56 research outputs found

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    Sparse implicitization by interpolation: Characterizing non-exactness and an application to computing discriminants

    Get PDF
    We revisit implicitization by interpolation in order to examine its properties in the context of sparse elimination theory. Based on the computation of a superset of the implicit support, implicitization is reduced to computing the nullspace of a numeric matrix. The approach is applicable to polynomial and rational parameterizations of curves and (hyper)surfaces of any dimension, including the case of parameterizations with base points. Our support prediction is based on sparse (or toric) resultant theory, in order to exploit the sparsity of the input and the output. Our method may yield a multiple of the implicit equation: we characterize and quantify this situation by relating the nullspace dimension to the predicted support and its geometry. In this case, we obtain more than one multiples of the implicit equation; the latter can be obtained via multivariate polynomial gcd (or factoring). All of the above techniques extend to the case of approximate computation, thus yielding a method of sparse approximate implicitization, which is important in tackling larger problems. We discuss our publicly available Maple implementation through several examples, including the benchmark of bicubic surface. For a novel application, we focus on computing the discriminant of a multivariate polynomial, which characterizes the existence of multiple roots and generalizes the resultant of a polynomial system. This yields an efficient, output-sensitive algorithm for computing the discriminant polynomial

    Implicitization of surfaces via geometric tropicalization

    Full text link
    In this paper we further develop the theory of geometric tropicalization due to Hacking, Keel and Tevelev and we describe tropical methods for implicitization of surfaces. More precisely, we enrich this theory with a combinatorial formula for tropical multiplicities of regular points in arbitrary dimension and we prove a conjecture of Sturmfels and Tevelev regarding sufficient combinatorial conditions to compute tropical varieties via geometric tropicalization. Using these two results, we extend previous work of Sturmfels, Tevelev and Yu for tropical implicitization of generic surfaces, and we provide methods for approaching the non-generic cases.Comment: 20 pages, 6 figures. Mayor reorganization and exposition improved. The results on geometric tropicalization have been extended to any dimension. In particular, Conjecture 2.8 is now Theorem 2.

    Sparse implicitization by interpolation: Geometric computations using matrix representations

    Full text link
    Based on the computation of a superset of the implicit support, implicitization of a parametrically given hyper-surface is reduced to computing the nullspace of a numeric matrix. Our approach exploits the sparseness of the given parametric equations and of the implicit polynomial. In this work, we study how this interpolation matrix can be used to reduce some key geometric predicates on the hyper-surface to simple numerical operations on the matrix, namely membership and sidedness for given query points. We illustrate our results with examples based on our Maple implementation

    The Newton Polytope of the Implicit Equation

    Full text link
    We apply tropical geometry to study the image of a map defined by Laurent polynomials with generic coefficients. If this image is a hypersurface then our approach gives a construction of its Newton polytope.Comment: 18 pages, 3 figure

