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ABSTRACT

Implicitization is a fundamental change of representation of geometric objects from a
parametric or point cloud representation to an implicit form, namely as the zero set of one
(or more) polynomial equationέ This thesis examines three questions related to expressing
the implicit equation of a curve or a surfaceέ

όirst, we consider a sparse interpolation method for implicitizationμ When the basis of
the kernel of the interpolation matrix is in reduced row echelon form, the implicit equation
can be readily obtained, without demanding computations such as multivariate polynomial
ύCD or factoringέ As a second contribution, a numeric method that computes a multiple
of the implicit equation based on the power method is tested and evaluatedέ

The third contribution of this thesis is to provide a method for computing a matrix represenά
tation of a rational planar or space curve, or a rational surface, when we are only given a
sufficiently large sample of points (point cloud) on the object in such a way that the value of
the parameter is known per pointέ Our method extends the approach of algebraic syzygies
for implicitization to the case where the parameterization is not given but only assumedέ

SUBJECT AREA: Algebraic ύeometry

KEYWORDS: geometric representation, implicitization, linear algebra, syzygies,
matrix representation



ΠΕΡΙΛΗΨΗ

Η αζγεβρδεκπκέβσβ εαηπυζυθ εαδ επδφαθεδυθ εέθαδ ηέα γεηεζδυδβς ηετατρκπά στβθ αθαά
παρΪστασβ γεωηετρδευθ αθτδεεδηΫθωθ απσ παραηετρδεά ηκρφά ά αθαπαρΪστασβ θΫφκυς
σβηεέωθ σε ηέα αζγεβρδεά αθαπαρΪστασβ, εαδ εδδδεστερα ως τκ ηβδεθκστθκζκ εθσς (ά πεά
ρδσσστερωθ) πκζυωθυηδευθ ειδσυσεωθέ Αυτά β δδπζωηατδεά εργασέα ερευθΪ τρέα ερωά
τάηατα σχετδεΪ ηε τβθ Ϋεφρασβ αυτάς τβς αζγεβρδεάς αθαπαρΪστασβς εαηπτζβς ά επδά
φΪθεδαςέ

ΑρχδεΪ, γεωρκτηε τβ ηΫγκδκ τβς αραδάς παρεηβκζάς γδα τβθ αζγεβρδεκπκέβσβμ Όταθ β
βΪσβ τκυ πυράθα τκυ πέθαεα παρεηβκζάς εέθαδ σε αθκδγηΫθβ εζδηαεωτά ηκρφά, β αθαά
ζυτδεά ειέσωσβ ηπκρεέ θα ζβφγεέ Ϊηεσα, χωρές θα απαδτκτηε υπκζκγδσηκτς σπως ΜΚΔ
πκζυωθτηωθ πκζζυθ ηεταβζβτυθ ά παραγκθτκπκέβσβέ Ως δεττερβ συθεδσφκρΪ, ειετΪά
ακυηε εαδ αιδκζκγκτηε ηέα αρδγηβτδεά ηΫγκδκ πκυ υπκζκγέαεδ Ϋθα πκζζαπζΪσδκ τβς αθαά
ζυτδεάς ειέσωσβς, β κπκέα βασέαεταδ στβ ηΫγκδκ τωθ δυθΪηεωθέ

Η τρέτβ συθεδσφκρΪ αυτάς τβς δδπζωηατδεάς εργασέας εέθαδ θα πρκσφΫρκυηε ηέα ηΫγκδκ
γδα τκθ υπκζκγδσησ ηέας αθαπαρΪστασβς ηβτρυκυ ηέας ρβτάς δδσδδΪστατβς ά τρδσδδΪά
στατβς εαηπτζβς, ά ηέας τρδσδδΪστατβς επδφΪθεδας, σταθ ηας δέθεταδ ησθκ Ϋθα επαρεΫς
στθκζκ σβηεέωθ (θΫφκς σβηεέωθ) πΪθω στκ αθτδεεέηεθκ ηε τΫτκδκθ τρσπκ υστε β τδηά τβς
παραηΫτρκυ θα εέθαδ γθωστά αθΪ σβηεέκέ Η ηΫγκδσς ηας επεετεέθεδ τβθ πρκσΫγγδσβ τωθ
αζγεβρδευθ συαυγδυθ γδα τκ πρσβζβηα τβς αζγεβρδεκπκέβσβς επδφαθεδυθ εαδ εαηπυζυθ
στβθ περέπτωσβ πκυ β παραηετρκπκέβσβ δεθ δέθεταδ αζζΪ υπκτέγεταδέ

ΘΕΜΑΣΙΚΗ ΠΕΡΙΟΧΗ: Αζγεβρδεά Γεωηετρέα

ΛΕΞΕΙ ΚΛΕΙΔΙΑ: γεωηετρδεά αθαπαρΪστασβ, αζγεβρδεκπκέβσβ, γραηηδεά Ϊζγεβρα,
συαυγέες, αθαπαρΪστασβ ηβτρυκυ
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Implicitization, Interpolation, and Syzygies

1. INTRODUCTION
This thesis is part of the Master of Science ύraduate Program of the Department of
Informatics and Telecommunications of the University of Athens in the Computational
Science specializationέ

Implicitization is a fundamental change of representation of geometric objects from a
parametric or point cloud representation to an implicit form, namely as the zero set of one
(or more) polynomial equationέ This thesis examines three questions related to expressing
the implicit equation of a curve or a surfaceέ

We will need to establish some concepts of algebraic geometry before continuing to the
algorithms related to the problemsέ Therefore, Section 2 will introduce the reader to the
necessary background and definitions needed in the following sectionsέ We will define the
implicitization problem and describe two of the methods for the implicitization problemέ
The first one is the sparse implicitization by interpolation method using predicted support
and the second is the implicit matrix representation methodέ We will define what an implicit
matrix representation is and provide the existing method for its computationέ

In Section 3, the first contribution of this work, we consider the sparse interpolation method
for implicitizationέ After constructing the interpolation matrix M of a given curve or surface,
the method demands the computation of a basis of the kernel of Mέ Each of the basis
elements corresponds to a polynomial and the last step of the method involves themultivaά
riate polynomial ύCD computation of these polynomials or factoring computation of one of
the polynomials followed by a polynomial evaluation to acquire the implicit polynomialέ We
show that when the basis of the kernel of the interpolation matrix is in reduced row echelon
form, the implicit equation can be readily obtained, without demanding such computations,
namelymultivariate polynomial ύCD or factoringέ This contribution speeds up the final step
of the interpolation method for the implicitization problem and uses basic linear algebra
and matrix computations instead of number theoretic approaches, such as ώensel liftingέ

