → E Definition Definition → ES Defintion
� �

Program → E Program Program→ ES Program

mmap : (Literal → ES Literal) → Rule → ES Rule
mmap f r = f (lhs r) �=ES

λlhs ′ → mmap g (rhs r) �=ES
λrhs ′ →↑ESE (rule (tag r) lhs ′ rhs ′)
where g (sel , lit) = f lit �=ES λlit ′ → unitES (sel , lit ′)

Figure 2.6 Lifting by mmap

Figure 2.7 lifts the basic transformation operators in Figure 2.4 up to Trafo. The speci-

fication of add, rename, and define should be self-explanatory since only mmap and

the operation ↑ESE lifting computations in E to ES are involved. The specification of

substitute is slightly more complex. The actual substitution to be performed is not

passed to substitute as a parameter but more indirectly as a function from Rule to

ES Substitution. This is a sensible design because there is no sense in applying a sin-

gle substitution to all rules in a program. The specification of insert exploits a similar

trick. The first parameter is a boolean function intented to control if for a given rule a

literal has to be included, e.g., based on the rule’s tag.

Example 6. The enhanced program in Example 1 is derived in the following atomic steps.

For readability, we use a semi-formal style. We omit the steps which are specific to the

second and the third rule.

1. Rename traverse resp. traverse_list to label resp. label_list.

2. Add an output position of type LABEL to label.

3. Add an input position of type OP to label_list.

33

Chapter 2 Roles of Program Extension

add : Operator→ Selector → Mode→ Type → Trafo
substitute : (Rule→ ES Substitution)→ Trafo
rename : Operator→ Operator→ Trafo
insert : (Rule→ ES Bool) → Reference → Selector → Operator→ Trafo
define : Definition→ Trafo

add op sel m t = mmap (mmap (mmap (add0 op sel m t)))
substitute f = mmap (mmap g)

where
g r = f r �=E λsubst → mmap (mmap (λp →↑ESE (substitute0 subst p))) r

rename op1 op2 p =↑ESE (mmap (mmap (mmap (rename0 op1 op2))) p)
insert f ref sel op = mmap (mmap g)

where
g r = f r �=E λb →

if b then ↑ESE (insert0 ref sel op r)
else unitESr

define d p =↑ESE (define0 d p)

Figure 2.7 The completed calculus

4. Add an input position of type LABEL to label_list.

5. Add an output position of type LABEL to label_list.

6. Focus on the first rule

a) Insert init_label before label_list’s input position of type LABEL.

b) Add an input position of type OP to init_label.
c) Add an output position of type LABEL to init_label.
d) Apply a substitution unifying the positions for the variable OP.

e) Apply a substitution unifying the positions for the variable LABELinit .

f) Apply a substitution unifying the positions for the variable LABEL.

7. Focus on the second rule . . .

8. Focus on the third rule . . .

9. Add the definitions for init_label and and_or.

It is relatively easy to see that the defined operators actually implement the intended

roles. We do not attempt a proper verification here, but a few arguments regarding the

correctness of the implementations should be provided. Let us consider, for example, the

operator add:

• The output program has the same shape as the input program (number of definitions,

number of rules in a definition, tags of rules, number of RHS literals, selectors on

34

2.3 Extending Computational Behaviour

RHSs) because it is obtained by just transforming at the Literal level. This property
is implied by simple properties of mmap.

• The operator of each literal is preserved. This is implied by standard laws of de-

struction and construction.

• The list of parameters of a literal is either completely preserved or extended by

another parameter as implied again by laws of destruction and construction.

From the above arguments it follows that add only extends the relevant parameter lists

without changing any other part of the input program. For substitute and rename
one has to show that the simple concepts substitution and consistent renaming resp. are

actually specified. The correctness of define follows from the fact that all definitions

from the input program are preserved in the output program. We skip the discussion of

insert.

2.3.4 Techniques

The operators defined above are useful to derive high-level abstractions of common adapta-

tions of programs – techniques in the terminology of stepwise enhancement [SS97, Lak89,

KMS96], e.g., the accumulate technique can be derived from add and substitute, whereas

calculate techniques also require insert.
Figure 2.8 presents the operator l2r capturing certain data flow oriented techniques. One

important way to use the operator is to simulate the accumulate technique. Note that l2r is

more flexible. The operator unifies parameters of a given type in a way to establish a data-

flow from left to right. To introduce an accumulator with l2r, first all relevant symbols

had to be extended by two parameter positions of the given type, one of mode ↓, another
of mode ↑. The operator l2r is based on the operator copy also shown in Figure 2.8.

copy inserts a “copy rule” (using attribute grammar jargon) by means of substitute. Its
first argument is – as in the case of insert – a function to decide which rule should be

adapted. The remaining two arguments refer to the parameters which should be unified.

solve is assumed to compute the most general unifier for a list of equations on parameters

according to Robinson’s algorithm.

Example 7. We cannot use l2r for the enhancement in Example 1 because an accumulate-
calculate rather than a pure calculate technique would be needed. To illustrate l2r, an
enhancement of the initial program to support an accumulator is derived:

traverse(↓ tree(OP, NODE, TREE�
child) , ↓ ACC0, ↑ ACC1) ⇐

traverse_list(↓ TREE�
child , ↓ ACC0, ↑ ACC1).

traverse_list(↓ [] , ↓ ACC, ↑ ACC).

traverse_list(↓ [TREE|TREE�] , ↓ ACC0, ↑ ACC2) ⇐
traverse(↓ TREE , ↓ ACC0, ↑ ACC1),

traverse_list(↓ TREE� , ↓ ACC1, ↑ ACC2).

35

Chapter 2 Roles of Program Extension

l2r : Type → Trafo
l2r t p =↑ESE (mfoldr f e (definitions p)) �=ES λtrafo → trafo p

where
−−identity
e : Trafo
e = λp unitES p
−−transform definitions
f : Definition→ Trafo→ E Trafo
f d e = mfoldr g e (rules d)
−−transform rules
g : Rule → Trafo→ E Trafo
g r e = mfoldr h e to
where
−−accumulate all relevant references
from = [x |x ∈ references r , typeOf x == t , refersToDP x]
to = [x |x ∈ references r , typeOf x == t , refersToAP x]
−−iterate applied references
h : Reference → Trafo→ E Trafo
h x e = mfoldr before [] from �=E λfrom ′ →

rightmost from ′ r �=E λy →
unitE (λp → e p �=ES copy (λr ′ → unitES (tag r == tag r ′)) y x)

where
−−find all defining references smaller than x
before : Reference → Reference� → E Reference�

before y ys = leq y x r �=E λb → unitE (if b then (y : ys) else ys)

copy : (Rule→ ES Bool) → Reference → Reference → Trafo
copy cond ref ref ′ = substitute f

where
f r = cond r �=ES λb →
if b then ↑ESE (deref ref r �=E λp → deref ref ′ r �=E λp′ → solve [(p, p′)])

else unitES empty

Figure 2.8 Technique for Accumulation

This enhancement is derived by adding the parameter positions of type ACC with the

operator add and performing l2r ACC afterwards.

In [Läm99b, LR99], the Lämmel et al. consider other techniques based on similar oper-

ator suites, e.g., a reduction technique, where the intermediate results computed by some

predicates are combined in a pairwise manner. The technology developed in [Läm99b] is

also sufficient to support the kind of higher-order reconstruction of stepwise enhancement

proposed in [NS98]. A proper catalogue of techniques covering all the common techniques

in stepwise enhancement is a subject for further work.

36

2.4 Related Work

2.4 Related Work

In this section, related work will be discussed to some extend with emphasis on stepwise

enhancement.

Research in the field of program transformation for logic programs traditionally focusses

on optimisation rather than support for reusability and extensibility. Fold/unfold strategies

provide the basic mechanism; refer, e.g., to [PP96, RF98]. It is a common point of view

to regard techniques in stepwise enhancement [SS97, Lak89, KMS96] as transformations

but this is the first place which presents an effective calculus to describe the corresponding

transformations (cf. [LRL00]).

Related notions for relations on programs have been defined in the stepwise enhance-

ment community [PS90, KSJ93, Jai95]. Our roles can be captured by a kind of projection

notion which is similar to the program maps in [KSJ93] and symbol mappings in [Jai95].

The former preserve computational behaviour. However, substitution is involved neither

in program maps nor in symbol mappings. Another important difference is that modes,

selectors, and types are used in our setting. Symbol mappings are slightly more general

than program maps because many-1 rather than 1-1 predicate symbol mappings are used.

Many-1 symbol mappings may not preserve computational behaviour when symbols get

unified. Our role of renaming facilitates unification in a safe way. Unification is only

possible for the symbols which are not defined by a program, i.e., parameters of an open

program can be unified. It is easy to see that our renaming operator does not support gen-

eral (i.e., unsafe) many-1 symbol mappings, since a corresponding unification of symbols

results in a non-well-formed object program with multiple definitions for one symbol and

thus in an error. In [PS90], a more general notion of enhancement is sketched. It includes

modulations and mutations, i.e., programs equivalent under fold/unfold transformations,

and programs obtained by structural alterations of the control flow. However, [PS90] for-

malises only extensions in the sense of program maps [KSJ93].

The Figure 2.9 depicts the definition of a projection notion underlying the roles in the

chapter. The idea is that for all transformation operators defined in the chapter, an input

program P and the corresponding output program P’ are related according to the pro-

jection notion. Stepwise enhancement has been integrated with programming environ-

ments [Lak89, BRV+94, Rob96]. Such environments focus on tool support for applying

techniques whereas our framework is intended as a soli basis for defining and executing

techniques. It is a subject for future work to develop a transformational programming en-

vironment based on the framework. In [WBBL99], Whittle et al. describe an ML editor

based on the proof-as-programs idea. Programs are created incrementally using a collec-

tion of correctness-preserving editing commands. Such an approach might also be sensible

for our roles and techniques derived from them.

In [BMPT90], Brogi et al. describe a related meta-programming framework. The ap-

proach is based on a special language LML which can be regarded as another approach

to integrate functional and logic programming in a certain way. LML also is intended

for the construction of knowledge based systems. Logic programming is supported by

means of a data type of theories at the level of functional programming. Our intentions

are different. We just want to provide a solid framework for general and typeful meta-

37

Chapter 2 Roles of Program Extension

The class of transformations covered by the chapter can be captured by a kind of projection notion as fol-

lows. A projection P of a program P’, denoted by P � P ′, is a program where some of the functionality

of P ′, i.e., some of its definitions, RHS literals, parameters, have been projected away. Moreover, substi-

tution, renaming and permutation my be involved. The relation � is formalised in the meta-programming

framework as follows. Given P, P ′ ∈ Program,P � P ′ if ∃σ : Operator→ Operator :

1. ∀p ∈ π1 T YPE(P) : ∃p′ ∈ π1 T YPE(P ′) : σ(π1 p) = π1 p′ ∧ π2 p ⊆ π2 p′

2. π2 T YPE(P) ⊆ π2 T YPE(P ′)

3. ∀d ∈ definitions P : ∃d′ ∈ definitions P ′ :
a) σ(defines d) = defines d′ and #(rules d) = #(rules d′)
b) ∀r ∈ rules d : ∃r′ ∈ rules d′ :
∃θ : Variable→ Parameter : ∃w1, . . . , wn ∈ {1, . . . , n′} :

i. tag r = tag r′

ii. σ(operator l0) = operator l′0
iii. θ(parameterization l0) ⊆ parameterization l′0
iv. w1 < · · · < wn

v. si = s′wi
for i = 1, . . . , n

vi. σ(operator li) = operator l′wi
for i = 1, . . . , n

vii. θ(parameterizationli) ⊆ parameterization l′wi
for i = 1, . . . , n

where

• lhs r = l0, rhsr = 〈〈s1, l1〉, . . . , 〈sn, ln〉〉,
• lhs r′ = l′0, rhsr′ = 〈〈s′1, l′1〉, . . . , 〈s′n′ , l′n′〉〉.

We assume that ⊆ is defined on sequences by regarding dem as sets.

The definition can be read as follows. σ is a function which renames (or substitutes) operators. (1.)

constrains types of operators by saying that the types of P ′ should cover the types of P , where an operator

in P ′ might have more positions than the corresponding operator in P . (2.) says that the constructors of

P ′ should cover the constructors of P . (3.) formalises the actual projection on rules. P ′ might provide

more definitions than P . θ is a substitution. Tags and LHS operators (modulo renaming) must be the same

for the matching rules from P and P ′. The rule in P ′ might have more literals on the RHS. The literals

originating from P are indexed by the wi. The relative order of the literals from P must be preserved

in P ′ (refer to 3.iv.). Regarding related literals, the literal in P ′ might have more parameters than in P .

Substitution is involved in relating the parameters (refer to 3.vii.).

The definition is restricted in the sense that constructors and selectors cannot be renamed, and permutation

and projection is not performed for nested parameters. It is straightforward to remove these restrictions.

Figure 2.9 A notion of projections of programs

programming. Our approach is entirely different from multi-stage programming [TS97],

where code and functions on code facilitate different binding times but not enhancement

of given object programs. The selection of Haskell to implement the framework is in line

with Bowers [Bow98]. Typed and modular functional languages like Haskell provide an

excellent basis for meta-programming.

Our work on extending computational behaviour is related to modularity, composition

and decomposition. Modularity concepts such as [BMPT94] are well-suited for functional

decomposition but they do not facilitate the introduction of additional functionality if it

had to be weaved into the program in a systematic way as facilitated by the developed

transformation operators. There are notions of composition which go beyond the limit of

modularity in the common sense, e.g., Sterling et al. suggest in [SJK93a] the composition

38

2.5 Concluding Remarks

of programs having some basic skeleton in common. Related proposals can be found

elsewhere based on terms like superposition, partitioning and tupling. This perspective

on composition merely emphasises that we can compose different extensions of the same

underlying program by a kind of descriptional composition. In contrast, the chapter is

concerned with the actual specification of extensions.

There are certain techniques in the sense of stepwise enhancement which have some

counterpart in actual attribute grammar specification languages. Such constructs are stud-

ied in [LR99].

2.5 Concluding Remarks

We give the main results of the chapter, before we conlude it with a perspective for future

work.

Results. This chapter addressed the following questions and provided the following

answers:

1. What are the basic roles needed for the development of transformations to extend

the computational behaviour of programs. We identified five roles, e.g., adding pa-

rameters and performing substitutions. These roles can be specified in separation

and they can effectively be used to derive interesting program transformations.

2. How can the basic roles and the derived techniques be formalised and implemented?
We developed a formal and operational framework supporting functional (and thus

declarative) meta-programming. The framework employs a number of powerful

concepts such as monads, abstract data types and generalised maps. The actual

language Haskell has been chosen to implement the framework.

We believe that the result from research in stepwise enhancement in general, and our

new results on extending computational behaviour in particular, provide a solid ground for

contributions to a more formal and technical understanding of notions in mainstream pro-

gramming like adaptive and aspect-oriented programming. In [Läm99a], Lämmel presents

a proposal for declarative aspect-oriented programming including a form of weaving by

means of meta-programming.

Future Work. The class of semantics-preserving transformations should be enriched to

cover modularisations and mutations as suggested (but not formalised) in [PS90].

The static analysis of meta-programs has to be improved based on further formal proper-

ties of transformations. We should be able, for example, to provide sufficient criteria for a

transformation to be defined, or to associate a transformation with a kind of type construc-

tor modelling the effect of the transformation regarding object types. It is a demanding

experiment to investigate the utility of dependent types [Aug99, XP99] in order to model

such properties in the meta-programming framework.

39

Chapter 2 Roles of Program Extension

A speculative topic for future work concerns the generalisation of the chosen object

language. There is some evidence that other rather different languages (e.g., higher-order

functional languages, object-oriented languages) and formalisms (e.g., syntax definition

formalisms) are sensible for similar roles of transformation. There are relate notions like

superposition and refinement in several frameworks. Any contribution to the unification

of some of these concepts had to be regarded as a progress in programming theory.

40

Chapter 3

Format Evolution

A systematic approach to the adaptation of XML documents and their DTDs
is developed. The approach facilitates the evolution of XML-based formats.
There are two essential ideas. Firstly, changes in the formats of documents are
represented as stepwise transformations on the underlying DTDs. Secondly,
the corresponding migration of the XML data is largely induced by the DTD
transformations. The presentation focuses on concepts of format evolution,
namely roles of corresponding transformations, properties of the transforma-
tions, and expressiveness to implement the transformations.

3.1 Introduction

The XML-age. XML (cf. [W3C00a]) is more and more used as interchange format in

distributed, client-server, intra- and internet applications. It also finds its way to specific

application domains to serve as storage and exchange format, e.g., for abstract syntax

trees or intermediate representations in language processing. XML is usually employed

back-to-back with DTDs (document type definitions; cf. [W3C00a]) in order to constrain

the XML documents according to a specific format. In a non-trivial application architec-

ture of the XML-age, various components cooperate based on various interchange formats

(i.e., DTDs) serving as contracts between the components. The underlying data might be

stored in a database (presumably according to some relational or object-oriented database

schema). XML data is obtained via database queries. XML data might also be managed in

a database or in a file system in a more native manner. The components of the application

query the database, access XML files, or they obtain the (XML) data from other compo-

nents. The data to be presented to the user as spreadsheets, active web-pages, reports etc.

is also encoded as XML data.

Evolution of XML/DTD In many application contexts of XML, the formats regulated

by the underlying DTDs are repeatedly changed, either due to maintenance requirements,

or due to refactoring, or due to independent evolution of one of the components. Also,

if different components need to interact, often the corresponding interfaces need to be

matched up—especially if the interaction was not anticipated (cf. [BKK+01]). In the

present chapter, we show that the systematic evolution of DTDs can usually be repre-

sented by a number of atomic transformation steps which in turn induce a transformation

for XML document migration. The resulting evolution by transformation approach is out-

lined in Figure 3.1. XML document transformation is an established concept. We are

41

Chapter 3 Format Evolution

rather interested in the intertwined treatment of format change and document migration.

Such a treatment contributes to format and document reengineering. The overall approach

is not too much dependent on XML/DTD. The concepts should also be of value for other

technical settings of format evolution, e.g., for proprietary formats, or for the setting of

SGML (cf. [SGM86]). The approach is also applicable to XML schema languages other

than DTD, e.g., XML Schema (cf. [W3C00b, W3C01a, W3C01b]) or DSD (cf. [KMS00]).

output DTD

migrated
documentMigration

original
document

Adaptationinput DTD

Figure 3.1 Induced XML document migration

Databases and XML. We should point out that our approach to format evolution is

only sensible if the DTDs and XML documents at hand are the primary artefacts, that

is, if XML is used as interchange or storage format in the first place. By contrast, if

the XML data originates from database queries, and the underlying DTD corresponds to

a (relational or an object-oriented) database schema (cf. [SSB+00]), then the database

schema and the database instance are the primary artefacts. Consequently, we had to focus

on a (database) schema evolution as opposed to a (DTD) format evolution. There is a

large body of research on database re- and reverse engineering dealing with the problem

of schema evolution and instance mapping (cf. [HTJC94]). As an aside, if XML data is

solely managed in a database according to some mapping (cf. [KM00]), we still consider

DTDs and XML documents as the primary artefacts.

Structure of the Chapter. In Section 3.2, we present our approach in a nutshell, that

is, we examine a few scenarios of transforming DTDs, and we indicate in what sense the

DTD transformation steps induce a migration for XML documents. In Section 3.3, we

define some terms to reason about DTD and XML transformations. In the subsequent two

sections, we systematically examine roles of format evolution, that is, transformations for

DTDs and XML documents. There are two groups: In Section 3.4, transformations for

refactoring are studied. In Section 3.5, structure-extending and -reducing transformations

are studied. The assumption underlying our approach is that the evolution of a format can

be represented as a number of transformation steps according to the identified roles. The

chapter is concluded in Section 3.7 including a discussion of related work.

42

3.2 The Approach in a Nutshell

Disclaimer. As we are mainly interested in the study of a migration induced by the

DTD transformations, we only cover a (nevertheless substantial) fragment of the full ex-

pressiveness of XML and DTDs. As for the element type declarations, we only cover the

form that children are precisely specified (as opposed to the options ANY or MIXED), and
the form #PCDATA (which is a specific instance of MIXED). Also, we do not consider

entity declarations at all. Furthermore, we only consider the attribute type CDATA, and
enumerated types. In fact, the treatment of other attribute types is not straightforward. The

treatment of IDs and IDREFs, for example, requires to deal explicitly with references in

a document.

3.2 The Approach in a Nutshell

We will explain the rationale for our approach to format evolution by a few illustrative

transformations on a simple sample DTD, and a corresponding XML document. Figure 3.2

shows a DTD for music albums, whereas Figure 3.3 shows an XML document with a

particular album. The example has been adopted from [WR99].

<!ELEMENT album (title, artist, recording?,
catalogno*, player+, track*, notes)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT artist (#PCDATA)>
<!ELEMENT recording EMPTY>

<!ATTLIST recording date CDATA #IMPLIED place CDATA #IMPLIED>
<!ELEMENT catalogno EMPTY>

<!ATTLIST catalogno label CDATA #REQUIRED number CDATA #REQUIRED
format (CD | LP | MiniDisc) #IMPLIED
releasedate CDATA #IMPLIED country CDATA #IMPLIED>

<!ELEMENT player EMPTY>
<!ATTLIST player name CDATA #REQUIRED instrument CDATA #REQUIRED>

<!ELEMENT track EMPTY>
<!ATTLIST track title CDATA #REQUIRED credit CDATA #IMPLIED

timing CDATA #IMPLIED>
<!ELEMENT notes (#PCDATA | albumref | trackref)*>

<!ATTLIST notes author CDATA #IMPLIED>
<!ELEMENT albumref (#PCDATA)>

<!ATTLIST albumref link CDATA #REQUIRED>
<!ELEMENT trackref (#PCDATA)>
<!ATTLIST trackref link CDATA #IMPLIED>

Figure 3.2 A DTD for music albums

3.2.1 Restructuring

Let us assume that the structure of the album element type is going to be somewhat richer

than originally declared in Figure 3.2. In particular, there will be further personnel than

43

Chapter 3 Format Evolution

<?xml version=’1.0’?>
<!DOCTYPE album SYSTEM "album.dtd">
<album>
<title>Time Out</title>
<artist>Dave Brubeck Quartet</artist>
<recording date="June-August 1959" place="NYC"/>
<catalogno label=’Columbia’ number=’CL 1397’ format=’mono’/>
<catalogno label=’Columbia’ number=’CPK 1181’

format=’LP’ country=’Korea’/>
<player name=’Dave Brubeck’ instrument=’piano’/>
<player name=’Eugene Wright’ instrument=’bass’/>
<player name=’Joe Morello’ instrument=’drums’/>
<track title=’Blue Rondo à la Turk’

credit=’Brubeck’ timing=’6m42s’/>
<track title=’Strange Meadow Lark’ credit=’Brubeck’ timing=’7m20s’/>
<track title=’Take Five’ credit=’Desmond’ timing=’5m24s’/>
<track title=’Three To Get Ready’ credit=’Brubeck’ timing=’5m21s’/>
<notes>

<trackref link=’#3’>Take Five</trackref> is a famous jazz track of
that period. See also
<albumref link=’cbs-tfo’>Time Further Out</albumref>.

</notes>
</album>

Figure 3.3 A music album as XML document

just players. To prepare for that enrichment, we fold player+ to obtain an element type

personnel. The relevant fragment of the adapted DTD is the following:

<!ELEMENT album (title, artist, recording?, catalogno*,
personnel, track*, notes)>

<!ELEMENT personnel (player+)>

At the data level, that is, for XML documents, the element tags for personnel have to

be inserted accordingly. Thus, we get the following:

<personnel>
<player name=’Dave Brubeck’ instrument=’piano’/>
<player name=’Eugene Wright’ instrument=’bass’/>
<player name=’Joe Morello’ instrument=’drums’/>

</personnel>

The important thing to notice here is that the XML transformation is induced by the DTD

transformation: Performing a fold at the DTD level, the necessary migration of XML data

to witness folding is (completely) determined.

3.2.2 Enrichment

Let us carry on with the evolution. We want to add some structural component to the

element type personnel, namely we want to support an optional manager. Thus, we get

the following extended definition of personnel, and a definition of manager:

44

3.2 The Approach in a Nutshell

<!ELEMENT personnel (player+, manager?)>
<!ELEMENT manager EMPTY>

<!ATTLIST manager name CDATA #REQUIRED>

Actually, this transformation consists of two steps, namely the introduction of manager,
and the enrichment of the structure of personnel to include an optional manager. The

introduction step does not affect the XML level because all original element types are

preserved. As for the enrichment step, a decision is due. Do we insert actual managers or

not? Since the manager is optional, we can decide to leave the field for manager blank.

Thus, we can say that the XML transformation induced by the enrichment of personnel
is the identity mapping.

3.2.3 Attributes to Elements Conversion

As a final example, let us consider the problem of turning attributes into elements. Con-

sider, e.g., the element type declaration for recording in Figure 3.2. A recording
element does not have children but it might carry attributes. Suppose we want to change

the status of the attributes date and place to become element types. Thus, we want to

derive the following DTD:

<!ELEMENT recording (date?, place?)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT place (#PCDATA)>

The induced XML transformation is somewhat involved. CDATA needs to be coerced to

#PCDATA. Attribute lists have to be converted to elements. The migrated recording
element is the following:

<recording>
<date>June-August 1959</date>
<place>NYC</place>

</recording>

This concludes our introductory list of examples. The purpose of the chapter is to system-

atically study the roles involved in DTD transformations, and the induced XML transfor-

mations.

3.2.4 Transformation Technology

The most obvious language candidate for XML transformation is XSLT (cf. [W3C99b]).

In fact, throughout the chapter, we will use XSLT to illustrate some of the XML transfor-

mations which we employ for format evolution. Lacking an obvious candidate for DTD

transformations, the transformations at the DTD level are described verbally. If we re-

sorted to XML-based XML schema representations (as opposed to DTDs) such as XML

Schema (cf. [W3C00b, W3C01a, W3C01b]), we can also use XSLT (or any other XML

transformation language) for encoding the schema transformations.

45

Chapter 3 Format Evolution

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*|@*|comment()|processing-instruction()|text()">
<xsl:copy>
<xsl:apply-templates

select="*|@*|comment()|processing-instruction()|text()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Figure 3.4 The identity transformation in XSLT

In Figure 3.4, we describe, for example, an identity function on XML documents in

XSLT. The program descends into all elements and reconstructs them identically. The

program is useful as a starting point for more meaningful XML transformations which

are specific about certain patterns but behave like identity most of the time. The iden-

tity function is encoded with a single XSLT template which applies to all elements (cf.

match="*|..."), all attributes (cf. match="...|@*|...") and others (i.e., com-

ments, processing instructions, and text). Tags are copied (cf. <xsl:copy>). The tem-

plate recursively descends into all children (cf. <xsl:apply-templates ...>).
Despite the popularity of XSLT, our experiments clearly indicated that XSLT is not re-

ally convenient for some transformations involved in format evolution. We will detail this

experience in Section 3.7. We will also discuss other languages for XML transformation

in Section 3.7.

3.3 Properties of Transformations

We need a few terms to reason about the transformations for format evolution. Trans-

formations are functions, often partial ones. We are concerned with two levels: DTD

transformations are (partial) functions on DTD—the domain of all DTDs. XML transfor-

mations are (partial) functions on XML— the domain of all XML documents. For every

DTD transformation f we intend to supply an induced XML transformation f . Let us

consider required or convenient properties of f and f .

3.3.1 Well-formedness

All DTDs we process have to be well-formed. By well-formedness we mean that the

DTDs are deterministic / unambiguous (cf. [W3C00a, BK93]). Furthermore, we require

a reducedness property in the sense of context-free grammars (cf. [HU80]), that is, all el-

ement names used in element type declarations are defined, and they are reachable from

the root element, and all alternatives of all declarations are feasible. As for XML docu-

ments, the standard regulates what well-formedness means. We restrict XML to the set of

all well-formed XML documents. Without further mentioning, all subsequently discussed

46

3.3 Properties of Transformations

DTD and XML transformations are constrained by an implicit postcondition to produce

well-formed outputs from well-formed inputs (or to fail otherwise).

3.3.2 Validity

Using XML terminology, an XML document is said to be valid w.r.t. a given DTD if the

document is formed according to the DTD. We use the notation d � x to express that an

XML document x ∈ XML is valid w.r.t. a DTD d ∈ DTD. Informally, this means that x
can be derived from d starting with the root element of d.1 A minimum requirement for an

induced XML transformation is that validity is preserved, say that the migrated XML data

is valid (w.r.t. the adapted DTD):

Definition 1. Let f be a DTD transformation. The induced XML transformation f pre-
serves validity if for all d ∈ DTD and x ∈ XML with d � x it holds if f(d) and f(x) are
defined, then f(d) � f(x).

Example 8. The XML document from Figure 3.3 is valid w.r.t. the DTD in Figure 3.2.

Consider the folding step from Section 3.2.1. The migrated XML document with the

additional tags for personnel is valid w.r.t. the adapted DTD where player+ has

been folded to personnel. Note that the original XML document is not valid w.r.t. the

adapted DTD.

3.3.3 Totality and Partiality

DTD transformations are inherently partial because of applicability constraints. Of course,

a DTD transformation should be feasible, that is, there exist DTDs which the transforma-

tion is applicable to. We should be able to describe precisely the applicability constraints

for a DTD transformation.

Example 9. Folding is only feasible if the element name introduced by folding

(cf. personnel in Section 3.2.1) is fresh in the input DTD, and the particle to be folded

(cf. player+ in Section 3.2.1) does indeed occur. Otherwise, there are no preconditions

for folding to succeed at the DTD level.

Ideally, we want an induced XML transformation to be total. In a sense, the DTD trans-

formation should be responsible for establishing all preconditions, and then the induced

XML transformation should be enabled. In this case, we speak of a total induced XML

transformation:

Definition 2. Let f be a DTD transformation. The induced XML transformation f is total
if for all d ∈ DTD, x ∈ XML with d � x it holds that f(d) is defined implies f(x) is

defined.

1Here, we resort to terminology used for string languages, e.g., languages defined via context-free gram-

mars.

47

Chapter 3 Format Evolution

Example 10. We continue with the folding scenario from Example 9. The induced XML

transformation is indeed total because the insertion of the additional tags for personnel
is feasible without further preconditions.

In turns out that some induced XML transformations have to establish preconditions

specific to the data level. Consequently, these induced XML transformations are partial

since they are supposed to fail if the preconditions are not met by the XML document at

hand.

Example 11. Consider, for example, a DTD with a particle “n?” for an optional element.

Assume that we want to enforce an obligatory element, that is, we have to replace “n?” by

“n”. A candidate for the induced XML transformation is the identity mapping. However,

for the sake of preserving validity, we have to refuse XML data where the optional element

is omitted.

3.3.4 Structure Preservation

Starting at the DTD level of transformation, we would like to be sure that the structure

of the input DTD is preserved by the transformation in some reasonable manner. At the

XML level of transformation, we also want to be sure that the structure2 of the documents

is preserved in a similar sense. We indeed have to consider structure preservation at both

levels: Given a structure-preserving DTD transformation, the structure-preservation for a

validity-preserving XML transformation is not implied. There are different ways to for-

malise that a transformation is “well-behaved”. One classical approach— often used in

transformational programming (cf. [Par90])—is to identify semantics-preserving transfor-

mations. For that purpose, one could define the semantics of a DTD as the set of all valid

XML documents admitted by the DTD. The problem is that this semantics is too concrete,

i.e., there are hardly semantics-preserving transformations in this sense. There is no obvi-

ous alternative semantics. Furthermore, it is not clear how to lift semantics-preservation

from the DTD level to the XML level. This motivates our simple formalisation of struc-

ture preservation based on reversibility. This is also a prominent approach in the context

of database schema transformations (cf. [BCN92]).

Definition 3. A transformation t is called structure-preserving, if t is a bijective function.

The transformation t is called structure-extending, if t is an injective but not a surjective

function. The transformation t is called structure-reducing, if t is not an injective function.

Example 12. Folding as exemplified in Section 3.2.1 is injective because there is an in-

verse at the DTD level, that is, unfolding, and there is also an inverse at the XML level, that

is, the additional tags which were inserted to witness folding are simply removed again.

Since unfolding is also injective, folding and unfolding are structure-preserving.

In studying the properties of the transformations for format evolution, we do not sim-

ply want to check if a transformation is injective or surjective. We also want to explicitly

2For a uniform terminology, we use the term structure at both the DTD and the XML level (as opposed to

content).

48

3.4 Refactoring

specify the inverse transformations as in the above example. For transformations which

are meant to restructure a given DTD, we plan to point out injective inverses. For transfor-

mations which are meant to extend the structure at one or both levels, we should be able to

point out the inverse transformations which remove the added structure. This also explains

how we can discipline structure-reducing transformations. While they cannot be reversed,

they should be conceived as inverses of structure-extending transformations.

3.4 Refactoring

We start our catalog of roles for format evolution with transformations for refactoring

DTDs. By refactoring we mean structure-preserving transformations intended to improve

the structure of DTDs, or to “massage” the structure so that it becomes more suitable for

subsequent adaptations. Structure-extending and -reducing transformations are considered

in Section 3.5.

3.4.1 Renaming

As a warm-up, we start with renaming which is a fundamental operator applicable to names

of abstractions of any language. For DTDs, there are two abstractions which have to be

covered, namely elements and attributes. Renaming means to replace the corresponding

names consistently. Renaming attribute values is conceivable, too. Replacing text is clearly

not to be regarded as proper renaming.

Renaming elements. Suppose the original element name is n, and the new element

name is n′ . At the DTD level, the following replacements are due. The element type

declaration <!ELEMENT n e > is replaced by <!ELEMENT n′ e> where e serves as

place-holder for the definition of n.3 Within all content particles all occurrences of n have

to be located and replaced by n′ as well. At the XML level, all tags of the form < n >,

< /n >, and < n/ > (optionally with attributes) have to be updated accordingly.

Renaming attributes. Renaming attributes is only slightly more interesting. One spe-

cific property that we have to cope with is a kind of scope rule. Attributes belong to

elements. Renaming an attribute (name) a to a′ should include the identification of the

corresponding element type n. At the DTD level, we have to lookup the attribute list dec-

laration <!ATTLIST n l>, and then we replace a by a′ in the list l. At the XML level,

similarly, we have to lookup start tags <n l> and empty element tags <n l/>, and then

replace a by a′ in the list l of name-value pairs.

Example 13. The following XSLT template renames the attribute link of the element type

albumref to url. If we add the template for the identity transformation (cf. Figure 3.4),

we will obtain a complete XSLT program.

3In XML terminology, e is called content specification. If e is of the form that children are specified for n
(as opposed to #PCDATA), then we say that e is built from content particles, namely names, choice and

sequence lists of content particles, and content particles postfixed with “?”, “+”, and “∗”.

49

Chapter 3 Format Evolution

<xsl:template match="albumref">
<xsl:copy>
<xsl:attribute name="url">
<xsl:value-of select="@link"/>

</xsl:attribute>
<xsl:apply-templates
select="*|comment()|processing-instruction()|text()"/>

<xsl:apply-templates
select="attribute::*[not(name(.)=’link’)]"/>

</xsl:copy>
</xsl:template>

The template matches with albumref. The attribute value associated with link is

copied using the new name url in the name-value pair. All other attributes are copied

without changes.

Properties. Renaming admits several universal properties. For renaming elements,

these properties can be explained as follows. It is easy to see that renaming is validity-

preserving. Renaming is also reversible. Renaming n to n′ is undone by renaming n′ to n.
Thus, renaming is structure-preserving. At the DTD level, renaming is not total because

of the precondition that n′ must be fresh. The induced XML transformation is total.

3.4.2 Introduction and Elimination

We describe two auxiliary structure-preserving transformations. One can introduce ele-

ment type declarations which are not (yet) used in the DTD altogether. Subsequent adap-

tations are meant to make use of the new element types. Dually, one can eliminate element

type declarations which are not used (anymore) in the DTD.

Introduction of element types. There are simple preconditions at the DTD level.

The introduced element name must be fresh in the input DTD. The induced XML trans-

formation is the identity mapping without further requirements, since all element type

declarations are completely preserved.

Elimination of element types. At the DTD level, an important constraint is that the

element type to be eliminated is not used in other declarations. Otherwise, we would create

a “non-terminated” DTD. Furthermore, we require that the element type corresponding to

the name of the document type is never eliminated (cf. album in <!DOCTYPE album
SYSTEM "album.dtd"> in Figure 3.2). Note that the root element of a valid XML

document must match the name of the document type. These preconditions are sufficient

to ensure that actual XML data cannot exercise the eliminated element types. Hence, the

identity mapping is the appropriate induced XML transformation.

Properties. Clearly, the induced identity mappings are in both cases validity-preserving

since the DTD transformations do not change reachable element type declarations. The in-

50

3.4 Refactoring

duced transformations are also total. Structure-preservation holds since introduction and

elimination are each other inverses.

3.4.3 Folding and Unfolding

Most forms of abstractions in specification formalisms and programming languages admit

two important dual concepts, that is, folding and unfolding. Refer, for example, to [PP96],

for an in-depth discussion of these concepts in the context of functional and logic pro-

gramming. Folding and unfolding is particularly useful for restructuring DTDs (and, in

general, for grammar formalisms). In an abstract sense, unfolding means to replace the

name of an abstraction by the definition of it. Dually, folding means to introduce a new

abstraction according to some identified expression, and then to replace the expression by

the new name. As for DTDs, folding and unfolding is all about elements.

A

A
1

2

A

A4

3

B1

B2

A

A
1

2

A

A4

3

B1

B2

A
A12

B

to A
fold (A A)

3 4
34

A
A12

A34

B

A
1

A2

A
3

A4

B1

B2

unfold A

A12

A1

A2

A34

A

A

3

4

B

B

1B

2

fold(A A)
1 2

12
to A

A
A12

A34

B

Figure 3.5 Form restructuring

Example 14. In Figure 3.5, folding and unfolding is illustrated in the context of form

restructuring. We start from a form (say DTD) with two top level elements A and B
corresponding to the two main regions of the form. We want to refactor the structure

underlying the region A in a way that two subregions are identified. The first fold step

points out the first subregion A12 which encloses A1 and A2. In the same manner, the

second fold step points out the second subregion A34 enclosing A3 and A4. The unfold

step drops the nesting of A12 and A34 inside A. The final form has now three instead of

two main regions. The splitting of the region A was achieved by fold-fold-unfold.

DTD level. Folding consists of two steps: an introduction step for the new element type,

and a replacement step to refer to the new element type instead of using its definition.

It is conceivable to define unfolding completely dual to folding, that is, after unfolding

the corresponding element type would be eliminated. We do not pursue this approach

because, usually, unfolding is only done in the focus of a particular occurrence of the

51

Chapter 3 Format Evolution

considered element type.4 Thereby, some references to the unfolded element type will

remain after unfolding, and thus elimination will not be feasible. Otherwise unfolding

behaves completely inverse to folding, that is, the name of an element type is replaced by

its definition.

XML level. Folding means to identify XML fragments corresponding to the folded ex-

pression, and to surround them accordingly with the tags for the new element. We post-

pone discussing details of the replacement process at both levels until Section 3.5.2 and

Section 3.5.3. Unfolding is dual to folding, i.e., the tags for the unfolded element are

removed.

Example 15. The following XSLT template describes unfolding for the element type

personnel. Again, if we add the template for the identity transformation (cf. Fig-

ure 3.4), we will obtain a complete XSLT program.

<xsl:template match="personnel">
<xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>

</xsl:template>

The template applies to elements of type personnel. As in the case of the iden-

tity transformation, we descend into all children. However, there is no mentioning of

<xsl:copy> (as opposed to the template for the identity transformations). Thus, the

tags for personnel are not copied. This directly implements the idea of unfolding.

Properties. At the DTD level, folding is constrained by the precondition of element

type introduction. Furthermore, we should require that there is indeed an occurrence of the

expression to be folded away. Dually, unfolding is only meaningful if we focus on at least

one occurrence of the corresponding element type. The induced XML transformations for

folding and unfolding are total. Folding can be reversed by unfolding (at both levels). To

be precise, unfolding and the replacement step involved in folding are each other’s inverses

at the DTD level. At the XML level, the described insertion or removal of tags resp. to

witness folding and unfolding are obligatory to achieve preservation of validity.

3.4.4 Elements vs. Attributes

We only sketch the topic of turning attributes into elements and vice versa. We refer to

Section 3.2.3 for an example of the former direction. The following correspondences can

be established to deal with element to attribute conversion and vice versa:

• Implied attributes correspond to optional elements.

• Required attributes correspond to obligatory elements.

• The attribute type CDATA corresponds to #PCDATA content.

4We assume that all our transformations can be applied in a focus as spelled out in [Läm01].

52

3.4 Refactoring

Turning a content particle into an attribute declaration. A selected content par-

ticle e is removed from the content specification of the selected element type n. The at-

tribute list declaration for n is extended accordingly. The content particle e has to be of the

form “n′ ” or “n′?” where n′ is the name of an element type. There is no straightforward

way to deal with choice lists and with the repetition operators “+” and “∗”. Furthermore,

the content specification of n′ should be #PCDATA, since it is not obvious how to turn

structured content into an attribute value. The attribute type of n′ will be CDATA, and
the default declaration for n′ (#REQUIRED vs. #IMPLIED) depends on the form of e as

pointed out above. Another precondition for the transformation (at the DTD level) is that

n′ must not yet be used as an attribute name in the attribute list declaration for n.

Turning an attribute declaration into a content particle. A selected attribute

declaration a is removed from the attribute list declaration for the selected element type n.
We extend the content specification of n by a corresponding particle, the location of which

needs to be defined explicitly. The attribute name n′ of a serves as the name of the element

type in the content particle e to be inserted. The particle e will be of the form “n′?” if n′

is an implied attribute, or the form “n′” if n′ is a required attribute. There is no obvious

way to deal with attribute types for n′ other than CDATA.5 We assume that the introduction

of the corresponding element type for n′ (with #PCDATA as content specification) is done

separately before the attribute to element conversion.

XML level. An element is turned into a name-value pair by regarding #PCDATA content

as a CDATA value, and by interpreting the element name as an attribute name; similarly

for the other direction. If the element is not present, then we omit the (implied) attribute.

Example 16. The following XSLT template implements an attributes to elements conver-

sion for elements of type recording. In fact, all attribute values are turned

into corresponding elements. Therefore, we perform iteration over all attributes

(cf. <xsl:for-each select="@*">). The template is again to be completed by

the template for identity transformation (cf. Figure 3.4). The code only provides an ap-

proximative solution as it ignores the problem that the order of the actual name-value pairs

might differ from the order prescribed in the content specification which was derived from

the attribute list declaration.

<xsl:template match="recording">
<xsl:copy>
<xsl:for-each select="@*">
<xsl:element name = "name(.)">
<xsl:value-of select="."/>

</xsl:element>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

5We can cope with enumerated types for attributes the values of which are then represented as #PCDATA
however.

53

Chapter 3 Format Evolution

3.5 Construction and Destruction

As a matter of fact, format evolution is hardly restricted to pure restructuring. New struc-

ture (say content) needs to be included. Dually, existing structure (say content) might

become obsolete. Two classes of adaptations are identified for these purposes, namely

construction and destruction. We will discuss corresponding roles back-to-back since the

latter behave as the inverses of the former. In format evolution, steps for refactoring, con-

struction, and destruction alternate.

