7 research outputs found

    Constructively formalizing automata theory

    Get PDF
    We present a constructive formalization of the Myhill-Nerode the-orem on the minimization of nite automata that follows the account in Hopcroft and Ullman's book Formal Languages and Their Relation to Automata. We chose to formalize this theorem because it illustrates many points critical to formalization of computational mathematics, especially the extraction of an important algorithm from a proof as a method of knowing that the algorithm is correct. It also gave us an opportunity to experiment with a constructive implementation of quotient sets. We carried out the formalization in Nuprl, an interactive theorem prover based on constructive type theory. Nuprl borrows an imple-mentation of the ML language from the LCF system of Milner, Gordon, and Wadsworth, and makes heavy use of the notion of tactic pioneered by Milner in LCF. We are interested in the pedagogical value of electronic formal mathematical texts and have put our formalization on the World Wide Web. Readers are invited to judge whether the formalization adds value in comparison to a careful informal account. Key Words and Phrases: automata, constructivity, congruence, equivalence relation, formal languages, foundational logic, LCF, logic, Martin-Lof semantics, Myhill-Nerode theorem, Nuprl, program extrac

    Importing mathematics from HOL into Nuprl

    No full text

    Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop

    Get PDF
    Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah

    Conception d'un noyau de vérification de preuves pour le λΠ-calcul modulo

    No full text
    In recent years, the emergence of feature rich and mature interactive proof assistants has enabled large formalization efforts of high-profile conjectures and results previously established only by pen and paper. A medley of incompatible and philosophically diverging logics are at the core of all these proof assistants. Cousineau and Dowek (2007) have proposed the λΠ-calculus modulo as a universal target framework for other front-end proof languages and environments. We explain in this thesis how this particularly simple formalism allows for a small, modular and efficient proof checker upon which the consistency of entire systems can be made to rely upon. Proofs increasingly rely on computation both in the large, as exemplified by the proof of the four colour theorem by Gonthier (2007), and in the small following the SSReflect methodoly and supporting tools. Encoding proofs from other systems in the λΠ-calculus modulo bakes yet more computation into the proof terms. We show how to make the proof checking problem manageable by turning entire proof terms into functional programs and compiling them in one go using off-the-shelf compilers for standard programming languages. We use untyped normalization by evaluation (NbE) as an enabling technology and show how to optimize previous instances of it found in the literature. Through a single change to the interpretation of proof terms, we arrive at a representation of proof terms using higher order abstract syntax (HOAS) allowing for a proof checking algorithm devoid of any explicit typing context for all Pure Type Systems (PTS). We observe that this novel algorithm is a generalization to dependent types of a type checking algorithm found in the HOL proof assistants enabling on-the-fly checking of proofs. We thus arrive at a purely functional system with no explicit state, where all proofs are checked by construction. We formally verify in Coq the correspondence of the type system on higher order terms lying behind this algorithm with respect to the standard typing rules for PTS. This line of work can be seen as connecting two historic strands of proof assistants: LCF and its descendents, where proofs of untyped or simply typed formulae are checked by construction, versus Automath and its descendents, where proofs of dependently typed terms are checked a posteriori. The algorithms presented in this thesis are at the core of a new proof checker called Dedukti and in some cases have been transferred to the more mature platform that is Coq. In joint work with Denes, we show how to extend the untyped NbE algorithm to the syntax and reduction rules of the Calculus of Inductive Constructions (CIC). In joint work with Burel, we generalize previous work by Cousineau and Dowek (2007) on the embedding into the λΠ-calculus modulo of a large class of PTS to inductive types, pattern matching and fixpoint operators.Ces dernières années ont vu l'émergence d'assistants interactifs de preuves riches en fonctionnalités et d'une grande maturité d'implémentation, ce qui a permis l'essor des grosses formalisations de résultats papier et la résolution de conjectures célèbres. Mais autant d'assistants de preuves reposent sur presque autant de logiques comme fondements théoriques. Cousineau et Dowek (2007) proposent le λΠ-calcul modulo comme un cadre universel cible pour tous ces environnement de démonstration. Nous montrons dans cette thèse comment ce formalisme particulièrement simple admet une implémentation d'un vérificateur de taille modeste mais pour autant modulaire et efficace, à la correction de laquelle on peut réduire la cohérence de systèmes tout entiers. Un nombre croissant de preuves dépendent de calculs intensifs comme dans la preuve du théorème des quatre couleurs de Gonthier (2007). Les méthodologies telles que SSReflect et les outils attenants privilégient les preuves contenant de nombreux petits calculs plutôt que les preuves purement déductives. L'encodage de preuves provenant d'autres systèmes dans le λΠ-calcul modulo introduit d'autres calculs encore. Nous montrons comment gérer la taille de ces calculs en interprétant les preuves tout entières comme des programmes fonctionnels, que l'on peut compiler vers du code machine à l'aide de compilateurs standards et clé-en-main. Nous employons pour cela une variante non typée de la normalisation par évaluation (NbE), et montrons comment optimiser de précédentes formulation de celle-ci. Au travers d'une seule petite modification à l'interprétation des termes de preuves, nous arrivons aussi à une représentation des preuves en syntaxe abstraite d'ordre supérieur (HOAS), qui admet naturellement un algorithme de typage sans aucun contexte de typage explicite. Nous généralisons cet algorithme à tous les systèmes de types purs (PTS). Nous observons que cet algorithme est une extension à un cadre avec types dépendants de l'algorithme de typage des assistants de preuves de la famille HOL. Cette observation nous amène à développer une architecture à la LCF pour une large classe de PTS, c'est à dire une architecture où tous les termes de preuves sont corrects par construction, a priori donc, et n'ont ainsi pas besoin d'être vérifié a posteriori. Nous prouvons formellement en Coq un théorème de correspondance entre les système de types sans contexte et leur pendant standard avec contexte explicite. Ces travaux jettent un pont entre deux lignées historiques d'assistants de preuves : la lignée issue de LCF à qui nous empruntons l'architecture du noyau, et celle issue de Automath, dont nous héritons la notion de types dépendants. Les algorithmes présentés dans cette thèse sont au coeur d'un nouveau vérificateur de preuves appelé Dedukti et ont aussi été transférés vers un système plus mature : Coq. En collaboration avec Dénès, nous montrons comment étendre la NbE non typée pour gérer la syntaxe et les règles de réduction du calcul des constructions inductives (CIC). En collaboration avec Burel, nous généralisons des travaux précédents de Cousineau et Dowek (2007) sur l'encodage dans le λΠ-calcul modulo d'une large classe de PTS à des PTS avec types inductifs, motifs de filtrage et opérateurs de point fixe
    corecore