In Section ζ, we present a numeric method that computes an approximation of a multiple of
the implicit equation based on the power methodέ ύiven a matrix M which has a nontrivial
kernel, we compute a nontrivial element of its kernel by using the power iteration method
on the ύrammatrix of Mέ This approximate kernel vector corresponds to an approximation
of a multiple of the implicit polynomialέ The method is tested and evaluatedέ We show that
our initial approach has some drawbacks that render the method impractical for most
scenariosέ Despite its drawbacks, we see this contribution as an initial step towards a
numeric method for computing an approximation of the implicit polynomial when we are
given the interpolation matrix of a curve or surfaceέ We propose several questions for
future workέ

Section η is the third and final contribution of this thesisέWe provide amethod for computing
a matrix representation of a rational planar or space curve, or a rational surface, when we

Konstantinos Dέ ύavriil 12
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are only given a sufficiently large sample of points on the object in such a way that the
value of the parameter is known per pointέ Our method extends the approach of algebraic
syzygies for implicitization to the case where the parameterization is not given but only
assumedέ Additionally, we show how we can compute the degree of the parameterization
of the curve or surface when the parameterization is not given explicitlyέ

Konstantinos Dέ ύavriil 13
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2. BACKGROUND
We will need to establish some concepts of algebraic geometry before continuing to the
algorithms related to the problemsέ In this section, we will introduce the reader to the
necessary background and definitions needed in the following sectionsέ We will define
the implicitization problem and examine the previous work for two of the methods for the
implicitization problemέ

The first one is the sparse implicitization by interpolation method using predicted supportέ
We will briefly present the method and focus on the definitions and background needed
for the contribution that we present in Section 3έ

The second is the implicit matrix representation method based on syzygiesέ We will define
what an implicit matrix representation is and provide the existingmethod for its computationέ
A brief focused introduction to the theory of syzygies is providedέ The presented method
will be the foundation for the contribution of Section ηέ

όor an inάdepth study of modules and syzygies see [λ], while more information about the
sparse interpolation method for the implicitization problem can be found in [1η] and [13]έ

Before defining the implicitization problem formally, we will introduce some needed conά
ceptsέ όirstly, we define the concept of a rational parameterization of a geometric object
since this will be one of the two forms of input, the other being a point cloud, to the
implicitization algorithmsέ

2.1 Rational parameterization of curves and surfaces

Let k be a polynomial ringέ A rational function f is a function that can be expressed as a
quotient of polynomials of kέ

A parameterization of a geometric object is the description of the object by parametric
functionsέ We will be interested in rational parameterizations in the following sectionsέ Let
k = R[t], where t = (t1, . . . , tn) A rational parameterization φ is of the form

φ : (t)→
(

f1(t)
fs(t)

, . . . ,
fs−1(t)
fs(t)

)

where f1(t), . . . , fs(t) ∈ R[t]έ

When n = 1, φ corresponds generically to a (s− 1)−dimensional curve and when n = 2,
it is a (s − 1)−dimensional surfaceέ The values of (n, s) that we will examine and the
corresponding geometric object areμ

• (1, 3) μ planar curve

• (1, ζ) μ space curve

• (2, ζ) μ space surface

Konstantinos Dέ ύavriil 1ζ
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2.2 Newton polytope of a polynomial

Another important concept for the sparse approach to the implicitization problem is the
Newton polytope of a given polynomialέ When studying a polynomial of a certain degree,
we can take into account all the possible monomials that the polynomial can containέ The
Newton polytope of that polynomial allows us to consider only the monomials that appear
(have a nonzero coefficient) in the polynomialέ

ύiven polynomial

f(t) =
∑

α
cαtα ∈ R[t1, . . . , tn]

where tα = tα11 · · · tαn
n , α ∈ N

n, cα ∈ R, we define its support as the set of the exponents of
the monomials of f with nonzero coefficient in vector form, iέeέ

SUP(f) = {α ∈ N
n : cα ̸= ί}

We use the notation CH for the convex hull of a given set of pointsέ We define the Newton
polytope of the polynomial f as

N (f) = CH(SUP(f))

Example 1. Consider polynomial

f(t1, t2) = tζ1 + t21t22 + t21 + t1tζ2 + t1 + t32 ∈ R[t1, t2]

Then, its support is the set

SUP(f) = {(ζ, ί), (2, 2), (2, ί), (1, ζ), (1, ί), (ί, 3)}

Its Newton polytope is the convex hull of the points in SUP(f).

1 2 3 4

1

2

3

4

N (f )

Figure 1: Newton polytope of f

Konstantinos Dέ ύavriil 1η
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Newton polytopes are the basic tool in sparse elimination theoryέ They are used in the
setting of sparse implicitization to predict the support of the implicit polynomialέ The interά
polation matrix of the curve or surface, has columns indexed by this supportέ An accurate
support prediction reduces the size of the interpolation matrix compared to one built using
only degree boundsέ

Let us now give the formal definition of the implicitization problemέ

2.3 Implicitization problem definition

Implicitization is a fundamental operation with applications in computerάaided geometric
design (CAύD) and geometric modellingέ It is the process of changing the representation
of a geometric object from parametric to implicitέ Various approaches have been studied
for the implicitization problem, including resultants, ύröbner bases, syzygies and interpolaά
tion techniquesέ We will restrict ourselves to the last two methods, namely syzygies and
interpolationέ

Consider the parameterization φ : Rn → R
m of a geometric object,

φ : t = (t1, . . . , tn)→ (x1 = f1(t), . . . , xm = fm(t))

where the fi, i = 1, . . . ,m are continuous functions, including polynomial, rational, and
trigonometric functionsέ

The implicitization problem asks for the smallest algebraic variety containing the closure
of the image of the parametric map φέ This image is contained in the variety defined by the
ideal of all polynomials p(x1, . . . , xm) such that p(f1(t), ..., fm(t)) = ί, for all t in the domain of
φέ We restrict ourselves to the case when this is a principal ideal, and we wish to compute
its unique defining polynomial

p(x1, . . . , xm) = ί

As we already mentioned, we restrict ourselves to two methods for the implicitization
problem, namely sparse implicitization using interpolation, and syzygiesέ In the following
paragraphs, we will make a brief introduction to both these methods before continuing to
the following sections and the main contributions of this workέ

2.4 Sparse interpolation method using predicted support

We will not provide a detailed description of the underlying theory and method for the
implicitization problem using support prediction but rather provide an overview of the
method and direct the reader towards [1η, 13] for a detailed descriptionέ We focus our
attention to the algorithm used in [1η, 13] since we will be making a contribution towards
the improvement of its final stepέ