3.5.1 Generalisation and Restriction of Expressions

Generality of content particles. In the process of extending a format, we need to

generalise content particles; dually for restricting a format. Contrast that with renaming,

folding, and unfolding where we deal with tags only. To reason about generality of content

particles we define a partial order “<” on content particles:

e1 < e3 if e1 < e2 and e2 < e3

e1
< e2 if e2 < e1

e < e?
EMPTY < e?
e+ < e�

e < e+

(e1, . . . , en) < (e′1, . . . , e′n) if 1 ≤ i ≤ n, ei < e′i, ej = e′j
for j = 1, . . . , n, j
= i

(e1 | . . . | en) < (e′1 | . . . | e′n) if 1 ≤ i ≤ n, ei < e′i, ej = e′j
for j = 1, . . . , n, j
= i

(e1 | . . . | en) < (e′1 | . . . | e′i−1 | e′i + 1 | . . . | e′n) if 1 ≤ i ≤ n

The first two properties state transitivity and asymmetry. Then, we have a number of

properties to deal with optionals, star- and plus-notation. Afterwards, sequence lists (with

associative concatenation) are addressed. Finally, we address choice lists. It is said, for

example, that a choyice with less branches admits less structure than a choice with more

branches. Generality of content particles can be lifted to generality of DTDs. We say that

d ∈ DTD < d′ ∈ DTD if for all x ∈ XML, d � x implies d′ � x but not vice versa.

DTD level. A replacement of a content particle e by another content particle e′ is called a

(DTD) generalisation if e < e′. In the opposite case (i.e., e′ < e), the replacement is called

a (DTD) restriction. The specification of “<” clearly indicates how we can generalise;

dually for restriction: A child can be turned into an optional one. EMPTY can be replaced

by an optional. From e we might also generalise to plus-lists of e. Finally, we can add

alternatives to choice lists.

XML level. Initially, we choose the identity mapping as induced XML transformation

for both generalisation and restriction. For the former, no further preconditions are to be

54

3.5 Construction and Destruction

ensured since a generalisation simply relaxes the format. For the latter, we have to check

that the generality of the original particle is never exercised. Consider, for example, a

restriction of “n+” to “n”. If we encounter an XML document where we have non-trivial

lists of elements of type n, we have to refuse the document (for the sake of preservation of

validity). This is a serious limitation. Thus, we give up the idea of the identity mapping.

Instead, we need to perform an XML transformation to simplify the XML data so that

the generality which is removed by the DTD restriction is not exercised anymore. Such

a simplifying XML transformation h (say XML restriction) can be characterised via the

“<” relation: For all d ∈ DTD, there exists some d′ ∈ DTD with d′ < d such that for

all x ∈ XML with d � x it holds that h(x) is defined implies d′ � h(x). Now, if the

d′ always corresponds to the adapted DTD according to a DTD restriction, both levels of

restriction are properly intertwined. In practice, we will specify the DTD transformation

by a focused replacement of one content particle e by a more restrictive one e′. We might

also specify the XML restriction h by just a function on content of the form e to content

of the form e′. The function operating on XML can be derived by lifting.

Properties. XML generalisations preserve validity because of the way how “<” is

defined for DTDs. XML generalisations are structure-extending simply because the co-

domain of the transformation is not exhausted. The above definition of an XML restriction

directly enforces preservation of validity. XML restrictions are structure-reducing simply

because XML data exercising the obsolete generality will be mapped to a restricted format.

3.5.2 First Intermezzo: Replacing Content Particles

Replacement at the DTD level is not just relevant for generalisation and restriction where

the original and the resulting content particles are related by “<”. We also encountered

replacement in the context of folding where a content particle had to be replaced by the

name of a newly introduced element type. Further examples are unfolding and renaming.

We want to explain the general concept of replacement in some technical detail.

Replacement can be performed as follows. Given two content particles u and v, we want

to lookup the occurrences of u in the input DTD, and we want to replace them by v to derive

the output DTD. If there are multiple matches for u, we process them in some order. For

certain transformations, we might require unique matches. We assume that replacement

is always done in a certain focus, for example, for a certain element type declaration, or

for a certain occurrence of the particle u. It is important to notice that the operands u and

v can be in general sequence lists of content particles rather than single particles. In the

context of a fold, for example, u is potentially a list of content particles to be folded, and v
is the new element name. Thus, the lookup problem comes down to associative list pattern

matching (cf. [BKN87]) where we try to match part of a list l = (e1, . . . , em) of content

particles from the input DTD against u. The list l might occur at the top level of a content

specification for an element type n, or in a nested occurrence, e.g., as an alternative of a

choice list. Matching means that we want to find p and q with 1 ≤ p ≤ q ≤ m such that

(ep, . . . , eq) = u. The list l is to be replaced by the concatenation of (e1, . . . , ep−1), v, and
(eq+1, . . . , em).

55

Chapter 3 Format Evolution

3.5.3 Second Intermezzo: Matching at the XML Level

There is no (completely) determined way how replacement at the XML level would be

induced by a DTD transformation. However, the general matching problem preceding

specific replacements (and also tests for preconditions), that is, the problem to find the

content fragments corresponding to the focus of a DTD transformation is interconnected

to the matching problem (i.e., part of the replacement problem) at the DTD level. There

are two cases:

1. The sequence list l matching with the operand u occurred at the top level of the

element type declaration for n. We can easily locate the elements of type n by

looking for matches with < n > f < /n >. Thus, the list l corresponds directly to

the fragment f , that is, f is supposed to match the content specification l. We split

up the fragment f into fpfufq according to the associative list pattern matching at

the DTD level. The fragment fu matches u, and the surrounding fragments fp and fq

correspond to the prefix (e1, . . . , ep−1) and the postfix (eq+1, . . . , em) of l. Note that

there is, of course, no 1-1 correspondence of particles to fragments because some

elements might be optional, others might be lists. The kind of matching to determine

fp , fu , and fq corresponds to parsing, or—more precisely—to regular expression

pattern matching (cf. [HVP00, HP01a]).

2. Matching rather happens at some level of nesting. Thus, we first need to descend into

f to navigate to the relevant sequence list. This is again a kind of regular expression

pattern matching, i.e., we parse f according the element definition for n, and we

select the right parse subtree f ′ corresponding to l. Then, we proceed as in the 1st

case, i.e., we split f ′ into fpfufq and so on.

Once matching is done, one can observe fu , for example, to check a certain precondition.

One can also perform an actual replacement, that is, fu is replaced by content for v in the

context fpfufq . In the case of unfolding n′ , for example, we know that fu must be of the

form < n′ > f ′
u < /n′ >, and we simply replace fu by f ′

u, i.e., we omit the tags for n′ . In
the case of a partial identity transformation complementing a DTD restriction at the XML

level (cf. Section 3.5.1), we can ensure the precondition that fu is covered by the restricted

particle by a simple inspection of fu.

Example 17. Suppose we want to turn an optional manager into an obligatory one, i.e.,

we need to replace manager? by manager. The obligation at the XML level is that we

make sure that all elements of type personnel contain a manager. This basically means

that we locate all XML content fragments corresponding to the particle manager?, and
then we only have to examine the matched fragment not to be empty.

3.5.4 Structure Enrichment and Removal

In a sense, generalisation means to add possible “branches” to the format, vice versa for

restriction. There is another mode of construction and destruction, that is, if we want to

enrich the content model or to remove part of it by means of inserting or removing content

particles.

56

3.5 Construction and Destruction

DTD level. Enrichment can be conceived as a replacement as follows. Given a content

particle u (typically a sequence list (e1, . . . , em)), we want to replace it by another content

particle v which subsumes u in the following sense. The new particle v is of the form

(e′1, . . . , e
′
m′) with m′ > m, and there are i1, . . . , im such that 1 ≤ i1 < · · · < im ≤

m′6 and e1 = e′i1 , . . . , em = e′im . For removal, the roles of u and v are flipped. This

explanation makes immediately clear that enrichment and removal can be implemented by

means of the replacement procedure discussed in Section 3.5.2.

XML level. To evolve the XML data, we need to insert or to remove elements corre-

sponding to the additional or removed particles. In the case of removal, the induced XML

transformation is merely a projection. Matching is sufficient to select those fragments

which should be kept. Insertion is more delicate. For new particles, we have to decide

how suitable content is obtained. As for optional elements and star-lists of elements, this

is easy since the empty content is valid in this case; refer to Section 3.2.2 for the example

dealing with an optional manager. Otherwise, we have to augment the transformation for

enrichment to supply suitable content. This problem is somewhat similar to the problem

of an XML restriction which had to be provided explicitly to enforce a format (say DTD)

restriction.

Properties. At the DTD level, there is a way to conceive enrichment and removal as

each other’s inverse (and hence they would be structure-preserving). For that purpose, we

do not directly consider DTDs but DTDs with a focus. Then, we can define an equiva-

lence on DTDs (with a focus), where d ≡ d′ if d and d′ only differ in the focused par-

ticle. This point of view emphasises that the structure-extending or -reducing behaviour

of enrichment and removal essentially happens at the XML level. Removal of content is

structure-reducing because projections are not injective. By duality, enrichment cannot be

surjective, and hence it is structure-extending.

3.5.5 Attributes

In the same way as we can generalise and restrict choice lists for element type declarations

(cf. Section 3.5.1), we can also extend or shrink enumeration types for attributes. There is

also a counterpart for structure enrichment and removal discussed above, namely attribute

addition and removal.

Example 18. Let us consider a simple scenario in the running example. We want to enable

DVD albums. Thus, we need to add another alternative (namely, DVD) to the format
attribute type in the attribute list declaration for catalogno:

6If we omitted this condition, we consider permutations of sequence lists. For the sake of orthogonality,

permutation should constitute a separate operation.

57

Chapter 3 Format Evolution

<!ELEMENT catalogno EMPTY>
<!ATTLIST catalogno label CDATA #REQUIRED

number CDATA #REQUIRED
format (CD | LP | MiniDisc | DVD) #IMPLIED
releasedate CDATA
#IMPLIED country CDATA #IMPLIED>

3.6 Related Work

One-level vs. two-level transformation. Previous work on XML transformation

considers only the scenario, where a transformational program consumes XML documents

of one kind and produces some output—often some XML document again. In the opti-

mal case, this scenario is applied in a typeful manner, that is, both inputs and outputs

are required to be valid w.r.t. some DTD, and validity is then enforced dynamically or

statically. DTDs are considered as given a-priori. We call this (common) transformation

setup one-level transformation. Another well-known example of one-level transformation

is refactoring of object-oriented programs (cf. [Opd92, FBB+99]). By contrast, we are

concerned with two-level transformation (in the context of format evolution). In our case,

transformation starts at the DTD level. The induced XML transformations are not typed

by fixed DTDs. Conceptually, the induced XML transformations are generic in the sense

that they are feasible for all input DTDs which satisfy the preconditions of the underlying

DTD transformation. We refer to [Kle07, COV06] for other recent work concerning XML

document migration and two-level transformation.

Limitations of XSLT. XSLT (Version 1.0) is not optimally suited for XML transfor-

mations which are conceptually based on DTD patterns. Most transformations for format

evolution indeed are concerned with XML fragments according to DTD patterns as de-

scribed in Section 3.5.2 and Section 3.5.3. By contrast, the kind of selection or matching

supported by XSLT is based on patterns and axes in the sense of XPath (cf. [W3C99a]).

XSLT allows one to constrain types and ancestors of nodes to be matched. One can also

constrain the position in the list of children. The conditions in matching and selection may

involve various axes to select from different parts of the tree relative to the current node

(generally the node that the XSLT template matches). All this expressiveness, however,

does not allow us to describe matching according to the patterns (consisting of content par-

ticles) occurring in element type declarations. The need for language support to process

an XML document according to the DTD patterns in a typeful fashion has already been

realised by others. In [HVP00, HP01a], regular expression pattern matching is proposed

as a language construct.

Example 19. Let us implement the fold step from the beginning of the chapter (cf. Sec-

tion 3.2.1). The plan would be to perform a match with player+ (to focus on the lists of

players), and to surround the matched players with <personnel> and </personnel>.
By contrast, XSLT matching works element-wise. In Figure 3.6, we show two XSLT

encodings for the folding problem. The left program catches the first player, and then

58

3.6 Related Work

<xsl:template match="player"> <xsl:template
<xsl:choose> match ="player[position()=1]">
<xsl:when test= <xsl:text
"preceding-sibling::*[1][self::player]"/> disable-output-escaping="yes">
<xsl:otherwise> <![CDATA[<personnel>]]>
<personnel> </xsl:text>
<xsl:apply-templates select="." <xsl:copy>

mode="players"/> <xsl:apply-templates
</personnel> select="*|@*|..."/>
</xsl:otherwise> </xsl:copy>
</xsl:choose> </xsl:template>
</xsl:template>

<xsl:template match =
"player[position()=last()]">

<xsl:template match="player" mode="players"> <xsl:copy>
<xsl:copy> <xsl:apply-templates
<xsl:apply-templates select="*|@*|..."/> select="*|@*|..."/>
</xsl:copy> </xsl:copy>
<xsl:apply-templates <xsl:text
select= disable-output-escaping="yes">
"following-sibling::*[1][self::player]" <![CDATA[</personnel>]]>

mode="players"/> </xsl:text>
</xsl:template> </xsl:template>

Figure 3.6 Two inconvenient implementations of the fold problem from Section 3.2.1

switches to a different mode to copy all the players. The additional tags are inserted

accordingly (cf. <personnel>...</personnel>). In a sense, we parse the list

of players. The right program in Figure 3.6 is somewhat simpler but at the expense

of a hopelessly untyped approach. The first and the last player are caught by two

independent templates. The open and close tags are smuggled in as text

(cf. <![CDATA[<personnel>]]> and <![CDATA[</personnel>]]>).

Any XSLT encoding of replacements which have to do with more complex patterns

than single elements requires the simulation of regular expression pattern matching. Such

parsers are encoded by means of several templates, auxiliary modes, variables to accumu-

late substructures, or what have you.

A less fundamental but annoying problem of available XSLT implementations is that

valid XML documents are not enforced statically. Given an XSLT script, there is no guar-

antee that the input document will be properly queried, and that a valid output document

will be generated. It is not a fundamental problem. In [MSV00], it is shown that type-

checking XML transformations based on a model covering the essentials of XSLT, namely

k-pebble tree transducers, is decidable.

Other XML transformation frameworks. There is an abundance of XML query

languages applicable for extraction and restructuring XML data. Refer to [BC00] for

some comparative analysis of some prominent representatives. We want to point out some

language proposals originating from the functional programming field which have some-

thing to offer in the context of our specific kind of transformations. The typed func-

tional language XDuce (cf. [HP01b]) is a statically typed programming language in the

59

Chapter 3 Format Evolution

spirit of mainstream functional languages but specialised to the domain of XML process-

ing. XDuce supports regular expression types and the aforementioned regular expression

pattern matching to be applicable to XML-kind types. Another functional language for

typeful XML transformation is XMλ (cf. [MS99]). The formula underlying the func-

tional approach is the following: DTDs are types. XML document fragments are values.

Valid XML documents are enforced statically by type-checking. XML transformations are

DTD-typed functions.

A convenient property underlying the XSLT language model is the genericity which

allows us to achieve easily a full traversal of the input document by means of default tem-

plates as in the identity transformation (cf. Figure 3.4). One way to recover this genericity

in a functional language setting is to resort to an untyped generic XML representation, and

to use a suitable combinator library (cf. [WR99]) for manipulation. Another way could be

based on (typeful) generic programming (cf. [JJ97, Hin00]).

Database schema evolution. There is a large body of related research addressing

the problem of (relational or object-oriented) database schema evolution (cf. [BKKK87]).

Schema evolution is useful, for example, in database re- and reverse-engineering

(cf. [HTJC94]). The schema transformations themselves can be compared with our for-

mat transformations only at a superficial level because of the different formalisms in-

volved (ER model etc. vs. DTD). However, database schema evolution provides another

instance of a two-level transformation setup since one usually requires an instance map-

ping for a schema evolution (cf. [BCN92]). The formal underpinnings of schema trans-

formations have been studied in great detail, e.g., schema equivalence (cf. [Kob86]), or

reversibility of transformations (cf. [HTJC94]). There exist formal frameworks for the

definition of schema transformations (cf. [MP97]), and different catalogs have been devel-

oped (cf. [BKKK87, BP96]). Numerous formalisms have been proposed. One appealing

method which also covers the intertwined character of schema transformation and instance

mapping is based on graph transformations, say graph grammars (cf. [JZ99]). This formal

approach is reasonably accessible because of the use of a graphical notation.

3.7 Concluding Remarks

We summarise the contribution of the chapter. The chapter is concluded with the formu-

lation of a challenge in transformational programming to effectively support the proposed

style of format evolution.

Contribution. The chapter illustrates how DTD transformations and induced XML

counterparts can be employed to master format evolution problems. The use of trans-

formations supports traceability, and it automates document migration. The roles of for-

mat evolution were inspired by previous research on grammar adaptation (cf. [Läm01,

LW01]). DTD transformations, in a sense, can be conceived as grammar transformations.

In [LW01], the authors describe how to use term rewriting technology to describe grammar

transformations rigorously. This approach would also applicable to DTD transformations

60

3.7 Concluding Remarks

since DTDs are to some extent grammars. Of course, DTDs are not quite context-free

grammars or extended BNFs. We have to cope, for example, with tags, attributes, and

references. Also, DTDs and context-free grammars require different semantic treatments.

Consider, for example, fold/unfold manipulations. They do not affect the string language

generated by a context-free grammar. By contrast, folding/ unfolding a DTD changes

the content model. The original contribution of the present chapter is the consideration

of XML transformations induced by the DTD transformations and the investigation of

schema transformations in the application context of XML.

A Challenge. For a fixed DTD, the description of both a DTD transformation (for for-

mat evolution), and the induced XML transformation is merely a matter of choice of some

convenient transformation language. We have examined typeful functional XML transfor-

mation languages, term rewriting systems, combinator libraries, and logic programming.

However, the coupled treatment of DTD transformations and induced XML transforma-

tions in a typeful and generic manner poses a challenge for formal reasoning, type

systems, and language design. Consider, for example, a generic fold function which takes

the particle to be folded, the name of the element type to be introduced, and which re-

turns two functions, namely a DTD transformation, and a dependently typed XML trans-

formation. How can we describe such a function so that properties like preservation of

validity are implied by the type of the function? How can the induced character of the

XML transformation be made explicit? We might conceive a DTD transformation as a

type transformation t. The induced XML transformation in turn had to be regarded as a

function where source and target are related via t. In [MS99], it is pointed out that, indeed,

an important topic for future research are generic document transformations, and generic

functional programming (cf. [JJ97, Hin00]) is considered as a promising framework in this

respect. As yet, it is not clear how generic programming can be made fit to cope with the

kind of type and value transformations relevant in format evolution, especially if we think

of a complete coverage of XML.

61

Chapter 3 Format Evolution

62

Chapter 4

Semantics-preserving Migration of Semantic Rules
during Left Recursion Removal in Attribute
Grammars

Several tools for source-to-source transformation are based on top down
parsers. This restricts the user to use grammars without left recursion. Re-
moving left recursion of a given grammar often makes it unreadable, pre-
venting a user from concentrating on the original grammar. Additionally, the
question arises, whether the tool implements the semantics of the original lan-
guage, if it is implemented based on a different grammar than in the original
language definition. Moreover, existing implementations of semantics for the
original grammar cannot be reused directly.

The chapter contributes to the field of automatic migration of software (here
semantic rules) induced by a grammar change. It revises removal of left re-
cursion in the context of grammar adaptations and demonstrates that while
removing left recursion at the same time the semantic rules can be migrated
automatically. Thus, a programmer can continue to use semantic rules on a
left recursive grammar. The problem is explained and justified.

4.1 Introduction

In the chapter we consider the consequences of left recursion removal to semantics asso-

ciated with grammar rules. Our starting point is the need for grammar engineering after

semantic rules have been written for the grammar already. We will demonstrate that dur-

ing automatic left recursion removal in attribute grammars semantic rules can be migrated

automatically.

Grammar engineering. Work with grammars is present in software development as

well as in maintenance. Grammars are used to describe structure of data, to derive tools for

manipulating those data, or to serve as reference between developers, e.g., a language def-

inition. As other software artefacts, grammars are subject to change, e.g., adaptations

to make it usable for parser generation, evolution of grammars (grammar corrections,

changes and extensions of the language), grammar recovery from existing tools or doc-

uments, and refactoring of grammars (to make them more readable, parts better reusable,

e.g., for tools adaptable to several language dialects).

63

Chapter 4 Semantics-preserving Migration of Semantic Rules

Need for left recursion removal. Removal of left recursion in grammars is an adap-

tation of the grammar to fit technical demands. Many syntactical structures are expressed

naturally using recursion, often both, left and right recursion. However, there are tools

like ANTLR, JavaCC, TXL, Prolog-based tools, dealing somehow with recursive descent

parser generation, for the ease of combination with semantics [RM85], which would fall

into infinite recursion or would require backtracking. Removal of left recursion is known

in compiler construction for over 40 years, and mostly considered wrt. to context-free

grammars or to development of compilers. However, necessity of left recursion removal

arises not only in compiler construction, but also during language development, prototyp-

ing, and in software maintenance, especially for adaptations in already used and tested

grammars.

Technical challenge. The first problem is that removal of left recursion leads to a

badly readable grammar. More elaborated semantic rules are necessary. However, the

user wants to work on the most comprehensible grammar, or even the reference grammar,

if possible. Often the grammar is rewritten using EBNF, where left recursion turns into

iteration, which might result in a problem with semantics in loops. Next, a language

definition consists of syntax and semantics definitions. If the syntax is modified due to

technical demands, this leads to changed semantics. Is the meaning of a language construct

unchanged? Finally, if there are semantic rules for the left recursive grammar already (e.g.,

given as logic language), how are they affected by the change? Can they be reused or have

all to be discarded?

Results and benefits. We argue the semantic meaning associated to grammar sym-

bols of the original grammar can be still reconstructed after automatic left recursion re-

moval. This will be justified for S-attributed and I-attributed grammars. We will discuss,

how the approach can be generalised for multi-pass attribute grammars. Programmers ben-

efit from our approach, because they can now work on a grammar similar to the reference

grammar, i.e., one possibly containing left recursion. The adaptation of the grammar and

the semantic rules can be done automatically and can be implemented as a preprocessor as

shown in Figure 4.1. The approach can be combined with the above mentioned tools (e.g.,

ANTLR, Prolog-based tools).

Remainder of the chapter. Section 4.2 recalls the notions of attribute grammars.

Section 4.3 uses the small example of arithmetic expressions to explain the basic idea. The

transformation of semantic rules and a justification is giveen in in Section 4.4. Section 4.5

reports on practical experience so far. Section 4.6 points to some related work, before the

chapter is summarised in Section 4.7.

4.2 Notions of Attribute Grammars

This section recalls the definition of attribute grammars (AG). The following formal defini-

tion is similar to [Alb91]. Semantic conditions, which can restrict the language generated

64

4.2 Notions of Attribute Grammars

context−free

transformed
source

grammar
without

left recursion

migrated

grammar
Adaptation

Migration

PreprocessorAG AG’

semantic rules
semantic rules

source

Figure 4.1 An example use of the approach

by the context-free grammar are omitted without loss of generality of our approach. The

semantics is as given in [Alb91]. For the origin of attribute grammars the reader is referred

to Irons [Iro61] and Knuth [Knu68].

An attribute grammar without semantic conditions is a four-tupleAG = (G, SD, AD, R),
where

1. G = (VN , VT , P, S) is the base context-free grammar. VN and VT are sets of non-

terminals and terminals, V = VN ∪ VT and VN ∩ VT = ∅. P is a finite set of

production rules, S ∈ VN denotes the start symbol, p ∈ P will be written as

p : Xp
0 → Xp

1 . . . Xp
np
, where np ≥ 0, Xp

0 ∈ VN and Xp
k ∈ V for 1 ≤ k ≤ np.

2. SD = (TY PES, FUNCS) denotes the semantic domain. TY PES is a finite set

and FUNCS a finite set of total functions with type1× . . .× typen → type0, n ≥ 0
and typei ∈ TY PES (0 ≤ i ≤ n).

3. AD = (AI , AS, TY PE) denotes the attributes. Each symbol X ∈ V gets finite

sets of synthesised and inherited attributes associated, AI(X) and AS(X). A(X) =
AI(X) ∪ AS(X) and AI(X) ∩ AS(X) = ∅, and A = ∪X∈V A(X) (for AI and AS

analogously). An attribute a of some symbol X can be written X.a, if necessary

for distinguishing. For a ∈ A TY PE(a) ∈ TY PES is the set of values of a
(TY PE = ∪a∈ATY PE(a)).

65

Chapter 4 Semantics-preserving Migration of Semantic Rules

4. R = ∪p∈P R(p) denotes the finite set of semantic rules associated with a production

p ∈ P . The production p : Xp
0 → Xp

1 . . . Xp
np

has an attribute occurrence Xp
k .a,

if a ∈ A(Xp
k). The set of all attribute occurrences of a production p is written as

AO(p). It can be divided into two disjoint subsets of defined occurrences DO(P)
and used occurrences UO(p), which are defined as follows:

DO(p) = {Xp
0 .s | s ∈ AS(Xp

0)} ∪ {Xp
k .i | i ∈ AI(X

p
k) ∧ 1 ≤ k ≤ np},

UO(p) = {Xp
0 .i | i ∈ AI(X

p
0)} ∪ {Xp

k .s | s ∈ AS(Xp
k) ∧ 1 ≤ k ≤ np}.

The semantic rules of R(p) define, how values of attribute occurrences in DO(p)
can be computed as function of other attribute occurrences of AO(p). The defining

rule for attribute occurrence Xp
k .a is of the form

Xp
k .a := fp

ka(X
p
k1

.a1, . . . , X
p
km

.am)

where Xp
k .a ∈ DO(p), fp

ka : TY PE(a1)× . . .× TY PE(am) → TY PE(a), fp
ka ∈

FUNCS and Xp
ki
∈ AO(p) for 1 ≤ i ≤ m. The occurrence of Xp

k .a depends on

Xp
ki

.ai (1 ≤ i ≤ m). An AG is in normal form, if for each semantic rule additionally

holds: Xp
ki

.ai ∈ UO(p). Each AG can be transformed into normal form. Without

loss of generality, we assume our grammar to be in normal form.

There are several subclasses of AG, among those S-attributed grammars (S-AG) and

I-attributed grammars (I-AG). For S-AG is AI = ∅ and the computation is done bottom

up, i.g. the attributes of the root node contain the determined meaning of the program.

Analogously, for I-AG is AS = ∅, and the computation is top-down. The meaning is in the

leaves.

4.3 Left Recursion Removal in an Example AG

We demonstrate the basic idea using the common simple example for left recursive defi-

nition of arithmetic expressions. The context-free part of the grammar implements priority

of arithmetic operators. Figure 4.2 gives the general algorithm for left recursion removal

for context-free grammars (cf., e.g., [Lou97]). This algorithm has to be extended to deal

with semantic rules, so that, in our example, expressions are calculated correctly. The left

recursive attributed grammar for expressions is given in on the left side of Figure 4.3. The

right side shows the context-free grammar with left recursion removed. It is not obvious at

a first glance how the semantic rules have to be modified to describe the same meaning. To

see how the semantic rules have to be modified, we examine the computation for the ex-

pression 1+2*3. Figure 4.4 depicts the constructed abstract syntax tree together with the

computation of the attributes, using the original (left) and transformed (right) grammar. As

can be seen on the tree from the transformed grammar, the original tree has been stretched.

The given evaluation for the transformed tree presents the basic idea: The computation of

synthesised attributes is redirected to inherited attributes (i) of newly introduced nontermi-

nals. From the leaves, the results are copied using synthesised attributes. The intermediate

66

4.3 Left Recursion Removal in an Example AG

Input: G = (VN , VT , P, S) without ε-productions and cycles;

without loss of generality let VN = {A1, . . . , AN}
Output: G′ = (V ′

N , VT , P ′, S) without left recursion

for i := 1 to N do
{Removal of indirect left recursion}

for j := 1 to i− 1 do
replace productions of pattern Ai → Ajβ
by Ai → α1β | . . . | αkβ,
where Aj → α1 | . . . | αk are the current productions of Aj

end for
{Removal of direct left recursion}

replace productions of pattern Ai → Aiα1 | . . . | Aiαn | β1 | . . . | βm

where no βk starts with Ai

by Ai → β1A
i′ | . . . | βmAi′ and Ai′ → α1A

i′ | . . . | αnAi′ | ε
where Ai′ is a new introduced nonterminal

end for

Figure 4.2 Left recursion removal for context-free grammars

E → TE′ { ? }
E0 → E1 + T { E0.v := E1.v + T.v } E′ → +TE′ { ? }

| E1 − T { E0.v := E1.v − T.v } | −TE′ { ? }
| T { E0.v := T.v } | ε { ? }

T0 → T1 ∗ F { T0.v := T1.v ∗ F.v } T → FT ′ { ? }
| T1/F { T0.v := T1.v/F.v } T ′ → ∗FT ′ { ? }
| F { T0.v := F.v } | /FT ′ { ? }

F → N { F.v := N.v } | ε { ? }
| (E) { F.v := E.v } F → N { ? }

| (E) { ? }

Figure 4.3 Simple expression definition (left) with left recursion removed (right)

67

Chapter 4 Semantics-preserving Migration of Semantic Rules

7E

E T

F

F F

T T *

+

1 2

3

E

E'T

F

F

TT'

*

+

2

3

1

E'

T'

F T'

ε

ε

ε

1

1

1 2

2 3

6

3 6

22

6

6

1 1 1

1 1

6 7 7

7

7

Figure 4.4 Attributed syntax tree for 1+2*3 (left) and without left recursion (right)

results thus are preserved and combined to the final value with different positions only.

The new semantic rules to achieve such behaviour are given in Figure 4.5.

E → TE′ { E′.i := T.v, E.v := E′.v }
E′

0 → +TE′
1 { E′

1.i := E′
0.i + T.v, E′

0.v := E′
1.v }

| −TE′
1 { E′

1.i := E′
0.i− T.v, E′

0.v := E′
1.v }

| ε { E′.v := E′.i }
T → FT ′ { T ′.i := F.v, T.v := T ′.v }
T ′

0 → ∗FT ′
1 { T ′

1.i := T ′
0.i ∗ F.v, T ′

0.v := T ′
1.v }

| /FT ′
1 { T ′

1.i := T ′
0.i/F.v, T ′

0.v := T ′
1.v }

| ε { T ′.v := T ′.i }
F → N { F.v := N.v }

| (E) { F.v := E.v }

Figure 4.5 Expression with removed left recursion and migrated semantic rules

4.4 Transformation Schemes for Left Recursion Removal in
Multi-pass Attribute Grammars

First, we will consider how the algorithm in Figure 4.2 has to be extended for S-AG and

discuss the preservation of the attribute values. Next, we do the same for I-AG, before we

combine both for a more general case.

4.4.1 S-attributed Grammars

S-attributed grammars are those, where all attribute values are computed from bottom up.

Typical examples for practical usage of S-AGs are YACC-specifications.

68

4.4 Transformation Schemes for Left Recursion Removal in Multi-pass Attribute Grammars

Transformation algorithm

The section gives the extension to algorithm in Figure 4.2 for left recursion removal for

S-attribute grammars. The approach to migrate semantic rules guarantees that the root of

the transformed syntax tree contains the same attribute values as the root in the original

tree. A justification will be given in the next section. For S-AG, the algorithm for left

ε

A1 α

*

*

(ii) (iii)

A0

A'1α

*

*

A'0

*

*

β

*A

β

*A

A' **

A' **

(iv) (v)

β

*Y

*X

α

β

*Y

α

*

(i)

*A

A' **

AG

AG'

Figure 4.6 Transformations of an S-attribute grammar, * representing inherited (on

left side) and synthesised (on right side) attributes of a nonterminal

recursion removal from Figure 4.2 will be extended as follows (cf. Figure 4.6). Suppose

A → Aα | β =⇒ A → βA′ and A′ → αA′ | ε:

1. for each nonterminal A′ newly introduced during transformation holds:

AS(A′) = AS(A)

AI(A
′) = {a′ | a ∈ AS(A)} with TY PE(a′) = TY PE(a) (4.1)

A′ gets all attributes of A, additionally an inherited attribute with the same type for

each synthesised attribute of A.

2. During transformation of production p : A0 → A1α to p′ : A′
0 → αA′

1 (the index

marks different occurrences of the same nonterminal)

R(p) = {A0.a := fa(X
p
1 .a1, . . . , X

p
na

.ana) | a ∈ AS(A)} =⇒
R(p′) = {A′

1.a
′ := fa(X

p′
1 .a1, . . . , X

p′
na

.ana) | a′ ∈ AI(A
′)} ∪

{A′
0.a := A′

1.a | a ∈ AS(A)} (4.2)

where Xp′
i .ai =

{
A′

0.a
′
i, if Xp

i = A1

Xp
i .ai, otherwise

The actual computation is redirected to the inherited attributes. For synthesised

attributes new copy rules are added.

69

Chapter 4 Semantics-preserving Migration of Semantic Rules

3. For translation of a production p : Ap → β to p′ : Ap′ → βA′

R(p) = {Ap.a := fa(X1.a1, . . . , Xna .ana) | a ∈ AS(A)} =⇒
R(p′) = {A′.a′ := fa(X1.a1, . . . , Xna .ana) | a′ ∈ AI(A)} ∪

{Ap′ .a := A′.a | a ∈ AS(A)} (4.3)

Similar, but without replacements of parameters for semantic rules.

4. Adding a new production p : A′ → ε requires

R(p) = {A′.a := A′.a′ | a ∈ AS(A′)}. (4.4)

Copy rules are added from each inherited attribute to the corresponding synthesised

attribute.

5. During transition of a production p : Y → Xβ to p′ : Y → αβ by deploying

q : X → α with

R(q) = {Xq.a := f q
a(. . .) | a ∈ AS(X)}

R(p) = {Y p.a := fp
a (Xp

1 .a1, . . . , X
p
na

.ana) | a ∈ AS(Y)} =⇒
R(p′) = {Y p′ .a := fp

a (Xp′
1 .a1, . . . , X

p′
na

.ana) | a ∈ AS(Y)}

where Xp′
i .ai =

{
f q

ai
(. . .), if Xp

i = X
Xp

i .ai, otherwise
(4.5)

Deploying the right hand side of a context-free rule the corresponding right hand

side of a semantic rule is deployed parallely. As a consequence, Y p′ .a is computed

by a nested function application, which is not in line with the form given in Sec-

tion 4.2. (The nested function application could be folded into semantic rules for the

appropriate attribute to remove it.)

To sum up, the algorithm describes the transformation AG
S�→ AG′ of an S-attributed

grammar AG = (G, SD, AD, R) into AG′ = (G′, SD, AD′, R′) with G
G�→ G′ according

to the general algorithm for left recursion removal, AD
S�→ AD′ (4.1), and R

S�→ R′ (4.2 -

4.5).

Preservation of computed attribute values

Proposition: For each transformation AG
S�→ AG′ following Section 4.4.1 holds: For

each word derivable from the context-free grammar of AG and AG’ all attribute occur-
rences in the root nodes of the corresponding syntax trees have the same values.

Moreover, intermediate results are preserved in case of direct left recursion removal,

though at different positions in the tree than in the original one.

In general, a left recursive rule is of the form

A → Aα1 | . . . | Aαn | β1 | . . . | βm. The choice of αi and βj does not matter for the

70

4.4 Transformation Schemes for Left Recursion Removal in Multi-pass Attribute Grammars

argumentation, hence we assume A → Aα | β (with α, β ∈ V ∗). It can be seen that each

such rule generates symbol sequences of the form βαn (cf. for example, [ASU86, Lou97]),

similarly to the corresponding transformed rules A → βA′ and A′ → αA′ | ε. Fig. 4.7

An

An-1

An-2

A1

A0

αn

αn-1

α1

β

A0
T

A'1

A'2

A'n-1

A'n

β

α1

αn-1

αn

...

ε

...

A'n+1

*

*

*

*

*

*

**

* *

* *

* *

* *

Figure 4.7 Syntax trees for the derivation of βαn

shows syntax trees for the derivation βαn. Occurrences of the same nonterminal in the

syntax tree are numbered top down from n to 0 in the original tree and from 0 to n + 1
in the transformed tree. The αi represent possibly different derivations from α (instead

of different alternatives of the rule). Note that in general αi and β can contain subtrees

created by application of left recursive rules. Thus, they would need to be transformed

into αT
i and βT .

We denote root nodes in the highest level of α (all roots of the forests) by Rα, Rα.a
denotes an attribute occurrence at one of these nodes. AT

0 denotes the nonterminal A at the

root of the derivation tree of the transformed production. We will show the demonstration

in two steps.

Step 1: We assume, the grammar G contains 1 left recursive nonterminal. We choose

the largest left recursive subtree without left recursive subtrees in β and α.

For the removal of direct left recursion we have to show that for the transformation

depicted in Fig. 4.7 holds

∀n ∈ N ∀a ∈ AS(A) : An.a = AT
0 .a (4.6)

We will use induction over depth of derivation trees n.

71

Chapter 4 Semantics-preserving Migration of Semantic Rules

Base case (n = 0):

A0.a = f(Rβ.a1, . . . , Rβ.ana) cf. Def.
A′

1.a
′ = f(Rβ.a1, . . . , Rβ.ana) cf. (4.3)

A0.a = A′
1.a

′ ∀a ∈ AS(A)
A′

1.a = A′
1.a

′ cf. (4.4)
AT

0 .a = A′
1.a

′ cf. (4.3)
↪→ A0.a = AT

0 .a ∀a ∈ AS(A)

Induction assumption: ∀a ∈ AS(An) : An.a = A′
n+1.a

′ = A′
n+1.a = AT

0

Induction step (n �→ n + 1, n ≤ 0):

An+1.a = f(An.a1, . . . , An.ana , Rαn+1 .b1, . . . , Rαn+1 .bm) cf. Def.
A′

n+2.a
′ = f(A′

n+1.a
′
1, . . . , A

′
n+1.a

′
na

, Rαn+1 .b1, . . . , Rαn+1 .bm) cf. (4.2)
An.aj = A′

n+1.a
′
j ∀j ∈ {1, . . . , na} ind.assp.

An+1.a = A′
n+2.a

′ ∀a ∈ AS(A)
A′

n+2.a = A′
n+2.a

′ cf. (4.4)
A′

n+1.a = A′
n+2.a cf. (4.3)

AT
0 .a = A′

n+1.a ind.assmpt.
↪→ An+1.a = AT

0 .a ∀a ∈ AS(A)

From (4.5) we can conclude that attribute values in the root do not change by deployment

of the right hand side of a rule while removing indirect left recursion.

Step 2: No precondition. Due to proof of step 1 it is not necessary to consider left

recursion in αi or β, because the attribute values of αi and β are equal to the attribute

values in the transformed tree.

Hence, the proposition holds.

4.4.2 Transformation for IAG

In I-AGs only inherited attributes are used. They can be treated nearly analogously. The

inherited attributes of the root node are copied down in the syntax tree to the node for

the ε- derivation, where it is copied to a newly introduced synthesised attribute. Using

the synthesised attribute, the inherited attributes of the corresponding αi are computed.

I.e., the computation is redirected to synthesised attributes. Similarly, the computation of

the synthesised attribute of the next higher node is also based on the actual synthesised

attribute.

Transformation algorithm

In detail, the algorithm from Figure 4.2 is extended for IAG as follows (cf. Figure 4.8):

1. for each nonterminal A′ newly introduced during transformation holds:

AI(A
′) = AI(A)

AS(A′) = {a′ | a ∈ AI(A)} with TY PE(a′) = TY PE(a) (4.7)

72

4.4 Transformation Schemes for Left Recursion Removal in Multi-pass Attribute Grammars

α A’
1

* *

A’
0**

* 0

α*
1

A

A

β

A*

A’*

* A

β

* A’*

ε α

* Y

β*

A*

A’

AG

AG’

* X

Y*

β

α

(i) (ii) (iii) (iv) (v)

Figure 4.8 Transformations of an I-attribute grammar, * representing inherited (on left

side) and synthesised (on right side) attributes of a nonterminal

A′ gets all attributes of A, additionally an synthesised attribute with the same type

for each inherited attribute.

2. During transformation of production p : A0 → A1α to p′ : A′
0 → αA′

1

R(p) = {Xp.a := fa(A0.a1, . . . , A0.ana) | Xp.a ∈ DO(p)} =⇒
R(p′) = {Xp′ .a := fa(A

′
1.a

′
1, . . . , A

′
1.a

′
na

) | Xp.a ∈ DO(p)} ∪
{A′

1.a := A′
0.a | a ∈ AI(A

′)} (4.8)

where Xp′ .a =

{
A′

0.a
′, if Xp = A1

Xp.a, otherwise

The actual computation is redirected to the synthesised attributes. Inherited at-

tributes are used for value propagation for already computed values only.

3. For translation of a production p : Ap → β to p′ : Ap′ → βA′

R(p) = {Xp.a := fa(A
p.a1, . . . , A

p.ana) | Xp.a ∈ DO(p)} =⇒
R(p′) = {Xp′ .a := fa(A

′.a′
1, . . . , A

′.a′
na

) | Xp.a ∈ DO(p)} ∪
{A′.a := Ap′ .a | a ∈ AI(A

′)} (4.9)

Replace all attribute occurrences A.a by A′.a′. For all inherited attributes a of A add

a copy rule from A.a to A′.a.

4. While adding p : A′ → ε, also add

R(p) = {A′.a′ := A′.a | a′ ∈ AS(A′)}. (4.10)

Copy rules are added for each inherited attribute to the corresponding synthesised

attribute.

73

Chapter 4 Semantics-preserving Migration of Semantic Rules

5. During transition of a production p : Y → Xβ to p′ : Y → αβ by deploying

q : X → α with

R(q) = {Aq.a := f q
a(Xq.a1, . . . , X

q.ana) | Aq.a ∈ DO(q)} and

R(p) = {Xp.a := fp
Xa(. . .) | a ∈ AI(X)} ∪

{Bp.a := fp
Ba(. . .) | Bp.a ∈ DO(p)\{Xp.a | a ∈ AI(X)}}

=⇒
R(p′) = {Ap′ .a := f q

a(fp
Xa1

(. . .), . . . , fp
Xana

(. . .)) | Aq.a ∈ DO(q)} ∪
{Bp′ .a := fp

Ba(. . .) | Bp.a ∈ DO(p)\{Xp.a | a ∈ AI(X)}} (4.11)

In semantic rules of q replace attribute occurrences of X.a by their computation in

p and add them, while removing the rules to compute attributes of X . (Again, the

nested function application could be folded into semantic rules for the appropriate

attribute to remove it.)

To sum up, the algorithm describes the transformation AG
I�→ AG′ of an I-attributed

grammar AG = (G, SD, AD, R) into AG′ = (G′, SD, AD′, R′) with G
G�→ G′ according

to the general algorithm for left recursion removal, AD
I�→ AD′ (4.1), and R

I�→ R′ (4.8 -

4.11).

Preservation of attribute values

Proposition: For each transformation AG
I�→ AG′ following Section 4.4.2 holds: For

each word derivable from the context-free grammar of AG and AG’ all attribute occur-
rences in the leaves of the corresponding syntax trees have the same values.

Moreover, intermediate results are preserved in case of direct left recursion removal,

though at different positions in the tree than in the original one.

The proof is similar to that of Section 4.4.1. The preservation of attribute values has to

be shown by induction over derivation trees. There is a difference, however. The inherited

attributes are copied down to the An+1, where the same ε-production is combined with

the copy of values to the synthesised attribute. Now, the synthesised attributes of αi are

computed as well as those of the next higher nonterminal. In contrast to the proof of

Sect. 4.4.1 the values of the synthesised attributes are not equal on the way up to the root.

