27 research outputs found

    The t-improper chromatic number of random graphs

    Full text link
    We consider the tt-improper chromatic number of the Erd{\H o}s-R{\'e}nyi random graph G(n,p)G(n,p). The t-improper chromatic number χt(G)\chi^t(G) of GG is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most tt. If t=0t = 0, then this is the usual notion of proper colouring. When the edge probability pp is constant, we provide a detailed description of the asymptotic behaviour of χt(G(n,p))\chi^t(G(n,p)) over the range of choices for the growth of t=t(n)t = t(n).Comment: 12 page

    Largest sparse subgraphs of random graphs

    Get PDF
    For the Erd\H{o}s-R\'enyi random graph G(n,p), we give a precise asymptotic formula for the size of a largest vertex subset in G(n,p) that induces a subgraph with average degree at most t, provided that p = p(n) is not too small and t = t(n) is not too large. In the case of fixed t and p, we find that this value is asymptotically almost surely concentrated on at most two explicitly given points. This generalises a result on the independence number of random graphs. For both the upper and lower bounds, we rely on large deviations inequalities for the binomial distribution.Comment: 15 page

    Defective Coloring on Classes of Perfect Graphs

    Full text link
    In Defective Coloring we are given a graph GG and two integers χd\chi_d, Δ∗\Delta^* and are asked if we can χd\chi_d-color GG so that the maximum degree induced by any color class is at most Δ∗\Delta^*. We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd\chi_d, Δ∗\Delta^* is set to the smallest possible fixed value that does not trivialize the problem (χd=2\chi_d = 2 or Δ∗=1\Delta^* = 1). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs. We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd\chi_d or Δ∗\Delta^* is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd\chi_d and Δ∗\Delta^* are unbounded

    Coloring with defects

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1995.Includes bibliographical references (leaves 19-21).by C.E. Jesurum.M.S

    Negative results on acyclic improper colorings

    Get PDF
    Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number kk is at most k2k−1k2^{k-1}. We prove that this bound is tight for k≥3k \geq 3. We also show that some improper and/or acyclic colorings are NP\mathrm{NP}-complete on a class C\mathcal{C} of planar graphs. We try to get the most restrictive conditions on the class C\mathcal{C}, such as having large girth and small maximum degree. In particular, we obtain the NP\mathrm{NP}-completeness of 33-ACYCLIC COLORABILITY\mathrm{ACYCLIC \space COLORABILITY} on bipartite planar graphs with maximum degree 44, and of 44-ACYCLIC COLORABILITY\mathrm{ACYCLIC \space COLORABILITY} on bipartite planar graphs with maximum degree 88

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Parameterized (Approximate) Defective Coloring

    Get PDF
    In Defective Coloring we are given a graph G=(V,E) and two integers chi_d,Delta^* and are asked if we can partition V into chi_d color classes, so that each class induces a graph of maximum degree Delta^*. We investigate the complexity of this generalization of Coloring with respect to several well-studied graph parameters, and show that the problem is W-hard parameterized by treewidth, pathwidth, tree-depth, or feedback vertex set, if chi_d=2. As expected, this hardness can be extended to larger values of chi_d for most of these parameters, with one surprising exception: we show that the problem is FPT parameterized by feedback vertex set for any chi_d != 2, and hence 2-coloring is the only hard case for this parameter. In addition to the above, we give an ETH-based lower bound for treewidth and pathwidth, showing that no algorithm can solve the problem in n^{o(pw)}, essentially matching the complexity of an algorithm obtained with standard techniques. We complement these results by considering the problem\u27s approximability and show that, with respect to Delta^*, the problem admits an algorithm which for any epsilon>0 runs in time (tw/epsilon)^{O(tw)} and returns a solution with exactly the desired number of colors that approximates the optimal Delta^* within (1+epsilon). We also give a (tw)^{O(tw)} algorithm which achieves the desired Delta^* exactly while 2-approximating the minimum value of chi_d. We show that this is close to optimal, by establishing that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation to chi_d, even when an extra constant additive error is also allowed
    corecore