Konstantinos Dέ ύavriil 1θ



Implicitization, Interpolation, and Syzygies

We assume we have knowledge of the implicit polytope, which is defined as the Newton
polytope N (p(x1, . . . , xm)) of the implicit polynomial p(x1, . . . , xm), or a superset S of its
implicit support, where S is defined as the set of all lattice points in N (p)έ This is achieved
by the algorithm provided in [1η, 13]έ ύiven the superset S, we construct a × |S| matrix
M whose columns are indexed by monomials with exponents in S and whose rows are
indexed by values of t at which the monomials are being evaluatedέ The number of rows
must be greater or equal |S|έ

Let v1, . . . , vN ∈ R
|S| be a basis of the kernel of M and k1, . . . , kN ∈ R[x1, . . . , xm] be the

corresponding polynomials, iέeέ ki = vT
i S, which we call kernel polynomialsέ Then, we

have the following result

gcd(k1, . . . , kN) = p(x1, . . . , xm),

where p ∈ R[x1, . . . , xm] is the implicit polynomialέ Therefore, a ύCD computation of the
kernel polynomials is needed to obtain the implicit polynomial pέ The first contribution of
this work is to avoid such computations and instead use basic linear algebra computations
to obtain the implicit polynomialέ We direct the reader to Section 3 for this improvementέ

This concludes the introduction of the first method for the implicitization problemέ Below,
we will define the concept of the implicit matrix representation of a curve or surface,
describe the method for constructing such a representation and comment on how this
method will be the basis for the contribution of Section ηέ

As before, we will begin by introducing the reader to the basic theory of modules and
syzygies and by defining homogeneous polynomialsέ A more detailed introduction and
further topics in modules and syzygies can be found in [λ]

2.5 Modules

Let k be a commutative ring with identityέ Polynomials rings, which are of interest for this
thesis, are examples of such ringsέ As defined in [λ], a k−module is a set M together with
a binary operation, usually denoted as addition, and an operation of k on M, called scalar
multiplication, satisfying the following propertiesέ

1έ M is an abelian group under additionέ

2έ όor all a ∈ k and all f, g ∈ M, a(f + g) = af + agέ

3έ όor all a, b ∈ k and all f ∈ M, (a + b)f = af + bfέ

ζέ όor all a, b ∈ k and all f ∈ M, (ab)f = a(bf)έ

ηέ If 1k is the multiplicative identity in k, 1kf = f for all f ∈ Mέ

Since rings are a generalization of fields, modules over a ring can be seen as a generalization
of vector spaces over a fieldέ

Konstantinos Dέ ύavriil 1ι
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We provide below some examples of modules before continuing to define the module of
syzygies of a set of polynomialsέ

Example 2. Let k be polynomial ring. An example of a k−module is ks, s ∈ N, i.e. the set
of s× 1 vectors consisting of elements of k. Addition and scalar multiplication are defined
similar to vector spaces.

Another example of a k−module is the set of k−linear combinations of a finite set of
vectors f1, f2, . . . , fm ∈ ks.

{a1f1 + a2f2 + . . .+ amfm ∈ ks, where a1, . . . , am ∈ k}

Let M be a k−module and N ⊂ Mέ Then, N is called a k−submodule of M if the following
properties are satisfiedέ

1έ όor all f, g ∈ N, f + g ∈ Nέ

2έ όor all a ∈ k and f ∈ N, af ∈ Nέ

In the following section, we will introduce a submodule of interest for this work, namely
syzygies of given polynomialsέ

2.6 Syzygies

Let k be a polynomial ring and consider polynomials f1, . . . , fs ∈ kέ Some of the polynomial
rings that we will be using in the following sections are R[t] and R[t1, t2]έ An s−tuple
(h1, . . . , hs) ∈ k

s of polynomials h1, . . . , hs ∈ k that verifies the k−linear relation

h1f1 + · · ·+ hsfs = ί

is called a syzygy on the polynomials f1, . . . , fsέ The term syzygy comes from the ύreek
word συαυγέα which is used in astronomy to express an alignment of celestial bodiesέ
We can think of a polynomial syzygy as an algebraic null alignment of the polynomials
f1, . . . , fsέ

The set of all (h1, . . . , hs) ∈ k
s such that

s
∑

i=1

hifi = ί,

is a k−submodule of ks, called the (first) syzygy module of (f1, . . . , fs), and denoted

Syz(f1, . . . , fs).

Example 3. Consider the polynomial ring R[x, y] and consider two of its polynomials

Konstantinos Dέ ύavriil 1κ
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f1 = x2 and f2 = y

Then (y,−x2) is a syzygy of polynomials f1, f2 since

yf1 + (−x2)f2 = ί

This syzygy is also called a trivial syzygy since for any two polynomials f1, f2 ∈ R[x, y], it
holds that

f2f1 + (−f1)f2 = ί.

The concepts of homogeneous polynomials and the homogeneous degree will be useful
for our description of the implicit matrix representation methodέ Let us begin by defining
homogeneous polynomials and the concept of a graded ring that we will use to define the
module of syzygies of a certain homogeneous degreeέ

2.7 Homogeneous polynomials

A polynomial is homogeneous of total degree d if every term appearing in it has total
degree dέ Consider a nonάhomogeneous polynomial f ∈ R[t1, . . . , tn] of degree dέ The
homogenization of f with respect to a homogenizing variable tn+1 is the introduction of tn+1
to f such that

fh(t1, . . . , tn, tn+1) = tdn+1f(
t1

tn+1
, . . . ,

tn
tn+1

).

We can dehomogenize a homogenized polynomial by setting the homogenizing variable
tn+1 = 1έ

Example 4. Consider the polynomial

f(x, y) = 3x2y + xy− 2yη ∈ R[x, y].

The homogenization of f with respect to the variable z gives us

fh(x, y, z) = 3x2yz2 + xyz3 + 2yη ∈ R[x, y, z].