4.4.3 Multi-pass Attribute Grammars

In simple multi-pass AGs, each attribute can be computed during a certain pass. We can

suppose that each pass is defined by an S-AG or an I-AG. Therefore, the approach can be

generalised to simple multi-pass AGs. Because a multi-pass AG can be transformed into

an equivalent simple multi-pass AG such AGs can be treated, too.

The extensions of the base algorithm from Sections 4.4.1 and 4.4.2 can now be combined

to yield a more general algorithm for multiple-visited attribute grammars. The complete

version is extensive and therefore given in the Appendix A.1.

74

4.5 Practical Experiences

e(V) :- e(E), @"+", t(T), V is E+T.
e(V) :- e(E), @"-", t(T), V is E-T.
e(V) :- t(T), V is T.

t(V) :- t(T), @"*", f(F), V is T*F.
t(V) :- t(T), @"/", f(F), V is T/F.
t(V) :- f(F), V is F.

f(V) :- num(N), V is N.
f(V) :- @"(", e(E), @")", V is E.

TXL v10.3 (8.3.03) (c)1988-2003 Queen’s University
Compiling ag.Txl ...
Parsing samples/exp.ag ...
Transforming ...
e1(V,V3) :- @"+", t(T), e1(V,E2), E2 is V3+T.
e1(V,V4) :- @"-", t(T), e1(V,E3), E3 is V4-T.
e(V) :- t(T), e1(V,V2), V2 is T.
t1(V,V7) :- @"*", f(F), t1(V,T2), T2 is V7*F.
t1(V,V8) :- @"/", f(F), t1(V,T3), T3 is V8/F.
t(V) :- f(F), t1(V,V6), V6 is F.
f(V) :- num(N), V is N.
f(V) :- @"(", e(E), @")", V is E.
e1(V,V).
t1(V,V).

Figure 4.9 Input (left) and output (right) of the prototype

To sum up, the algorithm describes the transformation AG
A�→ AG′ of a

arbitrarily attributed grammar AG = (G, SD, AD,R) to an attributed grammar

AG′ = (G′, SD, AD′, R′) with G
G�→ G′, AD

A�→ AD′ according to (A.1) and R
A�→ R′

(A.2) to (A.5).

4.5 Practical Experiences

Prototypes. The given approach has been implemented as proof-of-concept prototype

for multi-pass attribute grammar, i.e., it demonstrates the algorithm for simple examples,

but is not ready for practical applications. For the implementation TXL [CDMS02] was

chosen. For the experiments, we used grammars as used by Laptob [LR01]. Grammars are

represented as logic rules in Prolog. Predicates represent nonterminals, @ interprets strings

as terminals, and variables are attributes addressed by position. In Figure 4.9 the input

(left) and output (right) for the prototype is given. The prototype has been reimplemented

in Prolog for a smoother integration with Laptob. 1

A larger scenario. We started to apply the approach to a 15 years evolutionary grown

YACC specification2 describing LPC, a language for interpreted scripts in a multi-user en-

vironment3. The grammar currently possesses 99 rules with 310 alternatives altogether,

and it is likely to change in future. We have no influence on grammar and code as this is

part of a kernel distribution for 100s of such environments. Since than five years, complex

modernisations of the class library are being done. As a consequence, there are 1000s of

changes in the area code. Tool support is desirable, where each necessary change is spec-

ified with semantic rules according to the known grammar. For several reasons, an LL(k)

grammar based tool was chosen. Figure 5.1 shows an extract from the context-free gram-

mar of the definition for the expression. Even without left recursion removal, real grown

grammar rules are difficult to read. The grammar rules can be automatically extracted

1We refer to Appendix A.2 for a description of a more AG-like Prolog-notation and the Knuthian example.
2http://www.ldmud.de
3http://www.evermore.org

75

Chapter 4 Semantics-preserving Migration of Semantic Rules

expr0 : (some of 34 alternatives)
lvalue L_ASSIGN expr0 %prec L_ASSIGN
| expr0 ’?’ expr0 ’:’ expr0 %prec ’?’
| expr0 L_LOR %prec L_LOR expr0
| expr0 ’|’ expr0 | decl_cast expr0 %prec ’~’ | cast expr0 %prec ’~’
| pre_inc_dec expr4 index_expr %prec ’[’
| pre_inc_dec expr4 ’[’ expr0 ’,’ expr0 ’]’ %prec ’[’
| L_NOT expr0 | ’-’ expr0 %prec ’~’
| expr4
...

expr4 : (some of 29 alternatives)
| inline_func | catch | L_CLOSURE | L_SYMBOL | L_FLOAT
| ’(’ note_start comma_expr ’)’ | ’(’ ’{’ note_start expr_list ’}’ ’)’
| L_QUOTED_AGGREGATE note_start expr_list ’}’ ’)’
| ’(’ ’[’ ’:’ expr0 ’]’ ’)’ | ’(’ ’[’ m_expr_list ’]’ ’)’ | ’(’ ’<’ ’>’ ’)’
| ’(’ ’<’ identifier ’>’ note_start opt_struct_init ’)’
| expr4 L_ARROW struct_member_name | ’&’ ’(’ expr4 L_ARROW struct_member_name ’)’
| expr4 index_range
| ’&’ L_LOCAL | ’&’ ’(’ expr4 index_expr ’)’
| ’&’ ’(’ expr4 ’[’ expr0 ’,’ expr0 ’]’ ’)’
| ’&’ ’(’ expr4 index_range ’)’
| expr4 index_expr
| expr4 ’[’ expr0 ’,’ expr0 ’]’ | L_LOCAL
...

Figure 4.10 Context-free extract from a yacc specification for expression definition

from the YACC specification and converted in the grammar notation used for the tool. The

context-free part of the grammar is then reused to specify source-to-source transformations

by giving appropriate semantic rules. The above approach can then be used to transform

the transformation into a form suitable for the used tool, as is demonstrated in Figure 4.11.

Several technical problems have still to be solved. For example, ε-productions violate the

conditions to apply the algorithm for left recursion removal.

4.6 Related Work

There are several approaches to left recursion removal, all of them dealing with the context-

free grammar only, without caring for attributes. The general algorithm for left recursion

removal is given in many compiler books, as representative see Louden [Lou97]. He also

demonstrates, how left recursion can be avoided using EBNF-notation, and an implemen-

tation using iteration is given. Rechenberg/Mössenböck [RM85] use a translation of the

grammar to syntax graphs, from which they construct parsers. Left recursion is handled

by transforming it into iteration, while preserving the accepted language.

We mentioned the use of top-down tools for their ease of use. Pepper [Pep99] unifies the

paradigms for LR(k)- and LL(k)-parsing expressed by the formula LR(k) = 3NF + LL(k).

The main aim is an easy comprehensible derivation method, easy to adapt, providing the

power of LR parsing while providing efficiency known from LALR parsing. Grammars

are enriched with null nonterminals, which do not change the language but may carry

semantic actions or can act as assertions that guide reductions. Semantic rules are not

76

4.6 Related Work

LPC interpreter

YACC

source
LPC

Laptop
derived

AG

operational

AG

left recursion

removal in AG

source
maintained

AG

original

refactoring
renaming,

Figure 4.11 Reuse of the original grammar for small maintenance transformations

considered during the grammar transformation process. Schmeiser/Barnard [SB95] mod-

ify the standard table driven algorithm for bottom-up parsing to offer the programmer a

top-down parse order while using a bottom-up parser. Besides states additionally rule lists

are stored on the stack. When a rule is reduced, the rule lists are concatenated in suitable

order.

We discussed that grammars are not only changed to implement compilers. The need

of an engineering discipline for grammarware is emphasised in [KLV05a]. In [LV01b]

the authors propose an approach to the construction of grammars for existing languages.

The main characteristic of the approach is that the grammars are not constructed from

scratch but they are rather recovered by extracting them from language references, com-

pilers, and other artefacts. They provide a structured process to recover grammars in-

cluding the automated transformation of raw extracted grammars and the derivation of

parsers. Examples for tool support for grammar engineering are Grammar Deployment

Kit (GDK) [KLV02] and Framework for SDF Transformation (FST) [LW01]. GDK pro-

vides support in the process to turn a grammar specification into a working parser. FST

supports the adaptation of grammars based on the syntax definition formalism SDF, where,

for example, EBNF patterns are removed (YACCification) or introduced (deYACCifica-

tion). Transformations by Cordy et al. to enable agile parsing based on problem-specific

grammars [DCMS02, DCMS03] are examples for grammar engineering as well as the

transformations for deriving an abstract from a concrete syntax by Wile [Wil97].

Theoretical work on general grammar adaptations can be found in [Läm01]. A set

of operators is defined together with properties. The operators can be used to describe

grammar adaptations.

Lämmel et al. [Läm04b, LR99, Läm99b] also work on grammar evolution. For exam-

ple, a general framework for meta-programming is developed in [Läm99b] together with

an operator suite, where its operators model schemata of program transformation, syn-

77

Chapter 4 Semantics-preserving Migration of Semantic Rules

thesis and composition. Examples are fold and unfold operations defined on skeletons of

declarative programs, i.e., attribute grammars, logic programs. Parameters are analysed

and propagated through folded elements.

There is also a relation to refactoring [FBB+99, OJ90], which can be applied to gram-

mars and transformation rules. Indeed, left recursion removal could be considered as a

composite refactoring for grammars.

Related to this chapter is the next Chapter 5 on automatic migration of transformation

rules after a grammar extension has been made (publication [LR03b]). There, we show

how we make rewrite rules able to store layout information in the rewrite pattern. On the

level for the rewriter that information is invisible. Hence, the approach helps to reduce

complexity of rewrite patterns for users.

4.7 Concluding Remarks

Summary. The chapter contributes to the work on grammar adaptations and concen-

trates on semantics rules associated to grammar productions. The approach attempts to

reuse existing semantic rules for the new grammar. Moreover, it offers the programmer of

a program transformation the opportunity to specify semantic rules on a grammar closer to

a grammar specification, while grammar and semantic rules can be adapted to meet tech-

nical demands, here left recursion removal. Hence, we provide the rewriter with a simpler

grammar than necessary for the tool. The necessary transformation steps for the grammar

are given, as well as a justification of the approach.

A disadvantage of the approach is the doubling of attribute numbers and the introduction

of additional copy rules. Though the added complexity is hidden, the problem might be the

time overhead it adds to the process of tool construction. Semantic rules using the original

grammar have to be adapted each time a tool is built from rules and grammar. In the case

of interpretative used environments, e.g., in a Prolog setting, this may become annoying

for larger grammars.

Future work. We are going to make the approach real life usable, the current state is

still a weak prototype. There is still the problem of ε-productions. The algorithm could

benefit from improvement by the use of lazy evaluation strategies. The approach would

then only be implemented with S-AG, all other variants are automatically supported. It is

also possible to construct terms instead of applying operations, then interpret the term in

the root attributes.

In future we will look for further grammar adaptations necessary during maintenance

and investigate, if and how it is possible to derive changes for both, the software the gram-

mar uses and for the semantic rules associated with the grammar. We will examine, how

we can connect such combined grammar/ transformation rule adaptations to more complex

operations.

78

Chapter 5

Towards Automatical Migration of Transformation
Rules after Grammar Extension

The chapter addresses two problems in software maintenance. First, some
maintenance tasks require modifications of a grammar. A change in a gram-
mar can make abstract syntax and transformation rules outdated, which then
themselves become subject to a maintenance process. Second, it is essential
that after a repair programs look as much as possible as they looked before.
Especially comments and principle readability by humans are indispensable
for further maintenance. Term manipulation systems based on abstract syntax
can be used for repair, but they often lack the facility of layout preservation.

We argue that necessary changes of both abstract syntax and transformation
rules due to grammar extension can be made automatically. Thus, most of
the original rules can be reused. The approach can be used to define and use
simplified views on complex patterns to be analysed with transformation rules.

As a case study, we apply the described technique to extend rule-based pro-
gram transformations with the facility of partial layout preservation. The mi-
gration relation is given. The programmer uses common rewriting techniques
for program transformation without taking care of layout, which then is auto-
matically included.

5.1 Introduction and Running Example

Software maintenance is concerned with repair and adaptation of software to new require-

ments. Repair includes the removal of errors, the change of data structures, refactor-

ing [Opd92, FBB+99] to enable extensions to the program, or an optimisation, where, for

example, a constant assignment is taken out of a loop. The latter one will be our running

example, shown in Figure 5.1.

Modifications made during maintenance should be minimal, only the parts that need

repair should be modified. Comments and existing layout should be preserved [Van01,

Jon02]. Currently, changes are done in a mixture of manual and automatic procedures. A

starting point for tool support is the grammar, from which parsers are generated. For our

example, a grammar fragment is given in Figure 5.2.

79

Chapter 5 Migration of Transformation Rules after Grammar Extension

Before optimisation

if E(i,x) then
while E2(n,x) do

i := f(m,x);
if E(n,m) then
something;

endif
n := n - i;

od -- some comment
endif

After optimisation

if E(i,x) then
i := f(m,x);
while E2(n,x) do

if E(n,m) then
something;

endif
n := n - i;

od -- some comment
endif

Figure 5.1 Loop optimisation

stmts : stmt stmts {stmts}
| {empty} .

stmt : "if" exp "then" stmts "endif" {if}
| "while" exp "do" stmts "od" {while}
| id ":=" exp ";" {assign}
| "something" ";" {something} .

exp : ...
| id "(" args ")" {funcall} .

Figure 5.2 A grammar fragment

Automatic changes require scanning and parsing of the source to yield an internal rep-

resentation. Then a repair is done applying transformation rules to the internal represen-

tation. Finally, the resulting program is written out unparsing the transformed internal

representation.

As many maintenance tasks can best be specified by rewrite rules [LdM01], we will con-

centrate on terms as internal representation. E.g., assign(id(I),nat(N)) represents

an assignment of a natural number to an identifier. See Figure 5.3 and 5.4 for Prolog rules,

which describe the transformation of the program given in Figure 5.1. For simplicity, we

only care of the first assignment in a while-body.

5.1.1 Two Problems with Maintenance Tools

Layout is missing in abstract syntax. Term manipulation systems based on ab-

stract syntax often lack the facility of layout preservation. The problem is nontrivial and

if layout information would be incorporated into abstract syntax trees the transformation

rules would be soiled with unnecessary information (from the point of the rewriter), and

needlessly unreadable. The use of a pretty printer after a transformation is not sufficient

as much information gets lost.

80

5.1 Introduction and Running Example

loop_op(stmts(if(EXP, Ss), Ss2), stmts(if(EXP, NewSs), N2)) :-
loop_op(Ss, NewSs), loop_op(Ss2, N2).

loop_op(stmts(while(EXP, stmts(assign(ID, EXP2), Ss)), Ss2),
stmts(assign(ID, EXP2),

stmts(while(EXP, NewSs), N2))) :-
changes(ID, Ss, 0),
loop_op(Ss, NewSs), loop_op(Ss2, N2).

loop_op(stmts(while(EXP, stmts(assign(ID, EXP2), Ss)), Ss2),
stmts(while(EXP, stmts(assign(ID, EXP2), NewSs)), N2)) :-

loop_op(Ss, NewSs), loop_op(Ss2, N2).
loop_op(stmts(something, Ss), stmts(something, NewSs)) :-

loop_op(Ss, NewSs).
loop_op(stmts(assign(ID, EXP)),stmts(assign(ID, EXP))).
loop_op(empty, empty).

Figure 5.3 Rules to extract the assignment of a loop invariant variable

changes(ID, empty, 0).
changes(ID, stmts(assign(ID, EXP), Ss), Cs) :-

changes(ID, Ss, Cs1),
Cs is Cs1 + 1.

changes(ID, stmts(while(EXP, Ss), Cs)) :-
changes(ID, Ss, Cs).

changes(ID, stmts(if(EXP, Ss), Ss2), Cs) :-
changes(ID, Ss, Cs1),
changes(ID, Ss2, Cs2),
Cs is Cs1 + Cs2.

Figure 5.4 Counting assignments of a variable

Maintenance tools have a maintenance problem, too. Some maintenance tasks

involve a change of the grammar. Consider, for example, the task to adapt software to a dif-

ferent version of the programming language. Grammar constructs might become obsolete,

others are to be introduced, e.g., the tagged record in Ada95. An approved tool might be

applied to different dialects of the same language (e.g., Cobol with 300 dialects [LV01a]),

or, a grammar for island parsing [Moo02, Moo01] is to be extended to support a new type

of island. As a result, a new parser has to be constructed and, more importantly, the inter-

nal representation changes. Transformation rules will usually not work on the new terms

without change. Traversals may break and may have to be adapted, if they are still needed.

For example, Ada95 was designed such that Ada83 became a sub-language. Old programs

could be recompiled and reused. The reuse of approved transformation rules over those

programs would now be desirable.

81

Chapter 5 Migration of Transformation Rules after Grammar Extension

5.1.2 Aim and Result

stmt : lay "if" exp lay

"then" stmts lay "endif" {if}

| ...

lay : white_space_or_comment+ {lay}

| {nolay}.

Figure 5.5 Extension by explicit layout

In the chapter we investigate how the change of the grammar induces changes of such

rules. We show how rules can be migrated to work with a new internal representation

automatically. This way, the old rules can be reused on programs according to the new

grammar to some extent even if the program now contains constructs from the grammar

extension. Especially, rules encoding an analysis can be reused to work on program parts,

which are now embedded into the new grammar. For some rules this does not make sense,

others might need to be extended. We concentrate on the general migration of rules from

the syntactic point of view.

To demonstrate the usefulness, we apply automatic transformation rule migration to

enable (partial) layout preservation without burdening the rewriter with more complicated

rules. The grammar is extended by explicit layout nonterminals (see Figure 5.5). All

existing rules can be reused without change from the rewriter’s point of view. For an

loop_op(stmts(if(LAY_1, EXP, LAY_3, Ss ,LAY_5), Ss2),

stmts(if(LAY_1, EXP, LAY_3, NewSs ,LAY_5),N2)) :-
loop_op(Ss, NewSs), loop_op(Ss2, N2).

changes(ID, stmts(if(LAY_1, EXP, LAY_3, Ss ,LAY_5),Ss2), Cs) :-
changes(ID, Ss, Cs1),
changes(ID, Ss2, Cs2),
Cs is Cs1 + Cs2.

Figure 5.6 Migrated rules for layout extension

example of automatically adapted rules, see Figure 5.6. The result will be discussed in

more detail in Section 5.4.4.

82

5.2 Layout in Software Maintenance

5.1.3 Remainder of the Chapter

The rest of the chapter is structured as follows. In the next section, the need for layout in

maintenance is discussed and motivated. Section 5.3 examines grammar extension and its

effects on rules by the example of layout introduction. A generalised use of the approach

is discussed. Section 5.4 describes the generation of internal presentation, the extension

of the grammar, and discusses the induced migration of transformation rules. We give a

relation which describes the migration including a heuristics to preserve layout to some

extent. Section 5.5 points to some related work and evaluates the results. Finally, some

concluding remarks are given in Section 5.6.

5.2 Layout in Software Maintenance

This section motivates the need for layout preservation for abstract syntax.

5.2.1 The Need for Layout Preservation

Manual maintenance is still indispensable. Not all changes can be performed automati-

cally. Furthermore, it might be too costly to construct a tool for the removal of few errors.

Manual adaptation of software requires readability of the sources. Readability of sources

includes a certain layout of the program and comments. To support the understandability

of programs is an important function of layout [Jon02]. Hence, blank lines, line breaks,

and other instruments used by the programmer for structuring source code should be pre-

served as much as possible [Van01, Jon02].

Some repair can and needs to be done automatically for efficiency reasons. For exam-

ple, we participated the class library renovation of a multi-user software. About 13900

files are based on the class library, which contains about 15000 methods. Changes in the

library led to necessary adaptation of the source using it. One typical task was to migrate

4313 appearances of calls of a global function environment(arg) (arg is an optional

expression) to a method call (object)arg->environment() in 1329 files. Simply

loading each file into an editor alone would have taken 5:32 hours if we assume 15 seconds

to browse for a file (containing a use of the global function) in the file hierarchy and open

it. Manual adaptation was unacceptable in this case. The description of such a transforma-

tion was easy and the transformation of all appearances of the functions was done within

minutes.

As mentioned above, tools transform source code into a suitable internal form. How-

ever, classic techniques in compiler construction skip whitespaces and comments as this

information is not necessary for translation for most languages. It is then missing when the

repaired program has to be written out. The matter is that layout information is usually not

even contained in the grammar specification input for the parser generator. See Figure 5.7

for an output of our transformation tool without layout preservation support.

Pretty printers are tools to create a certain layout, and thus they improve readability.

However, line breaks are not where programmers have inserted them (pretty printers usu-

ally insert line breaks at defined points in the program text), and lost comments mean lost

83

Chapter 5 Migration of Transformation Rules after Grammar Extension

if E (i , x) then i := f (m , x) ; while E2 (n , x) do if E (n
, m) then something ; endif n := n - i; od endif

Figure 5.7 Result without layout preservation

information. Hence, transformations that will keep as much information on layout and

comments are highly needed for software maintenance tasks. There are three locations

where the layout has to be preserved in a transformation: around the program part to be

changed, the part itself, and its substructures (e.g., a statement part while transforming the

condition part of an if -statement).

5.2.2 Layout in Abstract Syntax

Program transformation systems can work on concrete or on abstract syntax. However,

sometimes rewriting with concrete syntax is confusing if some syntactical entities can

stand for both, the term to be rewritten, and for a variable containing it. For example,

’class’ in a rule could be a variable at rewrite level, bound to a class definition, as well

as beeing the keyword class as part of the concrete syntax term. A solution is quot-

ing [Vis02], which again makes it difficult to read. Moreover, already existing rewriting

systems and languages used for rewriting often use abstract syntax. Thus, it makes sense

to support the layout preservation for abstract syntax, too.

Usually, abstract syntax does not contain layout information as the rewriter would be

distracted by much information that is of no use in the rewrite process.

Our aim is to contribute to program transformation with layout in the field of rule-

based program transformation on abstract syntax without burdening the programmer with

complicated rules. Moreover, we want to reuse existing specifications without changes.

5.3 Introducing Layout Preservation to Existing
Transformation Systems

The basic idea to allow (partial) layout preservation is to extend a grammar G to include

layout (GL). (This idea also appears in [Wag98, vdBSV98, SV00, Wes01].) By solving

the problem of transformation rule migration the problem of layout preservation can be

eased.

5.3.1 Grammar Extension and Transformation Rules

The first step is to extend the grammar by adding nonterminals (in our case lay). This

can be done automatically. By grammar extension we mean the introduction of nontermi-

nals to existing rules and possibly addition of new rules. For theoretical background on

grammar adaptation, see [Läm01]. The adaptation Ag to include layout also controls the

84

5.3 Introducing Layout Preservation to Existing Transformation Systems

automatic migration Mr of user-given transformation rules R for abstract syntax without

layout AS to one with layout included (ASL). Given the automatic migration, most of the

old transformation rules can be reused.

A change in the grammar leads to a change in the abstract syntax, leading to a change

of syntax trees derived from programs. Moreover, as structure of patterns in rules directly

corresponds to abstract syntax, we can now adapt them based on the same change of our

grammar.

Figure 5.8 depicts possible relations. The construction C of an abstract syntax is based

on a grammar. Hence, the migration Mas is usually not necessary. If the new grammar is

not available, or if abstract syntax has to be modified for other purposes, abstract syntax

can be adapted using Aas.

structure

on abstract syntax
Migration

as

G L

Construction
L

Adaptation
Grammar G

C(G)Construction

Abstract Syntax

depending on

AS

G

Migration

A (AS)asAdaptation

g

AS’L

ASL

Rewrite Rules R
R’L

RL

r

Migration r

asM’ (A , R)

M (A , AS)

gA (G)

C(G)

M (A , R) g

Figure 5.8 Adaptation of grammar, abstract syntax and rewrite rules

Transformation rules can now be migrated with either using (Mr) to work according to

the changed grammar, or using (M ′
r) to follow the modified abstract syntax. Note that ASL

and AS ′
L as well as RL and R′

L are not necessarily equal. If rules are migrated by Mr, AS
has to be either migrated by Mas or constructed from GL by C to ensure transformation

rules are conform with new abstract syntax. The relations are summarised in Figure 5.9.

5.3.2 Generalised Use of the Approach

The relations can be used for more than just for layout preservation. Instead of introducing

layout into the transformation process there can be other information that could be inserted

into the grammar and/or into the abstract syntax, e.g., language constructs like the tagged

record in Ada95 and additionally control statements for user-designed tools.

Furthermore, the existing grammar and/or abstract syntax itself can be considered as

an already extended grammar to make especially the writing of analysing rules easier, as

is described now. A programmer might be interested in some part of the grammar only,

85

Chapter 5 Migration of Transformation Rules after Grammar Extension

GL = Ag(G) (5.1)

AS = C(G) (5.2)

ASL = C(GL) ∨ ASL = Mas(Ag, AS) (5.3)

AS ′
L = Aas(AS) (5.4)

RL = Mr(Ag, R) ∧ (5.3) (5.5)

R′
L = M ′

r(Aas, R) (5.6)

Figure 5.9 Relations between the grammar, the extended grammar, the abstract syntax

and migrated abstract syntax, the rewrite rules, and the migrated rewrite

rules

if

EXPR STMTS

= ...

LAYLAY LAY

Program

Migration

f(if(,)) =

f’(if(, , , ,))

Figure 5.10 Interesting parts of a tree structure

or in a part of the term structure (cf. the dark boxes in Figure 5.10) representing abstract

syntax or other information. The programmer only inquires certain values or properties.

For example, counting appearances of assignments to a certain variable does not need

the examination of expressions from while- and if -statements. Currently, he is forced

to include the complete pattern for the structure into his rules. However, if the original

structure is considered as the extended one, it is possible to describe the adaptation from

an imaginary reduced one that presents the aspect interesting for the programmer. That

means, the transformation rules are written as if there would be no uninteresting parts.

Then, they are automatically adapted to the case with uninteresting parts. Thus, one is

able to abstract from unnecessary details.

Now, the programmer defines rules over the restricted structure undistracted from task,

thus, doing less errors and probably increasing productivity. The rules are then migrated

86

5.4 Implementation

grammar : rule+.
rule : sort ":" alts "." .
alts : alt alts-tail* .
alts-tail : "|" alt annotation.
alt : term* .
annotation : "{" basis "}".
term : basis repetition?.
basis : literal | sort .
repetition : "*" | "+" | "?".

Figure 5.11 Grammar of LLL-Grammars

to the original structure, so that no information gets lost during program transformation.

Adaptation Aas makes also sense, if different tools are used to extract/manipulate data

based on the original structure. Several uninteresting parts of the grammar could be

blended out, so the programmer only concentrates on those parts which are of interest

for the special task. This could be applied to structured data exchange with, for example,

XML documents between architect, builder, and employer.

5.4 Implementation

In the following subsections, we show how we construct an abstract syntax-like internal

representation with a construction relation C to be used on any grammar. We then en-

rich the grammar with layout nonterminals using Ag and create the internal representation

(ASL) using C. Finally, we give the solution for an adaptation-controlled migration rela-

tion for transformation rules using the presented concept, and we thus prepare a grammar

and transformation rules on its AS to support of (partial) layout preservation.

5.4.1 Notations and Used Tool

We use LLL (Lightweigt LL) as grammar description format, as BNF is too simple and

EBNF too liberal for abstract syntax [KLV02]. Figure 5.11 shows the LLL definition taken

from [KLV02] with slight changes. The head of a grammar rule (LHS) is separated by a

’:’ from the rule body (RHS), terminals are enclosed in double quotes, all other names

are nonterminals. Moreover, we enrich the rules with annotations similar to [Vis97b].

They serve as address for a rule alternative and are used to construct the internal repre-

sentation. Annotations are written in { }. For simplicity, we restricted ourselves to the

BNF-expressiveness in the chapter.

The extension of the grammar is described with intuitive syntactic sugar. Of course, our

approach is not restricted to this grammar type.

For our implementation we used Laptob [LR01], a Prolog-based tool supporting the

definition of language processors. Grammar adaptations are done in a simple form of

87

Chapter 5 Migration of Transformation Rules after Grammar Extension

metaprogramming. Grammars are specified as logic grammars [RL88, SS97]. Hence,

we can make use of the full power of Prolog. The production ’A : B C.’ is written in

Prolog as a :- b, c., terminals are enclosed in quotes and prefixed with the operator

@, e.g., @"if". Attributes are given as parameters to predicates, e.g., exp(EXP). Parsers
are derived from logic grammars using metaprogramming. We introduce the convention

that result parameters occur always at the last position. Thus, for a predicate p(t1, . . . , tn),
we call Is = {t1, . . . , tn−1} input positions, and O = {tn} output position. Additionally,

indices l and ri
denote, whether the predicate appears on the left or right hand sides of the

Prolog rule. N indicates the number of predicates on the RHS.

The implementation idea is independent of Prolog and can be applied to any transfor-

mation tool. The difference will mainly concern the syntax of the rules. In Prolog, we use

predicates to describe transformation. E.g., a predicate f(A,B) :- p(A), B = A.
can be read as ’B is the (identical) result of transformation f applied to A, if p(A) holds’.

5.4.2 Generating an Internal Representation

Generating abstract syntax has been described, for example, in [Wil97, Jon02]. We will

speak about generating internal representation (terms) only. A simple translation is given

by the logic grammar version of {if}:

stmt :- @"if", exp, @"then", stmts, @"endif".

To enable the logic grammar to describe the construction of terms (representing syntax
trees) we add an ’ast’-attribute to each nonterminal.

stmt(if(EXP_1,STMTS_2)) :-
@"if", exp(EXP_1),
@"then", stmts(STMTS_2), @"endif".

The name of the attribute is simply the name of the corresponding nonterminal in up-

percase plus its ordinal number of occurrence as index. The node of a syntax tree corre-

sponding to a grammar rule is named using the annotation of the rule (possibly plus an

index, to distinguish different occurences of the same nonterminal). Furthermore, it is

parameterised with attributes of the nonterminals on the RHS.

5.4.3 Extending the Base Grammar

add rule r to g where
r = lay : whitespace_or_comment+ {lay}

insert lay with default = lay(" ")
before $x in g
where terminal($x)

Figure 5.12 Description of the transformation

88

5.4 Implementation

Now, we describe the grammar adaptation Ag to include layout in some grammar G.

Firstly, we have to introduce a new grammar rule for layout. Secondly, we insert layout

nonterminals in front of each terminal of the grammar. For the inserted nonterminal, in

our case lay, a default value can be given. See Figure 5.12 for the specification and

Figure 5.13 for its result.

LLL grammar:

stmt : lay "if" exp lay "then" stmts lay "endif" {if} .

Logic grammar:

stmt(if(LAY_1, EXP_2, LAY_3, STMTS_4, LAY_5)) :-
lay(LAY_1), @"if", exp(EXP_2),
lay(LAY_3), @"then", stmts(STMTS_4),
lay(LAY_5), @"endif".

Figure 5.13 Resulting logic grammar rule

The grammar transformation can be tracked and attached to the internal representation

of the new grammar or stored as an annotation to the new grammar. This information can

later be used to adapt the transformation rules. We chose the following format to express

the change:

trace += if([1:(lay,lay(" ")),
3:(lay,lay(" ")),
5:(lay,lay(" "))])

A trace for a rule is a collection of changes. It is named according to its annotation and

contains a list of entries. The numbers represent the positions in the list of nonterminals

of a rule, as these are the items which will be used in the transformation rules. To the

position, the inserted nonterminal as well as the default value is associated.

If it is possible to give default behaviour for the new introduced nonterminals, trans-

formation rules can be kept even without any change. The kind of default behaviour is

dependent on the used grammar. Note that it is possible to provide different default values

for different occurrences of the same nonterminal in a rule. In our example, it makes sense

to insert a whitespace as default value (see Figure 5.14).

The solution to insert a whitespace for every empty layout nonterminal after the trans-

formation (e.g., by a succeeding transformation) is not a good decision. It would change

positions that have been subject to a change and do not possess explicit layout. For exam-

ple, abstract syntax for a piece of code as a.b in an object-oriented language has empty

layout, and a transformation afterwards cannot distinguish between new generated empty

layout, and therefore inserts whitespace there.

If we now apply construction of internal representation to the modified grammar, the

successful reduction of the grammar rule for {if} yields a term of the form

if(lay(" "), exp(..), .., stmts(...), lay("\n"))

89

Chapter 5 Migration of Transformation Rules after Grammar Extension

5.4.4 Migration of Transformation Rules

Based on our internal trace of the grammar adaptation, the rules can now become automat-

ically migrated to follow the new grammar structure by means of meta-programming on

Prolog rules. As proposed in Section 5.4.1, the new term T to be constructed is assumed

loop_op(stmts(if(LAY_1, EXP, LAY_3, Ss ,LAY_5), Ss2),

stmts(if(LAY_1, EXP, LAY_3, NewSs ,LAY_5), N2)) :-
loop_op(Ss, NewSs), loop_op(Ss2, N2).

some_rule(stmts(while(LAY_1, EXP, LAY_3, Ss ,LAY_5), Ss2), Result) :-
some_rule(Ss, NewSs),
some_rule2(stmts(if(lay(" "), EXP ,lay(" ") , NewSs ,lay(" ")),Ss2),

Result).

some_rule4(stmts(while(..),..),
stmts(if(lay(" "), EXP, lay(" "), NewSs ,lay(" ")),N2)) :-
...

some_rule5(stmts(.., ..), ..) :-
some_rule6(.., stmts(if(LAY_6, EXP, LAY_8, Ss ,LAY_10), Result)).

Figure 5.14 Some locations for term construction

to be the last argument in a Prolog predicate. If the result is given as a variable, which

appears in Isl, there is no loss of information. The problem emerges whenever new terms

are constructed. See Figure 5.14 for some possible variants of term construction.

Case 1. This can be directly at Ol. Here, we distinguish: the term constructor is either a)

the same as in at least one subterm ti ∈ Isl, then we get the information from there, or b)

no subterm of any ti ∈ Isl ∪
⋃

Or, then the term needs default values as it has to return

something meaningful to the export, or c) a subterm of several ti ∈
⋃

Orj
, 0 ≤ j ≤ N .

Here, the programmer’s intention is not clear, therefore we vote for a default value.

Case 2. The term might be constructed at some Isri
, 1 ≤ i ≤ N . Default values are nec-

essary, as inside the predicate the nonterminals might be bound correctly with the output

position, if, e.g., the term is just delegated like case 1a).

Case 3. The term might occur in one or more Ori
, 1 ≤ i ≤ N , where it needs to have new

variables matching against potential information delegated through the predicate.

If there is more than one ti in 1.a), we offer the heuristics to take the first found occur-

rence while searching the Isl. This will give wrong results in some cases, but mostly result

in good layout preservation.

Though it will not make sense to keep all layout if an if-statement is replaced by a

switch-statement, some further improvements are imaginable. For example, we can save

the first appearance of the layout, as usually new syntactic entities replacing old ones,

will use at least the same initial indentation. However, if a comment has been in the first

place, it might become obsolete. One could also imagine that while performing traversals,

90

5.4 Implementation

information on the layout is collected, and from that conclude strategies to set layout into

new constructed terms. There is a more detailed analyses in the next chapter.

5.4.5 The Migration Relation

% traverse rules
m(Head :- Body, T, _, NewH :- NewB) :-
m(Head, migrate_h, (T,var,default), NewH),
m(Body, migrate_b, (T,default,var), NewB).

% traverse body clauses
m((A, B), M, P, (NewA, NewB)) :-
m(A, M, P, NewA), m(B, M, P, NewB).

% migrate predicates
m(Pred, M, (T,CASE,CASE2), NewPred) :-
Pred =.. [RewrName| AbsSynNs],
RewrName \= (:-), RewrName \= (,),

% separate input from output positions
append(Ins, [Out], AbsSynNs),

% create migration call for input positions
% and traverse migration over input structure
Mig =.. [M, T, CASE, []],
map(td(Mig), Ins, NewIns),

% create migration depending on new inputs
% and traverse over output positions
Mig2 =.. [M, T,CASE2,NewIns],
td(Mig2, Out, NewOut),

% construct resulting predicate
append(NewIns, [NewOut], NewAbsSynNs),
NewPred =.. [RewrName| NewAbsSynNs].

Figure 5.15 Migration relation: top level

The relation is given as a Prolog metaprogram. As a sidemark, we remind the reader of

the meaning of the Prolog univ-operator =.. and the predicate functor, necessary for

understanding the given rules. The following holds:

f(t1, . . . , tn) =.. [f |t1, . . . , tn], i.e., a term is decomposed into a list starting with the func-

tor f and followed by the list of all argument terms ti. The inverse way is also possible: a

term can be constructed from a nonempty list, with the head of the list as functor, and its tail

as arguments. | separates the head of a list from its tail. Thus, functor(f(t1, . . . , tn), f, n)
is a valid predicate.

91

Chapter 5 Migration of Transformation Rules after Grammar Extension

We roughly explain the migration relation. First of all we have to take care of the

different abstraction levels, terms representing predicates of the original transformation

rules, and terms that are arguments to the former. This is done by the top-level relation m
in Figure 5.15 (some trivial cases are left out). The predicates arguments (i.e., terms of the

internal representation, patterns given by the rewriter) are extracted (AbstSynNs) and

a distinction is made between input and output positions, as described in Section 5.4.1.

Two calls to migrations are constructed using, for example, the trace. map applies its

first argument to its second, i.e., for all input positions of the predicate (terms on which the

original rules are transforming) a top-down traversal (td) is initiated. The traversal applies
Mig to all subterms. For more on second order programming in Prolog, see [LR01]. Note:

Migration of the output position needs the newly generated input positions. If the term is

constructed at the output position, and if it can be found at input positions, we can get the

information, i.e., layout from them.

The migration migrate_b for the positions on the RHS initialises the weaver to weave

default values or variables into the arguments of the current term depending on the actual

case (see Figure 5.16).

% migration for body predicates
migrate_b(Trace,CASE,_I,AS,NewAS):-
% get current trace for actual node
AS =.. [Node| Atts],
getTrace(Trace, Node, CT),

% weave attributes using the trace
% and construct new term
weave(CT, CASE,[], Atts,NewAtts,0),
NewAS =.. [Node | NewAtts].

% migrate input position of head
migrate_h(T, CASE, [], AS, NewAS) :-
migrate_b(T, CASE,[], AS, NewAS).

% output positions of the head
migrate_h(T, CASE, MI, AS, NewAS) :-

AS =.. [Node| Atts],
getTrace(T, Node, CT),

% what can we learn from the input
% then weave head output positions
heuristics(AS, CT, MI, AS_h),
weave(CT, var, AS_h, Atts, NewAtts,0),
NewAS =.. [Node | NewAtts].

% find possible information
% in input terms
heuristics(AS,T,MInputs,AS_h):-

% create a pattern with
% unbound variables
functor(AS, Node, Number),
length(T,Add),
N is Number + Add,
functor(Pattern, Node, N),

% look for a match and return
% arguments of one of the
% patterns
td(pm(Pattern), MInputs,

[],_,[PM|PossibleMatches]),
PM =.. [Node| AS_h].

heuristics(_,_,_,[]).

Figure 5.16 Configuring the weaving and heuristics for layout preservation

If there are no migrated parameter input positions migrate_h is the same as

migrate_b. Otherwise, we are migrating the arguments of the output position, and

92

5.4 Implementation

therefore need to find the corresponding term in the migrated input (MI). It initiates the

weaving process using the trace for the current abtract syntax investigated, together with

preserved knowledge calculated by the heuristics.

Our heuristics searches in the migrated input list of abstract syntax trees for a term,

which has the same constructor. Its arity is that of the actual output term plus the number

of nonterminals to be inserted. If such a term can be found as subpart in one of the trees,

its arguments are returned. (Note that the constructor is of the same type, as for the same

constructor the same trace has been used.)

The heart of the migration is the weaving predicate (see Figure 5.17). If the remaining

% weave hidden information into abstract syntax
weave([Pos:(NT, Def)|CT], Case, [], Atts, [NTind|NewAtts], Pos) :-
% depending on the case use indexed nonterminal
% or default for this position from the trace
(Case = default

-> NTind = Def ;
index(NT, Pos, NTind)

), N is Pos + 1,

% weave for the rest
weave(CT, Case, [], Atts, NewAtts, N).

% trace contains no information for this Pos
weave([P1:(NT,Def)|CT], Case, [], [A|Atts], [A|NewAtts], P) :-
P1 \= P, N is P + 1,
weave([P1:(NT,Def)|CT], Case, [], Atts, NewAtts, N).

% if heuristic information exists (H) take that
weave([P:Inf|CT], Case, [H|Hs], Atts, [H|NewAtts], P) :-
N is P + 1,
weave(CT, Case, Hs, Atts, NewAtts, N).

% but not, if it is the wrong position
weave([P1:Inf|CT], Case, [H|Hs], [A|Atts], [A|NewAtts], P) :-
P1 \= P, N is P + 1,
weave([P1:Inf|CT], Case, Hs, Atts, NewAtts, N).

weave([], Case, _, NewAtts, NewAtts, _).

Figure 5.17 Weaving nonterminals into terms

trace (first position) is empty, the remaining attributes can be adopted unchanged. If there

is no list of arguments (third argument) that are from the corresponding migrated input

term, and if it is the correct position, then we adopt the default value or generate a new

variable depending on the case. The next case just copies the attribute. The next two rules

cope the cases that attributes of a migrated term are to be used instead of the information

in the trace.

93

Chapter 5 Migration of Transformation Rules after Grammar Extension

5.5 Discussion and Related Work

Format evolution. The approach is another co-transformation, where the migration of

an artefact (the abstract syntax, and the transformation rules) is induced by the adaptation

of an artefact on another layer (the grammar). It is related to Chapter 3, where a change of

the underlying document structure is described. Based on the description both is controled,

the adaptation of the defining structure, i.e., DTD, and the migration of XML documents

with the old structure to documents following the new structure.

Transformation of rewrite rules. With our approach, we can reduce complexity of

several rewrite rules. Automatically applied fusion transformations [SdM01] is related to

this: Many quite complex program transformations can be expressed by rewrite rules that

are easy to understand.

Grammar extension. Much work has been done on the field of grammar transforma-

tion. Especially related to the chapter, however, is [Läm01], which provides a theoretical

foundation for grammar adaptation. [KLV02] presents a tool box that is tailored to gram-

mar adaptations.

Dean et al. [DCMS03] introduce (grammar) overrides in TXL to support their agile
parsing philosophy to program a grammar to support the task at hand by grammar over-

rides.

Layout preservation. A recent approach in pretty printing [Jon02] is able to preserve

old layout of the source to be pretty printed and adapted to customer specific format guide-

lines. It is a precondition for layout preserving pretty printing after a transformation that

much information on original layout has to be preserved by the preceding transformation.

Rewriting with layout [BV00] using ASF+SDF [DHK96] in the Meta-

Environment [Kli93] provides an approach which can be combined with [Jon02]. Full

parse trees are used during rewriting over concrete syntax. This is supported by powerful

SGLR-parsing [BSVV02, Vis97a]. Thus, the addition of layout support is hidden because

the rewriter will not realise that a whitespace in his rule stands for any layout. Moreover,

the introduction of (default) whitespace in newly constructed terms is done intuitively by

the user, who simply writes the desired code in concrete syntax taking care of the lay-

out. Variable productions match and are instantiated to any subtree of the same sort. Any

two layout nodes always match. Layout in the left hand side of the production is left un-

changed. Bound variables keep their contained layout. All rewritten terms will lose their

original layout.

