3,980 research outputs found

    AiiDA: Automated Interactive Infrastructure and Database for Computational Science

    Full text link
    Computational science has seen in the last decades a spectacular rise in the scope, breadth, and depth of its efforts. Notwithstanding this prevalence and impact, it is often still performed using the renaissance model of individual artisans gathered in a workshop, under the guidance of an established practitioner. Great benefits could follow instead from adopting concepts and tools coming from computer science to manage, preserve, and share these computational efforts. We illustrate here our paradigm sustaining such vision, based around the four pillars of Automation, Data, Environment, and Sharing. We then discuss its implementation in the open-source AiiDA platform (http://www.aiida.net), that has been tuned first to the demands of computational materials science. AiiDA's design is based on directed acyclic graphs to track the provenance of data and calculations, and ensure preservation and searchability. Remote computational resources are managed transparently, and automation is coupled with data storage to ensure reproducibility. Last, complex sequences of calculations can be encoded into scientific workflows. We believe that AiiDA's design and its sharing capabilities will encourage the creation of social ecosystems to disseminate codes, data, and scientific workflows.Comment: 30 pages, 7 figure

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included

    Fast Parallel Operations on Search Trees

    Full text link
    Using (a,b)-trees as an example, we show how to perform a parallel split with logarithmic latency and parallel join, bulk updates, intersection, union (or merge), and (symmetric) set difference with logarithmic latency and with information theoretically optimal work. We present both asymptotically optimal solutions and simplified versions that perform well in practice - they are several times faster than previous implementations

    Data structures

    Get PDF
    We discuss data structures and their methods of analysis. In particular, we treat the unweighted and weighted dictionary problem, self-organizing data structures, persistent data structures, the union-find-split problem, priority queues, the nearest common ancestor problem, the selection and merging problem, and dynamization techniques. The methods of analysis are worst, average and amortized case

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2F+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)logn(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(F2log2n)O(|F|^2 \log^2 n) time a (2F+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog2n)O(m \log^2 n), that reports in O(k2log2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure

    Task-Driven Dictionary Learning

    Get PDF
    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Comment: final draft post-refereein
    corecore