ώomogeneous polynomials provide a grading to a polynomial ringέ A graded ring is a ring
k that is expressible as ⊕n≥ίkn where kn are additive subgroups such that kmkn ⊆ km+nέ
We call kn the nth graded piece and the elements of kn homogeneous of degree nέ
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Similarly, we can speak of a graded module, namely a k−module M is expressible as
⊕m≥ίMm and knMm ⊆ Mn+m for all m, n ≥ ίέ Additionally, N is a graded submodule of M if
N is a graded module, N is a submodule of M and Nm = N ∩Mm for all m ≥ ίέ

The set of syzygies of the homogeneous polynomials f1, . . . , fs, which is of interest for this
work, is a graded submoduleέ Thus, we can speak of its graded piece Syz(f1, . . . , fs) ,
namely the set of syzygies of polynomials f1, . . . , fs of homogeneous degree ≥ ίέ As we
will mention again in the following sections, Syz(f1, . . . , fs) is an R−vector space, which
means that knowledge of its basis is adequate for its expressionέ

Now, we are ready to describe the second method for the implicitization problem which is
of interest to this workέ The implicit matrix representation method via syzygies does not
compute the implicit polynomial of the curve or surface but rather construct a matrix which
has a property that can define the curveέ The basic method is well known and sketched
below, for details see [3, η]έ

2.8 Matrix representations of planar curves

We first describe the general method for computing a matrix representation of a rational
planar curve via syzygy computationsέ Consider the parameterization φ : P1 → P

2 :

t = (t1, t2)→ (f1(t), f2(t), f3(t)) ,

where fi ∈ R[t1, t2] are homogeneous polynomials of the same degree d and for simplicity
we assume gcd(f1, f2, f3) = 1, iέeέ φ has no base pointsέ In our setting, a point t ∈ P

1 is
called a base point if fi(t) = ί for all i = 1, 2, 3έ Extensions for addressing base points are
wellάestablished [3]έ

The dehomogenization of φ gives the rational planar curve C parameterized by

(

f1(t1)
f3(t1)

,
f2(t1)
f3(t1)

)

⊂ R
2 (1)

where fi(t1) is short for fi(t1, 1)έ A syzygy on the polynomials fi is a triple (h1, h2, h3) of
homogeneous polynomials hi ∈ R[t1, t2] that verify the linear relation

∑3
i=1 hifi = ίέ We

write

(h1, h2, h3) ∈ Syz(f1, f2, f3).

By homogenization, the h1, h2, h3 have the same degree, which is the degree of their
syzygyέ Asmentioned before, the set of syzygiesSyz(f1, f2, f3) is a gradedmoduleν it can be
partitioned according to the degree of the syzygiesέ We fix a degree ≥ ί and consider the
set of syzygies of degree , namely Syz(f1, f2, f3) , which is known to be anRάvector spaceέ
Let L1, . . . , LN be an Rάbasis of Syz(f1, f2, f3) , where N denotes the basis cardinalityέ
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Assuming (x1, x2, x3) are the homogeneous coordinates of P2, an equation of the form
∑3

i=1 hixi is called a moving lineέ We associate each Lj = (h(j)
1 , h(j)

2 , h(j)
3 ) to its moving line

and we develop it in terms of the ti as followsμ

3
∑

k=1

h(j)
k xk =

+1
∑

i=1

Λi,j(x1, x2, x3)ti−11 t +1−i
2 ,

where Λi,j(x1, x2, x3) is a linear polynomial in R[x1, x2, x3]έ Now, we can define M (φ) as a
( + 1)× N άmatrix whose entry (i, j) is the linear polynomial Λi,j(x1, x2, x3)έ

After describing the constructionmethod of matrixM (φ), we describe the needed property
for the matrix to be an implicit matrix representation, iέeέ having the property to define the
given curve of parameterization φέ

Basic property: όor ≥ d−1, the matrixM (φ) is an implicit matrix representation of the
curve C, since it holds the following propertyμ for any point p = (x1, x2, x3) ∈ P

2 the rank of
M (φ) evaluated at p drops if and only if p belongs to the algebraic closure of Im(φ) [η]έ

We dehomogenize by setting x3 = 1 and have the equivalent property for the nonάhomogeά
neous setting, that a point (X,Y) ∈ R

2 belongs to C if and only if the rank ofM (X,Y) dropsν
the latter denotes the matrix in the nonάhomogeneous settingέ

Thus, we have described the general method of constructing an implicit matrix represenά
tation (a matrix having the above property) of a planar curveέ The above method can be
slightly adapted to compute implicit matrix representations of space curves and space
surfacesέ [3] provides an inάdepth analysis of the method for these additional casesέ

We will use this method as our foundation to construct an implicit matrix representation of
a curve or surface when the parameterization φ is unknownέ Instead, we are given a set
of parametric points which will be used to interpolate a basis for the set of syzygies of a
certain degreeέ We direct the reader to Section η for the continuation of this contributionέ
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3. AN IMPROVEMENT TO THE SPARSE INTERPOLATION METHOD
Continuing from the introduction of the implicitization problem and the sparse interpolation
method given in Section 2, we focus our attention to the algorithm used in [1η, 13] and
provide an improvement to its final step, obtaining the implicit polynomial from the kernel
polynomialsέ

3.1 Avoiding GCD computation of kernel polynomials

Our contribution in this section is the avoidance of calculating the GCD of the kernel
polynomialsν a costly action in the case of multivariate polynomialsέ Instead, we prove
that when the basis of the kernel of M is in reduced row echelon form (RREό), then one
of the kernel polynomials is the implicit polynomial, and it can be found in linear time on
the cardinality of the kernelέ This improvement takes advantage of the already builtάin
functionality of many computer algebra packages of producing the basis of the kernel of a
matrix in RREόέ Additionally, it avoids multivariate ύCD computations and instead relies
on standard matrix calculationsέ

Inputμ Kernel polynomials of M in RREό ki, i = 1, . . . ,N
Outputμ Implicit polynomial p ∈ R[xί, . . . , xn]

ήή divide by common factor
for i = 1 to N do

ήή find in ki the minimum degree for each variable
αί, . . . ,αn ← minα∈SUP(ki){αί}, . . . ,minα∈SUP(ki){αn}ν
ki ← ki/xαί

ί · · · xαn
n ν

end
ήή find implicit polynomial
best← k1ν
for i = 2 to N do

if ∃j ∈ {ί, . . . , n} : maxα∈SUP(ki){αj} < maxα∈SUP(best){αj} then
best← kiν

end
return bestν

end

Alg. 1: FindImpl

ύiven the kernel polynomials of M, Algorithm 1 returns the implicit polynomial pέ The
correctness of this claim is proven in Lemmas 1 and 2έ In Lemma 1 we show that one
of the kernel polynomials is a multiple of the implicit polynomial p by some monomial,
while Lemma 2 shows that Algorithm 1 returns a kernel polynomial of this formέ
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Lemma 1 (Existence). Let v1, . . . , vN be a kernel basis of M in RREF. Then there exists
j ∈ {1, . . . ,N} such that vj corresponds to a polynomial

kj = xα · p, α ∈ N
n+1

i.e. a monomial multiple of the implicit polynomial p.