Our automatic migrated adaptations achieve similar results for abstract terms. Bound

variables keep layout. If the term constructor matches one of the inputs, it will take layout

of that. It might be wrong, but on the other hand it preserves more layout in average

than what is described by [BV00]. This is due to the fact that the rewriter in the above

mentioned approach inserts layout by concrete syntax when rewriting terms, while our

automated migration can try to find and insert variables used on the input positions. Layout

94

5.6 Concluding Remarks

in an untouched subpart of a rewritten term is kept. Moreover, our approach is more

general in two ways: it offers a way for several transformation tools without changing

them and, besides layout preservation, other applications are possible, e.g., working on

abstractions of the grammar or extending a grammar in general.

Our approach to layout preservation is similar to [Wag98, vdBSV98, SV00]. This has

also been implemented by [Wes01] for the system CobolX. They generate signatures con-

taining a layout sort for strategies in Stratego [Vis01], but they had to rewrite a lot of

Stratego library strategies manually, and changed a lot of XT utilities [JVV01]. Their

approach is restricted to layout support. They derive signatures from grammars, plus over-

lays, instead of including the layout into grammar. Old (1) and new (2) rewrite rule differ,

and are similar only through syntactic sugar:

rules D: A(v,B(e)) -> A(v,e) (1)
rules D::A(?v,?B(e)) --> A(!v,!e) (2)

They do not support other forms of transformations.

TXL [CDMS02] allows to specify commenting conventions of a language and to specify

comments as part of a grammar. Rules can then make use of the information provided in

the internal representation.

Our migration can be done by a preprocessor and therefore can simply be integrated with

existing tools. The rewrite tool does not need to be changed to work with our approach.

Rewrite rules from the point of the rewriter do not change.

A disadvantage of our approach is the size of the internal representation, as it carries all

characters of the source. To avoid this, [BV00] use ATerms [vdBdJKO00], which allow

maximum sharing, and thus they provide some space efficiency. Moreover, our migration

relation is not very efficient and offers room for optimisation.

There is still room to save more layout, e.g., if a data flow analysis is made on the

RHS. The difficulties to determine, which comment is attached to which piece of code is

described in [Van01]. We cannot solve that problem.

5.6 Concluding Remarks

Summary. In the chapter we have examined changes for abstract syntax and transfor-

mation rules caused by a grammar extension. We have shown a relation which migrates ab-

stract syntax and transformation rules accordingly. Migration means that rules can match

on a more complex structure. This reduces the amount of work to adapt rules to new

grammars. We argued that if it is possible to give default behaviour for newly introduced

nonterminals, transformation rules do not need any change by the rewriter to work. The

idea and implementation are simple and straightforward. Thus, they are easy to apply to

other transformation systems.

We applied the approach to introduce partial layout preservation into rewriting based

on abstract syntax. The adaptation is done by metaprogramming on rewrite rules, and

controlled by the description of the underlying grammar extension. We showed how the

internal representation and all transformation rules can be adapted automatically to work

95

Chapter 5 Migration of Transformation Rules after Grammar Extension

with layout. Transformation rules for the programmer do not change. He continues cre-

ating rules without layout. They can then be migrated to work with a layout-enriched

grammar by a preprocessor. The remaining problem is at those points, where new abstract

syntax terms are introduced (which do not appear anywhere on the input of the transfor-

mation), as there is no information on layout. Moreover, for some rewritten terms it can

not be said what the intention of the programmer is, and thus a decision can not be made.

There, layout will simply be whitespace.

Our approach is general: it offers a way for layout preservation for several transforma-

tion tools, without changing them, and, besides layout preservation, other applications are

possible, e.g., grammar abstractions.

Future work. Future work will include the search for more grammar extensions, where

this approach is applicable. It is necessary to clearly identify its limits. During the work

on the topic several questions arose:

How many parts of the grammar could be abstracted from for the rewriter without losing

the help of automatic rule migration, thus supporting avoidance of boring aspects for the

programmer? Can some other grammar adaptations be found, where adaptation of rewrite

rules also make sense, i.e., not only extensions? How much can we combine migrations?

What about default values? Can they be automatically determined? We can describe

a change and as a consequence automatically adapt all places where the change of the

grammar has an influence. We would like to apply this approach to library migration.

96

Chapter 6

Automatic Layout Preservation in Declarative First
Order Rewriting

Layout preservation is essential in software maintenance. Declarative rules
in source to source transformations describe transformations on an abstract
syntax tree. They can support layout preservation during the transformation,
if the abstract syntax tree additionally provides layout information. This re-
quires that argument positions of the rules are added to take care of the layout
information. However, to avoid unreadability of transformation rules, posi-
tions concerning layout information should be hidden. The chapter examines
cases for automatic introduction of layout positions for a simple traversal
scheme.

6.1 Introduction

The need for layout preservation in software maintenance has been discussed in the lit-

erature, for example, [Van01, Jon02] or Chapter 5 ([LR03b]). Shortly, it is essential that

maintained programs look similar to their original. Programmers want to recognise their

programs. Moreover, comments contain valuable information or even control statements

for tools. In the context of source to source transformation the part of a program text that

determines the arrangement of the program together with the comments is often referred

to as layout.

A typical maintenance using source to source transformations is done in three phases.

The program is transformed in some internal representation. Then suitable maintenance

operations are applied to the internal representation. Finally, the internal representation

is written out using some pretty printer. The pretty printer generates keywords and some

layout. The layout, however, is not the original one, and comments are missing.

Common transformation tools are either constructed based on a grammar, e.g., the

YACC-approach, or they take a grammar description, which is then used to generate a

parser/ unparser for the special transformation task [Kli93, Vis01, LR01] while construct-

ing the internal representation.

Language specifications define locations of layout often informally. In compilers com-

ments and whitespace as well as the representation of keywords and other symbols are

skipped usually. The ’important’ information is attached in abstract syntax trees. This is

not sufficient in software maintenance.

97

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

6.1.1 Common Approach to treat Layout

One solution usually applied is to introduce a nonterminal layout into the grammar rep-

resenting sequences of whitespace and comments (cf. [Wag98, vdBSV98, SV00, Wes01]).

The nonterminal is then inserted in front of each terminal. For practical reasons, a catch-

all nonterminal is introduced at the end of the program to gather the remainder of the

program text. Now, using a tool derived from the grammar, an abstract syntax tree can be

constructed carrying the program information as well as the layout preceding the terminals.

We are interested in the use of declarative first order rewriting to implement transforma-

tions because it is well-suited for program transformation [LdM01]. Abstract syntax trees

(AST) in declarative first order rewriting are represented as ground terms. Rewrite rules

provide several argument positions, which are terms to match against components of the

abstract syntax tree. We will use the term representation of an if-statement defined by the

grammar rule

<stmt> ::= if <exp> then <stmts> fi.

as example for terms that are to be extended with layout in the rewrite rule. A term rep-

resentation is if(E,S) where E and S would be terms representing expressions and state-

ments. We will adopt the convention to denote variables with a starting capital letter.

The extension of the grammar rule by layout nonterminals results in the following gram-

mar rule:

<stmt> ::= <layout> if <exp> <layout> then <stmts> <layout>fi.

The term representation changes to if(L1,E,L2,S,L3) with Li being variables matching

the layout structure, for example, lay(’ ’). It is now possible to construct transforma-

tions that take care of the layout.

6.1.2 Problem Description

However, layout information is a mainly uninteresting concern from the programmer’s

point of view of the transformation and distracts from the main task. Writing transfor-

mation rules with many argument positions and complex terms to match against the AST

is error-prone. Therefore, our aim is to separate both concerns, the main transformation

as well as transformation of the layout portion according the idea of AOP [KLM+97a].

Moreover, we are interested in how the layout information can be treated automatically,

that is, in where and how to weave necessary layout-representing terms into the rewrite

rules.

Imperative vs. declarative description. In transformations described using imper-

ative languages components of an AST node are modified destructively, usually using

pointers. To implement a traversal it is sufficient to recursively traverse a node’s com-

ponents or to apply a transformation. A modification of a subcomponent will affect the

original syntax tree directly. The modifications are done in place. Hence, in a tree enriched

with layout information the layout of a node in the abstract syntax tree will be preserved

98

6.2 Simplifying Assumptions

in traversals even when subcomponents are changed. In declarative rewriting, transforma-

tion rules describe relations between terms. Rules are applied if their parameter positions

match structurally with arguments they are applied to. The matching is described using

terms, which can contain variables (the declarative way of pointers). However, the re-

sult of a successful applied rule is a newly-created term even if it has the same functor as

well as the same variables like the pattern. This is one reason why automatic introduction

of layout preservation capability into transformation rules is more difficult in declarative

rewriting than in transformation based on imperative languages.

Extending terms. After the extension of the internal structure with layout information

each argument of the rule now has to treat layout information. This means for existing

rules that the terms of every argument position of a rule have to be adapted accordingly.

Variables in terms can match immediately to layout containing structures. Nodes of the

AST corresponding to grammar rules that do not contain terminals do not contain lay-

out information. The other nodes of the AST correspond to grammar rules that contain

terminals and require an adaptation of rules applied to these nodes. Terms in the argu-

ments of these rules need new positions to match against layout information, e.g., if(E,S)

vs. if(L1,E,L2,S,L3). Each position has to be filled by a default value or by a variable,

either fresh or bound somewhere in the same rule.

To achieve layout preservation the problem is to decide when and which of the variants

has to be used, i.e., how layout is delegated from input to the output to achieve a transfor-

mation with the least possible loss of information. The main problem appears in rules at

those positions, where new terms are constructed. While other work use a more pragmatic

approach, we attempt to examine it from a more formal perspective.

In the remainder, we will give simplifying assumptions in Section 6.2 and notions in

Section 6.3, which will be used in Section 6.4. Then, that section examines cases which

can appear, and what the automatic answer could be. Related work is given in Section 6.5.

Finally, a summary and a discussion of further work in Section 6.6 concludes the chapter.

6.2 Simplifying Assumptions

We use Prolog to describe transformations. Hence, our transformation rules are predicates.

We make several simplifications to concentrate on few cases:

Functional use Transformation rules are written in a directed style where certain input

values are used to compute output values. For this we introduce input and output

positions where input positions are bound with intermediate results and output posi-

tions contain results. Usually, program transformations have a functional intention.

This is a minor restriction and helps to evaluate the intention of the rewriter.

Ordered predicates Predicates on right hand sides (RHS) of transformation rules are

ordered according data dependencies, i.e., a literal l1 with an input position that

refers to some output position of a literal l0 is ordered behind l0 (assuming the pro-

cedural interpretation of logic programs). Cases where this is not possible are left

99

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

out. This also makes it easier to adapt the case discrimination for other instances of

the first order rewriting.

Data flow information is valuable help in transformation. Note, however, that we

transform transformation rules. The data flow of the programs that are transformed

by original transformation rules is not available. Hence, it cannot help to reason

about layout in source programs.

Defined layout positions We have to pay attention to two levels of intention. Firstly, a

programmer, whose program is being transformed, can write comments concerning

the same syntactical construct at different locations. The suggested grammar exten-

sion formalises the locations where layout can be used in a program text. We will

assume that layout is used according the given grammar extension, i.e., comments

are written before the syntactical entity, so that we can concentrate on rewrite rules.

Secondly, to automatically adapt existing transformation rules to preserve layout

information we have to guess the intention of the rewriter, i.e., what might be the

aim of the transformation: Does an argument in a rewrite rule match against original

code containing layout to be preserved or is it just an additional argument to control

the transformation (i.e., layout information of it is uninteresting)?

Traversals Layout bound to a term is probably of interest if a term is constructed using

the same functor again.

Recursive case discrimination Each case will examine one position in a rewrite rule

depending on its role, e.g., input position on RHS. For composed terms, apply the

case discrimination first for the outer term level, then for its subterms.

6.3 Notions

In this section we introduce some notions necessary for the analysis. Transformation rules
are represented as logic rules of the form

fl(t1, . . . , tn0) : −fr1(t1, . . . , tn1), . . . , frk
(t1, . . . , tnk

). fl(t1, . . . , tn).

For simplicity, we consider ni > 1 only. Other cases can be simulated by adding a neutral

parameter, e.g., true in the logic paradigm.

Variables are denoted using capital letters. All other terms will be denoted using s, t, u.
var(t) expresses that t is a variable. Functors will be denoted by f . F (t) will denote

the functor of t. F (p), where p is a predicate, denotes the predicate symbol. At(t) will

denote the arity of F (t), that is, the number of terms t is constructed of. E.g., for t =
f(a, b(c), d), At(t) = 3. Similarly, Ap(p) denotes the arity of predicate symbol F (p). We

leave out the index, when it is clear from the context, which arity we mean. For simplicity,

we require F (s) = F (t) → A(s) = A(t), i.e., overloading of functors is not allowed.

We will use πi(X) to denote the ith projection of X , where X can be a predicate or a

term, e.g., π1(f(a, b, c)) = a. Sequences of indices i of πi behind terms will be used to

100

6.4 Case Discrimination over Argument Positions

address subterms, e.g., t[1, 2, 3] stands for π3(π2(π1(t))). Such a sequence is also called a

path. We apply lexicographic ordering between paths.

The set ST of terms and subterms of t is defined as ST (t) = {t}∪⋃
1≤i≤A(t) ST (πi(t)).

The set ST will also be defined for terms and subterms of p: ST (p) =
⋃

1≤i≤A(p) ST (πi(p)).
We will be interested in cases, where functors of terms correspond. Therefore, we write

s
.
= t, if F (s) = F (t). s ⊆ t :<=> ∃u : u ∈ ST (t) ∧ s

.
= u describes that there is a

subterm of t or the term itself, which has the same functor as s.
For a predicate p = ps(t1, . . . , tA(p)) we will call Iside =

⋃
1≤i≤A(p)−1 ST (πi(p)) input

positions, Oside = ST (tA(p)) output position, side = l for LHS predicates and side = ri

for RHS predicates with i denoting the position of the predicate.

We introduce following notions, which can be used to describe the quality of layout

preservation capabilities of a predicate: Pattern position will denote a term in a predicate

addressable using a path with subterms not being of interest. A pattern position is strongly
layout preserving, if no layout information gets lost. A pattern position is conditional
strongly layout preserving, if it is strongly layout preserving wrt. the bound structure,

but we have no indication if the contained layout is reliable. A pattern position is weakly
layout preserving, if layout information is copied from elsewhere, but it is unprovable,

whether it is the correct one.

A predicate is used if it is used to define an other predicate that is then called defined.
A predicate is used strongly layout preserving, if all pattern positions t ∈ I ∪ O are

strongly layout preserving. A predicate is used conditional strongly layout preserving,
if all pattern positions t ∈ I ∪ O are strongly layout preserving or conditional strongly
layout preserving. A predicate is used weakly layout preserving, if all pattern positions

t ∈ I ∪ O are strongly layout preserving or conditional strongly layout preserving, or
weakly layout preserving. Other predicates are called not layout preservingly used.

A predicate is defined strongly layout preserving, if it is strongly layout preserving
and all used predicated t ∪ Ol depends on are strongly layout preserving. A predicate is

defined conditional strongly layout preserving, if all pattern positions t ∈ Il are defined

strongly layout preserving, all t ∈ Ol are at least defined conditional strongly layout
preserving, and all predicates used to compute t ∈ Ol are conditional strongly layout
preserving. A predicate is defined weakly layout preserving, if all ti ∈ Il are conditional
strongly layout preserving, ti ∈ Ol are defined conditional strongly layout preserving,
and used predicates to compute ti ∈ Ol are weakly layout preserving, conditional strongly
layout preserving, or strongly layout preserving. Other predicates we denote as not layout
preserving defined.

6.4 Case Discrimination over Argument Positions

To modify transformation rules with layout, the case discrimination examines each argu-

ment position in a rewrite rule. The form of the terms as well as its influence on layout

preserving transformation are investigated. We will consider only terms which will be

matched against components of a AST derived from layout extended grammar rules. For

each case, we give the property strongly layout preserving, conditional strongly layout

101

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

preserving, weakly layout preserving or not layout preserving for pattern positions. The

case discrimination is to be applied recursively to all subterms of the term per position.

6.4.1 Input Position on LHS

(t ∈ Il)

1. var(t)
No change of the term is necessary. t matches full available information. If the

term structure is extended by layout information, a variable will match immediately

against this structure. The pattern position is strongly layout preserving.

Example:
before layout introduction:

f(V , Result) :- ...

g(if(B ,S), ..., Res) :- ...

after layout introduction:

f(V , Result) :- ...

g(if(L1, B ,L2,S,L3), ..., Res) :- ...

If V and B were bound to a term without layout representing structure before layout

introduction, they will also be bound to terms with layout presenting structure.

Possible problem: The use of the same variable for several positions

f(V,V,Result) :- ... could be written if the rewriter wants to check, if two

pieces of code are syntactical similar. Usually, the rewriter would consider the code

to be equal also, if its layout is different, but common pattern match would now fail.

Therefore, one needs layout tolerant matching at some positions.

2. ¬var(t)
Fresh variables are necessary: To match against a structure enriched with layout

corresponding positions for layout in the term have to be added. Fresh variables are

necessary for each of these positions, because they will be bound to possible differ-

ent layout. The pattern position is strongly layout preserving.

Example:
before layout introduction:

f(if(B,S) , Result) :- ...

after layout introduction:

f(if(L1, B, L2, S ,L3) , Result) :- ...

102

6.4 Case Discrimination over Argument Positions

6.4.2 Input Position on RHS

(s ∈ Iri
)

1. var(s), s ∈ Iri
∧
 ∃t, u ∈ Il ∪

⋃
1≤j<i Orj

: s
.
= u, u ⊆ t

(s is an unbound variable)

According to section 6.2, it is an error.

2. var(s), s ∈ Iri
∧ ∃t, u ∈ Il ∪

⋃
1≤j<i Orj

: s
.
= u, u ⊆ t

(s is bound at input position on LHS or some output position on RHS)

s is as much layout preserving as u. s is bound to a term possibly enriched with

layout information. The layout of this term is preserved while the term is bound to

the input of pi. The pattern position is strongly layout preserving.

Example:
before layout introduction:

f(IF, Result) :- g(IF , ...), ...

g(t(V, t2(...), ...), ..., Result) :- g(V , ...), ...

after layout introduction:

f(IF, Result) :- g(IF , ..), ...

g(t(V, t2(...), ...), ..., Result) :- g(V , ...), ...

3. ¬var(s)

a)
 ∃t, u ∈ Il ∪
⋃

1≤j<i Orj
: s

.
= u, u ⊆ t

subterm (s is not term or subterm at some input position on LHS or at output

position of a predicate on RHS)

Layout positions in the term have to be default values, e.g., a whitespace. This

is necessary because the layout position can be used by the predicate to create

output term, and non-defined or wrong (e.g., empty) layout would be used to

generate an invalid source (e.g., publicintcreate-problem in Java). The pattern

position is not layout preserving.

Example:
before layout introduction:

f(..., NT):- ..., g(if(B,S) , ..., NT)

after layout introduction:

f(..., NT):- ...,

g(if(lay(’ ’), B, lay(’ ’), S ,lay(’ ’)) ,...,NT)

b) ∃t, u ∈ Il : s
.
= u, u ⊆ t∧
 ∃t′, u′ ∈ ⋃

1≤m<i Orm : s
.
= u′, u′ ⊆ t′

(s is a similar term or of in the input position on LHS, but not at some output

position of a predicate pm on RHS)

i. ∃!u
s can reuse the layout of u. Copy terms (i.e., variables) from correspond-

ing layout positions, as the probability is high it describes a traversal.

103

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

However, it might be that a new term with different components is being

constructed. Hence, this pattern position is conditional strongly layout
preserving.

Example:
before layout introduction:

f(..., if(B,S), ...) :- g(if(B,S) ,..)

after layout introduction:

f(..., if(L1,B,L2,S,L3),...) :-

g(if(L1, B, L2, S ,L3) ,...)

ii. Otherwise

It is not clear from which term the layout should be copied. Use a heuris-

tics to choose one. Suggestion: From the terms in question choose that

with the smallest path according lexicographic order, and reuse variables

generated for layout from the pattern denoted. This pattern position is only

weakly layout preserving.

Example:
before layout introduction:

f(..., if(B1,if(B2,S)), ...) :- g(if(B2,S) ,...)

after layout introduction:

f(..,if(L1,B1,L2, if(L4,B2,L5,S,L6),L3),...) :-

g(if(L1, B2, L2, S ,L3) ,...)

The example demonstrates the failing of the heuristics. The quality of the

heuristics can be improved by analysis of subterm.

c)
 ∃t′, u′ ∈ Il : s
.
= u′ ⊆ t′ ∧ ∃t, u ∈ ⋃

1≤j<i Orj
: s

.
= u, u ⊆ t

(s is also term or subterm of in the output position of a predicate p on RHS, but

not at input position on LHS.)

i. ∃!u
s can reuse the layout of u copy terms (i.e., variables) from corresponding

layout positions as it is very probably it is describing a traversal. However,

it might be that a new term with different components is being constructed.

Hence, this pattern position is conditional strongly layout preserving.

Example:
before layout introduction:

f(...,...) :- g(..., if(B,S)), ..., h(if(B,S) , ...)

after layout introduction:

f(...,...) :-

g(..., if(L1,B,L2,S,L3)), ...,

h(if(L1, B, L2, S ,L3), ...)

104

6.4 Case Discrimination over Argument Positions

ii. Otherwise

It is not clear from which term the layout should be copied. Use a heuris-

tic to choose one. Suggestion: From the terms in question choose that

with the smallest path according lexicographic order, and reuse its vari-

ables generated for layout. This pattern position is only weakly layout
preserving.

Layout might be preserved if the predicate with u preserves layout. If not,

it will return default values. These are the same default values as would have

been introduced here if no reuse of layout information was possible. This might

miss the intention of the programmer, as the reused term on the output might

depend on the actual input to be determined.

d) ∃t′, u′ ∈ Il : s
.
= u′, u′ ⊆ t′ ∧ ∃t, u ∈ ⋃

1≤j<i Orj
: s

.
= u, u ⊆ t

(s is term or subterm of at least one term at the input position on LHS, and in

at least one at output positions.)

No definite statement can be made. Suggestion: From the terms in question

choose that with the smallest path according lexicographic order, and reuse its

variables generated for layout. This will use at least original layout informa-

tion from the LHS, but might be obsolete, as new computed layout could be

available in the output positions on RHS. The pattern position is weakly layout
preserving.

6.4.3 Output Position on RHS

(s ∈ Ori
)

1. var(s)

Layout from the new computed result is bound. The extent of preservation is deter-

mined by the body of the predicate the output position is from. The pattern position

is strongly layout preserving.

Example:
f(T,..., NT) :- g(T...,..., NT).

g(T,..., NT) :- h(T...,..., V), ..., i(V, ..., NT).

f(T, A, R) :- g(T, R).

f(T, A, R) :- g(T, R0),h(R0,R).

2. ¬var(s)
Using other terms than simply variables at output positions on RHS makes sense

only to constraint the result to be of a certain form, e.g., that an if-statement is to

be constructed, and/or to bind subparts of the returned structure with variables to

be used in the following transformation. Fresh variables are necessary to bind pre-

served layout from the inside of the predicate, otherwise a desired match could fail

because of different layout information. Or, layout tolerant matching is necessary.

105

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

The pattern position is conditional strongly layout preserving.

Example:
Before layout introduction:

...:- f(..., if(B,S)), ...

After layout introduction:

...:- f(..., if(L1, B, L2, S ,L3)), ...

6.4.4 Output Position on LHS

(s ∈ Ol)

1. var(s)

a) ∃t, u ∈ Il : s
.
= u, u ⊆ t

(s is term or subterm on an input position on LHS)

s is bound to a layout containing term. The pattern position is strongly layout
preserving.

Example:
f(T, T) :- ...

g(T,_, T) :- ...

h(T1,T2, T2) :- ...

b)
 ∃t′, u′ ∈ Il : s
.
= u′, u′ ⊆ t′ ∧ ∃t, u ∈ Ori

: s
.
= u, u ⊆ t

(s is term or subterm in an output position on RHS)

The bound layout is preserved depending on the layout preservation of the

predicate s is bound. The pattern position is conditional strongly layout pre-
serving.

Example:
f(..., T) :- ..., g(..., T),...

2. ¬var(s)
(new term constructed at output position of LHS)

a) s
∈ Il ∪
⋃

j Orj

(no similar term on input positions of LHS or output positions on RHS)

There is no available layout information. Default values are necessary, for

example, a space lay(’ ’) . The pattern position is not layout preserving.
Example:
before layout introduction:

f(..., NT) :- ..., g(if(B,S) , ..., NT)

after layout introduction:

106

6.4 Case Discrimination over Argument Positions

f(..., NT) :- ...,

g(if(lay(’ ’), B, lay(’ ’), S ,lay(’ ’)) ,..., NT)

b) ∃t, u ∈ Il : s
.
= u, u ⊆ t∧
 ∃t′, u′ ∈ Ori

: s
.
= u′, u′ ⊆ t′

(only appears on LHS)

i. ∃!u ∈ Il

The layout information of the term in Il can be taken. If the term with the

same functor is bound to the same program, the layout is preserved. The

pattern position is conditional strongly layout preserving.
ii. several u ∈ Il

The intention of the rewriter is not clear. Hence, one could decide between

default values and layout from one of the terms in Il. For the latter, it might

be a good solution to take the layout from the term with the shortest path

from the set of lexicographic ordered paths of all t ∈ Il. The pattern

position is weakly layout preserving.
c)
 ∃t, u ∈ Il : s

.
= u, u ⊆ t ∧ ∃t′, u′ ∈ Ori

: s
.
= u′, u′ ⊆ t′

(only appears on RHS)

This should not be the case often, as terms at output positions on RHS decon-

struct terms, restrict possible solutions. Layout information in the terms of Or

can be originally some of subterms of Il, which are delegated/ changed/ tra-

versed in inside the predicate. Hence, the copy of layout matching variables

may be desired.

Example:
f(..., if(B,S)) :- ..., g(..., if(B,S)), ...

i. ∃!u′ ∈ Ori

If u′ contains the layout of interest, the layout can be preserved by this

position. The pattern position is conditional strongly layout preserving.
ii. Otherwise,

the intention of the rewriter is not clear. We can choose an heuristics to

determine which pattern we copy the layout from. Therefore, the pattern

position is weakly layout preserving.
d) ∃t, u ∈ Il ∧ ∃t′, u′ ∈ Or : s

.
= u, u ⊆ t ∧ s

.
= u′, u′ ⊆ t′

(appears on both sides)

Again the intention of the rewriter is not clear. The probability that layout of

term in Il is original is higher than that of those in Or. The latter, however,

could contain original layout of a substructure of the input term, identified in

some of the predicates on RHS. The predicate is weakly layout preserving.

6.4.5 Remarks

The case discrimination ignores types. Hence, it might be necessary to change the type of

variables that will be bound to a term enriched with layout information.

107

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

Note that even some pattern positions could be identified as conditional strongly lay-
out preserving assumed that appearance of equal functors in argument positions means a
traversal is specified, where the layout should be reused. The case discrimination tried to
find subterms that could be traversed according to the same functor. This might miss the
intention of the rewriter completely. See, for example, the replacement of a switch with
only one case, which is rewritten as if-statement:

f(switch(Cond, stmts(case(Cond2, stmts(if(A, B), S)), empty)),

if(eq(Cond,Cond2), stmts(if(A, B), S)))

Here, it is not desired to reuse layout attached to the if inside of the case for the newly

introduced if, but rather that of switch. Moreover, here we can see a second problem.

With the strategy given in the case discrimination, original layout would be used twice in

the result. A solution is perhaps to use counters, which ensure to use every layout term

once only, and to apply strategies along the line: inner terms in results should reuse layout

of inner terms in input positions, or default values.

6.5 Related Work

Other approaches support the presented cases partially only. They leave out different vari-

ables, and just allow tolerant matching, i.e., they already have lost information while bind-

ing the input information. Only layout of terms wholly bound to a variable will be pre-

served, see, for example, rewriting with layout [BV00] using ASF+SDF [DHK96] in the

MetaEnvironment [Kli93]. Full parse trees are used during rewriting over concrete syn-
tax. Thus, the addition of layout support is hidden, because the rewriter will not realise

that a whitespace in his rule stands for any layout. Moreover, the introduction of (default)

whitespace in newly constructed terms is done intuitively by the user who simply writes

the desired code in concrete syntax taking care of the layout unconsiously. Variable pro-

ductions match and are instantiated to any subtree of the same sort. Layout in the left hand

side of the production is left unchanged. Bound variables keep their contained layout. All

rewritten terms will loose their original layout. Any two layout nodes always match. They

loose more layout than necessary in their approach. This is due to the fact that the rewriter

in the above mentioned approach inserts layout implicitly by concrete syntax when rewrit-

ing terms. Consequently, default values are used too often. The given case discrimination

indicates, how to restrict layout-tolerant matching, and how to find variables and layout to

be reused in patterns. The problem of finding the right pattern for a traversal is solved by

using traversal functions. The traversal is automatically generated, and thus it can preserve

the layout. The pattern position for traversals is fixed.

The approach to layout preservation using a grammar extension is described in [Wag98].

This has also been implemented by [Wes01] for the system CobolX where signatures are

generated containing a layout sort for strategies in Stratego [Vis01]. They derive signatures

from grammars, plus overlays, instead of including the layout into grammar. Old (1) and

new (2) rewrite rules differ, and are similar only through syntactic sugar:

rules D: A(v,B(e)) -> A(v,e) (1)
rules D::A(?v,?B(e)) --> A(!v,!e) (2)

108

6.6 Concluding Remarks

Another approach is [KL03]. Parse trees are enriched with annotations, which among oth-

ers can provide layout information as well as history information of the transformation

so far. Additionally, access methods for annotations are provided. This is also related

with origin tracking [DKT96], a method to keep track of the change during a transforma-

tion. In Chapter 5 (Publication [LR03b]) we suggested to derive automatic migration of

transformation rules after a grammar extension. We demonstrated the algorithm for the

introduction of layout preservation. An approach in pretty printing [Jon02, Jon03] is able

to preserve old layout of the source to be pretty printed and adapted to customer specific

format guidelines. Precondition for layout preserving pretty printing after a transformation

is that much information on original layout is preserved by the preceding transformation

already. In [Van01], several problems concerning layout preservation are discussed.

6.6 Concluding Remarks

Summary. In the chapter we investigated, what cases are interesting to automatically

adapt transformation rules to preserve layout in program transformation. We focussed

on traversals, i.e., we assumed that equal functors of terms on input positions and output

positions mean the specification of a traversal. While other pragmatic approaches exist,

this is the first attempt to analyse the possible situations more formally and to give a receipt

how to modify transformation rules to support layout preservation. Pragmatic approaches

can be improved using our case discrimination. We showed that, though we used a simple

strategy with many restrictions, automatic introduction of layout preserving is difficult in

rewriting. It is non-trivial already for traversal schemes.

We defined notions of strongly, conditional strongly and weakly layout preserving defi-

nitions and uses of predicates. These notions can be used to describe the role of a predicate

in a layout preserving transformation, but they are still insufficient as a metrics.

Future work. However, there is much room for further investigation. Some cases of the

discrimination appear more often than others. It is an interesting question, if a statistical

analysis of rewriting behaviour can help in the adaptation of the transformation rules.

Default values are appropriate, if a determined state is desired, i.e., it is better to have

values to be replaced by the use of pretty printing than to have possible wrong layout for

this term. It would be interesting to examine, if there are better default values than simple

whitespace, and which. Are there classes of default values depending on the syntactical

category they are attached to? It might be desired that the transformation tool generates

a mark indicating that a comment is not trustworthy. A programmer should always be

informed about what is done with/to his program.

It is interesting to note that tolerant matching is necessary. This is the case always, where

a variable is bound to a layout containing term structure. We could imagine to improve

transformation rules in a way that a user gets means to describe, which part of a rule can

match tolerant. What is a good way to describe it? Note that general tolerant matching for

one pattern kind is insufficient, as can be seen with the approach [BV00].

109

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

The degree of layout preservation seems to depend on the complexity of rewrite rules.

The smaller the transformation steps the higher the probability to increase layout preser-

vation. Similarly, the higher the degree on automatically generated rules (e.g., traversal

schemes can be generated) the higher the degree of layout preservation. These supposi-

tions have been substantiated in a study research project [Wal07]. To measure the degree

of layout preservation, a metrics is needed as well as to adapt the given notions to describe

and make use of it.

Layout should belong to the formal language definition as it is part of the program. It

is simply on a different level. It can be considered as an aspect of the program text. One

could imagine different kinds of layouts. This leads to two further research directions.

Firstly, there are different aspects in the program from the point of view of dynamic be-

haviour as well as different layout aspects. This leads to classes of aspects. Secondly,

documentation of what a function computes, why it does this way, theoretical background

for the algorithm, how the function is to be used, or a general description all form different

aspects of the same problem similarly to the idea of literate programming. The program

text itself can be understood simply as a description of the problem suitable for compila-

tion. This suggests the use of XML to integrate all together. We call this multi-layered

documents. Programming environments can provide the programmer with a view desired.

A problem with layout around a language construct is the assignment to where it be-

longs. For example, a line comment can stand after the function header or before the list

of variable declaration. When declarations are moved, it is difficult to determine, whether

or not the comment has to be moved, too. We propose to introduce at least guidelines

for comment locations, and to adapt the creation of abstract syntax to it. We chose the

guide line to take all layout before a terminal to be assigned to the grammar rule con-

taining this terminal, hence to program parts derived from the rule. One could extend

this to include layout after a terminal till the next line break, or to include lines of layout

as long until there is a first empty line, for example, showing that a new kind of com-

ment is starting. To formally associate layout to one syntactical component, the location

of layout has to be defined in the grammar. Though the common approach is to adapt

A -> if B then S to A -> L1 if L2 B then L3 S, we came to the conclu-

sion that A -> L1 if B’ then S’, B’-> L2 B and S’ -> L3 B describes bet-

ter the intended location. However, this results in an even more difficult adaptation of the

transformation rules along the lines of Chapters 4 and 5.

A research issue is also, what means we can offer to the rewriter to aid in layout preser-

vation without bothering him too much with the secondary aspect. An example is the order

of the arguments in a predicate to say which will be preferred for layout preservation.

It is necessary to research for functionality to control the use of layout unobtrusive in a

rewrite rule. An approach can be to use the given case discrimination as default approach,

and give the rewriter a means to overwrite where appropriate. A resulting question is, how

can we avoid to force the rewriter to use two different representations of patterns (one

with, one without layout patterns). Also, we think it is possible to describe the layout

introduction for chosen rules in a separate modul. This would allow for experiments with

different layout preservation behaviour without risking the introduction of errors in already

written rules. Can a layout strategy perhaps be described abstractly (without mixed pat-

110

6.6 Concluding Remarks

terns)? Maybe there are some typical reuse patterns, which could be named and activated

by name.

The next steps are to experiment with different object languages (transformation on

programs of different languages) and compare the similarity of layout preserved results.

An important question is, how to preserve layout in patterns, which have different func-

tors, i.e., in rules other than traversal schemes. Can one derive such information somehow?

How can the rewriter give additional information without being bothered too much with

this aspect. Furthermore, we are interested in how we can measure the quality of layout

preservation, and investigate ideas to increase reasoning for layout.

111

Chapter 6 Automatic Layout Preservation in Declarative First Order Rewriting

112

Chapter 7

Aspect-Oriented Prolog in a Language Processing
Context

Language processors can be derived from logic grammars. This chapter
demonstrates that several concerns in the processor such as parsing, sev-
eral kinds of analysis, or transformations, can be specified as aspects of the
logic grammar. For that purpose, we bring the concepts of aspect-oriented
programming to Prolog in a systematic way, based on established Prolog
technology. We illustrate that typical Prolog programming techniques can
be described as generic aspects and provided in a library to support reusable
concerns. A DSL is developed to improve readability of the aspect-oriented
specifications.

7.1 Introduction

Separation of concerns in language descriptions is desirable just as well as in any other

software artefact to improve understanding and maintenance. As language descriptions

are the base for derived language processors those immediately profit from modularity.

Besides maintenance, also experiments with different variants of a language and a corre-

sponding implementation are facilitated.

For that purpose, we combine aspect-oriented programming (AOP) with Prolog to en-

able descriptions of different concerns in a logic grammar in a modular way, allowing a

better construction of language processors from a software engineering point of view.

7.1.1 Motivation: Modularisation for Logic Grammars

Prolog and language processing. Prolog is generally suited for prototyping. It

is also very suitable for language processing and related problems [Rie91, Paa91, LR01,

CH87, War80, BP89, SK94]. Due to its facilities for symbolic term manipulation, Pro-

log is particularly suited for the phases of language processing which can be performed

at the level of abstract representations. It is well established that logic programs are well-

suited to describe analysis, evaluation and transformation of abstract representations. Ad-

ditionally, Prolog programs are structured grammar-like. This simplifies representations of

grammars including attribute grammars. Thus, language processing can be mapped easily

to Prolog.

113

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

Logic grammars. It is very easy to derive interpreters from logic grammars [LR01].

A logic grammar (as described in [LR01]) is a Prolog program where predicates repre-

sent nonterminals and terminals are represented by strings or are constructs especially

marked by operators. When these operators are interpreted as predicates consuming lex-

emes, Prolog’s evaluation mechanism immediately provides a recursive descent parser

with backtracking already included. Logic grammars are interesting because transforma-

tions on grammars are conventional meta-programs on Prolog programs, which is natural

in Prolog. In contrast to definite clause grammars [PW80] their external and internal rep-

resentation do not differ. This simplifies treatment of grammars in several transformation

steps. Logic grammars can easily be extended with semantics by adding variables and

other predicates which, when deriving a prototype interpreter, perform several kinds of

analysis or other tasks in a language processor. This resembles defining a language using

attribute grammars. A logic grammar can then be considered as a special kind of attribute

grammar. The strong relationship between Prolog and attribute grammars has been dis-

cussed in [DM93, RL88, DM85].

Crosscutting in language processing. Usually, there are different concerns in a

logic grammar, e.g., construction of abstract syntax trees, type checking, analysis, several

transformations, code generation, scanner integration, and pretty printing. Their descrip-

tions are scattered along the grammar and tangled with each other. This obfuscates the

context-free part of the grammar. Unfortunately, separate examination and change of each

concern is not possible. Relying on just common modularisation concepts (clauses, pred-

icates, and modules) it is impossible to implement these concerns separately. Instead,

meta-programming or a computation in several phases is necessary. The inherent relation

between concerns, independent from their implementation, is called crosscutting. More-

over, we would like to add the concerns in a stepwise enhancement manner. Therefore, it

should be possible to switch concerns on or off easily or to replace them with alternative

versions for experiments. Manipulating those concerns manually is error-prone. Addition-

ally, maintainability is decreased as changes in modular units and in added concerns can

influence each other and might have to be implemented manually, which again is error-

prone. Furthermore, the implementation of crosscutting concerns is hardly reusable.

Aspect-oriented programming. Aspect-oriented programming (AOP) [KLM+97b,

AFCE04] addresses modularisation of crosscutting concerns providing aspects as a new

concept. Aspects are modules containing crosscutting expressions (pointcut descriptions,

advice) encapsulating the described concern in one place. Aspects can be added to and

removed from the program and are reusable components that can be composed with other

components. The places where modules can be affected at runtime, are called join points.
The kind of place determines the kind of join point. Corresponding points in the program

text are called join point shadows. A join point model defines all possible join points, from

which subsets – so called pointcuts – can be chosen to associate advice, i.e., additional
program code. Pointcuts are specified using a pointcut description (a predicate, which

quantifies join points). The same advice can be associated with more than one join point.

114

7.1 Introduction

Also, more than one advice can be added at the same join point. A further central concept

of AOP is the weaver, which transforms the descriptions with their associated advice and

the original program into a woven program implementing the crosscutting. The moment

of weaving – at compile time, run-time or a mixed form – influences the instance of AOP

due to the available information.

AOP for logic grammars. The concerns given above can be seen as aspects of lan-

guage descriptions respectively language processing. Further aspects in language

descriptions are discussed elsewhere, e.g., layout preservation [LR03b] and

debugging [WGRM05]. We apply the concepts of AOP to separate these concerns. As

logic grammars are Prolog programs, this means providing AOP in Prolog itself. AOP

lifts typical meta-programming tasks to language description level. Advantages that come

with this approach are a modular description of different aspects in a grammar (hence,

also in the derived language processor) and beyond it a formalisation of typical program-

ming techniques by generic aspects allowing to describe reusable aspects such as parser

construction. This formalisation furthermore leads to a disciplined procedure for stepwise

enhancement in comparison to earlier approaches.

7.1.2 Overview on Key Concepts in the Chapter

In the chapter we demonstrate how scanner integration, abstract syntax tree construction,

several kinds of analysis, and transformation in a language processor can be described as

aspects of a logic grammar (see more details in Section 7.2). We provide a three level

framework:

1. At the first level, the basic concepts of AOP are defined for Prolog in Prolog using

Prolog syntax and semantics (Laola - Logic aspect-oriented language), and there-

fore we make use of established Prolog technology such as logic variables, the port

model, and hooks to modify programs at load-time. Base is the control flow as

described by an extended port model (see Figure 7.1 and Section 7.4.1 for an expla-

nation). Goals and clauses are Join point shadows. They are represented as boxes in

the port model. The ports in the port model are Join points with the kind of a port

determining the kind of join point. This allows to place advice at desired points of

execution, e.g., at failure or matching. There are three kinds of advice. Port advice
is Prolog code to be attached at any port of the port model. Around advice is Prolog

code which replaces or surrounds a box from the port model. Term advice describes

a transformation on terms representing goals or clauses. Pointcuts are sets of join

points. Pointcut descriptions are predicates quantifying join points. Patterns are

used to denote sets of join points implicitly by addressing goals and clauses (i.e., the

join point shadows of ports). Furthermore, pointcut descriptions can restrict the set

of join points by additionally given properties of goals and clauses. The kind of join

point is chosen by the advice. Aspects in this approach are grouping mechanisms for

pointcuts and advice.

115

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

error

redofail

call

failmatch

trymatch

failbody

enterbody exitbody

redobody

failmatch

trymatch

failbody

enterbody exitbody

redobody

exit

...

Figure 7.1 Extended port model of the IF/Prolog-Tracer. The outer goal box

contains two clause boxes. Possible control flows are visualised by

arrows.

A very important concept is the use of pointcut contexts of goals and clauses to ex-

change information between aspects and program code using logic variables. The

use of logic variables supports communication between aspects and core concerns.

A weaver, also provided as a logic program, weaves Prolog advice code at compile-

time. It can also be easily integrated at load-time by common mechanisms such as

term_expansion. A typical weaving transformation, such as weaving advice

to the end of a clause (exitbody port), looks as follows (more details in Sec-

tion 7.4.6):

p(X1, . . . , Xn) ← Body .
exitbody

� p(X1, . . . , Xn) ← Body ,Advice.

The above means the clause is extended with the advice at the end of the body. Other

possible places are all ports in Figure 7.1, allowing a very fine-grained control over

execution of Prolog programs. Section 7.4 discusses this level in detail.

2. The second level is formed by a library of generic aspects including, for example,

token/1, parser/1 or traverse/1. Generic aspects may contain generic

pointcuts and are used to abstract typical Prolog programming techniques like

calculate, accumulate, and build, making them independent of a particu-

lar skeleton. Generic aspects form the basis for construction of language processors,

e.g., build to construct abstract syntax trees. The description of generic aspects is

illustrated by the example of the calculate-technique in Section 7.5.

116

7.2 Aspects in Grammars for Language Processors - a Motivating Example

3. For easier use and understanding, the DSL Swell is provided being syntactic sugar

for Laola for describing aspects. Section 7.6 discusses its systematic development

and gives an informal mapping to Laola by example.

