17,640 research outputs found

    Detection of bimanual gestures everywhere: why it matters, what we need and what is missing

    Full text link
    Bimanual gestures are of the utmost importance for the study of motor coordination in humans and in everyday activities. A reliable detection of bimanual gestures in unconstrained environments is fundamental for their clinical study and to assess common activities of daily living. This paper investigates techniques for a reliable, unconstrained detection and classification of bimanual gestures. It assumes the availability of inertial data originating from the two hands/arms, builds upon a previously developed technique for gesture modelling based on Gaussian Mixture Modelling (GMM) and Gaussian Mixture Regression (GMR), and compares different modelling and classification techniques, which are based on a number of assumptions inspired by literature about how bimanual gestures are represented and modelled in the brain. Experiments show results related to 5 everyday bimanual activities, which have been selected on the basis of three main parameters: (not) constraining the two hands by a physical tool, (not) requiring a specific sequence of single-hand gestures, being recursive (or not). In the best performing combination of modeling approach and classification technique, five out of five activities are recognized up to an accuracy of 97%, a precision of 82% and a level of recall of 100%.Comment: Submitted to Robotics and Autonomous Systems (Elsevier

    Human-agent collectives

    No full text
    We live in a world where a host of computer systems, distributed throughout our physical and information environments, are increasingly implicated in our everyday actions. Computer technologies impact all aspects of our lives and our relationship with the digital has fundamentally altered as computers have moved out of the workplace and away from the desktop. Networked computers, tablets, phones and personal devices are now commonplace, as are an increasingly diverse set of digital devices built into the world around us. Data and information is generated at unprecedented speeds and volumes from an increasingly diverse range of sources. It is then combined in unforeseen ways, limited only by human imagination. People’s activities and collaborations are becoming ever more dependent upon and intertwined with this ubiquitous information substrate. As these trends continue apace, it is becoming apparent that many endeavours involve the symbiotic interleaving of humans and computers. Moreover, the emergence of these close-knit partnerships is inducing profound change. Rather than issuing instructions to passive machines that wait until they are asked before doing anything, we will work in tandem with highly inter-connected computational components that act autonomously and intelligently (aka agents). As a consequence, greater attention needs to be given to the balance of control between people and machines. In many situations, humans will be in charge and agents will predominantly act in a supporting role. In other cases, however, the agents will be in control and humans will play the supporting role. We term this emerging class of systems human-agent collectives (HACs) to reflect the close partnership and the flexible social interactions between the humans and the computers. As well as exhibiting increased autonomy, such systems will be inherently open and social. This means the participants will need to continually and flexibly establish and manage a range of social relationships. Thus, depending on the task at hand, different constellations of people, resources, and information will need to come together, operate in a coordinated fashion, and then disband. The openness and presence of many distinct stakeholders means participation will be motivated by a broad range of incentives rather than diktat. This article outlines the key research challenges involved in developing a comprehensive understanding of HACs. To illuminate this agenda, a nascent application in the domain of disaster response is presented

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Artefact Ecologies: Supporting Embodied Meeting Practices with Distance Access

    Get PDF
    Frameworks such as activity theory, distributed cognition and structuration theory, amongst others, have shown that detailed study of contextual settings where users work (or live) can help the design of interactive systems. However, these frameworks do not adequately focus on accounting for the materiality (and embodiment) of the contextual settings. Within the IST-EU funded AMIDA project (Augmented Multiparty Interaction with Distance Access) we are looking into supporting meeting practices with distance access. Meetings are inherently embodied in everyday work life and that material artefacts associated with meeting practices play a critical role in their formation. Our eventual goal is to develop a deeper understanding of the dynamic and embodied nature of meeting practices and designing technologies to support these. In this paper we introduce the notion of "artefact ecologies" as a conceptual base for understanding embodied meeting practices with distance access. Artefact ecologies refer to a system consisting of different digital and physical artefacts, people, their work practices and values and lays emphasis on the role artefacts play in embodiment, work coordination and supporting remote awareness. In the end we layout our plans for designing technologies for supporting embodied meeting practices within the AMIDA project. \u
    • 

    corecore