Proof. Assume monomial order ord for the corresponding monomials of the columns of M
and that all kernel polynomials are monic, iέeέ their leading coefficient is 1έ

Case 1μ Assume, initially, that corank(M)ο1έ We shall show that the unique kernel polyά
nomial is k = xα · pέ We use the notation xα to denote a monomial and p is the implicit
polynomialέ

Assume, towards contradiction, that k = q · p for some q ∈ R[x] with |SUP(q)| > 1 and
SUP(q) = {α1, . . . ,α|SUP(q)| | α1 >ord . . . >ord α|SUP(q)|}έ

Then, we construct a new polynomial k′ = q · p − xα1 · p and show that it corresponds to
kernel vector of M

N (xα1 · p) ⊆ N (q · p) ⊆ CH(S)⇒ SUP(xα1 · p) ⊆ S

where S is a superset of the support of the implicit polynomialέ ώere, the second inclusion
is derived from the fact the construction of the interpolation matrix, whose kernel vector
corresponds to q · pέ Then,

SUP(q · p),SUP(xα1 · p) ⊆ S⇒ SUP(q · p− xα1 · p) ⊆ S

That is, k′ = q ·p−xα1 ·p ̸= ί is a polynomial with support in S and therefore, corresponds
to a kernel vector of M (it is a multiple of p)έ Additionally, since LT (k′) <ord LT (k), k′

corresponds to a kernel vector of M not spanned by the kernel vector corresponding
to kέ Therefore, corank(M) > 1 which is a contradictionέ Therefore, the unique kernel
polynomial k is of the form xα · p

Case 2μ Now, assume that corank(M) > 1 or, equivalently, we have the kernel polynomials
k1, . . . , ki, i > 1έ Let the corresponding kernel vectors be in RREό following ordέ Below, we
will describe a procedure that, assuming we begin by an arbitrary kernel vector, constructs
a polynomial of strictly lower degree that also belongs to the kernel of the interpolation
matrixέ

We choose an arbitrary kernel polynomial kέ Then, if k = xα · p for some α ∈ R
n we

terminate the procedure and consider this a successέ Otherwise, if k = q · p for some
q ∈ R[x] with |SUP(q)| > 1 and SUP(q) = {α1, . . . ,α|SUP(q)| | α1 >ord . . . >ord α|SUP(q)|}
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we construct a polynomial k′ = q · p− xα1 · p ̸= ί, such that LT (k′) <ord LT (k), in a similar
manner to Case 1έ This means that k′ corresponds to a vector that belongs to the kernel
of M but has a leading term strictly lower than k, with respect to ordέ Thus, this new kernel
vector is not spanned by kέ But since it belongs to the kernel of M it must be spanned by
the kernel vectors which are in RREόέ

If the new polynomial k′ = xα′

· p for some α′ ∈ R
n we again terminate the procedureέ If

not, we can repeat the procedure and construct a new polynomial, whose corresponding
vector belongs to the kernel of M, and which has a leading term strictly lower than the
previous polynomial, meaning it is not spanned by any of the previous polynomialsέ

Notice that this procedure must terminate with a success, meaning we have achieved to
construct a polynomial which belongs to the kernel of M, and is of the form k = xα ·pέ This
is because, at each step, if the current polynomial is a multiple of the implicit polynomial by
some polynomial (not monomial), we showed that we are able to construct a polynomial
with a leading term of strictly smaller degreeέ By assuming that we do not get a polynomial
which is of the form k = xα · p at any step, we are able to construct an infinite chain of
descending leading terms for the constructed polynomialsέ Since the number of terms |S| is
finite and the leading terms belong to S, the previous assumption leads to a contradictionέ
■

Lemma 2 (Validity). The Algorithm 1 (FindImpl) returns the implicit polynomial.

Proof. Let k1, . . . , kN be the kernel polynomials in RREόέ όrom Lemma 1, we know that at
least one is of the form xα · pέ

The first step of Algorithm 1 divides each of the kernel polynomials by its common factorέ
After the first step, we have that ∀i ∈ {1, . . . ,N} : ki = p or ki = q · pέ

We observe a useful propertyν that degxj
(p) < degxj

(q · p) for some j ∈ {ί, . . . , n}έ Thus,
if for some kernel polynomial k it holds that degxi

(k) ≤ degxi
(kj) for all i ∈ {ί, . . . , n} and

j ∈ {1, . . . ,N}, then k = pέ ■

3.2 Conclusion

The proposedmethod for finding the implicit polynomial pwhen given the kernel polynomials
of matrix M has some advantages when compared to any method of multivariate ύCD or
factoringέ όirstly, Algorithm 1 has lower time complexity, iέeέ O(corank(M) · |S|)έ Secondly,
it is based on basic linear algebra and matrix operations instead of number theoretic
approaches, like the Chinese remainder theorem and ώensel liftingέ
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4. APPROXIMATING A KERNEL VECTOR
Aswe described in the previous sections, the sparse implicitization by interpolationmethod
involves the construction of an interpolation matrix M, whose kernel elements correspond
to multiples of the implicit polynomial p by some polynomial q or a monomial xαέ The
subsequent steps of the method involved the computation of a kernel basis of Mέ The
motivation behind this section is to further speed up the method and to be able to obtain
an approximation of just one element of the kernel of the interpolation matrix M without
describing the entire kernelέ We will test a method for approximating an element of the
kernel of a matrix based on a variation of the power method (or power iteration)έ This
kernel element will again correspond to a multiple of the implicit polynomial p by some
polynomial qέ όinally, we will examine its drawbacks, some of which are inherent in the
power methodέ

4.1 Analysis of the method

Let M ∈ R
|S|×|S| be the interpolation matrix from the sparse implicitization by interpolation

method, constructed as described in previous sections, where the dimension of the matrix
is given by the cardinality of S, iέeέ the superset of the predicted support of the implicit
polynomial pέ

Inputμ Matrix M, iterations r of PowerMethod
Outputμ Vector v ∈ ker(M)

G← MMTν
← PowerMethod(G, r)ν

G′ ← −G + Iν
,w← PowerMethod(ύ’,r)ν

v← MTwν
if v ∈ ker(M) then

return vν
else

G← MTMν
← PowerMethod(G, r)ν

G′ ← −G + Iν
,w← PowerMethod(ύ’,r)ν

return wν
end

Alg. 2: AKV

We will be basing our method on the power method, which is a numerical iterative method
for computing an approximation of the eigenvalue with the largest absolute value, called
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the dominant eigenvalue and its corresponding eigenvectorέ One of the disadvantages
of the power method is that it fails when the matrix has complex eigenvaluesέ όor this
reason, instead of M, we will be using a variation of its ύram matrixέ The Gram matrix of
M is defined as MTM but we will instead use a variation, namely

G = MMT.