7.1.3 Remainder of the Chapter

Section 7.2 demonstrates how an example language processor can be achieved using as-

pects of a logic grammar. Next, we introduce a very simple running example in Sec-

tion 7.3, which forms the basis for a detailed description of AOP in Prolog in Section 7.4.

Section 7.5 exemplifies the specification of generic aspects for the aspect library. In Sec-

tion 7.6, a DSL is described, before the chapter ends with related work and some conclud-

ing remarks in Section 7.7 and 7.8.

7.2 Aspects in Grammars for Language Processors - a
Motivating Example

This section illustrates the use of AOP to describe concerns in a simple language processor

example (taken from [LR01]) to eliminate dead let-assignments in programs of a simple

expression language (cf. Figure 7.2) in a modular way. First, we start with the logic gram-

mar, from which the language processor is derived manually. Subsequently, we describe

the processor (and the dead let removal) again, this time modularly using aspects based

on generic aspects from an aspect library while giving examples for the AOP concepts in

our approach.

7.2.1 Grammar Example and a Derived Parser

Task: let a = 1 in let b = 2 in a + 3 =⇒ let a = 1 in a + 3

exp :- sexp. sexp :- nat. uop :- "-".
exp :- sexp, bop, exp. sexp :- id. bop :- "+".
exp :- "let", id, "=", exp, "in", exp. sexp :- uop, exp. bop :- "-".

Figure 7.2 A logic grammar is the starting point for derived language processors.

Figure 7.2 shows a logic grammar for a simple let-expression language as a starting

point. id and nat are lexeme classes for identifiers and naturals, respectively. Strings

mark keywords. Due to the evaluation order in Prolog we achieve a recursive descent

parser (with potential infinite look-ahead) immediately when lexeme classes and keywords

are replaced by a predicate get_token/1 responsible for tokenising the input. The

predicate is provided by different scanners in our system called Laptob [LR01]. The result

of adding get_token/1 around keywords and lexemes is given in Figure 7.3. From an

117

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

AOP perspective, lexeme classes and keywords represent join point shadows of interesting

join points.

exp :- sexp.
exp :- sexp, bop, exp.
exp :- get_token(kw("let")), get_token(id(Id)),

get_token(kw("=")), exp, get_token(kw("in")), exp.
...

Figure 7.3 Result: Keywords and lexeme classes need to be scanned.

The next step is to add the construction of abstract syntax trees (AST). Therefore, we

add a parameter to each nonterminal (predicate). The first parameter of the nonterminals

represents the corresponding AST; particularly the nonterminals on the left-hand side of a

rule define the construction of an AST. At the same time we collect variables not used in

let-expressions in a second parameter of the nonterminals. They can be used in a later

traversal to eliminate dead let expressions. See Figure 7.4 for the resulting parser. Adding

further tasks, e.g., type-checking and code generation, becomes increasingly tedious and

error-prone.

exp(SExp, FreeSExp) :- sexp(SExp, FreeSExp).
exp(bop(Bop, Exp1, Exp2), Free) :-
sexp(Exp1, Free1), bop(Bop), exp(Exp2, Free2),

union(Free1, Free2, Free).
exp(let(id(Id), Exp1, Exp2), Free) :-
get_token(kw("let")), get_token(id(Id)), get_token(kw("=")),
exp(Exp1, Free1), get_token(kw("in")), exp(Exp2, Free2),

(select(Id, Free2, Free3) ; Free2=Free3),
union(Free1, Free3, Free).

sexp(nat(A), []) :- get_token(nat(A)).
sexp(id(Id), [Id]) :- get_token(id(Id)).
sexp(uop(Uop, Exp), FreeExp) :- uop(Uop), exp(Exp, FreeExp).

uop(minus) :- get_token(kw("-")).
bop(plus) :- get_token(kw("+")). bop(minus) :- get_token(kw("-")).

Figure 7.4 Result: Parsing, AST construction, and determination of free variables.

7.2.2 Scanner Integration is a Concern

Viewing Figure 7.3 from an AOP perspective, it can be seen that the predicate get_-
token/1 is tangled within the grammar. It corresponds to around advice (see Sec-

tion 7.4.4), which is placed to all interesting join points. We add the scanner concern

by instantiating two generic aspects from the aspect library.

118

7.2 Aspects in Grammars for Language Processors - a Motivating Example

1. token/1 marks points in the grammar where lexemes are to be consumed, i.e.,

keywords and lexeme classes, and

2. parser/1 employs token/1 and binds the scanner via around advice to these

places using the predicate get_token/1 with the expected token.

To apply the generic parser aspect, information is needed about concrete lexeme classes.

The desired join points form a set - the corresponding pointcut. The parser expects the

definition of the pointcut lexeme. We define it by aspect let to describe appearances of

lexeme classes, i.e., every appearance of goals nat and id belong to this set (Figure 7.5).

Note that keywords do not need to be included as their form is known (a string in the gram-

Aspect let
Define Pointcut lexeme :

goal(nat), goal(id)

Figure 7.5 The pointcut lexeme describes positions to scan lexeme classes.

mar) and they are already addressed by the pointcut of aspect token/1. Instantiating the

generic parser aspect by aspect let is done at weave-time using a weaver specification

(Figure 7.6).

Weave % Instantiate
parser(let) % generic aspect ’parser’

into % with aspect ’let’
’grammar/let.pl’ % in program of file ’let.pl’

yielding % and store the result
’programs/letparser.pl’ % in file ’letparser.pl’

Figure 7.6 Weaving scanner integration into the grammar using a specialised parser

aspect.

7.2.3 AST Construction while Parsing is a Concern

Similarly, we consider the first argument of predicates for construction of an AST in Fig-

ure 7.4 as an aspect for the logic grammar from Figure 7.2. The logic grammar provides

two kinds of rules: recursive rules, where a part of the AST is constructed from substruc-

tures, and initial rules where leaves of the AST are created. An aspect for AST construction

has to add term construction to all clauses contributing to an AST.

The specification of the aspect ast as given in Figure 7.7 is based on the generic aspect

build/3 from the aspect library, which implements the build-technique from [SK93]

while abstracting from the concrete skeleton. The build-technique is a design pattern in

Prolog for building term structures along the control-flow. New parameter positions are

119

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

added to predicates for collecting substructures, and a new goal is inserted to combine

them. The parameters of the generic build/3 aspect need to be instantiated. We choose

a the aspect name ast, the name of the aspect which addresses the lexeme classes (let),
and a list of nonterminals involved in the construction (exp, sexp, etc., line 2). Further-

more, the aspect contains generic pointcut descriptions to classify two kinds of clauses:

• in build-clauses a structure is constructed from substructures (here, we will construct

an AST), and

• in init-clauses leaves are created (terminals in our example).

These generic pointcuts need also to be instantiated to describe where individual advice

are to be placed for construction. The first argument points to nonterminals defined by the

clause, whereas the other arguments point to substructures, nonterminals not contributing

to the construction, lexemes, or keywords of the clause body in order of appearance in the

clause body. Finally, the last argument denotes the structure to be constructed.

1 Aspect ast
2 requires build(ast, let, [exp, sexp, uop, bop])
3 TermAdvice
4 Pointcut: build_clause(exp, "let", Id, "=", Exp1, "in", Exp2, Exp)
5 Advice : unify (Exp, let(Id, Exp1, Exp2))
6

7 Pointcut: build_clause(exp, Exp1, Bop, Exp2, Exp)
8 Advice : unify(Exp, bop(Bop, Exp1, Exp2))
9 ...

10 Pointcut: init_clause(bop, "+", Bop)
11 Advice : unify(Bop, plus)

Figure 7.7 Description of AST construction for let-Expressions using the generic

aspect build from the library (build/3 implements the build-technique

using AOP).

The generic pointcuts are instantiated for build- and init-clauses (lines 4,7,10). Here, the

kind of advice is term advice, which performs a term manipulation on goals and clauses

addressed by pointcuts, i.e., AST construction. For example, a clause for exp is ad-

dressed, where a structure is created using Exp (4). The associated advice creates the term

let(Id, Exp1, Exp2) and unifies it with Exp (5).

7.2.4 Program Analysis is a Concern

An analysis of unused variables can be described by aspect free (Figure 7.8). Again,

we utilise the generic aspect build/3 to construct the set of variables not used in let-
expressions.

For this purpose, we want to add new code at the end of recursive clauses in the logic

grammar. Hence, the generic pointcut build_clause is instantiated to address building

120

7.2 Aspects in Grammars for Language Processors - a Motivating Example

1 Aspect free
2 requires build(free, let, [exp, sexp])
3 PortAdvice
4 Pointcut:
5 build_clause(exp, "let", id(Id), "=", Free1, "in", Free2, Free)
6 Advice at exitbody :
7 (select(Id, Free2, Free3); Free2=Free3),
8 union(Free1, Free3, Free)
9

10 Pointcut: build_clause(exp, Free1, bop, Free2, Free)
11 Advice at exitbody : union(Free1, Free2, Free)
12

13 TermAdvice
14 Pointcut: build_clause(exp, FreeSExp, Free)
15 Advice : unify(Free, FreeSExp)
16 ...

Figure 7.8 Generic build and its pointcuts are instantiated to describe the construction

of program analysis for unused variables.

clauses of interest, e.g., the rule for let. We provide port advice for adding new Prolog

code to ports (i.e., the join points). To evaluate code at the desired point in the execution,

positioning of code is based on the port model (cf. Section 7.4.1). This allows port advice

to be at call, exit, fail, or, as in our example, at the exitbody port, i.e., code to be

evaluated before exiting the clause. In Figure 7.8, we add code to collect unused variables

at the end of the recursive clause for exp (lines 6-8, 11, 15). A term advice can be used

(13-15) to describe a simple copy of values by unifying the variable names (cf. second

arguments in Figure 7.4, first rule). Note that in our approach the kind of join point to be

used is specified by the advice specification.

7.2.5 Program Transformation Based on a Generic Aspect traverse/1

A program transformation can also be described as an aspect. The aspect library pro-

vides a generic aspect traverse/1, which removes predicates representing keywords

and lexeme classes. When the aspect for AST construction is added, it describes a com-

plete traversal of the AST. The aspect will be instantiated by the program transformation

aspect.

The aspect edl in Figure 7.9 describes a transformation, which eliminates those let-
assignments of variables not used in an expression (e.g., ’let b = 2 in’). It is based

on the aspect free and instantiates the generic build aspect to construct the AST along

the logic grammar from Figure 7.2. A new pointcut eliminate is defined (3), which

addresses building clauses defining let-expressions. It is used to place port advice at the

end of a clause body addressed by the pointcut removing an unnecessary let-assignment.

Properties of goals and clauses, here the pointcut context, are used to restrict the set of

identified join points. Simplified, a context is a list of pointcuts (for more detail, see Sec-

121

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

1 Aspect edl
2 requires free, build(edl, let, [exp, sexp, uop, bop])
3 Define Pointcut eliminate(FreeVars, Id, Exp1, Exp2, Exp) :
4 Any
5 where
6 parallel context contains
7 build_clause(exp, "let", Id, "=", Exp1, "in", Exp2, Exp)
8 of aspect edl
9 first left context contains

10 struct(exp, FreeVars) of aspect free
11 PortAdvice
12 Pointcut: eliminate(FreeVars, Id, Exp1, Exp2, Exp)
13 Advice at exitbody
14 member(Id, FreeVars) -> Exp = let(Id, Exp1, Exp2) ; Exp = Exp2
15 ...

Figure 7.9 Aspect edl: Describing removal of dead lets based on a generic aspect tra-

verse/1 similar to parser/1.

tion 7.4). The role of the context is two-fold: It can be used to restrict the set of join points

belonging to the pointcut. But more importantly, it establishes communication between

pointcuts, and thus between advice. In Figure 7.9 the first property (6-8) means: ’the

join point shadow has pointcut build_clause of aspect edl in its parallel context’.

The parallel context contains pointcuts addressing the same goal or clause. The pointcut

build_clause is described as part of the generic aspect build instantiated by aspect

edl. Pointcut struct/2 is defined by another instance of aspect build used by aspect

free (10) and refers to the structure built by this aspect, i.e., the set of unused variables in

the last sub-expression. The pointcut eliminate combines information of both point-

cuts, which is then used by the port advice (12) to decide whether the let-expression is

necessary.

7.2.6 A Note on Description Size

Our description of aspects in the previous example may seem too large compared to the

result. However, the reader should note:

• When extending the grammar to a larger more realistic one, the aspect descriptions

may grow slower. Only relevant clauses need to be treated with advice. Some point-

cuts are reused. This depends on the specific concern. For example, it is in the nature

of AST construction that it nearly doubles the grammar.

• An important advantage, however, is the modular description. This allows devel-

opment of the grammar / language processor by stepwise enhancement, which is

an accepted engineering method. Also, it includes separate maintenance and avoids

bugs by manual editing in unreadable code, when more concerns are added. More-

over, aspects can be switched on/off without modifying the code. This allows to use

122

7.3 A Simple Running Example

the debugging aspect when needed only or to experiment with several implemen-

tations of the concerns. Different choices for aspects support experimenting with

different variants of a language processor.

• Additionally, places of interest are defined using a property-based approach as op-

posed to the use of unique selectors (e.g., marked by programmer given tags). Thus,

the aspect can take future Prolog code into account or modules of other program-

mers. Goals and clauses are addressed, as long as they possess the required proper-

ties. For example, the extension of the grammar by new rules would not require a

change in the scanner integration (if no new lexeme classes are added). This is even

more interesting for other Prolog programs, as pointcuts are defined property-based

and will catch join points the programmer does not know yet.

7.3 A Simple Running Example

In the previous section, we have discussed how parts of a language processor can be de-

scribed modularly as aspects in the grammar. In this section, we introduce the very simple

example list → list|ε, which will be used in Section 7.4 to explain the representation of

aspect-oriented concepts in Prolog in detail.

7.3.1 Computations on Lists

Many computations along the grammar are similar and can be introduced in a systematic

manner by applying techniques [SK93], which can be considered as design patterns in

Prolog. For example, the generic build-aspect implemented in the library is the most

used technique in the language processor context for building structures.

A simple example of a technique is the calculate-technique to add values and their

computation along a skeleton, i.e., the initial situation before the next enhancement is ap-

plied. (Note, instead of values an AST could be constructed.) Figure 7.10 (b)-(d) depict

Prolog programs, which are results of extending Figure 7.10 (a), renaming and merging

them. They work similarly as different phases/ aspects in a language processor. Fig-

ure 7.10 (b) is the result of extending the basic structure by the summation of elements

(changes are underlined). Figure 7.10 (c) shows that another result can be achieved based

on the same skeleton. Figure 7.10 (d) gives an example how different “phases” are wo-

ven together (this corresponds to the loop optimisation problem used in [KLM+97b] to

introduce AOP concepts).

7.3.2 Aspect-Oriented Description of sumlist

Using aspects we will describe how to add code to achieve the step from Figure 7.10 (a)

to (b). As we will discuss at the technical level in Section 7.4, we give the basic Prolog

representation of the aspect (Figure 7.11).

The pointcut sum (2-3) addresses all goals and clauses in the skeleton which ought to

be affected by the summation aspect. Every such appearance is renamed to sumlist

123

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

1 (a) (b)
2 list([]). sumlist([] , Sum) :- Sum is 0.
3 list([H|T]) sumlist([H|T], Sum)
4 :- list(T). :- sumlist(T , TSum)
5 , Sum is TSum + H.
6 (c) (d)
7 list

����
len([]

�
,

�����
Len) sumlist

���
len([] , Sum

�
,

�����
Len)

8
���
:-

�����
Len

����
is

��
0. :- Sum is 0

��
,

�����
Len

����
is

��
0.

9 list
����
len([H|T]

�����
,Len) sumlist

���
len([H|T], Sum

�
,

�����
Len)

10 :- list
����
len(T

������
,TLen) :- sumlist

����
len(T , TSum

�
,

�������
TLen),

11
�
,

�����
Len

����
is

�������
TLen

��
+
���
1. Sum is TSum + H

12
�
,

�����
Len

����
is

�������
TLen

��
+

���
1.

Figure 7.10 Computations on a list skeleton

1 % Pattern, Context, Aspect, PC name
2 pointcut(clause(list(L), Body), C, sumlist, sum(Sum)).
3 pointcut(goal(list(L)), C, sumlist, sum(Sum)).
4

5 % Aspect Pointcut Advice (term transformation)
6 term_advice(sumlist, sum(Sum), rename(sumlist)).
7 term_advice(sumlist, sum(Sum), extra_args([Sum], last)).
8

9 % - - - - - - - - - -
10 pointcut(clause(list([]), _), C, sumlist, init_clause(Sum))
11 :- context(C, parallel, sumlist, sum(Sum)).
12

13 % Aspect Pointcut Port Code
14 port_advice(sumlist, init_clause(Sum), exitbody) :- Sum is 0.
15

16 % - - - - - - - - - -
17 pointcut(clause(list([H|_]), _), C, sumlist, rec_clause(H, TSum, Sum))
18 :- context(C, parallel, sumlist, sum(Sum)),
19 context(C, left(first), sumlist, sum(TSum)).
20

21 port_advice(sumlist, rec_clause(H, TSum, Sum), exitbody)
22 :- Sum is TSum+H.

Figure 7.11 Pointcut and advice of aspect sumlist to sum up the elements of a list

124

7.4 Representing Concepts of AOP in Prolog - Level 1

(6) and gets an extra argument using term advice (7). Next, code for initialisation of

the computation is added (using port advice) at the end of the body (port exitbody) of

the initialisation clause (14) for the list traversal, which is addressed by pointcut init_-
clause (10). Finally, the code for summation is added at the end of recursive list clauses,

again using port advice (21). The necessary values are provided via logic variables being

arguments of the pointcut rec_clause. The pointcut examines the pointcut context

of the current clause to refer to the pointcut sum addressing the same clause (18), and

to the pointcut addressing a preceding goal in the computation for intermediate results

(19). Values are passed using logic variables, which are arguments of pointcuts. Note that

matching of the structure of the arguments is done at weave time. Thus, init_clause
(10) addresses only the first clause (2) in Figure 7.10.

7.4 Representing Concepts of AOP in Prolog - Level 1

In this section we discuss how in our approach the concepts of aspect-oriented program-

ming are represented in Prolog and show how they can be specified by the user. The

notation is code-named Laola (Logic aspect-oriented language). The basis for Laola is the

operational semantics of Prolog (i.e., the procedural interpretation of Horn clauses), and

the port model from Figure 7.1, which will be explained in the following section.

7.4.1 Control Flow in Prolog and Join points

Intuitively, the aim is to attach additional program code at desired places in the program to

affect the execution in some way. This requires an understanding of the control flow. To

describe and understand that of Prolog port models are used. The ports are the join points

in our approach. The kind of kind of port advice is placed to is determined by the advice

description.

We use the fine-grained port model borrowed from IF/Prolog [Sie99] given in Figure 7.1.

It is an extension of that presented by Byrd [Byr80], which has been used as basis for the

implementation of Prolog tracers. The main difference between our approach and the

Byrd model is the distinction of two kinds of boxes for goals and for clauses extended by

an error port (which is passed when an exception is raised). Ports to enter and leave a box

representing a goal correspond to those in the Byrd model. Note that we need the ports of

clauses, too, e.g., to add advice to a single clause of a predicate.

For completeness, we summarise the control flow. If such a goal box is entered by the

call port, a corresponding clause box is created inside of the goal box for each clause of the

treated predicate. When evaluating the actual goal, those clause boxes can be entered/left

through different ports. To unify the actual goal with the clause head the first clause box is

entered via the trymatch port. If the head and actual goal are not unifiable, it is left through

the failmatch port and the next clause box is evaluated. Otherwise, the clause body is

entered through the enterbody port.

In the clause body, goal boxes of subgoals are evaluated successively to satisfy the actual

goal. The goal boxes created inside of the clause body are predetermined by the clause

125

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

used and the unification of the actual goal with the clause head. If the subgoals were

successful, the clause box is left through the exitbody port and the surrounding goal box

is left through the exit port. Otherwise, the clause box is left via the failbody port, and the

next clause is evaluated for the actual goal.

If the last clause box within a goal box is left through the failmatch or failbody port, the

actual goal fails, and the surrounding goal box is left through the fail port. If the goal box

is entered through the redo port, the clause box most recently left through an exitbody port

is re-entered through the redobody port. Inside the clause box the last subgoal is entered

again by the redo port implementing the backtracking.

7.4.2 Pointcuts and Pointcut Descriptions

Pointcuts are sets of join points (i.e., sets of ports). In our setting, a pointcut can be

denoted by a possibly parameterised name and is associated with an aspect. Join points are

quantified implicitly by denoting goals and clauses in the program text, and thus specifying

the corresponding ports. The set can be restrained by additional properties of these goals

and clauses. The kind of join point (kind of port) the advice is placed to is determined by

the advice. We will say a goal or a clause is addressed by a pointcut when we mean a goal

or a clause which has at least one of its ports in the pointcut.

As natural for Prolog, pointcuts are specified using a predicate. Thus, the pointcut

description is a set of clauses of the form pointcut(P, C, A, N) ← G1, . . . , Gn., where P
is a pattern for goals and clauses, C is a term representation of the context of the addressed

goals and clauses, A is a term denoting the aspect the pointcut belongs to, N is a term

denoting the name of the pointcut, and Gi are goals describing additional properties of the

goals and clauses.

Patterns are needed for both, goals and clauses. This allows to address, e.g., a special

single appearance of a goal or to choose one alternative clause to add advice at a corre-

sponding port. Note that only static information is available before run-time. Each ap-

pearing atomic goal p(X1, . . . , Xn) can be denoted by goal(p(X1, . . . , Xn)). Each clause

p(X1, . . . , Xn) ← G1, . . . , Gm can be denoted by clause(p(X1, . . . , Xn), (G1, . . . , Gm)).
Using variables several program points can be described at once. For example,

goal(list(X)) includes every occurrence of a goal list/1. The pattern

clause(list([H |_]), _) denotes all clauses of predicate list/1, where the

clause head separates a list in head H and some tail (Figure 7.10 (a) line (3)). Facts can

be treated as clauses with body true. Composite goals, goals as arguments of meta-

predicates, queries, and whole modules have not been included for simplicity. However,

they could be treated similarly or simulated using aspects.

Properties are used to restrain the set of join points. The property-based selection is more

general and more insusceptible to adding new modules in contrast to unique selectors. A

special property pertains to the pointcut context. The context of a given goal or clause

consists of special pointcuts containing join points corresponding to goals and clauses

from the neighbourhood of the given goal or clause. This is discussed in the next section.

A possible parameter for the pointcut name can refer to data from the goal or clause,

to data from the context of the goal or clause, and/or to temporary variables used for

126

7.4 Representing Concepts of AOP in Prolog - Level 1

intermediate results to support communication between join points with program code to

be introduced by the weaver.

The pointcut descriptions in Figure 7.11 specify places of interest in Figure 7.10 (a):

sum contains join points marking goals and clauses of list/1 to be renamed and get

a parameter added to, init_clause those to add an initialisation, and rec_clause
those to add a summation. Also, the pointcut names have arguments to provide data to be

used in advice, e.g., rec_clause summarises the head of the list of the actual clause

line (17), the intermediate result TSum (19), and the final result Sum (18). The port advice

in line (21) accesses those arguments to determine the advice to be added.

A given pointcut description can also be interpreted more procedurally to determine all

pointcuts given join point belong to. Let P be a goal or clause corresponding to a join point

J and C the context of P . Then pc(P, C) := {(N, A)|pointcut(P, C, A, N)} denotes all

pointcuts containing J represented by pairs of their names together with the name of the

aspect they are related with. (Patterns are possible.) This interpretation is the basis for the

weaving process.

7.4.3 Pointcut Context

The pointcut context of a goal contains pointcuts which address goals preceding (and in-

cluding) the actual goal and the surrounding clause; that of a clause contains pointcuts of

goals in the body and that of the addressing clause. As pointcuts are described based on

goals and clauses, it is also the pointcut context of their corresponding join points.

Context specification can be used to restrict the set of join points belonging to a certain

pointcut or to having a desired pointcut in their context. Much more important, the context

is necessary to establish communication between several pointcuts, e.g., to have access to

intermediate results of a preceding goal in the computation. Each given clause to specify

a pointcut influences the context of the addressed goal, the context of goals following

the goal addressed, the context of a clause which contains the addressed goal or which is

addressed itself. As depicted in Figure 7.12 for goals, the context C of a program point P
(a goal or a clause) consists of the parallel context, the parent context, and the left context,

i.e., C = (context||(P, C), contextp(P, C), contextl(P, C)). Note that the definition is a

recurrent one. The determination of the context is a task to be performed by the weaver.

We represent contexts as lists. This allows the introduction of a ’kind of distance’ between

join points in the context (hence, between goals), which can be used for searching the

context later on in accordance with operational semantics of Prolog.

Parallel context.

The set of pointcuts addressing the same program point P (i.e., goal or clause) we name

the parallel context of P , denoted by context||(P, C) := pc(P, C). The parallel context is

used, for example, to combine information of pointcuts addressing the same goal.

In the clause for the empty list (pointcut init_clause) of Figure 7.10 (a), we want

to initialise a variable. The variable has to be identical to the one added for sum at the

127

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

Figure 7.12 Parallel, parent, and left context of a goal Gi in a clause c

same clause. Here, sum is in the parallel context of the clause,

i.e., [(sum(Sum),sumlist),(init_clause(Sum),sumlist)].

Parent context.

Sometimes it is necessary to consider the clause, which surrounds the actual goal, e.g.,

to inspect whether a recursive goal is denoted. Pointcuts, which address boxes enclos-

ing the actual goal form the parent context. Let c : H ← G1, . . . , Gn be a clause of

a Prolog program, Gi an arbitrary atomic goal occurring in the body of c. The par-

ent context of c is denoted by contextp(c, _) := [], and for Gi by contextp(Gi, C) :=
[context||(c, C)]. If the whole clause is addressed there is no parent context as there is no

information about the dynamic context of this clause. Otherwise, the context is formed

by the parallel context of the clause. For example, for the recursive goal list/1 it

is [(sum(Sum),sumlist),(rec_clause(Sum),sumlist)] (though it is un-

needed for the example).

Left context.

The left context of a clause is determined by all contexts of all goals in a clause. The

left context of a goal is determined by all contexts of all goals left of the addressed goal.

Let c : H ← G1, . . . , Gn be a clause of a Prolog program, Gi an arbitrary atomic goal

occurring in the body of c. The left context of c respectively Gi is defined as

contextl(c, C) :=

{
[] , n = 0
context||(Gn, C).contextl(Gn, C) , n > 0

contextl(Gi, C) :=

{
[] , i = 1
context||(Gi−1, C).contextl(Gi−1, C) , 1 < i ≤ n

Here, · represents list concatenation. The organisation in lists allows the specification of

the distance to the actual goal. The context is left-oriented due to the operational semantics

128

7.4 Representing Concepts of AOP in Prolog - Level 1

of Prolog. A right context is not necessary, as the reference between the actual goal and

one rightwards could be achieved by using the left context of the goal to the right. The left

context allows the reuse of intermediate results of already evaluated goals in predicates.

In the example of Figure 7.10, we want to add the summation Sum is TSum + H
in the neighbourhood of the recursive call list(T,TSum) (up to renaming, which is

also done using sum). The recursive goal is denoted by a join point contained in sum.
This pointcut can be found by searching the left context ([(sum(TSum),sumlist)]).
Note, the order of pointcuts is relevant for determination of certain pointcuts.

The use of context in pointcut specifications.

Context can be given explicitly as a term. For example, ([(a,m),(b,n)],[],[])
denotes a context which contains two pointcuts a and b addressing the same join point

shadow (parallel context). However, using terms is very difficult and very restrictive.

Note that the context possibly contains many pointcuts not known to the programmer,

e.g., through adding aspects from a library. Hence, the context is investigated using the

predefined predicate context(+C, +K,−A,−N), where C is the context, K specifies the

kind of context, which has to be investigated, A is the name of the aspect the pointcut

belongs to, and N is the name of the pointcut. Possible values for K are parallel for

the parallel context, inside for the parent context, and left for the left context. The

depth of the search can be controlled with arguments to K (not for parallel contexts). For

example, first looks for the next pointcut in the context, near searches until the first

matching pointcut, and all looks for all alternatives. There is no restriction for further

arguments. The predicate has to be provided by the weaver and allows to abstract from

uninteresting pointcuts in the context.

The example in Figure 7.11 uses a specification of pointcuts for describing an aspect

sumlist to sum up all elements of a list. First, the pointcut sum is described, which

covers clauses and goals of the predicate list/1 (2,3). The pointcut has the argument

Sum, which serves as a temporary variable to contain the sum. Next, the pointcut init_-
clause gathers nonrecursive clauses of list/1, where it will be necessary to perform

the initialisation of the sum (10). Therefore, the argument Sum is required for the pointcut

description. Applying predicate context/4 we get the Sum from the parallel context,

namely from pointcut sum(Sum). Finally, pointcut rec_clause covers the recursive

clause of list/1 (17). Furthermore, it has arguments H (which is the actual list element),

TSum for the result from the recursive call, and Sum, the sum to be computed. Sum is

taken from the parallel context, TSum comes from the left context.

This shows the general concept of the context. However, the definition can be refined.

Also, context/4 can be extended to support other kinds of searching.

7.4.4 Advice

Advice is program code to be added at join points specified by pointcut descriptions. The

definition of advice is based on the procedural interpretation of Prolog programs and the

129

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

port model as given in Figure 7.1 and described in Section 7.4.1. We suggest three kinds

of advice.

A port advice is an additional (possibly compound) goal to be resolved at a port. A port

advice declaration is of the form

port_advice(A, N, P) ← G1, . . . , Gn. where A is a term denoting the aspect the advice

belongs to, and N is a term denoting a pointcut containing join points affected by the

advice, P is a term denoting the port the advice is placed on (e.g., before proving a goal,

at redoing the goal etc.), and Gi are goals constituting the advice itself. The possible ports

are specified in the port model in Figure 7.1.

Around advice are pieces of code to be used instead of a goal or body of a clause. It also

allows to place code around a goal respectively clause body. Due to the similarity of the

effect to that of port advice they are specified as port advice to be attached to a virtual port

around.
Term advice describe a transformation of the term representation of a goal or clause.

For a goal goal(G) the term affected is G, for a clause clause(H, B) the term affected is

H . A term advice is specified by term_advice(A, N, T) ← G1, . . . , Gn. where A is a

term denoting the aspect the advice belongs to, N is a term denoting a pointcut containing

join points affected by the advice, T is a term denoting the advice (a term transformation),

and Gi auxiliary goals computing arguments used by the advice. Possible values for T are

rename/1 and extra_args/2 for renaming of predicates and introduction of extra

arguments. Term advice in general is not limited to those. In Figure 7.11, term advice is

used to perform a renaming (6) and to add an extra argument at the last position of the

actual goal (7).

Similarly to around advice, term advice could have been provided by virtual ports serv-

ing as join points for components of the term representation. However, term transforma-

tions simplify the application of term advice.

7.4.5 Aspects

Simple aspects.

An aspect is a language construct which contains all advice needed to implement a partic-

ular concern together with the corresponding pointcut descriptions. In our setting aspects

are a grouping mechanism for pointcuts. The description of a pointcut by pointcut/4
contains the name of an aspect the pointcut belongs to. Advice specify the pointcut they

are associated to, as well as the aspect they belong to. For example, Figure 7.11 shows a

complete aspect to sum up the elements of a list.

A weaver takes the aspect and the original program and creates a program with the

advice woven in. For the given aspect and the skeleton of the list traversal in Figure 7.10

the weaving leads to the result shown in Figure 7.13, which is actually (and intentionally)

the same as sumlist/2 in Figure 7.10.

Aspects can depend on other aspects. Cyclic dependencies can exist, e.g., a group of

aspects only makes sense together, while their descriptions remain separated. The weaver

can determine the dependencies and weave in all required aspects.

130

7.4 Representing Concepts of AOP in Prolog - Level 1

sumlist([], Sum) :- Sum is 0.
sumlist([H|T], Sum) :- sumlist(T, TSum), Sum is TSum + H.

Figure 7.13 Result of weaving the sumlist aspect to list/1 of Figure 7.10

pointcut(Pattern, Context, rename(Name/Arity, NewName), rename):-
(Pattern = goal(Goal) ; Pattern = clause(Goal, _)),
nonvar(Goal), functor(Goal, Name, Arity).

term_advice(rename(Name/Arity, NewName), rename, rename(NewName)).

Figure 7.14 Generic Aspect rename/2 for renaming predicates

Generic aspects.

If aspect names are parameterised, those arguments can be used in pointcut descriptions

and advice in a generic way. An example is aspect rename/2 for renaming predicates

given in Figure 7.14. The first argument contains the symbol and arity of the predicate to

be renamed, the second one contains the new name. Due to the static weaving, generic

arguments have to be instantiated at weave-time. This can be done by delivering concrete

values at weaver execution or by aspects depending on the generic aspect. For example,

generic aspects can be used to describe techniques from the field of stepwise enhancement.

7.4.6 Weaver

The weaver is a meta-program which takes the original source program and the aspects

(pointcut descriptions and advice) and transforms them to a source program with the as-

pects woven in. We decided in favor of a static weaver. This has the advantage that the

effect of the aspect specification can be studied in the source code produced by the weaver.

For the transformation, the weaver needs to investigate each possible clause and goal in

the source (simple traversal), to determine all pointcuts containing join points associated

with the clauses and goals examined (usually includes context analysis), and to insert the

corresponding advice in the source in a way that its effect seems to appear at the desired

port. Figure 7.15 shows the weaving transformations. For example, for a port advice at

port call, the goal Goal is replaced by the compound goal, consisting of the attached

advice Advice followed by Goal . Considering the operational semantics of Prolog, the

advice is evaluated in the transformed program before the original goal is tried. Hence, the

desired effect of an added goal at a call port is yielded.

Additionally, the weaver makes information provided by possible arguments in pointcut

names accessible for an advice, which then uses it to access to data from the goal and

clause corresponding to the join point and to exchange data between advice. The weaver

takes into account only pointcut descriptions, which belong to the aspects to be woven.

Thus, aspects can be used to summarise pointcut descriptions and advice. This allows for

131

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

a separate description of aspects and increases their reuse. From this point of view, an

aspect summarises the implementation of a concern.

Goal
call
� Advice,Goal

Goal
exit
� Goal ,Advice

Goal
error(Error)

� catch(Goal ,Error ,Advice)

Goal
fail
� (true;Advice),Goal

Goal
redo
� Goal , (true;Advice)

Goal
around
� Advice

p(X1, . . . , Xn)
rename(q)

� q(X1, . . . , Xn)

p(X1, . . . , Xn)
extra_args([Y1,...,Ym],i)

� p(X1, . . . , Xi, Y1, . . . , Ym, Xi+1, . . . , Xn)

p(X1, . . . , Xn) ← Body .
trymatch

� p(Y1, . . . , Yn) ← Advice,
X1 = Y1, . . . ,
Xn = Yn → Body .

p(X1, . . . , Xn) ← Body .
enterbody

� p(X1, . . . , Xn) ← Advice,Body .

p(X1, . . . , Xn) ← Body .
exitbody

� p(X1, . . . , Xn) ← Body ,Advice.

p(X1, . . . , Xn) ← Body .
failmatch

� p(Y1, . . . , Yn) ← (true;Advice),
X1 = Y1, . . . ,
Xn = Yn → Body .

p(X1, . . . , Xn) ← Body .
failbody

� p(X1, . . . , Xn) ← (true;Advice),Body .

p(X1, . . . , Xn) ← Body .
redobody

� p(X1, . . . , Xn) ← Body , (true;Advice).

p(X1, . . . , Xn) ← Body .
around
� p(X1, . . . , Xn) ← Advice.

Figure 7.15 Transformations implementing advice

If dependencies between aspects are specified, required aspects can be loaded during

weaving. Cyclic dependencies can be handled based on set semantics. The weaver can

be provided as a simple library applied at load-time using term_expansion/2, thus
making a separate preprocessor unnecessary.

7.4.7 A Note on the Implementation

Some Prolog implementations such as [Wie06] allow to customise loading of Prolog pro-

grams by providing a predicate term_expansion(+C1,-C2), which replaces each

clause C1 by C2. Then, weaving is done at load-time, if the weaver is called in the defini-

tion of the predicate.

Due to the operational semantics of Prolog, the order in which the aspects are woven

in is significant. In our current implementation, renaming the same predicate by several

aspects renames the predicate to the name determined by the last aspect added. Adding

132

7.5 The Aspect Library - Level 2

extra arguments twice results in adding two arguments. This is used in Section 7.2 to add

extra arguments for the AST with the ast-aspect and to add extra arguments for the AST

without free variables with the free-aspect. Here, the use of term_advice to add extra

arguments is hidden in the build-aspect. While weaving advice code, fresh variables are

introduced and corresponding variables are unified.

We provide a predicate require_aspects/2 to read all necessary aspect definitions

and to determine circular dependencies. The use of side effects in Prolog code, such as the

! or \+ (negation) can lead to infinite loops when used in pointcut expressions.

7.5 The Aspect Library - Level 2

The aspect library comprises reusable aspects to support language processing. Most impor-

tant, a set of generic aspects formalise generalised techniques in a skeleton (i.e., grammar)

independent manner. For example, Section 7.2 applied the generalised technique build
to create ASTs in combination with the generic parser aspect. Besides, these aspects

support incremental development of Prolog programs in general.

The aspect sumlist in Section 7.3 modularises a particular application of the

calculate technique. In this section, we will discuss generic techniques and demon-

strate by the example of calculate how we can make it reusable and independent from

a concrete skeleton.

7.5.1 Stepwise Enhancement, Skeletons, and Techniques

AdaptingWirth’s stepwise refinement to Prolog the method of stepwise enhancement [JS94]
specifies an incremental process to develop Prolog programs. In a first step a skeleton con-

stituting the control flow of the program is identified. Parser, meta-interpreter, or traversals

are typical skeletons. In a further step, applications of standard programming techniques
place additional computations around the skeleton’s control flow and yield enhancements
of the skeleton.

Techniques, e.g., [SK93], constitute standard programming practices in Prolog and can

be considered as design patterns, i.e., they are generic and frequently used. Techniques

define the computations along the control flow determined by the skeleton. It extends the

structure of a skeleton by adding arguments and goals. Then those enhancements are com-

bined to a program including all additional computations. This program can be considered

as a new skeleton. The final program is obtained by repetitive application of techniques.

The authors argue in [JS94, JKS94] that a proof of correctness of the final program can

be leveraged from the development history. Furthermore, skeletons and techniques offer a

high degree of reuse.

A technique can be applied to different skeletons. It can be considered as a structural

mapping between a skeleton and an enhancement [JS94]. In general, application of a

technique adds an extra argument to the predicate carrying the result of the calculation.

Furthermore, initial values and arithmetic functions computing new values out of values

from preceding calculations are specified.

133

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

7.5.2 Generalised Techniques

Using the first level discussed in Section 7.2, it is now possible to describe and use the

application of a technique such as the build-, accumulator-, and the calculate-techniques.
For example, the application of the calculate-technique to Figure 7.10 (a) to achieve

Figure 7.10 (b) in Section 7.3 is described by aspect sumlist (cf. Figure 7.11). Tech-

niques, too, can be described by generic aspects. We will demonstrate this in the following.

Generic aspects need good user documentation to be beneficial.

Formal parameters of the generic aspect make the description of a technique indepen-

dent of particular skeletons. Generic pointcut descriptions use the parameters to classify

clauses and goals in terms of the technique. Aspects describing the application of a tech-

nique instantiate the formal parameters with a list of concrete predicates in the skeleton

affected by the application. The application aspect can then use pointcuts described by the

generic aspect. In a next step pointcuts described by the generic aspect can be used by

the application aspect to place individual advice. We will illustrate this in the following

example.

7.5.3 Formalising Techniques as Generic Aspects: Calculate

While explaining the representation of concepts in Prolog, we showed that an application

of the calculate-technique could be modularised by the sumlist-aspect. However,

those pointcut descriptions rely on the list/1-skeleton. Here, we illustrate by the exam-

ple of the calculate-technique how techniques themself can be described in a formal

way by generic aspects (cf. Figure 7.16). The approach is an example for providing new

generic aspects for the aspect library. We use the Laola (Prolog) syntax for its compact-

ness. At the end, sumlist is described in Figure 7.17 based on calculate. Note that

term structures such as an AST could be constructed using this technique, too.

The calculate-technique is employed for additional calculations along the control

flow of a skeleton. Applications of the technique add an extra argument to predicates

involved in calculation. Furthermore, an extra arithmetic goal is added to the body of

each recursive goal to relate the calculation from the body with the final result in the head

of the clause. The technique can be represented as a generic aspect calculate(+N,
+Preds), as illustrated in Figure 7.16. Here, the first generic parameter N specifies a

unique name to distinguish different applications of the technique. The second generic

parameter Preds contains a list of predicates involved in calculation. Each predicate is

represented by a term Pred/N/Pos, where Pred is the predicate symbol, N its arity, and

Pos the position to insert the extra argument carrying the structure to build.

Involved predicates. Clauses and goals of predicates involved in calculation are ad-

dressed by a generic pointcut val/2 (Lines 1-2 for addressing clauses, lines 3-4 for

goals). For a given clause or goal the predicate symbol Pred and its arity N are deter-

mined. If corresponding information is found in the list of involved predicates, the cor-

responding join points are included in a pointcut val(Pred/N, V), where V is a free

134

7.5 The Aspect Library - Level 2

variable intended to carry the result of calculation. Term advice is placed at the pointcut

to add the extra argument to all occurrences of involved predicates (6-7).

1 pointcut(clause(Head, _), _, calculate(Name, Preds), val(Pred/N, _V)):-
2 functor(Head, Pred, N), memberchk(Pred/N/_, Preds).
3 pointcut(goal(Goal), _, calculate(Name, Preds), val(Pred/N, _V)):-
4 nonvar(Goal), functor(Goal, Pred, N), memberchk(Pred/N/_, Preds).
5

6 term_advice(calculate(_, Preds), val(Pred/N, V), extra_arg(V, Pos)):-
7 memberchk(Pred/N/Pos, Preds).
8

9 pointcut(clause(_, _), C, calculate(Name, Preds), Pointcut):-
10 context(C, parallel, calculate(Name, Preds), val(Pred/N, V)),
11 \+ context(C, left(all), calculate(Name, Preds), val(_, _)),
12 (context(C, parallel, N, elem(Elem)) ->
13 Pointcut = init_clause(Pred/N, Elem, V) ;
14 Pointcut = init_clause(Pred/N, V)).
15

16 pointcut(clause(_, _), C, calculate(Name, Preds), Pointcut):-
17 context(C, parallel, calculate(Name, Preds), val(Pred/N, V)),
18 context_all(Pattern, C, left(all),
19 calculate(Name, Preds), val(_, Pattern), Bag),
20 \+ Bag = [], reverse([V|Bag], Vs),
21 (context(C, parallel, N, elem(Elem)) ->
22 Pointcut =.. [calc_clause, Pred/N, Elem|Vs] ;
23 Pointcut =.. [calc_clause, Pred/N|Vs]).
24

25 pointcut(goal(_), C, calculate(Name, Preds), calc_goal(Pred/N, V)):-
26 context(C, parallel, calculate(Name, Preds), val(Pred/N, V)),
27 context(C, inside(first), calculate(Name, Preds), val(_, _)).
28

29 pointcut(goal(_),C,calculate(Name,Preds),client_goal(Pred/N,V)):-
30 context(C, parallel, calculate(Name, Preds), val(Pred/N, V)),
31 \+ context(C, inside(first), calculate(Name, Preds), val(_,_)).