    Implicitization, Interpolation, and Syzygies

    Get PDF
    Η αλγεβρικοποίηση καμπυλών και επιφανειών είναι μία θεμελιώδης μετατροπή στην αναπαράσταση γεωμετρικών αντικειμένων από παραμετρική μορφή ή αναπαράσταση νέφους σημείων σε μία αλγεβρική αναπαράσταση, και ειδικότερα ως το μηδενοσύνολο ενός (ή περισσότερων) πολυωνυμικών εξισώσεων. Αυτή η διπλωματική εργασία ερευνά τρία ερωτήματα σχετικά με την έκφραση αυτής της αλγεβρικής αναπαράστασης καμπύλης ή επιφάνειας. Αρχικά, θεωρούμε τη μέθοδο της αραιής παρεμβολής για την αλγεβρικοποίηση: Όταν η βάση του πυρήνα του πίνακα παρεμβολής είναι σε ανοιγμένη κλιμακωτή μορφή, η αναλυτική εξίσωση μπορεί να ληφθεί άμεσα, χωρίς να απαιτούμε υπολογισμούς όπως ΜΚΔ πολυωνύμων πολλών μεταβλητών ή παραγοντοποίηση. Ως δεύτερη συνεισφορά, εξετάζουμε και αξιολογούμε μία αριθμητική μέθοδο που υπολογίζει ένα πολλαπλάσιο της αναλυτικής εξίσωσης, η οποία βασίζεται στη μέθοδο των δυνάμεων. Η τρίτη συνεισφορά αυτής της διπλωματικής εργασίας είναι να προσφέρουμε μία μέθοδο για τον υπολογισμό μίας αναπαράστασης μητρώου μίας ρητής δισδιάστατης ή τρισδιάστατης καμπύλης, ή μίας τρισδιάστατης επιφάνειας, όταν μας δίνεται μόνο ένα επαρκές σύνολο σημείων (νέφος σημείων) πάνω στο αντικείμενο με τέτοιον τρόπο ώστε η τιμή της παραμέτρου να είναι γνωστή ανά σημείο. Η μέθοδός μας επεκτείνει την προσέγγιση των αλγεβρικών συζυγιών για το πρόβλημα της αλγεβρικοποίησης επιφανειών και καμπυλών στην περίπτωση που η παραμετροποίηση δεν δίνεται αλλά υποτίθεται.Implicitization is a fundamental change of representation of geometric objects from a parametric or point cloud representation to an implicit form, namely as the zero set of one (or more) polynomial equation. This thesis examines three questions related to expressing the implicit equation of a curve or a surface. First, we consider a sparse interpolation method for implicitization: When the basis of the kernel of the interpolation matrix is in reduced row echelon form, the implicit equation can be readily obtained, without demanding computations such as multivariate polynomial GCD or factoring. As a second contribution, a numeric method that computes a multiple of the implicit equation based on the power method is tested and evaluated. The third contribution of this thesis is to provide a method for computing a matrix representation of a rational planar or space curve, or a rational surface, when we are only given a sufficiently large sample of points (point cloud) on the object in such a way that the value of the parameter is known per point. Our method extends the approach of algebraic syzygies for implicitization to the case where the parameterization is not given but only assumed

    Changing representation of curves and surfaces: exact and approximate methods

    Get PDF
    Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή. Υπολογίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές του πολυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο υπολογίζεται απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται από μια πρόσφατη μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος πρόβλεψης του συνόλου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το πολύτοπο υπολογίζεται από το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του Newton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο πυρήνα του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους συντελεστές των μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε συμβολικά είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value decomposition (SVD). Προτείνουμε τεχνικές για να διαχειριστούμε την περίπτωση ενός πολυδιάστατου πυρήνα το οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο στήριξης είναι ένα υπερσύνολο του πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο υπολογισμού της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις κατασκευής του πίνακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας χρησιμοποιήθηκαν ρητές καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών οποιασδήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με παραμετροποίηση σεσημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες μεθόδους αλγεβρικοποίησης. Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να αναπαριστώνται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών παραμετροποιήσεων θα πρέπει να μπορούν να μετασχηματιστούν σε ρητές συναρτήσεις. Επιπλέον η τεχνική που προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο υπολογισμόςτης διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της απαλοίφουσας ενός συστήματος πολυωνύμων με πολλές μεταβλητές.The main object of study in our dissertation is the representation change of the geometric objects from the parametric form to implicit. We compute the implicit equation interpolating the unknown coefficients of the implicit polynomial given a superset of its monomials. The latter is derived from the Newton polytope of the implicit equation obtained by the recently developed method for support prediction. The support prediction method we use relies on sparse (or toric) elimination: the implicit polytope is obtained from the Newton polytope of the sparse resultant of the system in parametrization, represented as polynomials. The monomials that correspond to the lattice points of the Newton polytope are suitably evaluated to build a numeric matrix, ideally of corank 1. Its kernel contains their coefficients in the implicit equation. We compute kernel of the matrix either symbolically, or numerically, applying singular value decomposition (SVD). We propose techniques for handling the case of the multidimensional kernel space, caused by the predicted support being a superset of the actual. This yields an efficient, output-sensitive algorithm for computing the implicit equation. We compare different approaches for constructing the matrix in Maple and SAGE software. In our experiments we have used classical algebraic curves and surfaces as well as NURBS. Our method can be applied to polynomial or rational parametrizations of planar curves or (hyper)surfaces of any dimension including cases of parameterizations with base points which raise important issues for other implicitization methods. The method has its limits: geometric objects have to be presented using monomial basis; in the case of trigonometric parametrizations they have to be convertible to rational functions. Moreover, the proposed technique can be applied for nongeometric problems such as the computation of the discriminant of a multivariate polynomial or the resultant of a system of multivariate polynomials

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture
    corecore