The matrix G is real symmetric since GT = (MMT)T = (MT)TMT = MMT = G, and positiveά
semidefinite since ∀z, zTGz = zTMMTz = (MTz)T(MTz) = ∥MTz∥22 ≥ ίέ Thus, it has real
nonάnegative eigenvaluesέ By using matrix G instead of M we overcome the possibility of
M having complex eigenvaluesέ

Using the power method iteration, we can compute an approximation of the dominant
eigenvalue of G, iέeέ = maxi{| i|, i = 1, . . . , n}, where i are the eigenvalues of Gέ Now,
we consider the shifted matrix G′ = −G + Iέ In Lemma 3 below, we shall show that G′

has the same dominant eigenvalue as Gέ Thus, we can apply the power method iteration
to G′ in order to compute an approximation of the eigenpair ( ,w) of G′, where ∈ R

is the dominant eigenvalue of both matrix G and G′, and w ∈ R
n×1 the corresponding

eigenvectorέ

Since ( ,w) is an (approximate) eigenpair of G′, we have that

G′w = w⇒ (−G + I− I)w = ί⇒ Gw = ί,

meaning vector w is a nontrivial (nonzero) element of the kernel of Gέ Since G = MMT, we
have that

MMTw = ί⇒ M(MTw) = ί,

which means that MTw ∈ ker(M)\{ί} or w ∈ ker(MT)έ We are interested in the first case,
iέeέ MTw is an approximation of a kernel element of matrix Mέ

If that is not the case, and instead we have that w ∈ ker(MT), we repeat the entire
procedure using the ύram matrix G = MTM, instead of the above variationέ The real
symmetric and positiveάsemidefinite properties hold for this case tooέ Thus, the procedure
remains the same with the difference being that we are interested in vector w instead of
MTwέ That is because

Gw = ί⇒ MT(Mw) = ί.

The entire procedure is summarized in Algorithm 2 and denoted AKV for approximate
kernel vectorέ
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Lemma 3. If A is a singular positive-semidefinite matrix with dominant eigenvalue , then
is the dominant eigenvalue of matrix −A + I.

Proof. Since A is singular and positiveάsemidefinite, all its eigenvalues are nonάnegative
and one of its eigenvalues is 1 = ίέ Let A have k eigenvalues and be the dominant
eigenvalue, so we have

ί = 1 < 2 < . . . < k−1 <

where i, i = 1, . . . , k − 1 are the eigenvalues other than έ Let q(A) = −A + I be
a polynomial of matrix Aέ We know from the properties of eigenvalues that if is an
eigenvalue ofA then q( ) is an eigenvalue of q(A)έ We can easily show that the eigenvalues
of q(A) are arranged as

ί = q( ) < q( k−1) < . . . < q( 2) < q( 1),

meaning that q( 1) = q(ί) = is the dominant eigenvalue of q(A) = −A + Iέ ■

4.2 Drawbacks of AKV

The method described above is a first attempt to approximate a nontrivial element of the
kernel of a given matrix M under the motivation of avoiding any kernel basis computations
and further speeding up the method of sparse implicitization by interpolationέ As such,
there are drawbacks that we will present in this sectionέ

The first drawback is the slow convergence rate of the power method iteration when
| 1|
| 2|
≈ 1, where 1 > 2 the two eigenvalues with the largest absolute valuesέ In our

experiments, matrices of large dimensions, which is the case when the predicted support
of the implicit polynomial is contained in a large superset, the slow convergence rate led to
computational times that exceeded the time for the exact computation of a kernel basis of
Mέ Moreover, since the power method is used twice in algorithm AKV, any of the two cases

k−1
≈ 1 and q( 1)

q( 2)
≈ 1, following the notation of Lemma 3, can lead to slow convergence

ratesέ

The second drawback is that algorithm AKV computes a multiple of the implicit polynomial
p by another polynomialέ Since the computations are numeric and we are working in
the approximate setting, we must use approximate factoring if we wish to extract the
approximate implicit polynomialέ This further increases the computational cost of themethodέ

Another drawback of the proposed method is that it is not evident beforehand whether the
computed vector v = MTw belongs to ker(M) or w ∈ ker(MT)έ
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4.3 Conclusion and future work

We provided an initial attempt to the problem of computing a nontrivial element of the
kernel of a matrix M using power methodέ The drawbacks of the method, as we described
in the previous section, are far from minor and render the method not practical in most
settingsέ

In numerical analysis, there exist various methods other than the power method, such as
the Rayleigh quotient method and the QR method etc, to compute eigenvalues (dominant
or not) of a given matrixέ Every method is sensitive to the type of the input matrix, and as
such can be tested against the structured Vandermondeάtype interpolation matrix M of the
implicitization by interpolation methodέ

The initial motivation of this method was to compute an approximation of a particular
element of the kernel of matrixM, namely a kernel vector which corresponds to a polynomial
which is a multiple of the implicit polynomial p by some monomial (and not polynomial)έ
We already showed how one can readily obtain such a vector when a basis of the kernel is
known in RREόέ Methods for the computation of the sparsest kernel vector can be tested
to achieve the desired result [1ι]
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5. SYZYGIES AND INTERPOLATION
In this section, we will provide a method for interpolating the syzygies of a set of parametric
pointsέ After computing a basis for theR−vector space of the syzygies of a certain homogeά
neous degree, we will rely on the method we described in Section 2 for constructing an
implicit matrix representationέ We will also provide a method for computing the degree
of the parameterization since we will be using it for the construction of the implicit matrix
representationέ

In particular, we will provide a method for constructing an implicit matrix representation
under the above assumptions for each of the following casesμ planar curves, space curves
and space surfacesέ Each method has some minor differences that we will describe in
detail belowέ

We begin with the case of planar curvesέ

5.1 Matrix representations of planar curves using interpolation

Consider a planar curve C for which there exists a rational parameterization φ : R1 → R
2,

φ : t→
(

X(t) =
f1(t)
f3(t)

,Y(t) =
f2(t)
f3(t)

)

, (2)

where φ is not knownέ Instead, the input is a set of triplets of the form

(τ1;X1,Y1), (τ2;X2,Y2), . . .

such that φ(τk) = (Xk,Yk), for a range of k to be defined belowέ This means that we
have as input a set of points that belong to C along with the value of the parameter t for
each pointέ We will call this set a parametric set of points and each of these points a
parametric pointέ These triplets are sampled following the scenarios described in Section
2 , for instance when φ is an arcάlength parameterization and the triplets are sampled
by a scanner following Cέ We now provide an algorithm for computing an implicit matrix
representation of the curve C described by this parametric trail of pointsέ

Initially, the algorithm fixes a degree ≥ ί for the degree of the syzygies it will computeέ
Then, the algorithm shall compute anRάbasis for Syz(X,Y, 1) έ Since the rational functions
of X(t),Y(t) are not explicitly known, we compute the basis in the following mannerέ

Consider the moving line h1X + h2Y + h3 = ίέ The expanded form of each hi is

hi =
∑

δ=ί

hi,δtδ ∈ R[t], i = 1, 2, 3, (3)

where the hi,δ are (unknown) coefficientsέ These are exactly the coefficients we need
to compute in order to gain knowledge of the syzygies that are needed to construct the
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implicit matrix representation of Cέ This set of coefficients is an R−vector space and we
will immediately show how it corresponds to the set of syzygiesέ The moving line can be
rewritten as

∑

δ=ί

tδXh1,δ +
∑

δ=ί

tδYh2,δ +
∑

δ=ί

tδh3,δ = ί.