Figure 7.16 The calculate-technique can be described as a generic aspect

Initialisation clauses. Clauses of involved predicates are classified into initialisation
clauses and calculation clauses. Bodies of initialisation clauses do not contain goals

of involved predicates. During the calculation process results are initialised in these

clauses possibly using elements provided by the clause. More formally, consider (9-14).

Firstly, the parallel context must contain a pointcut val/2 because initialisation clauses

are clauses of involved predicates. Secondly, no pointcut val/2 is allowed in the left con-

text of the clause since initialisation clauses do not contain involved goals. Finally, an extra

element needed to initialise a result can be provided by a pointcut elem/1. If there exists

such a pointcut in the parallel context of the clause, the corresponding join points belong to

a pointcut init_clause(Pred/N, Elem, V). Here, Pred/N denotes the symbol

135

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

and arity of the predicate the clause defines. Elem forms the extra element provided by

the clause. V is a variable carrying the result to initialise. If the clause provides no extra

element there will be no pointcut elem/1 in the parallel context of the clause. The join

points corresponding to the clause are part of a pointcut init_clause(Pred/N, V).
Bodies of calculation clauses contain goals involved in the calculation. Results calcu-

lated by these goals are used to calculate a new result in the head of the clause. As in

initialisation clauses, an extra element can be provided by the clause. Pointcuts addressing

calculation clauses can be described as illustrated by (16-23). As calculation clauses de-

fine involved predicates the parallel context must include a pointcut val/2. Furthermore,

all substructures provided by involved goals in the body of the clause are collected from

the left context of the clause (right to left). If there exists at least one such substructure, the

clause is a build clause addressed by a pointcut calc_clause. The pointcut refers the

predicate symbol Pred, its arity N, a possibly offered element Elem, temporary results

ordered from left to right, and the result to calculate by the clause.

Calculation goals. Similarly, involved goals can be classified. Calculation goals cal-

culating temporary results occur in the body of calculation clauses. This is formalised

by the description of the pointcut calc_goal/2 in lines (25-27). Firstly, the parallel

context again needs to contain a pointcut val/2 expressing the goal is involved in cal-

culation. Secondly, the parent context must contain another pointcut val/2 covering an

involved clause the goal belongs to. The goal then is addressed by a pointcut calc_-
goal/2. Arguments of the pointcut are taken from the pointcut val/2 in the parallel

context.

Client goals. In contrast to calculation goals, client goals occur only in clauses not

involved into the building process. These goals offer an interface to use calculated values

outside involved predicates. The description of the pointcut client_goal/2 is similar

to the one of calc_goal/2 discussed earlier (29-31).

Representing sumlist/1. In Section 7.3.2 we modeled the stepwise enhancement

of Figure 7.10 (a) to achieve (b) using aspect-oriented means. Using the generic aspects

calculate/2 and rename/2 (from the example Figure 7.14, Section 7.4.5), it is

now possible to modularise the application of the calculate-technique to the skele-

ton list/1 to a more compact aspect, as shown in Figure 7.17. To calculate the sum of

elements in a list the actual element is needed, which is expected to be addressed by the

pointcut elem/1 (cf. Figure 7.16,(12)). This element expands to the pointcut calc_-
clause. Thus, port advice describes the calculation.

7.6 A DSL - Level 3

The Laola notation in Section 7.4 provides the AOP concepts in a very Prolog-like way.

Describing aspects is just writing logical programs, a weaver implemented in Prolog can

immediately reuse the pointcut descriptions for the weaving process.

136

7.6 A DSL - Level 3

1 :- require_aspects(sumlist, [calculate(sumlist, [list/1/last]),
2 rename(list/1, sumlist)]).
3

4 pointcut(clause(list([X|_]), _), _, sumlist, elem(X)).
5

6 port_advice(sumlist, init_clause(list/1, Sum), exitbody):- Sum is 0.
7 port_advice(sumlist, calc_clause(list/1, X, TSum, Sum), exitbody):-
8 Sum is TSum + X.

Figure 7.17 sumlist can be described based on calculate and rename

aspect = "aspect" a_id [requirements]
(pointcut_definition | term_advice | port_advice)*

requirements = "requires" a_id ("," a_id) *
pointcut_definition =

"Define" "Pointcut" pc_id ":"
source_pattern ("," source_pattern)*

["where" (property | context)+]

context = (parallel_context | left_context | parent_context)
"of" "aspect" a_id

parallel_context = "parallel" "context" "contains" pc_id
...
term_advice = ...
port_advice = ..

source_pattern = "Any" | clause_pattern | goal_pattern
property = prolog_goal
pc_id = prolog_term

Figure 7.18 Grammar snippet for the DSL

However, that syntax encumbers readability. Pointcut descriptions, term advice and

port advice all look very similar. The reader always has to keep in mind the meaning of

the arguments. Though the definition of generic aspects of design patterns will remain

the task of experts, it should be easy for the user to apply them. This is supported by a

relatively straightforward syntax named Swell, increasing the readability while allowing

this notation to be translated to the original notation with a simple scheme. The advantage

is that the semantics of the DSL is immediately defined by Laola.

We used the following simple method to derive a DSL (also applicable to other Prolog-

based prototypes):

Reduce redundancy (of non-keywords) emerging from the use of several facts de-

scribing the same category. For example, for specification of term advice for AST

construction the predicate name and the associated aspect name can be saved, as

shown in Figure 7.7. All advice referring to the aspect ast are grouped into an

aspect declaration.

137

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

Use keywords as comments to describe argument positions. In Laola, keeping the

meaning of argument positions is distracting and reduces the understandability. Us-

ing their meaning as keyword solves this problem (cf. Figure 7.7), e.g., labeling

positions for pointcuts and advice.

Make predefined values to constants to allow simple syntax checking. For exam-

ple, possible ports for port advice (exitbody, retry, etc.) form the set of prede-

fined constants, which can be controlled easily.

Use optional constructs for anonymous variables if those might be used frequently.

For example, pointcut descriptions may possibly only need their name and patterns

for goals, as in Figure 7.5.

Simplify expressiveness to improve readability. Contexts used in pointcut descrip-

tions can be described using patterns on terms. However, in most cases, it will

suffice to query the context using the predicate context/4 as described in Sec-

tion 7.4.3. Hence, this position can be hidden behind a more readable description of

what the user wants.

An extract of the grammar is shown in Figure 7.18. Though the resulting DSL avoids

some redundancy, it is more verbose. However, it is more readable. The informal mapping

of the DSL to the Laola notation is given by examples in Figure 7.19.

7.7 Related Work

Modular Language Processors

OO world. In compiler construction using imperative implementation languages a shift

to object-oriented programming languages can be observed as they are oriented much more

towards abstract syntax trees. Initial approaches considered nonterminals as classes con-

taining all compiler phases [Paa95], which generated disadvantages such as tangled code

resulting in difficult maintenance. Subsequently, different compiler phases were com-

bined in separate classes for each concern and were added using the visitor design pattern

to separate different phases into a visitor class as described in, e.g., [WB00]. For ex-

ample, JJForester [KV01] generates AST classes and abstract visitor classes for traversal

schemes. Recently, the usefulness of AOP in this field has been shown. JastAdd [HM03],

e.g., is an aspect-oriented compiler construction system. It is centered around an object-

oriented representation of the AST. Name analysis, type checking, code generation etc.

can be modularised into aspects. These are woven together using AOP techniques. The

similar development can be seen in the construction of language processors based on logic

programming.

Logic grammars. LDL (Language Development Laboratory) [Rie92, HLR97] makes

use of grammars of syntactical functions (GSF) and supports modularisation into language

fragments. In a separate specification the data-flow between modules is defined. Laptob

138

7.7 Related Work

Aspect let Define Pointcut lexeme : goal(nat), goal(id)

pointcut(goal(nat), _, let, lexeme).
pointcut(goal(id), _, let, lexeme).

TermAdvice
Pointcut: build_clause(exp, "let", Id, Exp1, Exp2, Exp)
Advice unify (Exp, let(Id, Exp1, Exp2))

term_advice(ast,build_clause(exp,"let",Id,Exp1,Exp2,Exp),unify(Exp,let(Id,Exp1,Exp2))).

PortAdvice
Pointcut: build_clause(exp, "let", id(Id), Free1, Free2, Free)
Advice at exitbody

(select(Id, Free2, Free3); Free2=Free3) , union(Free1, Free3, Free).

port_advice(free,build_clause(exp,"let",id(Id),Free1,Free2,Free),exitbody):-
(select(Id, Free2, Free3); Free2=Free3), union(Free1, Free3, Free).

Aspect edl
requires [free, build(edl, let, [exp, sexp, uop, bop])]
Define Pointcut eliminate(FreeVars, Id, Exp1, Exp2, Exp) :

AnyJoinPoint
where

parallel context contains
build_clause(exp, "let", Id, "=", Exp1, "in", Exp2, Exp)

of aspect edl
first left context contains

struct(exp, FreeVars) of aspect free

require_aspects(edl, [free, build(edl, let, [exp, sexp, uop, bop])]).

pointcut(_, Context, edl, eliminate(FreeVars, Id, Exp1, Exp2, Exp)):-
context(Context,parallel,edl,build_clause(exp,"let",Id,"=",Exp1,"in",Exp2,Exp)),
context(Context, left(first), free, struct(exp, FreeVars)).

Figure 7.19 Mapping of Swell to Laola by example

139

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

(Language processing toolbox) [LR01], the successor of LDL, focuses on logic grammars

to obtain a more light-weight approach to achieve prototype interpreters. Terminals are

marked with an operator resulting in a call to a scanner, other goals are considered as

nonterminals. Thus, with slight modifications, such grammars immediately provide the

user with a recursive descent parser. Additional libraries contain meta-programs on Pro-

log programs to manipulate this kind of grammars as well as several general traversals on

heterogeneous data structures such as fold to collect/compute data. (The close relation-

ship between logic programs and attribute grammars has been discussed in [DM93, RL88,

DM85].) Our work simplifies the implementation of those ideas. Creating language pro-

cessors is now writing and combining reusable aspects.

Modular attribute grammars. There are attempts to modularise attribute gram-

mars (which form the basis for generation of language processors), e.g., in [Bau92, GG84,

Ada91]. However, the modularisation concerns the hierarchical structures, while with us-

ing AOP, it is possible to separate a concern distributed to many parts of the hierarchical

structure.

Aspects in grammars. In [LR03b] we examined the addition of new nonterminals

through the grammar to formalise whitespace and comments as parts of the grammar and

transformation rules on corresponding programs) to support layout preservation. Layout

preservation is an aspect in language description. The position of the nonterminals is spec-

ified separately and they are woven by a weaver. Join points are nonterminals, terminals,

and positions of arguments in semantic rules. Advice are nonterminals and terminals for

the syntax and terms for semantic rules.

AspectG and AspectLISA are examples in a general introduction to aspects for gram-

mars [RMHVP06]. AspectG for weaving crosscutting concerns into ANTLR specifica-

tions provides four possible join points (before/ after a semantic action/ a specific action

that is inside a semantic action). Weaving is transformation-based. AspectLISA extends

the underlying LISA [MvLA99] system. Join points are static points in a language spec-

ification, where additional semantic rules can be attached (syntactic production rules or

generalised LISA rules). Pointcuts match rules using wildcards on a text basis. Advice are

parameterised semantic rules written as native Java assignment statements. No before/after

advice is possible to keep grammars declarative (dependencies of attributes determine ex-

ecution order). We provide a more fine-grained addressing mechanism. Our approach is

more general. On the other hand, we do not restrict the result to be declarative.

Modularisation in Prolog

Stepwise enhancement. Stepwise enhancement with skeletons and techniques has

been proposed to reach a higher degree of reuse, to reduce errors and increase maintain-

ability [JS94, SK93, SJK93b]. Typical techniques have been identified and described in

a modular way, e.g., such as accumulator pairs, building structures, difference structures,

calculations, and context passing [SS97, SK93]. Meta-interpreters and simple traversals

140

7.7 Related Work

on syntax trees are further examples for extendable skeletons. Techniques are usually ex-

plained informally or example-driven [SK93, KMS96]. Formal approaches are restricted,

i.e., in application to certain skeletons [Rob92] or describing techniques only in combina-

tion with a skeleton [JS94, Vas93]. The approach in [Läm99a] allows a formalisation of

techniques. In [Rob92] techniques are formalised using a DCG notation. The approach is

restricted to skeletons of single predicates.

As a side note, stepwise enhancement in Prolog resembles to stepwise refinement in

object-oriented programming. The authors in [BSR04] show how it scales to the simul-

taneous synthesis of multiple programs and multiple noncode representations written in

different languages. A refinement of a base grammar, e.g., is a grammar fragment that

defines new tokens, new productions, and extensions to previously defined productions.

The authors see AOP as a program refinement technology.

Higher-order predicates. An example for the in-Prolog approach to solve the prob-

lem to separate traversals and computations are higher-order predicates, like fold and map
as given in [Nai96, SS97]. The next step is to introduce generic traversals on arbitrary

data structures [LR01]. Both of the above techniques and the higher-order approach lead

to equivalent results [NS00].

Transformational approach. A very early example for a transformational approach

is the predicate advice/3 implemented for the libraries of DEC-10-Prolog by Richard

O’Keefe [O’K84], which can be seen as an early root for aspect-orientation in Prolog. It

already allows adding advice to ports of a goal. Also, the author in [Kul99a, Kul99b],

presents port annotations for debugging. The above approaches restrict to semantics pre-

serving addition of code. Other transformation frameworks are presented in [Läm99a,

LRL99] for complex program manipulations such as the introduction of context passing.

Aspects are represented as transformations. Positions are addressed by unique selectors.

AOP can be seen as a generalisation of these approaches above. It allows a formalisation

of techniques (e.g., Sec. 7.5 or [Läm99a]) and, thereby, a disciplined way of doing stepwise

enhancement. Higher-order predicates and transformations can be simulated, too.

Other AOP in Prolog

We are aware of another implementation of AOP for Prolog [Auc05]. It provides as-

pect declarations (aspect(+before/after/around, +ForGoal, +Aspect))
to be used as immediates (they are called when loading the Prolog program). They demon-

strate the use of the directives by example of debugging and profiling an interpreter. They

do not explain the implementation and have no relation to modular grammars. Only

before, after, and around advice for goals are provided. Weaving generates three

files: one rewrites all modules to be affected, a file with assertions, which redirect di-

rect predicate calls to their corresponding aspect-managed predicates, and a translation of

aspect declarations to normal predicates.

141

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

We derive our approach from the established port model, and thus provide a good foun-

dation for AOP in Prolog. We provide a much more fine-grained addressing and control

over points in the execution, e.g., it is possible to react to failed matching of a certain

alternative clause. This is useful, e.g., for debugging grammars.

AOP and Logic

In AOP, usually pointcuts are defined as predicates, which quantify over join points. Point-

cut descriptions often test logic expressions, as in the most popular AOP language As-

pectJ [KHH+01]. The authors in [RK04] extend AspectJ by uniform genericity, that is

mainly, the uniform use of logic meta-variables and logic list meta-variables, which can-

not be manipulated by side-effects and range over syntactic entities instead of strings.

The extension of the pointcut language allows generic pointcuts in the sense that logic

meta-variables generalise wildcards provided by AspectJ. Predicates are added to work

on different syntactic entities. The use of meta-variables from generic pointcuts allows

generic advice.

Pointcuts in [KO05] can be used to describe temporary relations between join points.

They are Prolog queries embedded in a small object-oriented language, which are sent to

a Prolog engine to examine execution traces stored during execution.

In aspect-oriented logic meta-programming [DVD99], input programs are represented

indirectly by means of a set of logic propositions on quoted pieces of Java code. Aspect

declarations are logic assertions expressed in a logic language, which is also usable to

express queries about aspect declarations, and declare rules which transform aspect decla-

rations. A set of logic rules describe how code is added to that representation, which can

finally be exported as Java source code. This approach allows extension of the aspect lan-

guage without being concerned with the weaver’s implementation. Description of aspects,

pointcuts and weaving is separated (TyRuBa) from the language it is applied to (Java).

In [KMBG06] the authors use CARMA, an aspect-oriented extension to Smalltalk with

a logic pointcut language. Pointcuts are logic queries expressing structural and dynamic

conditions over the join points addressed by the pointcut. The authors propose model-

based pointcuts, which are defined in terms of a model of the program that is more robust

to evolution of the base program the aspects were added to.

In [Läm99a, Läm99b] a framework is provided for meta-programming and achieving

aspect-oriented programming for declarative languages. Due to its abstraction, it can be

applied to Prolog too, but at the same time, the abstraction makes integration and Prolog-

typic usage difficult. Instead of pointcut descriptions, interesting places are identified using

selectors. Aspects are represented by functional transformations. In [Läm04b], the aspect-

oriented view is emphasised, but it is closely oriented to stepwise enhancement and does

not provide a port model.

A framework for functional meta-programming [Läm00, Läm99a, Läm99b] was de-

veloped, in which AOP on several kinds of declarative language specifications such as

attribute grammars or inference rules can be achieved. Aspects were represented in the

form of functional transformations.

142

7.8 Concluding Remarks

Our approach extends Prolog with AOP abilities, which gives us advantages of logic

programming including logic variables for free. We provide explicite pointcut descriptions

and use a join point model based on a port model. The integration is smoothly, as the

language extension is embedded and uses Prolog syntax, e.g., pointcut descriptions are

simple Prolog predicates, which are executed by the weaver to determine places to weave

in advice, which again is ordinary Prolog. The weaver is itself a logic program. The

extension can be provided as a simple library applied. Instead of explicite selectors, the

more general concept of context is used to refer to interesting points in the program based

on patterns and properties.

7.8 Concluding Remarks

Summary. In this chapter we argued that logic grammars and language processors writ-

ten in Prolog can benefit from AOP. We illustrated how aspects can be used to modularise

a logic grammar. We explained how the concepts of AOP can be represented in Prolog

and introduced the general concept of contexts of join points for communications of as-

pects, relations between join points, and selection of join points. We used a join point

model based on a port model and provided explicit pointcuts. A prototype weaver has

been implemented as a logic program, which takes the original program, descriptions of

pointcuts (predicates), and advice and produces a program with the desired behaviour. The

weaver can be used as a preprocessor or integrated into Prolog to weave at load-time of

programs. Integration is smooth due to the Prolog-like form of description. Furthermore,

we illustrated how common programming techniques can be formalised as generic aspects.

A library of generic aspects is provided to support definition of language processors. We

presented a method to derive a simple DSL and applied it to increase readability.

Programming in Prolog in general benefits from our work. AOP in Prolog increases

readability, maintainability, and reusability of Prolog programs as it allows for modular

introduction of tangled or crosscutting concerns and for stepwise enhancement. Though

the use of AOP in Prolog is based on the operational semantics of Prolog, it can even

improve declarativity of Prolog programs. Much use of assert/1 and retract/1 is

motivated to save another parameter just for context passing, e.g., environments in inter-

preters, which can now be described in a modular way as aspects. Our work maps AOP

concepts to Prolog in a systematic way and defines pointcut descriptions explicitly. It is

very near to Prolog due to the use of the port model. Moreover, AOP for Prolog provides

interesting new ideas, e.g., the concept of backward directed advice, advice on error and

failure ports, or advice and clauses not matching.

Future work. The join point model and the concept of pointcut concepts could be ex-

tended to support dynamic join points. Furthermore, more theoretical investigations are

needed, e.g., on application of techniques of modularised logic programming, or on re-

lations between skeleton and aspect as well as relations between aspects themselves. A

further level of abstraction is needed to simplify the composition of aspects. Also, aspect-

oriented programs introduce new problems (also for maintenance). Changes in the base

143

Chapter 7 Aspect-Oriented Prolog in a Language Processing Context

program can lead to unexpected effects caused by aspects. A new kind of debugging sup-

port is necessary, e.g., debuggers need to distinguish advice from base code or the benefit

of readability and maintainability cannot be used to its full extent.

144

Chapter 8

A Lightweight Infrastructure to support
Experimenting with Heterogeneous Transformations

We report on a class library called Trane, which provides an infrastructure
to support experimenting with transformations interactively. The base is an
object-oriented combination model for transformations. Transformation here
means algorithm that take software artefacts as input and produce manipu-
lated artefacts as output. Trane simplifies the combining of transformations
available in different languages, libraries and tools. Several combinations
can be presented at the same time, parameters can be visually changed, and
results can be compared. New transformations can be easily added. Gener-
ated transformations from experiments can be integrated into the experiments
at run-time.

The chapter presents the general model of the class library. We show how
the class library profits by the features provided by .NET, such as language
interoperability, foreign language interface, shell access, reflection, and web
services by demonstrating five variants to integrate new transformations.

8.1 Introduction

We report on a lightweight infrastructure developed to support experimenting with trans-

formations interactively. The basic idea is to define an object-oriented combination model

for transformations. Here, transformation means algorithm that take software artfacts as

input and produce manipulated artefacts or results of an analysis. We use .NET, as it facil-

itates integration and combination of heterogeneous transformations, i.e., transformations

available as programs in different languages, existing command line tools, web services,

libraries through a foreign language interface, and dynamic compilation and loading of

DLLs resulting from a transformation.

8.1.1 Experiments with Transformation Nets

Some kinds of complex transformation are developed in an explorative way, where they are

extended after a test with representative examples shows that the development might be on

the desired way. Examples vary from combinations of UNIX command line tools such as

sed, awk and grep to extract and manipulate information in text files to more sophisticated

145

Chapter 8 An Infrastructure to support Experimenting with Transformations

examples, such as refactoring, where there are many ways to achieve an improvement of

the source code, or to achieve software evolution by transformations [Läm04b, HM05].

Another example is the collection of individually changes for maintenance in batch files

for later reuse in [KLV05b].

We intend to use Trane to experiment with transformations on language components,

e.g., grammars, semantic descriptions, and language processors, though it is not restricted

to those applications. We want to extend languages stepwisely during their development.

Also, we want to explore several possibilities how a grammar could be changed, compare

the variants, extract parts of existing grammars and adapt them to form a sublanguage

DSL, and directly connect the generated output to front end generators to test example

programs. Existing (transformation) tools can not always be combined easily, as they are

available in different forms, e.g., command like tools like YACC and GDK [KLV02], left-

recursion removal for attributed grammars in Prolog and TXL (cf. Chapter 4), grammar

representations in XML, BNF etc.

However, to the user, it should not matter, whether a transformation is a command line

tool like YACC, or an analysis written in Prolog, and it should be represented uniformly

modulo their parameters.

8.1.2 Using .NET

We were interested in an implementation on .NET mainly because it comes with the

promise of language interoperability and cross-language inheritance. With C# as main im-

plementation language, we could make use of properties, generics, delegates, reflection,

and web services. The implementation was also an experiment in platform independence

wrt. the availability of .NET on Linux as well as Gtk# on Windows.

8.1.3 Resulting Prototype

We designed a simple class model. Transformations are represented by automatically gen-

erated or self-designed boxes to be placed on a workspace, which is itself part of an hier-

archical box. The boxes have typed input and output ports, which can be connected using

converters to describe dataflow. Converters are special transformations. Boxes can pro-

vide facilities to control transformation parameters. Several sequences of transformations

can be presented simultaneously, parameters are visually changeable, and results can be

compared.

Trane can be extended easily with new transformations. New boxes can be any program,

a web service, an encapsulated command on shell level, etc., written in any .NET language,

as long as the box interface is implemented. No configuration files are required for new

kinds of boxes, as all information (e.g., number and type of input/output positions) can be

extracted from the box implementation via reflection. Thus, the user creates transformation

nets without paying attention to the implementation of a transformation. Trane can also

be seen as a wrapper architecture or an interpreter for call graphs of complex functions.

It is a lightweight implementation, because .NET already encapsulates much work for the

integration of transformations.

146

8.2 Trane Concept

Remainder of the chapter. In Section 8.2 we present the concept of Trane. In Sec-

tion 8.3 we discuss the model and the computation strategy. In Section 8.4 we show five

categories of transformation and how they are integrated. Section 8.5 discusses some re-

lated work. Finally, the chapter finishes with concluding remarks.

8.2 Trane Concept

Figure 8.1 Trane in action

Trane provides facilities to model Transformation nets with heterogeneous transforma-

tions. In Figure 8.1, for example, an attribute grammar of a robot move language is sent

to the Lisa web service (available at web site of university of Maribor, hidden inside the

LisaWS-Box). The web service is connected to the Lisa compiler-compiler, which gen-

erates a compiler for the language sent to the web service. Using LisaJavaCompile
(wrapper for Java at command line), the code generated by the Lisa compiler-compiler

and delivered via the web service is compiled. In the second sequence, a description of a

maze in XML is converted to Prolog by an XSLT based transformation (LabXML2PL). A
Prolog-based transformation (PathFinder) now analyses the inherent graph and gener-

ates a program for robot moves to control its way through it. The program is saved, the file-

name is combined with the generated compiler for the robot language using

RunLisaCode. The result of the execution, namely the final position of the robot relative

to start position (0, 0), is delivered to the TextOutput.

147

Chapter 8 An Infrastructure to support Experimenting with Transformations

The underlying structure is a directed graph with nodes representing transformations.

Nodes have input and output ports, which possess types, and correspond to input and

output positions of the transformations. Output ports can be connected to input ports of

other nodes by directed edges, assumed the types associated to the ports are equal. This

way, the call graph of a composite transformation is modelled.

Connections between ports of different types can be obtained indirectly by converters.

These are special transformations, which map values of a given type onto values of a re-

lated type. In the graphical representation, they are hidden behind connections to allow

a simplified view on the net. For example, it should not matter that the result of a trans-

formation is a grammar in XML format, but the next transformation expects it in a BNF

style. An XML2BNF connection can transport the grammar and hide the necessary format

conversion. The user simply chooses the connector with the desired type combination.

Data transported can be text as in UNIX-pipes, structured data such as grammars, or file

names for results in files.

Transformations can be added at run time, e.g., transformations created with Trane.

Providing a new transformation means to embed a transformation into a node such that

input and output ports are provided with data. To create a new converter means to provide a

new transformation, which implements the desired type mapping. This requires knowledge

about the structure of data.

The order of computations is determined by the dependencies between transformations

in the graph. Cycles are not considered, as their role is not clear in this setting. The

computations are performed always once, when a result is demanded and the required

input data for the transformation is available. Results can be queried at any output port

at any transformation. Consequently, comparing the values of different transformations is

possible. The intermediate results can be investigated, which is helpful, if the result of a

transformation delivers unexpected values.

8.3 Object-Oriented Model

Figure 8.2 shows the UML class diagram of the infrastructure, which largely mirrors the

concept.

8.3.1 First Level: Combination Infrastructure

The class Transformation defines minimal requirements of transformation nodes. As can

be seen in the class diagram, it provides lists for input and output ports. These ports man-

age edges connected to ports of other transformations, data, and a type annotation, which

constrains data accepted. Data is packed in a separate object, which provides its value and

a type. This allows for a subtype concept, i.e., the value has to be a subtype of the type

of the port. The values are used as input and output values for a transformation and the

object representing the transformation. To define the port lists of a special transformation,

it has to override method init_port_lists to configure the ports (e.g., with type annota-

tions). Port lists are extendable dynamically at run-time. Ports of transformation objects

148

8.3 Object-Oriented Model

G
ra
ph

co
nn

ec
t(N

 :
N

od
e,

N
 :

N
od

e)
 :

vo
id

Tr
an

sf
or

m
at

io
nG

ra
ph

co
nn

ec
t(T

 :
Tr

an
sf

or
m

at
io

n,
P

 :
in

t,

T2
:T

ra
ns

fo
rm

at
io

n,
P

2:
in

t)
: v

oi
d

Tr
an

sf
or

m
at

io
nN

et

co
nn

ec
t(B

1
: B

ox
,P

1
: i

nt
,C

 :
C

on
ve

rte
r,P

2
: i

nt
,B

2
: B

ox
) :

 v
oi

d

N
od
e

in
it_

po
rt_

lis
ts

()
 :

vo
id

in
it_

re
pr

es
en

ta
tio

n(
T

: N
od

e)
 :

vo
id

In
pu

ts
 :

Li
st

<P
or

t>
O

ut
pu

ts
 :

Li
st

<P
or

t>

Tr
an
sf
or
m
at
io
n

ex
ec

ut
e(

) :
 v

oi
d

ow
n_

in
te

rn
_e

xe
cu

te
()

 :
vo

id
in

te
rn

_e
xe

cu
te

()
 :

vo
id

in
it_

re
pr

es
en

ta
tio

n(
T

: T
ra

ns
fo

rm
at

io
n)

 :
vo

id

vi
ew

s
: L

is
t

B
ox

C
on
ve
rte
r

In
te
rp
re
te
r

tra
ve

rs
e(

) :
 v

oi
d

B
ac

kw
ar

d
Fo

rw
ar

d

H
ie

ra
rc

hy
Id

C
In

tC
X

M
L2

B
N

F
C

m
d

W
eb

S
er

vi
ce

R
ep

re
se

nt
at

io
n

G
tk

R
ep

re
se

nt
at

io
n

G
tk

B
ox

G
tk

C
on

ve
rte

r

D
llL

oa
de

r

W
or

ks
pa

ce1.
.*

0.
.*

0.
.1

2

E
dg

e

P
1

: i
nt

P
2

: i
nt

0.
.*

2

Figure 8.2 Class model of Trane

149

Chapter 8 An Infrastructure to support Experimenting with Transformations

are connected using the method connect/4 of TransformationGraph, which tests on type

conformance, creates an edge between the ports, and keeps track of transformation objects

and their connections. Edges store the nodes and indices of the ports connected.

A subclass has to override execute, where the actual mapping from values of input ports

to values of output ports is defined or the embedded transformation is called. The compu-

tation can depend on several conditions, such as the actual computation strategy, or lazy

computation (do not compute if input values have not changed). To save the user from un-

interesting management work, execute is wrapped by methods intern_execute and own_in-
tern_execute that take care of the conditions, and at a suitable point in the computation call

execute. init_representation associates a representation to an instance of Transformation.
The difference between common kinds of transformation nodes and converters is ex-

pressed by classes Box, which box a desired transformation, and Converter, whose main

task is to provide some kind of type conversion. The provider of a converter will find it

nice to implement it like any other transformation. They only differ from boxes through

their representation and arity. This enables converters of all kinds, simple converters or

arbitrary complex computations, from which the user would like to abstract in a model.

The TransformationNet provides a method connect to connect two objects of type Box
using a Converter at the ports specified with the port index each.

We decided for overriding of some init-methods over configuration inside of a construc-

tor, because in the chosen implementation language C# constructors of super classes are

evaluated first before that of the actual class. For some tasks provided in the super class,

e.g., for the generation of graphic representations, it is necessary that the actual class is

configured already at least partially.

8.3.2 Second Level: Interactivity and Views

The second level provides graphical representations for transformations. In the standard

representation, rectangular boxes are generated for transformations (e.g., most representa-

tions in Figure 8.1 are generated). Lists of buttons, which also activate the execution of

the associated box, represent input and output ports. Converters are represented as a line,

which connects two boxes. This simplifies the view on the transformation net.

If desired, the provider of the transformation can create own representations for boxes

and converters by inheriting GtkBox and GtkConverter respectively. Their instances are

associated to the specific transformation class by overriding init_representation. Objects

of class GtkBox can be provided with additional buttons, fields, sliders, and other kinds of

input/ output support for users to control the transformation.

Objects of transformation nodes can provide several views at them. The first level can

already be considered as the most basic view. The main view used is the graphic repre-

sentation on a workspace to combine them. In addition, more information and controlling

facilities are possible, e.g., a description of the transformation represented by the object,

a description of its input/output, complex tables for the user to describe or influence the

way the transformation is working, status messages, and logs. Note, the workspace in

Figure 8.1 is just another view on a special box, allowing to create a hierarchical subnet

interactively.

150

8.3 Object-Oriented Model

8.3.3 Providing a New Box

To create a new box, the following steps are required:

1. Choose a box to inherit from.

2. If desired, override init_port_lists to redefine input and output ports by simply adding

new ports to a generic list.

3. Override execute to describe how values of input ports are used by the transformation

to compute values and copy them into output ports.

4. If a new representation is desired create a new subclass of GtkBox and redefine

components or add new features to the inner frame, e.g., a button to show a new

view, which can be any graphical object. Override init_representation in the box to

assign it to the box.

8.3.4 Computation Strategy

There are several variants to initiate computation of the transformation net: backward

and forward computation (similarly to demand-driven vs. data-driven) and direct vs. in-

direct data transport. The choice is realised through an instance of Interpreter that per-

forms/initiates the traversal.

With direct data transport, a transformation itself informs its successors / predecessors

about results/ required results and calls their own_intern_execute. With indirect data trans-

port a separate object of class TransformationNet controls the traversal process, e.g., calls

intern_execute. Note that by connect/5 the object keeps book about created transforma-

tions and connections. This allows intercepting and changing values for experimenting.

Backward computation is initiated by requesting the output port of the last transforma-

tion of a chain by initiating own_intern_execute / intern_execute, which then determine

missing input values for the computation of the embedded transformation, and activate the

preceding transformations. When all values are available, the wrapped execute is called.

This strategy will be used mostly to compare several transformations at the end of a com-

mon sequence.

The forward computation strategy is thought for experiments to investigate the effect

of a changed input. E.g., a composite transformation can be attached to a text editor, and

show the results of a transformation chain immediately while typing e.g., a new part of a

grammar (or delay start until a save-command is fired). Forward computation is simulated

on top of the backward computation by calling the output ports of following transforma-

tions. This can be very expensive, though. Cycles are not allowed in the computation

though we have not included a check to avoid them yet (we could think of a graph analysis

based on a term generated from the net).

151

Chapter 8 An Infrastructure to support Experimenting with Transformations

8.4 Variants of Boxes

Many transformations will only inherit from the common box type, configure the input

and output ports, and define a mapping between them to create different kinds of boxes.

However, using .NET, several different kinds of special box categories are viable, e.g.

hierarchy boxes (to provide subnets and workspaces), web service boxes, command line

tool wrappers, compilers, foreign libraries wrappers, or DLL loaders. Here we show five

variants to integrate different transformations in boxes.

8.4.1 Web Services

As an example for a web service transformation we show in Figure 8.3, how to implement

the compiler generator box LisaWS used in Figure 8.1. Lisa [MvLA99] is a compiler

generator system also available as web service. When sending an attribute grammar, it

generates and delivers Java code of a compiler. The code can be compiled and the resulting

compiler can be used for the programs of that language.

LisaWS gets an input port for a string value, the attribute grammar. An output port is

configured to provide a string for a path (to store the generated files), and further ports,

where the generated lexer, scanner, parser, and evaluator can be requested separately.

We find it especially charming to integrate remote applications into transformation nets

from locally existent algorithms. Problems might be that connections are unavailable or

slow. Depending on the kind of service boxed, the transformation could require to re-

compute always, even if no input values have changed.

8.4.2 Hierarchical Transformations

Hierarchy in transformation nets means to hide a transformation subnet TSN behind a box

BH , which looks and behaves like other boxes with input and output ports. Note, there are

different types of hierarchy boxes. They can differ in the number of input/ output ports,

or in the way they are to be used. Hiding requires mapping inputs and outputs of BH to

inputs and outputs necessary for TSN . This can be easily done by providing two identity

boxes BI and BO as interface for inputs and outputs, between which TSN is constructed.

Since transformations use properties to connect to ports, .NET helps to redirect port access

to the input ports of BH to input ports of BI as well as output ports of BH to those of BO

by simply overriding the definition of the properties (see Figure 8.4). The graphical rep-

resentation is extended by a button, which when pressed provides a second view, namely

the workspace of the hierarchy box. Figure 8.1 shows the inner view of a hierarchical

box. We additionally added a transformation browser for choosing boxes and converters.

This browser makes use of reflection to analyse DLLs in a chosen directory and to create

instances of provided classes.

8.4.3 Use of Native Libraries

As an example for the use of existing DLLs outside of .NET we choose SWI-Prolog

[Wie07], mainly because we want to use Prolog for experiments with transformation tasks

152

8.4 Variants of Boxes

public class LisaWSBox : Box {

public override void init_port_lists(){
Inputs.Add(new Port("String"));
Inputs[0].data = new ValueData(null, "String");
Outputs.Add(new Port("String"));
Outputs[0].data = new ValueData(null, "String");
... // some more output ports

}

public override void execute(){
CServiceBeanService lisaService = new CServiceBeanService();
System.Net.CookieContainer container =

new System.Net.CookieContainer();
lisaService.CookieContainer = container;
lisaService.mkdir("wlohmann");

// read file with lisa specifications
String path = Inputs[0].data.value;
FileStream fs = File.OpenRead(path);
StreamReader r = new StreamReader(fs);
String Spec = r.ReadToEnd();
lisaService.clearError();

// compile and save specifications
bool OK = lisaService.compile(Spec);
if (!OK) { /* error */ } else {

String scanner = lisaService.getScanner();
Outputs[0].data.value = scanner;
}

}
}

Figure 8.3 A web service box

similar to Chapters 4, 5, 6, and 7. In Figure 8.1, the PathFinder-box is based on Prolog.

It determines a path through a labyrinth and generates a control program in the Robot

language for it.

.NET offers the attribute DllImport to define access to foreign libraries. We created a

DLL based on SwiCs.cs (cf. [Les03]) where for each exported function in the library its

name is declared after the attribute (Figure 8.5). The DLL provides .NET programs with

methods and types to model Prolog terms and to query a SWI-Prolog engine; and is used

by the box.

Figure 8.6 shows how to interpret a string input as Prolog term directly and to call it.

Combined with text boxes it can serve as interactive Prolog interpreter. Also, a Prolog box

can provide programs that are more complex or initiate loading of a rule base.

153

Chapter 8 An Infrastructure to support Experimenting with Transformations

public class HierarchyBox : Box {
public IdBox InputBox = new IdBox();
public IdBox OutputBox = new IdBox();

// Hide Inputs of this box by pointing
// to corresponding interface box
public override List<Port> Inputs {

set { InputBox.Inputs = value; }
get { return InputBox.Inputs; }

}

public override List<Port> Outputs{ ... }

public override void init_port_lists(){
base.init_port_lists();
InputBox.Double_PortLists();
OutputBox.Double_PortLists();

}

public override void execute() {
OutputBox.ownInternExecute();
// Input execute not necessary

}
// save hierarchy in a separate subnet
private TransformationNet _TraNe = new TransformationNet();
public TransformationNet TraNe {

get { return _TraNet; }
}
public override void

init_representation() {
this.Representation = new Gtk_HierarchyBox_Representation(this);

}
}

Figure 8.4 A plain hierarchy box

A problem is, in our opinion, that the attribute DllImport expects a static string, which

has to be known at compile-time. This makes replacing different versions of the Prolog

DLL impossible without recompilation of the interface DLL SwiCs.cs, thus, reducing plat-

form independence (the name of the dynamic libraries differ between, e.g., Windows and

UNIX systems).

8.4.4 XSLT Boxes

.NET comes with good XML and XSLT support. This offers a good basis to provide boxes

to transform XML documents. Figure 8.7 gives an example for the contents of execute.
The example takes some XML data from an input port and delivers transformed data

to the output port. Note that the XSLT script in this case is provided by a return value of

154

8.4 Variants of Boxes

[DllImport(DllFileName)]
internal static extern uint
PL_new_term_ref();

...
// make a PlTerm from a C# string
public PlTerm(string text) {
m_term_ref = libpl.PL_new_term_ref();
libpl.PL_put_atom_chars(m_term_ref,text);

} // SwiCs.cs by Uwe Lesta

Figure 8.5 DLL Import

public override void execute(){
String[] param = { @"H:\\ Projects" +

... "\\Application.exe"};
PlEngine e = new PlEngine(1, param);

// Get query as Text, call it, e.g.
// (tell(’log’),write(’HiWorld’),told);
string goal = (string) (Inputs[0].data.copy().value);
PlQuery q = new PlQuery("call", new PlTermv(new PlCompound(goal)));
bool b = q.next_solution();
q.free();

}

Figure 8.6 Providing direct Prolog access

Xslt_Script, a method to be overridden by subclasses to specify a concrete transformation.

Other variants of XSLT boxes might expect the script itself, or a filename for the script

as input at a port or configured in another box view. A subclass of this box is used in

Figure 8.1 to transform the description of a labyrinth into Prolog notation.

8.4.5 Command Line Tools

Many transformations are available as command line tools. Examples are compilers, but

also yacc, lex and awk. Additionally, there are tools like grammar deployment kit [KLV02],

which could be made available through the integration in Trane. Figure 8.8 shows how to

use the Java-compiler for Lisa-generated code (cf. Figure 8.1). Here, the tool represented

is hard coded into the box, but could also be provided through extra views with input fields

or from input strings as part of the transformation.

The problem with this kind of boxes is that platform independence is restricted to the

availability of the integrated tools on the platform.

155

Chapter 8 An Infrastructure to support Experimenting with Transformations

String xml_input = (String)((Inputs[0].data.copy()).value);
StringReader xml_reader = new StringReader(xml_input);
XPathDocument xpath_document = new XPathDocument(xml_reader);
XslCompiledTransform transformation = new XslCompiledTransform();
StringReader xsl_script_reader = new StringReader(Xslt_Script());

XmlTextReader xsl_script = new XmlTextReader(xsl_script_reader);
transformation.Load(xsl_script);
StringWriter xml_output_writer = ...
XPathNavigator document_navigator = xpath_document.CreateNavigator();

transformation.Transform(document_navigator,null, xml_output_writer);
Outputs[0].data.value = xml_output_writer.ToString();

Figure 8.7 Apply XSLT script to input

8.4.6 Dynamic Compilation and Integration

The command line tool approach can be used to compile a transformation for Trane and

make it usable at run-time. Depending on given options, the resulting executable can be

started as command (maybe again wrapped in a box, as in Figure 8.8) or the DLL can

be examined/loaded and classes instantiated using reflection, if it is written in a .NET

language. If the compiler generates .NET code itself the resulting class can be directly

instantiated instead of generating a DLL first.

8.4.7 F# and Other Languages

Though the above examples can use transformations written in other languages, the boxes

themselves, however, have been specified using C#. It is better to use the language of

choice itself to define a box, especially, if a new transformation is created. This requires

that the language is implemented on .NET. The resulting DLL can be used in Trane, as if

C# had been used due to cross-language inheritance. Only then the real benefit of .NET

occurs in our opinion, because the still existing problems of data conversion during the

integration of transformations provided as command line tools or foreign libraries could

be avoided.

With F# [Mic06] we were able to inherit from C# classes of Trane (the box) to create a

new box (written in F#) and to instantiate from it in Trane again. F# is functional, and thus

it issimilar to Prolog suitable to describe transformations.

Several languages on .NET are differently suitable. We were not successful using P#.

With Eiffel# it is necessary to take care of the naming scheme during compilation. J# is not

portable on Linux as it requires DLLs available on Windows only. We would be interested

in a smooth integration of Haskell. There are some attempts, but there is still a way to go.

156

8.5 Related Work

System.Diagnostics.Process p = new Process();
p.StartInfo.UseShellExecute = false;
p.StartInfo.CreateNoWindow = true;
p.StartInfo.RedirectStandardOutput=true;
p.StartInfo.RedirectStandardInput= true;
p.StartInfo.FileName = "cmd";
p.Start();
StreamWriter sw = p.StandardInput;
StreamReader sr = p.StandardOutput;
sw.AutoFlush = true;
//sw.WriteLine("dir /AD");or any cmd/tool
sw.WriteLine(@"javac -classpath lisa.jar" +path+"*.java");
sw.Close();
p.WaitForExit();
Outputs[0].Data.Value=TextBuffer.Text;

Figure 8.8 Wrapping command line tools

8.5 Related Work

Several tools provide a plugin structure and interactive placement of components. They

are either large or provide a proprietary language to extend them with new objects. Trane

has mainly been inspired by Cantata, the graphical user interface for the Khoros system to

analyse and manipulate graphics [YAK95]. Cantata allows to interactively construct such

filter pipelines.