Such equations are going to be used to determine the 3( + 1) unknown coefficients hi,δ

by interpolation at the known input tripletsέ όor this, we define a 3( + 1)× 3( + 1) matrix
H whose rows are indexed by evaluations t = τk, and each row expresses the above
equation as followsμ

[Xk, τkXk, . . . , τkXk, Yk, τkYk, . . . , τkYk, 1, τk, . . . , τk ] .

We compute a basis of the kernel of matrix H and rewrite each kernel basis vector

(h(j)
1,ί, . . . , h

(j)
1, , h

(j)
2,ί, . . . , h

(j)
2, , h

(j)
3,ί, . . . , h

(j)
3, )

as (h(j)
1 , h(j)

2 , h(j)
3 ) following equation (3)έ We can easily show that the triplets (h(j)

1 , h(j)
2 , h(j)

3 ),
j = 1, . . . ,N form an Rάbasis of Syz(X,Y, 1) έ This way, we have achieved to compute
the needed Rάbasis of Syz(X,Y, 1) without knowing the polynomials fi, i = 1, 2, 3 ”behind”
the parametric pointsέ We use this basis to construct the matrix M (X,Y)έ

We focus our attention on the basic property of an implicit matrix representation described
in Section 2έκέ In order for thematrixM (X,Y) to be amatrix representation of C, the implicit
curve C, must verify the inequality ≥ d−1έ Since the degree d of the parameterization
is unknown in our setting, we establish the following lemmaέ

Lemma 4. Consider a rational parametric curve C of the form (2). Let d be the homogeneous
degree of the (unknown) fi, i = 1, 2, 3, ≥ ί be the degree chosen by the algorithm and
h = dimker(H) be the cardinality of the kernel basis of H. Then,

1. h < + 1 if and only if < d− 1.

2. h = + 1 if and only if = d− 1.

3. h > + 1 if and only if > d− 1.

Proof Sketch.By construction, the kernel basis ofH corresponds to anRάbasis ofSyz(f1, f2, f3)
and, thus, N = hέ The idea behind the proof is that Nd−1 = d [λ] and that N is an
increasing function of έ

As a consequence, in the case h ≥ + 1, the algorithm yields a valid implicit matrix
representation M (X,Y) of Cέ Lemma ζ is a very useful tool for our settingέ όurthermore,
Lemma ζ allows us to compute d by constructing matrix H and comparing h with the
selected έ
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Example 5. Consider the folium of Descartes curve affinely parameterized asμ

C =

{(

3t
t3 + 1

,
3t2

t3 + 1

)

∈ R
2 : t ∈ R

}

(ζ)

We will be using equation (4) only to sample random points of C for various values of the
parameter t and using them as triplets (τk;Xk,Yk) to construct the matrix H as described
above, so we imply that we have no knowledge of the parametric equation. We try different
values of .

For 1 = 1, the R-basis of Syz(X,Y)1 is {(−t, 1, ί)}, that is we are in case 1 of Lemma 4
since N 1 < 1+ 1. The kernel basis cardinality is not adequate to construct a valid matrix
representation of C.

For 2 = 2, the computed basis of Syz(X,Y)2 is {(−t2, t, ί), (−t, 1, ί), (−1/3,−t2/3, t)},
that is case 2 of Lemma 4. That is to be expected since we picked 2 = d−1 (notice d = 3
for curve C). Any ≥ 2 is a valid choice to construct the implicit representation matrix
M (X,Y).

For 2 = 2, the matrix is

M2(X,Y) =









−X ί −Y/3

Y −X 1

ί Y −X/3









(η)

Let us test the drop-of-rank property at this point. Notice that rankM2(3, 3) = 3 since
(3, 3) ̸∈ C. By testing a point that belongs to the curve C, for example (32 ,

3
2), we have that

rankM2(
3
2 ,

3
2) = 2 < 3.

Additionally, we can test point (ί, ί) which is a point of intersection for curve C, i.e. there
exist more than one parameter values for t that output the same point. In this case,
rankM2(ί, ί) = 1. Notice that the drop-of-rank is by a value of 2ν the number of corresponding
parameter values for this point. This additional property is explored in [3].

5.2 Matrix representations of space curves using interpolation

The method we have described extends naturally to the case of space curvesέ In this
case, the degree for computing the matrix representation is 2d − 1, meaning must be
greater or equal to 2d − 1, where d is similarly defined as the homogeneous degree
of the polynomials fi(t1, t2), i = 1, . . . , ζέ The same property (”critical” degree) holds for
rational surfaces, where d is defined as the total degree of the polynomials fi(t1, t2, t3),
i = 1, . . . , ζέ ώence our method reduces the computation of syzygies, and eventually an
implicit matrix representation, to interpolation through a point sample obtained by one of
the aforementioned scenariosέ
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Similarly to the previous section, consider a space curve C for which there exists a rational
parameterization φ : R1 → R

3,

φ : t→
(

X(t) =
f1(t)
fζ(t)

,Y(t) =
f2(t)
fζ(t)

,Z(t) =
f3(t)
fζ(t)

)

, (θ)

where φ is unknownέ The input in this case are ζάtuples of the form

(τ1;X1,Y1,Z1), (τ2;X2,Y2,Z2), . . .

Again, we fix the degree ≥ ί of the syzygies and consider the moving plane h1X+h2Y+

h3Z + hζ = ίέ Each of the hi, i = 1, . . . , ζ can be written as

hi =
∑

δ=ί

hi,δtδ ∈ R[t], i = 1, 2, 3, ζ, (ι)

where the hi,δ are (unknown) coefficientsέ Thus, the moving plane can be rewritten as

∑

δ=ί

tδXh1,δ +
∑

δ=ί

tδYh2,δ +
∑

δ=ί

tδZh3,δ +
∑

δ=ί

tδhζ,δ = ί.