[Spi02] considers UNIX tools as components. A GUI builder is used to create the visual

programming environment. The placing relation of the components describes dataflow,

which is text. UNIX tools have to encapsulate as ActiveX components with much manual

work. Connectors are simply a visual encapsulation of the operating system pipe abstrac-

tion. Connector and glue-type components still need to be written by hand. Trane is not

restricted to one kind of data, though it is intended to be applied mainly to artefacts of

language processors, i.e., data are grammars, specifications, rewrite rules, parts of parsers,

etc. We provide among others a system call box, which can take the command call directly

as string. A new wrapper box for a special command can be easily written on top of the

system box, which can take even the options at input ports. Our converters can transport

structured data of any kind, they just have to inherit from a general converter class and

implement additional treatment.

Stratego/XT [Vis04] uses mainly ATerms [vdBdJKO00] to provide input and output

for terms in Stratego, and to exchange terms between transformation tools. New created

transformations are wrapped into stand-alone components, which can be called from the

command-line or from other tools. Those tools can be used similarly to Unix pipes, but can

additionally work on structured data. For compositions of complex transformations they

provide the XTC model. A repository registers locations of tools. An abstraction layer

implemented in Stratego supports transparent access, allowing to call and use a tool like a

157

Chapter 8 An Infrastructure to support Experimenting with Transformations

basic transformation step in Stratego programs. Additionally, Stratego provides a foreign

language interface to call C functions. Trane is designed mainly to reuse and to combine

transformations for experiments. The XT tools could be wrapped in boxes, and used for

experiments. We cannot generate stand-alone tools from composite transformations.

The Meta-Environment [vdBvDH+01] also allows the combination of different tools,

but separates strictly between coordination and computation. Basis is the TOOLBUS co-

ordination architecture, a programmable software bus based on process algebra. Coordina-

tion is expressed by a formal description of the cooperation protocol between components,

while computation can be expressed in any language. Meta-Environment is used to pro-

duce real life products, on the other hand, it is complex, and difficult to adapt a new tool

to the tool bus.

In Trane, coordination and computation are tangled. Evaluation of a transformation net

is just traversing to each node and computing as given by the inherent dependencies be-

tween transformation nodes. Transformations can be added easily by providing a wrapper,

where only two methods have to be overridden.

In the Eclipse framework, the Graphical Editing Framework (GEF) allows to create

similar models and associate semantics to them. However, for new parts of the model (e.g.,

similarly to a new box in Trane) it requires a new compilation, while Trane nets are open.

We do not need to compile the net. It is directly executable. New transformations can

be added dynamically. Like other plugin systems, in Eclipse a plugin needs configuration

files to add a new component, while we use reflection to extract necessary information. The

language plugins for Eclipse are Java classes in a JAR archive. Transformations in Trane

do not need to be written in one specific configuration language, as long it is supported by

.NET.

[SdPL99] also try to spread transformation system technology over a set of reusable het-

erogeneous components. Using Java, CORBA and HTTP, they have instantiated a commu-

nication layer. To configure components, a description in a hybrid architecture description

language is necessary.

Calling functionality from foreign DLLs is not new. However, usually the calls are

determined at compile time. We offer to combine functionality, which might come from

different DLLs without recompilation.

Using Trane is similar to programming in dataflow languages. We refer to [WP94] for

further reading.

8.6 Concluding Remarks

Summary. We have presented a lightweight infrastructure that allows to provide het-

erogeneous transformations with a uniform façade to combine and interact with them.

The model has been given and the essential classes have been explained. We presented

five categories of transformations such as integration of web services, or command line

tools. Integration of new transformations is simple. Due to reflection, no extra configu-

ration files are necessary. Trane is lightweight as a large part of the work for integration

is encapsulated in .NET. The biggest advantages have languages that are implemented on

158

8.6 Concluding Remarks

.NET directly, but we still wait for more pure .NET languages without name scheme or

inheritance problems.

Future work. Trane is rather a proof of concept than a tool yet. The type system is

currently very ad hoc. Types are still conceptual. It is still matter of research, what types

mean in our context. For example, for some transformations grammars of different lan-

guages are of the same type, if they are in the same format such as BNF. On the other hand,

grammars can be considered as different types despite their format, if the algorithm using

it is language specific. We want to design an extensible type hierarchy.

The Visitor pattern might help with configurable computations on the transformation

net; also, to generate command line tools from a net as well as terms describing nets for

analysis. As another way to integrate transformations sockets should be examined. The

usability has to be increased vastly. It might be interesting to initiate the evaluation of

transformations in separate threads. A classification of boxes would be nice. We need

more transformations with grammar typical support to perform the experiments. We are

new to F# and need more experiments with it and with other .NET languages.

159

Chapter 8 An Infrastructure to support Experimenting with Transformations

160

Chapter 9

Concluding Remarks

We summarise the contents of the thesis. The subsequent section lists the achievements in

more detail. Finally, we point to future work.

9.1 Summary

The thesis contributes to software language engineering and software maintenance. On an

abstract level, the thesis provides insights in

• co-evolution of software languages, software in that language, and software trans-

forming software written in that language,

• support for disciplined meta-programming,

• improvement of maintenance tools,

• layout preservation during source to source transformation,

• aspects in language descriptions,

• usability in transformational programming,

• readability of language descriptions, and

• combination support for arbitrary transformations available in different languages

and formats.

We started with an introduction to the context of the thesis being software evolution and

co-evolution. We discussed that software language dependency establishes co-evolution.

We argued that software language evolution requires maintenance of software written in

that language as well as software that transforms software written in the evolving lan-

guage. We argued therefore, maintenance tools based on language technology, especially

language processors, require special maintenance. As application example we discussed

that software maintenance factories (SMF) need to be maintained, too, as language pro-

cessors form the heart of this software. Additionally, SMFs should be extended by SMFs

for language descriptions as large portions of an SMF are based on language technology

and some necessary maintenance of generators and generated tools are directly related to

maintenance of a language description. Next, we introduced seven research questions that

were the guideline for the research topics in the core of the thesis.

161

Chapter 9 Concluding Remarks

We described a carefully designed framework for program transformation that can avoid

the construction of erroneous software by ensuring desired properties of transformations

also applicable to language descriptions. We have identified the basic roles of programma-

nipulation, which allows to introduce a higher degree of disciplined meta-programming.

We studied format evolution for XML documents, where the changes of a DTD are de-

scribed as transformations which induce the migration of existing XML documents. Then,

we developed a transformation for left recursion removal in attribute grammars and proved

that it is semantics-preserving. The next chapter used the introduction of layout preserva-

tion to existing rewriting rules as case study to study the effect of grammar extensions

to existing transformation rules. To be able to hide the additional complexity in trans-

formation rules, the migration is derived automatically. For this, we analysed the effect

of the transformation rule to layout preservation. We showed that hiding the complexity

in transformation rules can be applied more general. Next, we developed a theory for

aspect-oriented programming in Prolog to support aspects in language descriptions based

on logic grammars and derived language processors. By the example of the calculate-
technique we demonstrated how techniques from the field of logic programming can be

modularised as aspects. We described aspects in language descriptions. A DSL was given

to simplify the use of these concepts. Finally, we developed an object-oriented combina-

tion model for transformations that allows to experiment with transformations available in

different languages and formats in an visal interactive way.

The examples studied support the demand for more research in grammarware or, more

generally, in software language engineering.

9.2 Achievements

The detailed results are summarised in the chapters. Here, we list the key achievements

ordered according their subject.

Consequences of grammar evolution

• We discussed format evolution of DTDs as a special case for grammar modification
and necessary document migration in Chapter 3. We demonstrated how (partially)

XML documents can be migrated automatically by deriving the necessary document

migration transformation from the desired transformation describing the evolution

of the DTD.

• We discussed left recursion removal in attribute grammars in a grammar evolution

context as special case of consequences of grammar refactoring to transformation
rules. We developed a transformation for left recursion removal in attribute gram-

mars that adapts semantic rules, and proved that it is semantics-preserving (Chap-

ter 4).

• We also studied the consequences of grammar extension to transformation rules.
A grammar is extended by layout nonterminals, which leads to enriched abstract

162

9.2 Achievements

syntax trees in language processors derived from the grammar. We extended the

existing transformation rules on programs (ASTs) for this grammar automatically

by a transformation derived from the grammar extension (Chapter 5).

• We discussed that this approach allows users to specify semantics for a grammar that

is less obfuscated and less deviated from the original grammar in a language refer-

ence than without this approach. It also allows a possible evolution of a grammar

without forcing users to readapt all semantics definitions.

Disciplined meta-programming

• In Chapter 2, five basic roles needed for the development of transformations to ex-

tend the computational behaviour of programs were presented. They can be used

to derive high level abstractions such as techniques known from the field of logic

programming. The roles and the derived techniques have been formalised and im-

plemented in a formal and operational framework for meta-programming. The roles

are specified in separation. This provides a uniform and similar interface for speci-

fication of similar meta-programming tasks for programs in several declarative lan-

guages including grammars, natural semantics, logic programs.

• In Chapter 7, the developed support for AOP in Prolog allows for a more systematic

way to meta-programming. Applications of techniques in logic programming and

techniques themself can now be modularised and provided as aspects in libraries.

The approach also provides a defined interface for meta-programming on language

descriptions based on logic grammars in Prolog.

Improvement of maintenance tools

• The layout preservation case study contributes to the improvement of maintenance
tools regarding a) the output of source to source transformation, b) the enabling of

experiments with several (layout preservation) strategies, and c) the maintainability

of maintenance tools. In Chapter 5 and 6, a grammar is extended to formalise layout

positions. Existing transformation rules on programs of that grammar are adapted

automatically so they do not break when they are applied on the AST enriched by

layout information.

• To hide the complexity introduced by layout information, we analyse transforma-

tion rules regarding their influence to layout preservation. Based on it, the desired

mapping of layout during the transformation is determined automatically and en-

capsulated in separate modules, making several heuristics possible. The automatic

decisions are better than existing work due to a more formal investigation of the

problem. The analysis can form the basis to provide algorithms that determine the

quality of transformation rules with respect to layout preservation and that can sug-

gest a different implementation to the programmer of the transformation.

163

Chapter 9 Concluding Remarks

Aspects in language descriptions

• The layout aspect is orthogonal to the program source. The grammar can be en-

riched by the aspect. Then, abstract representations by parsers derived from the

grammar carry layout information. Transformation rules on those representations

are extended automatically by a layout preservation aspect, which is determined

partially by the layout aspect in the grammar (Chapters 5 and 6).

• Aspects in language definitions are discussed in Chapter 7 such as AST construction

and program analysis. The logic aspect description language is developed allowing

a separate description of the given aspects. This leads to a more readable, better

maintainable, and partially reusable language description. A consequence is a better

modularisation of derived language processors. This also allows experiments with

different variants of language processors/ maintenance tools. Additionally, this al-

lows for a configuration and adaptation of language processors to different variants

of a language.

Object-oriented combination model for transformations

• We have defined an object-oriented combination model for transformations (Chap-

ter 8) that allows to combine different kinds of transformations in a unified manner

as long as they provide certain common properties or can be encapsulated to provide

them as subclass. In this model, each transformation has a list of (typed) input and

output ports and can be connected using typed connectors that are typed transforma-

tions again (especially for the purpose of type/data converters, but not restricted to

those). This model forms the base for a tool implementation (see below). Grammars

and transformation programs are treated as first class citizens in this context.

Usability in maintenance and language based tools

• Using a framework and transformations based on defined roles as in Chapter 2 allows

to automate recurrent tasks. Unified interfaces for meta-programming ease the reuse

and understanding of recipes used for program transformation. E.g., a folding oper-

ation works similar in several programming languages / formalisms (cf. [Läm02]).

Transformations on language descriptions reduce the introduction of errors.

• In Chapter 4, we demonstrate how transformations for refactoring on attribute gram-

mars enable the programmer to work with (specify) on a grammar more near the

original grammar in a reference manual despite more restrictive technical require-

ments. The grammar extension in Chapter 5 together with the given migration rela-

tion can be used to hide unnecessary argument positions in rewrite patterns. There-

fore, it simplifies specifications and helps to avoid bugs. The AOP approach from

Chapter 7 lets the rewriter focus on separated aspects of the language description.

• The DSL described in chapter 7 eases to definition of aspects in language descrip-

tions based on logic grammars and of aspects in Prolog in general.

164

9.3 Outlook

• With Trane (Chapter 8), we provided an interactive workbench for transformational

programming based on the object-oriented combination model for transformations.

It provides a simple user interface for combining transformations and data. Ex-

plorative programming is supported. For example, different versions of composite

refactorings can be compared, but it is not restricted to refactorings. Also, the work-

bench helps in exerimenting with several layout heuristics. Different kinds of trans-

formations are used similarly, no matter, whether they are simple programs, meta-

programs or meta-meta-programs, whether they are written in different languages

such as Prolog, F#, whether they are XSLT transformations, simple data mappings,

complex computations, generators of parsers from grammars, transformation pro-

grams on transformation programs, etc. Grammars and transformation programs are

first class citizens. Existing transformation tools, e.g., Yacc and Stratego, can be

easily integrated. The output of a transformation T can be used to transform other

input, e.g., if T generates a parser from some grammar the resulting parser can im-

mediately used to parse input on the same workbench. Language artefacts can be

treated as simple data. It is easy to extend the workbench.

9.3 Outlook

We examined consequences of evolution in a software language setting and pointed out,

where conflicts occur and where maintenance support is needed. Automating maintenance

here is possible to a certain extent. The experience discussed in the thesis can be used to

improve software maintenance factories. The tools are proof of concept prototypes, and

are not suitable for real usage yet. Based on the object-oriented combination model for

transformations, many different approaches and implementations can be integrated.

The central theme of the thesis has been the consequence of software language evo-

lution. Despite the fact that the publication of some chapters are dated back, recent

work on software language evolution and a new established conference with a focus on

software language engineering [CFP08]) show that the chosen research topic is actual

(e.g., [VV08, PJ07, dGSA07]. Coupled (or co-transformations or two-level transforma-

tions) are also used to taggle the format evolution problem of XML documents and the

adaptations of XPath expressions [COV06, CV07]. The two-level approach is also related

to the work on round trip engineering [AC06, AC08, EEE+07, Ste07].

Interpreter are more tightly bound to the definition of a language. Evolution in inter-

preters has been investigated in semantics. For example, in Modular Structural Operational

Semantics [Mos99, Mos02] the idea is that transition rules for each language construct of a

programming language can be given and never need reformulation when further constructs

are added to the language. Much more related to our work are [Läm04b, Läm05], where an

SOS-based interpreter example is used to illustrate the evolution of rule-based programs.

While the consequences of language evolution in our thesis can be simulated with that ap-

proach using evolutionary transformations, we are concerned with a two-level approach,

where the transformation of one of the levels can be controlled by the transformation of

the other.

165

Chapter 9 Concluding Remarks

In future, each of the “hot spots” of the thesis should be investigated more in depth.

Some more detailed work could be concerned with the following:

1. The solid basis for general and typeful meta-programming in Chapter 2 for defining

and executing techniques has to be integrated into an transformational programming

environment such as Trane from Chapter 8 similar to, e.g., JTransformer [KHR07],

which provides interactive support for composing composite refactorings based on

a well-defined core in the jConditioner framework [KK04]. Only when such sys-

tems are easy to use newly introduced restrictions will be accepted. Libraries of

meta-programming techniques and recipes of their application are needed. Similar

implementations are needed for other languages than Haskell.

2. The study of consequences of software language evolution can save and improve

existing software. The relation of language evolution to existing documents was

studied using the special case of XML document migration after DTD evolution

(format evolution). More extensive work for XML documents has been done, e.g.,

by [Kle07, COV06].

Besides the migration of program documents, it is interesting to investigate how

much old program texts can benefit from language evolution. This is worked on by,

for example, [VV08, PJ07]. In our opinion, it will mainly be possible for language

extensions. For example, new language constructs can be made available to old

programs, which can be simplified now automatically, for example, the refactoring

of classes to generics [KETF07].

3. Chapter 4 examined left recursion removal in attribute grammars. The algorithm

should be examined, e.g., for a context-free grammar and separate transformation

rules as used in our Prolog examples. Other grammar refactorings should be in-

vestigated likewise. The algorithm should be integrated in a software maintenance

factory to generate tools.

Regarding the readability of language descriptions, the algorithm hides changes in a

grammar that are necessary due to technical demands. What other (attribute) gram-

mar refactorings are possible to allow the user to work with a version identical to the

reference grammar?

4. In Chapter 5 we studied an automatic adaptation of transformation rules according

to a grammar extension by layout nonterminals. What other extensions are possible

that allow the automatic adaptation of existing transformation rules? Where are the

limits? How can tools help with those parts where manual modifications might be

necessary, i.e., how can those points be detected in the transformation rules that

require the adaptation?

5. The layout preservation problem is a comment preservation problem in the first

place. The style of writing rules affects the comment preservation in a logic pro-

gramming setting. An algorithm has been developed in [Wal07] that examines trans-

formation rules regarding their layout preservation quality based on the analysis in

166

9.3 Outlook

Chapter 6. It should be integrated in rewriting environments. To improve solutions

for the layout preservation problem, we have several suggestions. We believe that

the design of a language can help. Firstly, the better a language is designed and

the more it is focussed to a certain domain, the more the program text speaks for

itself, making many comments dispensable. “Speaking” names for keywords, vari-

able names and abstractions should be enforced. In source to source transformation

tools, a mixture of declarative and imperative implementation techniques as well as

with regular expression based tools can help in transformation tools. The regular

expression based tools leave nearly all the program text unchanged while the former

help to identify the places to be changed and provide information through analyse

abilities.

For the case study of Chapters 5 and 6, bayesian techniques can help to reason about

the relations of comments and language constructs in program texts and improve

heuristics for automatic comment preservation. The programmer of transformation

rules should be bothered as little as possible with the comment aspect (additional

argument positions in our case). Overriding an automated decision of comment

preservation is sometimes necessary, but should be made in separate modules. This

also allows to experiment with a layout preservation strategy without risking the

introduction of bugs into the real programming task. Several heuristics should be

determined. To measure the degree of layout preservation, a metrics is desirable to

compare different heuristics, or simply to inform the rewriter how much the inpact

of a transformation rule regarding layout preservation is.

6. The DSL presented in Chapter 7 can be improved. The user needs simple means

of composing aspects from a library, which should be supported by the language.

User guides and more examples are required. Also, the usage of the pointcut con-

text is probably too difficult and should be hidden behind some language constructs.

The introduction of AOP to Prolog brings also new challenges. For example, de-

bugging/tracing for logic grammars can now be implemented on a higher level.

However, maintaining aspect-oriented programs themselves is not trivial. How can

the programmer informed, when aspect specifications are too expressive (capture

more/too little join points). When the base programs are changed, some aspects

may have to be adapted, especially the determination of pointcuts. How can one

ensure the consistency during maintenance?

Several aspects are known in language descriptions, such as the layout aspect men-

tioned earlier. The debugging aspect [WGRM05], and the aspects used to derive a

language processor are very implementation related. Are there more pure aspects in

language descriptions?

7. Trane, as described in Chapter 8 provides a (proof of concept) platform for visual

transformational programming. Together with the work from the earlier chapters

it can form the basis of a software maintenance factory with a software language

factory as a subpart. The desire to maintain the system itself is not supported, though

167

Chapter 9 Concluding Remarks

higher level functionality (non-core) based on DLLs can be maintained and replaced

by the system.

There is a long list which could be done. Many technical weaknesses could be re-

moved (missing save/load for many transformations). It was planned to connect

Trane to MonoDevelop [WWW08]. The plan has been suspended for several prob-

lems. Trane needs a library concept how different or similar transformations for

different or similar languages are stored and presented to the user of the system

are necessary. The implementation of the forward strategy is not completed. Many

transformations are desirable, especially grammar converters.

Vision

We think that techniques from the design, construction and maintenance should adhere.

The far vision would be that software constructed should contain the tools constructing

them, including maintaining features. Software should be made a bit harder to get it

softer, like a tibetian wired mandala, which has movable rings arreted at special positions.

It is flexible in some ways, so that new forms can be created by pushing and moving parts

around, and the fixed points ensure that the whole figure is always consistent.

168

Appendix A

Left Recursion Removal

A.1 Algorithm for Simple Multi-pass AG

Input: AG = (G, SD, AD,R), G = (VN , VT , P, S) without ε-productions and cycles;

without loss of generality let VN = {A1, . . . , AN}
Output: AG′ = (G′, SD, AD′, R′), G′ without left recursion and R′ such that attribute

values at root and at leaves are preserved.

for i := 1 to N do
{Removal of indirect left recursion}

for j := 1 to i− 1 do
replace productions of pattern Ai → Ajβ by Ai → α1β | . . . | αkβ,
where Aj → α1 | . . . | αk are current productions of Aj

adapt semantic rules according (A.5)
end for
{Removal of direct left recursion}

if replace productions of pattern Ai → Aiα1 | . . . | Aiαn | β1 | . . . | βm

(where no β starts with Ai) then
introduce new nonterminal Ai′ with attributes corresponding to (A.1)
for k := 1 to n do

replace Ai → Aiαk by Ai′ → αkA
i′

and adapt semantic rules according to (A.2)
end for
for k := 1 to m do

replace Ai → βk by Ai → βkA
i′

and adapt semantic rules according to (A.3)
end for
add a production Ai′ → ε with semantic rules according to (A.4)

end if
end for

for each nonterminal A′ newly introduced during transformation holds:

AS(A′) = AS(A) ∪ {a′ | a ∈ AI(A)} mit TY PE(a′) = TY PE(a)

AI(A
′) = AI(A) ∪ {a′ | a ∈ AS(A)} mit TY PE(a′) = TY PE(a) (A.1)

169

Appendix A Left Recursion Removal

During transformation of production p : A0 → A1α to p′ : A′
0 → αA′

1

R(p) = {A0.a := fa(X
p
1 .a1, . . . , X

p
na

.ana) | a ∈ AS(A)} ∪
{Xp

0 .a0 := fa(A0.a1, . . . , A0.ana) | Xp
0 .a0 ∈ DO(p), a0 ∈ AI}

=⇒
R(p′) = {A′

1.a
′ := fa(X

p′
1 .a1, . . . , X

p′
na

.ana) | a ∈ AS(A′)} ∪
{Xp′

0 .a0 := fa(A
′
1.a

′
1, . . . , A

′
1.a

′
na

) | Xp.a ∈ DO(p), a0 ∈ AI} ∪
{A′

0.a := A′
1.a | a ∈ AS(A)} ∪ {A′

1.a := A′
0.a | a ∈ AI(A)}

where

Xp′
i .ai =

{
A′

0.a
′
i, if Xp

i = A1

Xp
i .ai, otherwise

(A.2)

For translation of a production p : Ap → β to p′ : Ap′ → βA′

R(p) = {Ap.a := fa(X1.a1, . . . , Xna .ana) | a ∈ AS(A)} ∪
{Xp.a := fa(A

p.a1, . . . , A
p.ana) | Xp.a ∈ DO(p), a ∈ AI} =⇒

R(p′) = {A′.a′ := fa(X1.a1, . . . , Xna .ana) | a′ ∈ AI(A
′)} ∪

{Xp′ .a := fa(A
′.a′

1, . . . , A
′.a′

na
) | Xp.a ∈ DO(p), a ∈ AI} ∪

{Ap′ .a := A′.a | a ∈ AS(A)} ∪ {A′.a := Ap′ .a | a ∈ AI(A)} (A.3)

While adding a new production p : A′ → ε add

R(p) = {A′.a := A′.a′ | a ∈ AS(A)} ∪ {A′.a′ := A′.a | a ∈ AI(A)} (A.4)

During transition of a production p : Y p → Xpβ to p′ : Y p′ → αβ by inserting q : Xq → α
with

R(q) = {Xq.a := f q
a(. . .) | a ∈ AS(X)} ∪

{Aq.a := f q
a(Xq.a1, . . . , X

q.ana) | Aq.a ∈ DO(q), a ∈ AI} and

R(p) = {Y p.a := fp
a (Xp

1 .a1, . . . , X
p
na

.ana) | a ∈ AS(Y)} ∪
{Xp.a := fp

Xa(. . .) | a ∈ AI(X)} ∪
{Bp.a := fp

Ba(. . .) | Bp.a ∈ DO(p)\{Xp.a | a ∈ AI(X)}, a ∈ AI}
=⇒

R(p′) = {Y p′ .a := fp
a (Xp′

1 .a1, . . . , X
p′
na

.ana) | a ∈ AS(Y)} ∪
{Ap′ .a := f q

a(fp
Xa1

(. . .), . . . , fp
Xana

(. . .)) | Aq.a ∈ DO(q), a ∈ AI} ∪
{Bp′ .a := fp

Ba(. . .) | Bp.a ∈ DO(p)\{Xp.a | a ∈ AI(X)}, a ∈ AI}
where

Xp′
i .ai =

{
f q

ai
(. . .), if Xp

i = X
Xp

i .ai, otherwise
(A.5)

170

A.2 The Practical View

:- op(10,xfx, :=). % X := Y :- apply(Y,[X]).

% Unify, if it is variable, an atom or a list
X := Y :- (var(Y); atomic(Y); functor(Y,(.), _)), !, X = Y.

% else, we have a term structure, which might be
% a predicate call or a term
X := Y :- Y =.. [F| Args], append(Args, [X], NewArgs),

G =.. [F| NewArgs],
(% it is a predicate

functor(G, F, N), current_predicate((F)/N),
call(G)

; % it will be a term without semantics
X = Y

).

Figure A.1 Simulation of computation of an attribute by function application

A.2 The Practical View

Here we will present the attribute grammar we used and report on two implementations of

the given transformation.

A.2.1 An AG-like Notation in Prolog

As mentioned earlier, our aim is to decrease the gap between a grammar specification and

it use in an implementation. This means the grammar the programmer uses should not

differ too much from the grammar, which serves as a reference. We are using grammars in

a Prolog setting for prototypes and small transformation tasks. A pure attribute grammar

specification is not desired as we want to reuse software already written in Prolog. Our

experiments are done with Laptob [LR01], hence we considered, how we could support a

more attribute grammar-like notation without leaving Prolog.

Laptob supports the metaphor: Prolog is the grammar already. This means that gram-

mar adaptations are simply meta-programming on Prolog programs. Basically, a grammar

in Laptob looks as follows:

exp(exp(plus,T,T2)) :- term(T), @"+", term(T2).
term(num(N)) :- num(N).

Each predicate stands for a nonterminal. Bottom-symbols, like num (not defined else-

where) are interpreted as tokens from a scanner. @ is an operator, which interprets its

argument as a keyword token. Arguments enable computation for example to construct

syntax trees. Thus, the logic program immediately implements a recursive descent parser.

Actually, it is already a kind of attribute grammar.

It is now not difficult to achieve an even more AG-like look of Prolog programs. We

introduced an operator, which implements a sort of function application (see Fig. A.1).

If the operator :=/2 finds that Y is a term, it adds X as argument and interprets it as

171

Appendix A Left Recursion Removal

predicate. So, for example, it is possible to write X := plus(1,2). resulting in a call

to plus(1,2,X). If there is no such predicate, := works as term construction.

% delayed evaluation for
% strict operations, here for ’is/2’
eval(Argument, Result) :-

(ground(Argument)
-> % buttom up apply in term

bu(eval_, Argument, Tmp),
Result is Tmp,

;
Result = eval(Argument)

).

% eval a delayed argument
eval_(eval(Argument), Result) :-

eval_(Argument,Result).

% special cases, e.g. lists, strings..
....

% Unify atoms
eval_(Arg, Res) :- atomic(Arg), !, Res = Arg.

% finally determine arithmetic values
eval_(Arg, Res) :- Res is Arg.

Figure A.2 Delayed evaluation of attribute values

Furthermore, we defined a special predicate eval/1, which implements delayed eval-

uation (Fig. A.2). Some operators require terms to be ground, for example is/2. This

is often not possible due to the evaluation strategy of Prolog (only for L-attributed gram-

mars). If eval finds its arguments non-ground, it returns the term eval enveloping the

arguments. If at any other place the computation of an attribute is based on the delayed

computation, the := operator tries to interpret the term (now eval) as predicate to be

called, and if its arguments are ground meanwhile, the evaluation can take place (e.g. is),
or it is returned unchanged. Once ground, the term is replaced by its result, hence there

is no further computation overhead in later uses of the attribute. The predicate can easily

be extended to react on user defined predicates in the same way as the case for atoms is

handled (see Fig. A.2).

For an example, see the unfamous knuthian example to convert binary to decimal num-

bers: As can be seen from the example, in the rule for b the attribute value would be

bn(BN) :- n(V),
BN := eval(V).

n(V) :- l(V0,L0,S0), @".", l(V1,L1,S1),
V := eval(V0+V1),

S0 := 0,
S1 := eval(0-L1).

n(V) :- l(VL,LL,SL),
V := VL,

SL := 0.

b(V,S) :- @"0",
V := 0.

b(V,S) :- @"1",
V := eval(2^S).

l(V0,L0,S0) :- l(V1,L1,S1), b(VB,SB),
V0 := eval(V1+VB),
SB := S0,
S1 := eval(S0+1),
L0 := eval(L1+1).

l(V,L,S) :- b(VB,SB),
V := VB,

SB := S,
L := 1.

Figure A.3 Example of Knuth: Converting binary to decimal numbers

computed using an uninstantiated variable, and thus it would raise an exception. Addition-

172

A.2 The Practical View

TXL v10.3a3 (29.10.03) (c)1988-2003 Queen’s University at Kingston
Compiling ag.Txl ...
Parsing samples/knuth.ag ...
Transforming ...
bn(BN) :- n(V), BN:=eval(V).
n(V) :- l(V0,L0,S0), @".", l(V1,L1,S1), V:=eval(V0+V1), S0:=0, S1:=eval(0-L1).
n(V) :- l(VL,LL,SL), V:=VL, SL:=0.
l(V,L,S) :- b(VB,SB), l1(V,L,S,V4,L4,S4), V4:=VB, SB:=S4, L4:=1.
l1(V0,L0,S0,V5,L5,S5) :- b(VB,SB),l1(V0,L0,S0,V6,L6,S6),V6:=eval(V5+VB), SB:=S6, S5:=
eval(S6+1),L6:=eval(L5+1).
b(V,S) :- @"0", V:=0.
b(V,S) :- @"1", V:=eval(2^S).
l1(V,L,S,V,L,S).

Figure A.4 Output of the TXL prototype for the Knuth example

ally, at l, Prolog would run into infinite recursion due to the evaluation strategy. Here, the

forementioned transformation algorithm offers help (Remark: infinite recursion could be

avoided in the example by a change of the order or rules, too).

A.2.2 Prototypes

The given transformation has been implemented twice for the given kind of attribute

grammar. In a first proof-of-concept prototype for multi-pass attribute grammar we used

TXL [CDMS02]. In Figure A.4 the output of the transformation for Knuth’s example

grammar generated by the TXL prototype is given.

The prototype was reimplemented in Prolog for S-AGs (thus being able to parse a yacc-

like grammar), because it better integrates in our Prolog-based setting. We used SWI-

Prolog [Wie03], with some traversal predicates taken from Laptob [LR01].

The transformation scheme is sufficient to implement the adaptation of semantic rules

during left recursion removal. However, there were technical issues, which we will men-

tion here. First, in our chosen AG notation we could not address attributes by name.

Rather, we had to find a mapping of attributes to positions. From the semantic rules we

derived which of the attributes are synthesised or inherited: Used occurrences of variables

on the right hand side of the semantic rule are synthesised, if they do not appear in the

head of the predicate on the left hand side of the Prolog rule, otherwise they are inherited.

This requires that each attribute name is used once only in the part of the Prolog rule rep-

resenting the context-free part (which could be achieved by a separate transformation on

the rule).

Replacements of attributes of one rule in another (e.g. in the case where equation 4.11

has to be applied) are done by constructing a substitution from the predicate occurrence

on the right hand side and the left hand side of the rule to be inserted (after refreshing all

variable names). Then, the substitution is applied to the attributes of the rule to be inserted

including the semantic rules.

The most difficult part was to specify the correct traversals. The algorithm in Figure 4.2

(page 67) gives for-loops only explicitely, where necessary. For an implementation, it was

necessary, also to iterate on all alternatives for rules of the form

Ai → Ajα1 | . . . | Ajαn | β1 | . . . | βm. The extension of the algorithm is set-

173

Appendix A Left Recursion Removal

based, too, requiring traversals again, (e.g., for all attributes, for all semantic rules, for all

alternatives, etc.). While there are typical traversal patterns like map for lists, or td for a

top down traversal, one has to pay attention, that each step is continued using the actual

intermediate result of the transformation.

We used a side effect to reduce the amount of parameters passed around by inserting

information about new introduced nonterminals and attributes as well as indexing infor-

mation into the knowledge base of Prolog.

A more Prolog style to implement the transformation would have been to use set-

predicates or to insert a representation of the attribute grammar transformed so far into

the knowledge base and to let Prolog do the searching. However, the deterministic traver-

sals restrict the amount of backtracking.

The Prolog prototype changes the order of definitions for the nonterminals. This should,

however, not influence the evaluation of the derived parser, but might be unexpected for

someone using the generated grammar later on.

A.2.3 Scalability

We have not prepared real life measurements yet. For the small examples, the TXL-

prototype shows no delay (on a 800 Mhz Linux computer). The Prolog interpreter is

considerably slowlyer, which might be due to numerous uses of =../2 to construct terms

from lists or to analyse them, the use of meta-predicates call, and many logging mes-

sages to follow the process of the transformation. There is certainly potential to increase

the speed. As we want to use this approach to quickly create transformations for programs

of such grammar, slow speed might be a problem for the development cycle.

The main problem with this approach might be, that with each left recursion to be re-

moved, n new rules have to be introduced, where n is the number of β (alternatives of

the nonterminal not starting with the same nonterminal). Furthermore, the number of at-

tributes is doubled, and new semantic rules are added. Though they are copy rules mostly,

and in Prolog variable references are fast, it might become a time factor due to the in-

troduced :=/2. Removing indirect left recursion also adds a rule for each alternative of

the nonterminal unfolded. However, trading translation time against space and complexity,

one could imagine an analyse whether the nonterminal is really part of a indirect recursion.

[Rob00] gives some values we can use to compare. The application of this approach to

real grammars still remains to be examined.

174

Bibliography

[AC06] Michał Antkiewicz and Krzysztof Czarnecki. Framework-specific model-

ing languages with round-trip engineering. In Model Driven Engineering
Languages and Systems, volume 4199 of Lecture Notes in Computer Sci-
ence, 2006.

[AC08] Michał Antkiewicz and Krzysztof Czarnecki. Design space of heteroge-

neous synchronization. In Generative and Transformational Techniques in
Software Engineering (GTTSE’07), Lecture Notes in Computer Science,

2008. To appear.

[Ada91] Stephen Robert Adams. Modular Grammars for Programming Language
Prototyping. PhD thesis, University of Southampton, Faculty of Engineer-

ing, Department of Electronics and Computer Science, Southampton, UK,

March 1991.

[AFCE04] Mehmet Aksit, Robert E. Filman, Siobhan Clarke, and Tzilla Elrad, edi-

tors. Aspect-Oriented Software Development. Addison-Wesley, October

2004.

[AK03] Colin Atkinson and Thomas Kühne. Model-driven development: A meta-

modeling foundation. IEEE Softw., 20(5):36–41, 2003.

[Alb91] Henk Alblas. Introduction to Attribute Grammars. In Henk Alblas and

Borivoj Melichar, editors, Attribute Grammars, Applications and Systems
(SAGA 1991), volume 545 of LNCS, pages 1–15, Prague, Czechoslovakia,

June 1991. Springer.

[ANS] ANSI/IEEE Standard. 729-1983; IEEE Standard. 1219-1998.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley, Boston, USA, 1986.

[Auc05] Douglas Michael Auclair. Aspect-Oriented Programming in

Prolog. http://cotilliongroup.com/man/aspects/
aspects-man.html, 2005.

[Aug99] Lennart Augustsson. Cayenne - a language with dependent types. In

S. Doaitse Swierstra, Pedro R. Henriques, and Jose N. Oliveira, editors,

Advanced Functional Programming, Third International School, AFP’98,
volume 1608 of Lecture Notes in Computer Science, pages 240–267,

Braga, Portugal, September 1999. Springer.

175

Bibliography

[Bau92] Beate Baum. Another Kind of Modular Attribute Grammars. In Compiler
Construction, 4th Int. Conf., CC’92, Proceedings, volume 641 of Elec-
tronic Notes in Computer Science, pages 44–50, 1992.

[BC00] Angela Bonifati and Stefano Ceri. Comparative analysis of five XML

query languages. SIGMOD Rec., 29(1):68–79, 2000.

[BCN92] C. Batini, S. Ceri, and S. B. Navathe, editors. Conceptual Database De-
sign: An Entity-Relationship Approach. Benjamin/Cummings, Redwood

City, CA, 1992.

[Bec94] Kent Beck. Simple smalltalk testing: With patterns. In

The Smalltalk Report, volume 4(2), pages 16–18. Oct 1994.

http://www.xprogramming.com/testfram.htm.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace the Change. Ad-

dison Wesley, 2000.

[BHW97] James M. Boyle, Terence J. Harmer, and Victor L. Winter. The TAMPR

program transformation system: simplifying the development of numeri-

cal software. In Modern Software Tools for Scientific Computing, pages
353–372. Birkhauser Boston Inc., Cambridge, MA, USA, 1997.

[BK93] Anne Brüggemann-Klein. Formal models in document processing. Habil-

itationsschrift. Faculty of Mathematics at the University of Freiburg, 1993.

ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/habil.ps.

[BK96] Jan A. Bergstra and Paul Klint. The toolbus coordination architecture. In

COORDINATION ’96: Proceedings of the First International Conference
on Coordination Languages and Models, pages 75–88, London, UK, 1996.

Springer-Verlag.

[BKK+01] Michael G. Burke, Matthew Kaplan, Vincent Kruskal, Harold Ossher,

Frank Budinsky, Christina Lau, David Lauzon, and Ed Merks. Xml

transformation: Matching & reconciliation. Technical report, IBM, 2001.

http://www.research.ibm.com/hyperspace/mr/.

[BKKK87] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Seman-

tics and implementation of schema evolution in object-oriented databases.

In SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international
conference on Management of data, pages 311–322, New York, NY, USA,

1987. ACM Press.

[BKN87] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of

matching problems. J. Symb. Comput., 3(1-2):203–216, 1987.

176

Bibliography

[BKVV06] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco

Visser. Stratego/xt 0.16: components for transformation systems. In

PEPM ’06: Proceedings of the 2006 ACM SIGPLAN symposium on Par-
tial evaluation and semantics-based program manipulation, pages 95–99,
New York, NY, USA, 2006. ACM.

[BM97] Johan Boye and Jan Maluszynski. Directional types and the annotation

method. Journal of Logic Programming, 33(3):179–220, 1997.

[BMPT90] Antonio Brogi, Paola Mancarella, Dino Pedreschi, and Franco Turini.

Logic Programming within a Functional Framework. In P. Deransart

and J. Małuszyński, editors, Proceedings of Programming Language Im-
plementation and Logic Programming, number 456 in Lecture Notes in

Computer Science, pages 372–386, London, UK, August 1990. Springer-

Verlag.

[BMPT94] Antonio Brogi, Paola Mancarella, Dino Pedreschi, and Franco Turini.

Modular Logic Programming. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1361–1398, 1994.

[Bos99] Annalisa Bossi, editor. Proc. of the 9th International Workshop on
Logic Based Program Synthesis and Transformation (LOPSTR’99), vol-
ume 1817 of LNCS, Venice, Italy, September 1999. Springer-Verlag.

[Bow98] Anthony Bowers. Effective Meta-programming in Declarative Languages.
PhD thesis, Department of Computer Science, University of Bristol, Jan-

uary 1998.

[BP89] Barrett R. Bryant and Aiqin Pan. Rapid Prototyping of Programming Lan-

guage Semantics Using Prolog. In Proceedings of the 13th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC’99),
pages 439–446, Orlando, Florida, September 1989. IEEE Computer Soci-

ety Press.

[BP96] Michael Blaha and William Premerlani. A catalog of object model trans-

formations. In WCRE ’96: Proceedings of the 3rd Working Conference on
Reverse Engineering (WCRE ’96), pages 87–96, Washington, DC, USA,

1996. IEEE Computer Society.

[BP97] Ira D. Baxter and Christopher W. Pidgeon. Software change through de-

sign maintenance. In ICSM ’97: Proceedings of the International Confer-
ence on Software Maintenance, pages 250–259, Washington, DC, USA,

1997. IEEE Computer Society.

[BR00] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evo-

lution: a roadmap. In ICSE ’00: Proceedings of the Conference on The

177

Bibliography

Future of Software Engineering, pages 73–87, New York, NY, USA, 2000.

ACM.

[BRV+94] A. Bowles, David Robertson, Wamberto Weber Vasconcelos, Vera M. Var-

gas, and D. Bental. Applying Prolog programming techniques. Interna-
tional Journal of Human-Computer Studies, 41(3):329–350, September

1994.

[BSR04] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-

wise refinement. IEEE Transactions on Software Engineering, 30(6):355–
371, 2004.

[BSVV02] Mark G.J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco

Visser. Disambiguation filters for scannerless generalized LR parsers. In

Nigel Horspool, editor, Compiler Construction (CC’02), volume 2304 of

Lecture Notes in Computer Science, pages 143–158, Grenoble, France,

April 2002. Springer-Verlag.

[BV00] Mark G.J. van den Brand and J. Vinju. Rewriting with layout. In Nachum

Derschowitz and Claude Kirchner, editors, Proceedings of the First Inter-
national Workshop on Rule-Based Programming RULE’2000, Sep 2000.

[Byr80] Lawrence Byrd. Understanding the control flow of Prolog programs. In

Sten-Ake Tarnlund, editor, Proc. of the Logic Programming Workshop,
Debrecen, Hungary, July 1980.

[CDMS02] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A.

Schneider. Source transformation in software engineering using the txl

transformation system. Journal of Information and Software Technology,
44(13):827–837, October 2002.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming,
Methods, Tools and Applications. Addison-Wesley, Boston, San Fran-

cisco, New York, 2000.

[CFP08] Call for papers: - sle 2008, 1st international conference on software

language engineering. LDTA mailing list, March 2008. http://planet-

sl.org/sle2008/.

[CH87] Jacques Cohen and Timothy J. Hickey. Parsing and compiling using

Prolog. ACM Transactions on Programming Languages and Systems,
9(2):125–163, April 1987.

[CH06] Anthony Cleve and Jean-Luc Hainaut. Co-transformations in database

applications evolution. In Ralf Lämmel, João Saraiva, and Joost Visser,

editors, in Proceedings of Generative and Transformational Techniques in
Software Engineering, International Summer School, GTTSE 2005, Braga,

178

Bibliography

Portugal, July 4-8, 2005. Revised Papers, volume 4143 of Lecture Notes
in Computer Science, pages 409–421, 2006.

[COV06] Alcino Cunha, José Nuno Oliveira, and Joost Visser. Type-safe two-level

data transformation. In Jayadev Misra, Tobias Nipkow, and Emil Sekerin-

ski, editors, Proceedings of FM 2006: Formal Methods, 14th International
Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006,
Proceedings, volume 4085 of Lecture Notes in Computer Science, pages
284–299. Springer, 2006.

[CV07] Alcino Cunha and Joost Visser. Transformation of structure-shy programs:

applied to xpath queries and strategic functions. In PEPM ’07: Pro-
ceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pages 11–20, New York, NY,

USA, 2007. ACM.

[DCMS02] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and Kevin A.

Schneider. Grammar programming in TXL. In Proc. Source Code Analysis
and Manipulation (SCAM’02). IEEE Press, October 2002.

[DCMS03] T.R. Dean, J.R. Cordy, A.J. Malton, and K.A. Schneider. Agile parsing in

txl. Journal of Automated Software Engineering, 10(4):311–336, October

2003.

[DDVMW00] Theo D’Hondt, Kris De Volder, KimMens, and Roel Wuyts. Co-evolution

of object-oriented software design and implementation. In Proceedings of
the international symposium on Software Architectures and Component
Technology 2000, 2000.

[Deu96] Arie van Deursen. An overview of ASF+SDF. In Arie van Deursen,

Jan Heering, and Paul Klint, editors, Language Prototyping: An Alge-
braic Specification Approach, pages 1–30. World Scientific Publishing

Co., 1996.

[dGSA07] Gerardo de Geest, Antoine Savelkoul, and Aali Alikoski. Building a

framework to support domain specific language evolution using microsoft

dsl tools. In J. Sprinkle, J . Gray, and M. Rossi J.-P. Tolvanen, editors,

Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07), number TR-38 in Computer Science and Information System

Reports, Technical Reports. University of Jyväskylä, 2007.

[DHK96] Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Proto-
typing: An Algebraic Specification Approach, volume 5 of AMAST Series
in Computing. World Scientific Publishing Co., 1996.

[DKT96] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking and its ap-

plications. In A. van Deursen, J. Heering, and P. Klint, editors, Language

179

Bibliography

Prototyping: An Algebraic Specification Approach, pages 249–294. World

Scientific Publishing Co., 1996.

[DM85] Pierre Deransart and Jan Małuszyński. Relating Logic Programs and At-

tribute Grammars. Theory and Practice of Logic Programming, 2(2):119–
155, July 1985.

[DM93] Pierre Deransart and Jan Małuszyński. A Grammatical View of Logic Pro-
gramming. MIT Press, 1993.

[dV98] Kris de Volder. Type-Oriented Logic Meta-Programming. PhD thesis,

Vrije Universiteit Brussels, 1998.

[DVD99] Kris De Volder and Theo D’Hondt. Aspect-Oriented Logic Meta Pro-

gramming. In P. Cointe, editor, Meta-Level Architectures and Reflection,
2nd International Conference, Reflection’99, volume 1616 of LNCS, pages
250–272. Springer Verlag, 1999.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and

Gabriele Taentzer. Information preserving bidirectional model transfor-

mations. In Matthew B. Dwyer and Antónia Lopes, editors, Fundamental
Approaches to Software Engineering, volume 4422 of Lecture Notes in
Computer Science, pages 72–86. Springer, 2007.

[Esp95] David A. Espinosa. Semantic Lego. PhD thesis, Graduate School of Arts

and Sciences, Columbia University, 1995.

[Fav05] Jean-Marie Favre. Languages evolve too! Changing the software time

scale. In IWPSE ’05: Proceedings of the Eighth International Workshop
on Principles of Software Evolution, pages 33–44, Washington, DC, USA,

2005. IEEE Computer Society.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

[Fuc98] N.E. Fuchs, editor. Logic Programming Synthesis and Transformation:
7th International Workshop, LOPSTR’97, Leuven, Belgium. July 10–12,
1997, number 1463 in Lecture notes in computer science, Berlin, October

1998. Springer-Verlag.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. In

SIGPLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Com-
piler construction, pages 157–170, New York, NY, USA, 1984. ACM

Press.

[Gro] Object Management Group. MDA - Model Driven Architecture.

http://www.omg.org/mda.

180

Bibliography

[Hin00] Ralf Hinze. A new approach to generic functional programming. In

POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 119–132, New York, NY,

USA, 2000. ACM Press.

[HL94] P.M. Hill and J.W. Lloyd. The Gödel Programming Language. MIT Press,

1994.

[HLR97] Jörg Harm, Ralf Lämmel, and Günter Riedewald. The Language Devel-

opment Laboratory. In Magne Haveraaen and Olaf Owe, editors, Selected
papers from the 8th Nordic Workshop on Programming Theory, Decem-
ber 4–6, Oslo, Norway, Research Report 248, ISBN 82-7368-163-7, pages
77–86, May 1997.

[HM03] Görel Hedin and Eva Magnusson. JastAdd: an Aspect-Oriented Compiler

Construction System. Sci. Comput. Program., 47(1):37–58, April 2003.

[HM05] Reiko Heckel and Tom Mens, editors. Proceedings of the Work-
shop on Software Evolution through Transformations: Model-based vs.
Implementation-level Solutions (SETra 2004), volume 127,3 of ENTCS,
2005.

[HP01a] Haruo Hosoya and Benjamin Pierce. Regular expression pattern matching

for XML. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 67–80, New

York, NY, USA, 2001. ACM Press.

[HP01b] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing

language (preliminary report). In Selected papers from the Third Inter-
national Workshop WebDB 2000 on The World Wide Web and Databases,
volume 1997, pages 226–244, London, UK, 2001. Springer-Verlag.

[HTJC94] Jean-Luc Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema

transformation techniques for database reverse engineering. In ER
’93: Proceedings of the 12th International Conference on the Entity-
Relationship Approach, volume 823, pages 364–375, London, UK, 1994.

Springer-Verlag.

[HU80] J. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley, 1980.

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-

sion types for XML. SIGPLAN Not., 35(9):11–22, 2000.

[Iro61] Edgar T. Irons. A syntax-directed compiler for ALGOL 60. Communica-
tions of the ACM, 4:51–55, 1961.

181

Bibliography

[ISO] ISO. The ISO Standard. 12207-1995.

[ISO98] ISO. Guidance on usability. document ISO 9241-11, 1998.

[Jai95] Ashish Jain. Projections of Logic Programs using Symbol Mappings. In

Leon Sterling, editor, Logic Programming, Proceedings of the Twelfth In-
ternational Conference on Logic Programming, June 13-16, 1995, Tokyo,
Japan. MIT Press, June 1995.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP - a polytypic programming lan-

guage extension. In POPL ’97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 470–482. ACM

Press, 1997.

[JKS94] Ashish Jain, Marc Kirschenbaum, and Leon S. Sterling. Constructing

Provably Correct Logic Programs. Technical Report CES-94-04, Depart-

ment of Computer Engineering and Science, Case Western Reserve Uni-

versity, March 1994.

[Jon02] Merijn de Jonge. Pretty-printing for software reengineering. In Proceed-
ings; IEEE International Conference on Software Maintenance (ICSM
2002), pages 550–559. IEEE Computer Society Press, October 2002.

[Jon03] Merijn de Jonge. To Reuse or To Be Reused: Techniques for Component
Composition and Construction. PhD thesis, Faculty of Natural Sciences,

Mathematics, and Computer Science, University of Amsterdam, January

2003.

[JS94] Ashish Jain and Leon S. Sterling. A Methodology for Program Construc-

tion by Stepwise Structural Enhancement. Technical Report CES-94-10,

Dep. of Computer Engineering and Science, Case Western Reserve Uni-

versity, June 1994.

[JVV01] Merijn de Jonge, Eelco Visser, and Jost Visser. XT: a bundle of pro-

gram transformation tools. In Mark G. van den Brand and Didier Parigot,

editors, Proceedings of Language Descriptions, Tools and Applications
(LDTA’01), volume 44 of Electronic Notes in Theoretical Computer Sci-
ence, pages 211–218. Elsevier Science Publishers, 2001.

[JZ99] Jens H. Jahnke and A. Zündorf. Applying graph transformations to

database re-engineering. Handbook of graph grammars and computing
by graph transformation: applications, languages, and tools, 2:267–286,
1999.

[KETF07] Adam Kiezun, Michael Dean Ernst, Frank Tip, and Robert Mack Fuhrer.

Refactoring for parameterizing java classes. In ICSE ’07: Proceedings
of the 29th international conference on Software Engineering, pages 437–
446, Washington, DC, USA, 2007. IEEE Computer Society.

182

Bibliography

[KG98] Walter Fred Korman and William G. Griswold. Elbereth: Tool support

for refactoring java programs. Technical Report CS98-576, University of

California, San Diego, Computer Science and Engineering, April 3, 1998.

[KHH+01] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,

and William G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072:327–355, 2001.

[KHR07] Güter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-

based infrastructures for concern detection and extraction. In Workshop on
Linking Aspect Technology and Evolution (LATE’07) March 12-16, 2007,
Vancouver, British Columbia, Vancouver, British Columbia, March 2007.

[KK04] Günter Kniesel and Helge Koch. Static composition of refactorings. Sci-
ence of Computer Programming, 52(1-3):9–51, 2004. Special issue on

Program Transformation, edited by Ralf Lämmel, ISSN: 0167-6423, digi-

tal object identifier http://dx.doi.org/10.1016/j.scico.2004.03.002.

[KL03] Jan Kort and Ralf Lämmel. Parse-tree annotations meet re-engineering

concerns. In Proc. Source Code Analysis and Manipulation (SCAM’03),
pages 161–170. IEEE Computer Society Press, September 2003. 10 pages.

[Kle07] Meike Klettke. Modellierung, Bewertung und Evolution von XML-
Dokumentkollektionen. Number ISBN 978-3-8325-1790-8. Logos Verlag

Berlin, decembre 2007. (in german).

[Kli93] Paul Klint. A meta-environment for generating programming environ-

ments. ACM Transactions on Software Engineering and Methodology,
2(2):176–201, April 1993.

[KLM+97a] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. In Mehmet Akşit and Satoshi Matsuoka, editors, 11th
Europeen Conference on Object-Oriented Programming, volume 1241

of Lecture Notes in Computer Science, pages 220–242. Springer Verlag,

1997.

[KLM+97b] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris. Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented

Programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proc.
of the ECOOP’97, volume 1241 of Lecture Notes in Computer Science,
pages 220–242, Jyvaskyla, Finnland, June 1997. Springer-Verlag.

[KLV02] Jan Kort, Ralf Lämmel, and Chris Verhoef. The grammar deployment kit.

In Mark G.J. van den Brand and Ralf Lämmel, editors, LDTA 2002, Sec-
ond Workshop on Language Descriptions, Tools and Applications (Satel-
lite Event of ETAPS 2002), 13 April 2002, Grenoble, France, volume 65

183

Bibliography

of Electronic Notes in Theoretical Computer Science, pages 117–123. El-
sevier Science Publishers, July 2002.

[KLV05a] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering dis-

cipline for grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–
380, 2005.

[KLV05b] Steven Klusener, Ralf Lämmel, and Chris Verhoef. Architectural Mod-

ifications to Deployed Software. Science of Computer Programming,
54:143–211, 2005.

[KM00] Meike Klettke and Holger Meyer. Managing XML documents in object-

relational databases. In Info XML 2000, May 2000.

[KMBG06] Andy Kellens, Kim Mens, Johan Birchau, and Kris Gybels. Managing

the Evolution of Aspect-Oriented Software with Model-based Pointcuts.

In D. Thomas, editor, Proc. of the ECOOP 2006, volume 4067 of LNCS,
pages 501–525. Springer Verlag, 2006.

[KMS96] Marc Kirschenbaum, Spiro Michaylov, and Leon S. Sterling. Skeletons

and Techniques as a Normative Approach to Program Development in

Logic-Based Languages. In Proceedings ACSC’96, Australian Computer
Science Communications, 18(1), pages 516–524, 1996.

[KMS00] Nils Klarlund, Anders Mœller, and Michael I. Schwartzbach. DSD 1.0
Specification, 2000. Available at http://www.brics.dk/DSD/index1.html.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2:127–145, 1968.

[KO05] Karl Klose and Klaus Ostermann. Back to the future: Pointcuts as pred-

icates over traces. In G. T. Leavens, C. Clifton, and R. Lämmel, editors,

Foundations of Aspect-Oriented Languages. March 2005.

[Kob86] Isamu Kobayashi. Losslessness and semantic correctness of database

schema transformation: another look at schema equivalence. Inf. Syst.,
11(1):41–59, 1986.

[KSJ93] Marc Kirschenbaum, Leon S. Sterling, and Ashish Jain. Relating logic

programs via program maps. Annals in Mathematics and Artificial Intelli-
gence, 8(III–IV):229–246, 1993.

[Kul99a] Marija Kulaš. Annotations for Prolog – A Concept and Runtime Handling.

In Bossi [Bos99], pages 234–254.

[Kul99b] Marija Kulaš. Debugging Prolog Using Annotations. In M. Ducassé, A. J.

Kusalik, and G. Puebla, editors, Proc. of the 10th Workshop on Logic Pro-
gramming Environments (WLPE’99), volume 30(4) of Electronic Notes in
Computer Science, Las Cruses, NM, USA, November 1999. Elsevier.

184

Bibliography

[KV98] Paul Klint and Chris Verhoef. Evolutionary software engineering: a

component-based approach. In Proceedings of the IFIP TC2 WG2.4 work-
ing conference on Systems implementation 2000 : languages, methods and
tools, pages 1–18, London, UK, UK, 1998. Chapman & Hall, Ltd.

[KV01] Tobias Kuipers and Joost Visser. Object-oriented tree traversal with JJ-

Forester. Electr. Notes Theor. Comput. Sci., 44(2), 2001.

[Lak89] Arun Lakhotia. A Workbench for Developing Logic Programs by Stepwise
Enhancement. PhD thesis, Case Western Reserve University, 1989.

[Läm99a] Ralf Lämmel. Declarative Aspect-Oriented Programming. In Olivier

Danvy, editor, Proc. of the ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation (PEPM’99), San Anto-
nio, TX, USA, number NS-99-1 in BRICS NOTES Series, pages 131–146,

January 1999.

[Läm99b] Ralf Lämmel. Functional meta-programs towards reusability in the
declarative paradigm. PhD thesis, University of Rostock, Department of

Computer Science, 1999.

[Läm00] Ralf Lämmel. Reuse by Program Transformation. In Greg Michaelson

and Phil Trinder, editors, Functional Programming Trends 1999. Intel-
lect, 2000. Selected papers from the 1st Scottish Functional Programming

Workshop.

[Läm01] Ralf Lämmel. Grammar Adaptation. In Proc. Formal Methods Europe
(FME) 2001, volume 2021 of LNCS, pages 550–570. Springer-Verlag,

2001.

[Läm02] Ralf Lämmel. Towards generic refactoring. In Proc. of Third ACM
SIGPLAN Workshop on Rule-Based Programming RULE’02, Pittsburgh,
USA, October5 2002. ACM Press. 14 pages.

[Läm04a] Ralf Lämmel. Editorial: transformations everywhere. Science of Com-
puter Programming, 52(1-3):1–8, 2004.

[Läm04b] Ralf Lämmel. Evolution of Rule-Based Programs. Journal of Logic and
Algebraic Programming, 2004. Special Issue on Structural Operational

Semantics.

[Läm05] Ralf Lämmel. Evolution of language interpreters. Electronic Notes in
Theoretical Computer Science, 127(3):49–54, 2005.

[LdM01] David Lacey and Oege de Moor. Imperative program transformation by

rewriting. Lecture Notes in Computer Science, 2027:52–70, 2001.

185

Bibliography

[Leh74] Meir Manny Lehman. Programs, cities, students - limits to growth? In

Imperial College of Science and Technology Inaugural Lecture Series, vol-
ume 9, pages 211–229. 1970-1974.

[Leh97] Meir Manny Lehman. Laws of software evolution revisited. In EWSPT
’96: Proceedings of the 5th European Workshop on Software Process
Technology, number 1149 in LNCS, pages 108–124, London, UK, 1997.

Springer-Verlag.

[Les03] Uwe Lesta. C# Interface to SWI-Prolog. http://gollem.
science.uva.nl/twiki/pl/bin/view/Foreign/
CSharpInterface/, 2003.

[LL01] Ralf Lämmel and Wolfgang Lohmann. Format Evolution. In Proc. 7th
International Conference on Reverse Engineering for Information Systems
RETIS 2001, volume 155, pages 113–134. OCG, July 2001.

[Loh99] Wolfgang Lohmann. Ein Rahmenwerk für höher-funktionale Meta-

Programmierung. Master’s thesis, University of Rostock, Department of

Computer Science, 1999.

[Lou97] Kenneth C. Louden. Compiler construction: principles and practice. In-

ternational Thomson Publishing, 1997.

[LR99] Ralf Lämmel and Günter Riedewald. Reconstruction of paradigm shifts. In

Second Workshop on Attribute Grammars and their Applications, WAGA
99, pages 37–56, March 1999. INRIA, ISBN 2-7261-1138-6.

[LR01] Ralf Lämmel and Günter Riedewald. Prological Language Processing. In

Mark van den Brand and Didier Parigot, editors, Proceedings of the First
Workshop on Language Descriptions, Tools and Applications (LDTA’01),
Genova, Italy, April 7, 2001, Satellite event of ETAPS’2001, volume 44 of

ENTCS. Elsevier Science, April 2001.

[LR03a] Wolfgang Lohmann and Günter Riedewald. Layout preservation for non-

trivial traversal schemes in declarative first order rewriting. Rostocker

Informatik-Berichte 28, Universität Rostock, Fachbereich Informatik, Au-

gust 2003. 14p.

[LR03b] Wolfgang Lohmann and Günter Riedewald. Towards automatical migra-

tion of transformation rules after grammar extension. In Proceedings of
7th European Conference on Software Maintenance and Reengineering
(CSMR 2003), pages 30–39. IEEE Computer Society Press, March 2003.

[LRL99] Ralf Lämmel, Günter Riedewald, and Wolfgang Lohmann. Projections of

Programs Revisited. In Bossi [Bos99].

186

Bibliography

[LRL00] Ralf Lämmel, Günter Riedewald, and Wolfgang Lohmann. Roles of pro-

gram extension. In LOPSTR’99: Selected papers from the 9th Interna-
tional Workshop on Logic Programming Synthesis and Transformation,
pages 136–155, London, UK, 2000. Springer-Verlag.

[LRS04] Wolfgang Lohmann, Günter Riedewald, and Markus Stoy. Semantics-

preserving migration of semantic rules during left recursion removal in

attribute grammars. Electronic Notes in Theoretical Computer Science,
110 C:133–148, Dezember 2004.

[LRW08] Wolfgang Lohmann, Günter Riedewald, and Guido Wachsmuth. Aspect-

oriented prolog in a language processing context. IET Software, Special
Issue on Software Language Engineering, 2008.

[LRZ06] Wolfgang Lohmann, Günter Riedewald, and Thomas Zühlke. A lightweigt

infrastructure to support experimenting with heterogeneous transforma-

tions. In Proceedings of the International Conference on .NET Technolo-
gies, May 2006.

[LV01a] Ralf Lämmel and Chris Verhoef. Cracking the 500-language problem.

IEEE Software, 18(6):78–88, November/December 2001.

[LV01b] Ralf Lämmel and Chris Verhoef. Semi-automatic Grammar Recovery.

Software—Practice & Experience, 31(15):1395–1438, December 2001.

[LW01] Ralf Lämmel and Guido Wachsmuth. Transformation of SDF syntax def-

initions in the ASF+SDF meta-Environment. In Mark van den Brand and

Didier Parigot, editors, Proceedings of the First Workshop on Language
Descriptions, Tools and Applications (LDTA’01), Genova, Italy, April 7,
2001, Satellite event of ETAPS’2001, volume 44 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, April 2001.

[MDDB+03] Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter

Van Gorp. Refactoring: Current research and future trends. Electronic
Notes in Theoretical Computer Science, 82(3):483–499, December 2003.

[Mic06] Microsoft Research, http://www.research.microsoft.com/fsharp/.

F# Homepage, (februar 2006) edition, 2006.

http://www.research.microsoft.com/fsharp/.

[MJ95] Erik Meijer and Johan Jeuring. Merging monads and folds for functional

programming. In J. Jeuring and E. Meijer, editors, Tutorial Text 1st Int.
Spring School on Advanced Functional Programming Techniques, Bås-
tad, Sweden, 24–30 May 1995, volume 925, pages 228–266, Berlin, 1995.

Springer-Verlag.

187

Bibliography

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, July 1991.

[Moo01] Leon Moonen. Generating robust parsers using island grammars. In Pro-
ceedings of the 8th Working Conference on Reverse Engineering, pages
13–22. IEEE Computer Society Press, October 2001.

[Moo02] Leon Moonen. Lightweight impact analysis using island grammars. In

Proceedings of the 10th International Workshop on Program Comprehen-
sion (IWPC 2002). IEEE Computer Society Press, June 2002.

[Mos99] Peter D. Mosses. Foundations of modular sos. In Miroslaw Kuty-

lowski, Leszek Pacholski, and Tomasz Wierzbicki, editors, Mathematical
Foundations of Computer Science 1999, 24th International Symposium,
MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceed-
ings, volume 1672 of Lecture Notes in Computer Science, pages 70–80.

Springer, 1999.

[Mos02] Peter D. Mosses. Pragmatics of modular sos. In AMAST ’02: Proceed-
ings of the 9th International Conference on Algebraic Methodology and
Software Technology, pages 21–40, London, UK, 2002. Springer-Verlag.

[MP97] Peter McBrien and Alexandra Poulovassilis. A formal framework for er

schema transformation. In D. W. Embley and R. C. Goldstein, editors,

ER ’97: Proceedings of the 16th International Conference on Conceptual
Modeling, volume 1331 of Lecture Notes in Computer Science, pages 408–
421, London, UK, November 3-5 1997. Springer-Verlag.

[MS99] Erik Meijer and Mark Shields. XMΛ: A functional language for con-

structing and manipulating XML documents. Technical report, IBM, 1999.

Draft, available at http://www.cartesianclosed.com/pub/xmlambda/.

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-

formers. In PODS ’00: Proceedings of the nineteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, May 15-
17 Dallas, Texas, USA, pages 11–22, New York, NY, USA, 2000. ACM

Press.

[MvLA99] Marjan Mernik, Viljem Žumer, Mitja Lenič, and Enis Avdičaušević. Im-

plementation of multiple attribute grammar inheritance in the tool lisa.

SIGPLAN Not., 34(6):68–75, 1999.

[MWD+05] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer,

Robert Hirschfeld, and Mehdi Jazayeri. Challenges in software evolu-

tion. In IWPSE ’05: Proceedings of the Eighth International Workshop
on Principles of Software Evolution, pages 13–22, Washington, DC, USA,

2005. IEEE Computer Society.

188

Bibliography

[Nai96] Lee Naish. Higher order logic programming in Prolog. In M. Chakravarty,

Y. Guo, and T. Ida, editors, JICSLP’96 Post Conference Workshop on
Multi-Paradigm Logic Programming, Bonn, June 1996.

[NS98] Lee Naish and Leon Sterling. A Higher Order Reconstruction of Stepwise

Enhancement. In Fuchs [Fuc98], pages 245–262.

[NS00] Lee Naish and Leon S. Sterling. Stepwise Enhancement and Higher-Order

Programming in Prolog. The Journal of Functional and Logic Program-
ming, 2000(4):34–58, March 2000.

[OJ90] W. F. Opdyke and R. J. Johnson. Refactoring: An Aid in Designing Appli-

cation Frameworks. In Proceedings of the Symposium on Object-Oriented
Programming emphasizing Practical Applications, pages 145–160. ACM-

SIGPLAN, September 1990.

[O’K84] Richard A. O’Keefe. advice.pl – Interlisp-like advice package. In DEC-10
Prolog Library. August 1984.

[OMG] OMG. UML specification, table with formally released versions of UML.

read 2008-06-16.

[OMG08] OMG. Xml metadata interface, September 2008.

http://www.omg.org/spec/XMI/.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD the-

sis, University of Illinois at Urbana-Champaign, 1992.

[Paa91] Jukka Paakki. Prolog in Practical Compiler Writing. Computer Journal,
34(1):64–72, February 1991.

[Paa95] Jukka Paakki. Attribute grammar paradigms— A high-level methodology

in language implementation. ACM Comput. Surv., 27(2):196–255, 1995.

[Par90] Helmut A. Partsch. Specification and transformation of programs: a for-
mal approach to software development. Springer-Verlag New York, Inc.,

New York, NY, USA, 1990.

[Pep99] Peter Pepper. LR Parsing = Grammar Transformation + LL Parsing. Tech-

nical Report CS-99-05, TU Berlin, April 1999.

[Pig96] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for
Managing Your Software Investment. John Wiley & Sons, Inc., New York,

NY, USA, 1996.

[PJ07] Markus Pizka and Elmar Jürgens. Automated language evolution. In First
IEEE/IFIP International Symposium on Theoretical Aspects of Software
Engineering, pages 305–315, Shanghai, China, June 2007. IEEE/IFIP,

IEEE Computer Society.

189

Bibliography

[Pla] Plato. Republic. Socratic dialog.

[PP96] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for trans-

forming functional and logic programs. ACM Computing Surveys,
28(2):360–414, June 1996.

[PS90] A. John Power and Leon Sterling. A Notion of Map between Logic Pro-

grams. In Peter Warren, David H.D.; Szerdei, editor, Proceedings of the
7th International Conference on Logic Programming (ICLP ’90), pages
390–404, Jerusalem, June 1990. MIT Press.

[PW80] Fernando C. N. Pereira and David H. D. Warren. Definite Clause Gram-

mars for Language Analysis - A Survey of the Formalism and a Com-

parison with Augmented Transition Networks. Artificial Intelligence,
13(3):231–278, 1980.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for

Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–
263, 1997.

[RC06] Chanchal Kumar Roy and James R. Cordy. Evaluating the evolution of

small scale open source software systems. In Special issue on CIC 2006,
15th International Conference on Computing, Research in Computing Sci-

ence 23, 2006.

[RF98] Julian Richardson and Norbert Fuchs. Development of Correct Transfor-

mation Schemata for Prolog Programs. In Fuchs [Fuc98].

[Rie91] Günter Riedewald. Prototyping by Using an Attribute Grammar as a Logic

Program. In Henk Alblas and Borivoj Melichar, editors, Proceedings of the
International Summer School on Attribute Grammars, Applications and
Systems (SAGA’91), volume 545 of LNCS, pages 401–437, Prag, Tsche-

choslowakei, June 1991. Springer-Verlag.

[Rie92] Günter Riedewald. The LDL - Language Development Laboratory. In

Compiler Construction, 4th Int. Conf., CC’92, Proceedings, volume 641

of Electronic Notes in Computer Science, pages 88–94, 1992.

[RK04] Tobias Rho and Günter Kniesel. Uniform Genericity for Aspect Lan-

guages. Technical Report IAI-TR-2004-4, CS Dep. III, University of

Bonn, 2004.

[RL88] Günter Riedewald and Uwe Lämmel. Using an Attribute Grammar as a

Logic Program. In Pierre Deransart, Bernard Lorho, and Jan Małuszyński,

editors, Proceedings of the 1st International Workshop on Programming
Language Implementation and Logic Programming (PLILP’88), volume

348 of Lecture Notes in Computer Science, pages 161–179, Orléans,

Frankreich, May 1988. Springer-Verlag.

190

Bibliography

[RM85] Peter Rechenberg and Hanspeter Mössenböck. Ein Compiler - Generator
für Mikrocomputer. Carl Hanser Verlag, 1985. in german.

[RMHVP06] Damijan Rebernak, Marjan Mernik, Pedro Rangel Henriques, and

Maria Joao Varando Pereira. Domain-Specific Aspect Languages for Mod-

ularizing Crosscutting Concerns in Grammar. In Proceedings of DSAL
2006, Portland, OR, Oct 2006.

[Rob92] David Stuart Robertson. A Simple Prolog Techniques Editor for Novice

Users. In Geraint A. Wiggins, Chris Mellish, and Tim Duncan, editors,

Proceedings of the 3rd UK Conference on Logic Programming, Edinburgh,
10-12 April 1991. Workshops in Computing, pages 190–205. Springer,

1992.

[Rob96] David Stuart Robertson. An Empirical Study of the LSS Specification

Toolkit in Use. In 8th International Conference on Software Engineering
and Knowledge Engineering, SEKE ’96, June 10-12, 1996, Lake Tahoe,
Nevada, USA, pages 153–160. Knowledge Systems Institute, June 1996.

[Rob00] C. Moore Roberts. Removing left recursion from context-free grammars.

In Proceedings of the first conference on North American chapter of the
Association for Computational Linguistics, pages 249–255. Morgan Kauf-

mann Publishers Inc., 2000.

[SB95] James P. Schmeiser and David T. Barnard. Producing a Top-Down

Parse Order with Bottom-up Parsing. Information Processing Letters,
54(6):323–326, 1995.

[Sch06] Daniel C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25–
31, February 2006. Guest Editor’s Introduction.

[SdM01] Ganesh Sittampalam and Oege de Moor. Higher-order pattern matching

for automatically applying fusion transformations. Lecture Notes in Com-
puter Science, 2053:218–237, 2001.

[SdPL99] M. Sant’Anna and J. C. S. do Prado Leite. An architectural framework for

software transformation. In Proceedings of the International Workshop on
Software Transformations STS’99, ICSE’99, 1999.

[SGM86] Information processing – text and office systems – standard generalized

markup language (SGML), 1986.

[Sie99] Siemens AG Österreich, Wien. IF/Prolog V5.3 Reference Manual, 1999.

[SJK93a] Leon Sterling, Ashish Jain, and Marc Kirschenbaum. Composition Based

on Skeletons and Techniques. In ILPS ’93 post conference workshop on
Methodologies for Composing Logic Programs, Vancouver, October 1993.

191

Bibliography

[SJK93b] Leon S. Sterling, Ashish Jain, and Marc Kirschenbaum. Composi-

tion Based on Skeletons and Techniques. In ILPS’93 Post Conference
Workshop on Methodologies for Composing Logic Programs, Vancouver,
Canada, October 1993.

[SK93] Leon S. Sterling and Marc Kirschenbaum. Applying Techniques to Skele-

tons. In Jean-Marie Jacquet, editor, Constructing Logic Programs, chap-
ter 6, pages 127–140. John Wiley & Sons Ltd, 1993.

[SK94] Ken Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Pro-
gramming Languages: A Laboratory Based Approach. Addison-Wesley,

1994.

[Spi02] Diomidis Spinellis. Unix tools as visual programming components in a

GUI-builder environment. Software Practice and Experience, 32(1):57–
71, 2002.

[SS97] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cam-

bridge, USA, second edition, 1997.

[SS04] Tom Schrijvers and Alexander Serebrenik. Improving prolog programs:

Refactoring for prolog. In Logic Programming, Proc. of the 20th Inter-
national Conference, ICLP 2004, volume 3132 of LNCS, pages 58–72,

Saint-Malo, France, September 6-10, 2004. Springer Berlin/Heidelberg.

[SSB+00] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.

Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Effi-

ciently publishing relational data as xml documents. In VLDB ’00: Pro-
ceedings of the 26th International Conference on Very Large Data Bases,
pages 65–76, San Francisco, CA, USA, 2000. Morgan Kaufmann Publish-

ers Inc.

[Ste03] Dirk Steinke. Refactoring für logische Programme. Master’s thesis, Uni-

versity of Rostock, 2003. (in german).

[Ste07] Perdita Stevens. Bidirectional model transformations in qvt: Semantic is-

sues and open questions. In Proceedings of 10th International Conference
on Model Driven Engineering Languages and Systems, MODELS 2007,
Nashville October 5, 2007, volume 4735 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2007.

[SV99] Alex Sellink and Chris Verhoef. An architecture for automated software

maintenance. In IWPC ’99: Proceedings of the 7th International Work-
shop on Program Comprehension, page 38, Washington, DC, USA, 1999.

IEEE Computer Society.

192

Bibliography

[SV00] Alex Sellink and Chris Verhoef. Scaffolding for software renovation. In

CSMR ’00: Proceedings of the Conference on Software Maintenance and
Reengineering, page 161, Washington, DC, USA, 2000. IEEE Computer

Society.

[TM03] Tom Tourwé and Tom Mens. Identifying refactoring opportunities using

logic meta programming. In Proceeings of 7th European Conference on
Software Maintenance and Reengineering (CSMR 2003), pages 91–100.

IEEE Computer Society Press, March 2003.

[Tou02] Tom Tourwé. Automated Support For Framework-Based Software Evo-
lution. PhD thesis, Departement Informatica, Vrije Universiteit Brussel,

2002.

[TS97] Walid Taha and Tim Sheard. Multi-stage programming with explicit an-

notations. In Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, Amsterdam, The Netherlands, June 1997, volume

32(12) of ACM SIGPLAN Notices, pages 203–217. NewYork: ACM Press,

1997.

[Van01] Michael L. Van De Vanter. Preserving the documentary structure of source

code in language-based transformation tools. In IEEE International Work-
shop on Source Code Analysis and Manipulation (SCAM2001), Nov 2001.

[Vas93] Wamberto Weber Vasconcelos. Designing Prolog Programming Tech-

niques. In Logic Program Synthesis and Transformation’93, pages 85–99,
1993.

[vdBdJKO00] Mark G. J. van den Brand, Hayco A. de Jong, Paul Klint, and Pieter A.

Olivier. Efficient annotated terms. Software, Practice and Experience,
30(3):259–291, 2000.

[vdBSV98] Mark G. J. van den Brand, A. Sellink, and C. Verhoef. Control flow nor-

malization for cobol/cics legacy system. In CSMR ’98: Proceedings of
the 2nd Euromicro Conference on Software Maintenance and Reengineer-
ing (CSMR’98), page 11, Washington, DC, USA, 1998. IEEE Computer

Society.

[vdBvDH+01] Marc van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Mer-

ijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier,

Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser. The

ASF+SDF Meta-Environment: a component-based language development

environment. In Reinhard Wilhelm, editor, Proceedings of the 10th Inter-
national Conference on Compiler Construction (CC’01), volume 2027 of

LNCS, pages 365–370, Genua, Italien, April 2001. Springer-Verlag.

193

Bibliography

[Vin05] Jurgen J. Vinju. Analysis and Transformation of Source Code by Parsing
and Rewriting. PhD thesis, University of Amsterdam, november 2005.

[Vis97a] Eelco Visser. Scannerless generalized-LR parsing. Technical report, Uni-

versity of Amsterdam, 1997. Technical Report P9707, Programming Re-

search Group, University of Amsterdam.

[Vis97b] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis,

University of Amsterdam, 1997.

[Vis01] Eelco Visser. Stratego: A language for program transformation based on

rewriting strategies. System description of Stratego 0.5. In A. Middeldorp,

editor, Rewriting Techniques and Applications (RTA’01), volume 2051 of

Lecture Notes in Computer Science, pages 357–361. Springer-Verlag, May

2001.

[Vis02] Eelco Visser. Meta-programming with concrete object syntax. In Gen-
erative Programming and Component Engineering (GPCE’02), Lecture
Notes in Computer Science. Springer-Verlag, Oct 2002.

[Vis04] Eelco Visser. Program transformation with Stratego/XT: Rules, strate-

gies, tools, and systems in StrategoXT-0.9. In C. Lengauer et al., editors,

Domain-Specific Program Generation, volume 3016 of Lecture Notes in
Computer Science, pages 216–238. Spinger-Verlag, June 2004.

[VV08] Sander Vermolen and Eelco Visser. Heterogeneous coupled evolution of

software languages. In K. Czarnecki, editor, International Conference on
Model Driven Engineering Languages and Systems (MODELS’08), Lec-
ture Notes in Computer Science. Springer, October 2008.

[W3C99a] W3C. XML Path Language (XPath) version 1.0, November 1999.

http://www.w3.org/TR/xpath/.

[W3C99b] W3C. XSL Transformations (XSLT) version 1.0, November 1999.

http://www.w3.org/TR/xslt/.

[W3C00a] W3C. Extensible Markup Language (XML) 1.0 (second edition), October

2000. http://www.w3.org/TR/REC-xml.

[W3C00b] W3C. XML Schema Part 0: Primer, October 2000.

http://www.w3.org/TR/xmlschema-0/.

[W3C01a] W3C. XML Schema Part 1: Structures, May 2001.

http://www.w3.org/TR/xmlschema-1/.

[W3C01b] W3C. XML Schema Part 2: Datatypes, May 2001.

http://www.w3.org/TR/xmlschema-2/.

194

Bibliography

[Wad92] Philip Wadler. The essence of functional programming. In Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–14, Albequerque, New

Mexico, January 1992.

[Wag98] Tim A. Wagner. Practical Algorithms for Incremental Software Develop-
ment Environments. PhD thesis, "Department of Electrical Engineering

and Computer Science, Computer Science Division, University of Califor-

nia, Berkeley", March 1998.

[Wal07] Robert Waltemath. Einfluss des Programmierstils auf Layouterhaltung bei

Quelle-zu-Quelle Transformationen. Studienarbeit, in german, 2007.

[War80] David H. D. Warren. Logic programming and compiler writing. Software
— Practice and Experience, 10(2):97–125, February 1980.

[WB00] David Watt and Deryck Brown. Programming Language Processors in
Java. Prentice Hall, February 2000.

[WBBL99] Jon Whittle, Alan Bundy, Richard Boulton, and Helen Lowe. An ML

editor based on proofs-as-programs. In ASE ’99: Proceedings of the 14th
IEEE international conference on Automated software engineering, page
166, Washington, DC, USA, 1999. IEEE Computer Society.

[Wes01] Hedzer Westra. Cobolx: Transformations for Improving COBOL Pro-

grams. In Eelco Visser, editor, Proceedings of the Second Stratego Users
Day (SUD’01), Utrecht, The Netherlands, February 2001. Institute for In-

formation and Computing Sciences, Utrecht University.

[WGRM05] Hui Wu, Jeff Gray, Suman Roychoudhury, and Marjan Mernik. Weaving

a Debugging Aspect into Domain-Specific Language Grammars. In SAC
’05: Proceedings of the 2005 ACM symposium on Applied computing,
pages 1370–1374, New York, NY, USA, 2005. ACM Press.

[Wie03] Jan Wielemaker. An overview of the SWI-Prolog programming environ-

ment. In A. Serebenik F. Mesnard, editor, Proceedings of the 13th Interna-
tional Workshop on Logic Programming Environments, volume cW 371.,

pages 1–16„ Heverlee, Belgium„ 2003. Katholieke Universiteit Leuven,.

[Wie06] Jan Wielemaker. SWI Prolog 5.6 Reference Manual. Department of Social

Science Informatics, University of Amsterdam, Amsterdam, March 2006.

[Wie07] Jan Wielemaker. SWI-Prolog Home Page. http://www.
swi-prolog.org/, 2007.

[Wil97] David S. Wile. Abstract syntax from concrete syntax. In Proceedings of
International Conference on Software Engineering (ICSE’97), pages 472–
480. ACM Press, May 1997.

195

Bibliography

[WM77] David A. Watt and Ole Lehrmann Madsen. Extended attribute grammars.

Technical Report no. 10, University of Glasgow, July 1977.

[WP94] Paul G.Whiting and Robert S. V. Pascoe. A history of data-flow languages.

IEEE Ann. Hist. Comput., 16(4):38–59, 1994.

[WR99] Malcolm Wallace and Colin Runciman. Haskell and XML: generic com-

binators or type-based translation? In ICFP ’99: Proceedings of the
fourth ACM SIGPLAN international conference on Functional program-
ming, pages 148–159, New York, NY, USA, 1999. ACM Press.

[WWWa] WWW. Data base of rewriting systems.

http://rewriting.loria.fr/systems.html.

[WWWb] WWW. Eclipse. 2008-06-13.

[WWWc] WWW. Intellij idea. 2008-06-13.

[WWWd] WWW. Transmogrify. 2008-06-13.

[WWW08] WWW. Monodevelop, September 2008.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical program-

ming. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 214–227,

New York, NY, USA, 1999. ACM Press.

[YAK95] Mark Young, Danielle Argiro, and Steven Kubica. Cantata: visual pro-

gramming environment for the Khoros system. SIGGRAPH Comput.
Graph., 29(2):22–24, 1995.

196

Index

.NET, 146

abstract syntax, 88

abstract syntax tree, see AST

advice, 114, 129
around, 130

port, 130

term, 130

AOP, 114, 113–144
around advice, 115, 130

aspect, 114, 130
generic, 116, 131, 134

aspect library, 133

aspect-oriented programming, see AOP

AspectG, 140

AspectLISA, 140

AST, 118

construction, 118, 119

attributed grammar, 64

i-attributed, 72

multi pass, 74

notion, 64

s-attributed, 68

box, 150–152

co-evolution, 7–9

computation

backward, 151

forward, 151

concern, 114, 117

crosscutting, 114

consequence

grammar evolution, 162

context, see pointcut context

converter, 150

core calculus, 30–35

crosscutting, 114

crosscutting expression, 114

disciplined meta-programming, 21, 163

DTD, 41–61

effect space, 24

evolution, 3–9

DTD, 41

format, 41–61

grammar

consequence, 162

language description, 9

maintenance tool, 13

XML, 41

format evolution, 41–61

generalised technique, 134

grammar

aspect, 117–123, 140

extension, 84

logic, see logic grammar

grammar adaptation, 64, 78, 87

grammar engineering, 9, 63

grammar extension, 79–96

grammarware agenda, 9

heuristics, 93

IF/Prolog, 125

join point, 114, 125, 126
join point model, 114

join point shadow, 114

language description

aspect, 164

language processing

crosscutting, 114

language processor, 11

197

Index

aspect, 117–123

language technology, 2

Laola, 115, 117, 125

DSL, 136

Laptob, 117

layout, 80

layout preservation, 79–111

layout preserving

conditional strongly, 101

strongly, 101

weakly, 101

left recursion removal, 63–78

Lisa, 152

LLL grammar, 87

Logic aspect-oriented language, see Laola

logic grammar, 12, 88, 113, 117

modularisation, 113–115

maintenance, 3–9

language description, 9

maintenance tool, 81

tool, 1

usability, 164

tools

improvement, 163

maintenance factory, 10–11, 161

meta-programming framework, 23

migration

document, 41

semantic rule, 63–78

transformation rule, 79–96

migration relation, 91

object-oriented combination model, 145,

148, 164

pointcut, 114, 126
use, 129

pointcut context, 116, 127, 129
left, 128

parallel, 127

parent, 128

pointcut description, 114, 126
port advice, 115, 130

port model, 115, 116, 125

Prolog, 12, 113–144

control flow, 125

port model, see port model

programming techniques, 116

refactoring, 5, 49

research question, 13–16

scanner integration, 118

semantics-preservation, 29

skeleton, 133

SMF, see maintenance factory

software co-evolution, see co-evolution

software evolution, see evolution

software language engineering, 1

software maintenance, see maintenance

software maintenance factory, see main-

tenance factory

stepwise enhancement, 21, 115, 133

sumlist

aspect-oriented description, 123

Swell, 117, 136

technique, 123, 133

calculate, 134
generalised, 134

techniques, 35

term advice, 115, 130

trace, 89, 90, 92, 93

Trane, 145–159

box, 150–152

comand line tools, 155

DLL import, 152

hierachy box, 152

native libraries, 152

web service, 152

XSLT, 154

concept, 147

converter, 150

dynamic compilation, 156

object-oriented model, 148

web service, 152

transformation

semantics-preserving, 21

two-level, 58

198

Index

transformation net, 147

two-level transformation, 58

usability, 16, 164

weave, 93

weaver, 92, 93, 114, 116, 131
web service, 152

XML, 41–61

XSLT, 154

199