We, again, will use the above equations to determine the ζ( +1) unknown coefficients hi,δ

by interpolation at the known input tripletsέ We define a ζ( +1)×ζ( +1)matrix H whose
rows are indexed by evaluations t = τk, and each row expresses the above equation as
followsμ

[Xk, τkXk, . . . , τkXk, Yk, τkYk, . . . , τkYk,Zk, τkZk, . . . , τkZk, 1, τk, . . . , τk ] .

We compute a basis of the kernel of matrix H and rewrite each kernel basis vector

(h(j)
1,ί, . . . , h

(j)
1, , h

(j)
2,ί, . . . , h

(j)
2, , h

(j)
3,ί, . . . , h

(j)
3, , h

(j)
ζ,ί, . . . , h

(j)
ζ, )

as (h(j)
1 , h(j)

2 , h(j)
3 , h(j)

ζ ) following equation (ι)έ The ζάtuples (h(j)
1 , h(j)

2 , h(j)
3 , h(j)

ζ ), j = 1, . . . ,N
form an Rάbasis of Syz(X,Y,Z, 1) έ We use this basis to construct the matrix M (X,Y,Z)
in a similar mannerέ

The basic difference between planar curves and space curves (and space surfaces as
we will later see) is the ”critical” degree for the chosen degree for the degree of the
syzygiesέ όor the case of planar curves, that was d − 1, where d was the degree of the
parameterizationέ όor space curves, that ”critical” degree is 2d − 1έ We do not give a
detailed analysis for this result and direct the reader to [3] for more information on the
topicέ
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5.3 Matrix representations of space surfaces using interpolation

In this section, a similar method for computing an implicit matrix representation will be
given for the case of space surfacesέ The input consists of parametric points that belong to
the surface and the method is based on computing the syzygies of a certain homogeneous
degree of the underlying polynomials of the rational surfaceέ

Consider a space surface S for which there exists a rational parameterization φ : R2 → R
3,

φ : t = (t1, t2)→
(

X(t) = f1(t)
fζ(t)

,Y(t) = f2(t)
fζ(t)

,Z(t) = f3(t)
fζ(t)

)

, (κ)

where φ is unknown and instead the input consists of ηάtuples of the form

(τ1;X1,Y1,Z1), (τ2;X2,Y2,Z2), . . .

where τk ∈ R
2 is an abbreviation of the k−th 2άdimensional parameter value of (t1, t2) that

corresponds to point (Xk,Yk,Zk) ∈ R
3έ Again, we fix the degree ≥ ί of the syzygies and

consider the moving plane h1X + h2Y + h3Z + hζ = ίέ Each of the hi ∈ R[t], i = 1, . . . , ζ
can be written as

hi =
∑

δ=(δ1,δ2)
δ1,δ2≥ί
δ1+δ2≤

hi,δtδ ∈ R[t], i = 1, 2, 3, ζ, (λ)

where the hi,δ is the unknown coefficient of tδ = tδ11 tδ22 έ Thus, in the surface case, the
moving plane can be rewritten as

∑

δ=(δ1,δ2)
δ1,δ2≥ί
δ1+δ2≤

tδXh1,δ +
∑

δ=(δ1,δ2)
δ1,δ2≥ί
δ1+δ2≤

tδYh2,δ +
∑

δ=(δ1,δ2)
δ1,δ2≥ί
δ1+δ2≤

tδZh3,δ +
∑

δ=(δ1,δ2)
δ1,δ2≥ί
δ1+δ2≤

tδhζ,δ = ί.

Wewill use the above equations to determine the unknown coefficients hi,δ by interpolation
at the known input tripletsέ The unknown coefficients are 2( + 1)( + 2), so we define a
2( + 1)( + 2)× 2( + 1)( + 2) matrix H whose rows are indexed by evaluations t = τk,
and each row contains the coefficients of all hi,δ in the above equationέ

We compute a basis of the kernel of matrix H and rewrite each kernel basis vector as
(h(j)

1 , h(j)
2 , h(j)

3 , h(j)
ζ ) following equation (λ)έ The ζάtuples (h(j)

1 , h(j)
2 , h(j)

3 , h(j)
ζ ), j = 1, . . . ,N form

an Rάbasis of Syz(X,Y,Z, 1) έ We use this basis to construct the matrix M (X,Y,Z)έ

As with the case of the space curves, the ”critical” degree of the syzygies is 2d−1, meaning
that the chosen value of must be greater or equal to 2d−1, where d is the homogeneous
degree of the fi, i = 1, 2, 3, ζέ
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5.4 Conclusion

In this section, we provided a method for interpolating syzygies of polynomials from a
parameterization, from a set of parametric points, when the underlying parameterization
is unknownέ We did this for the case of planar and space curves and space surfacesέ

Additionally, we provided a method for determining the degree of the parameterization of
the curve or surface from the set of parametric pointsέ

This setting can be further studied for the case of curves or surfaces of higher dimensionέ
όurthermore, the numerical approach to this method can be studiedέ Initial attempts to
compute the syzygies from this set of parametric points numerically lead to a kernel of
full rankέ This makes the determination of the degree of the parameterization a nontrivial
taskέ Ideas for future work at this direction include the use of the numerical rank for the
determination of the dimension of the kernelέ
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6. GENERAL CONCLUSION AND FUTURE WORK
In this thesis, we based our contributions on two of the existing methods for the implicitiά
zation problem, namely the sparse implicitization by interpolation method and the method
of implicit matrix representations based on the theory of syzygiesέ In this final section,
we discuss the future work for two of the three contributions of this thesis, namely the
contributions of sections ζ and ηέ

As we already mentioned, the motivation for the contribution of Section ζ was to compute
an approximation of a particular element of the kernel of the interpolation matrix M, namely
a kernel vector which corresponds to a polynomial which is a multiple of the implicit
polynomial p by some monomial (and not polynomial)έ We provided a method based on
the power method and explored its drawbacks, so future work towards this direction would
include experimentation with different numerical methods to compute an approximation of
the desired kernel vector, by taking into account the Vandermondeάtype structure of the
interpolation matrix Mέ Additionally, the desired kernel vector may be closely related to the
sparsest kernel vector, so the method used in [1ι] can be studied for this scenarioέ

In section η, we provided a method for interpolating syzygies of polynomials from a set
of parametric points, when the underlying parameterization is unknownέ We did this for
the case of planar and space curves and space surfacesέ As we already mentioned in
the same section, this setting can be further studied for the case of curves or surfaces
of higher dimensionέ Moreover, the numerical approach to this method can be examined,
iέeέ the approximation of the required syzygies, which will lead to an approximate matrix
representation of the curve or surfaceέ όuture work might include the use of the numerical
rank for the determination of the dimension of the kernel, which is used for the calculation
of the degree of the parameterizationέ Numerical experiments could show the accepted
threshold of the dropάofάrank property for the approximate implicit matrix representationέ
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