
Publicly Released

February 10, 1978

Part I-Final Report, Tasks I and 2

FEASIBILITY STUDY OF AN INTEGRATED

PROGRAM FOR AEROSPACE VEHICLE DESIGN (IPAD)

Volume IV: IPAD System Design

4
D6-60181-

September 21, 1973

((ASA-CR-132gR) FEASIBILITY STUD OF AN 8-16014
[INTEGRATED PROGEAI FOR AEROSPACE VEHICLE 1

DESIGN (1nAD). VOLUME 4: LPAD SYSTEM
flBESISl Yinal Report (Boeing Commercial Uncles

ae Co., Seattle) 367 p BC A16/MF A01 G3/02 02568

Prepared under Contract No. NAS 1-11441 by

Boeing Commercial Airplane Company
P.O. Box 3707

Seattle, Washington 98124

for

,

N e..,Langley

.'

Research Center

ATIONAL AERONAUTICS AND SPACE ADMINISTRATION

https://ntrs.nasa.gov/search.jsp?R=19780008071 2020-03-22T05:28:57+00:00Z

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Dae
September 21, 1973

VEHICLE DESIGN (IPAD) 6.Performing Organizat,on Code

VOLUME IV - IPAD SYSTEM DESIGN

FEASIBILITY STUDY OF AN INTEGRATED PROGRAM FOR AEROSPACE

7. Authorls) 8. Performing Organzation Report No.
W. Goldfarb D. D. Pedhed L. 0. Anderson D6-60181-4

L. C. Carpenter S. D. Hansen A. S. Kawaguchi

10. Work Unit No.

9. Pe-formng Organizaton Name and Address

Boeing Commercial Airplane Company 11. Contract or Grant No.
P. 0. Box 3707 NASl-11441

Seattle, Washington 98124

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report

Washington, D. C. 20546 14. SponsringAgencyCode

15. Supplementary Notes

Project Manager, Dr. R. E. Fulton, Structures and Dynamics Division,

NASA Langley Research Center, Hampton, Virginia 23365

16. Abstract

Volume IV of the Boeing report on Task 2 of the IPAD feasibility study is a

description of the computing system design. The requirements which form the

basis for the system design are discussed. The system is presented in terms of.

a functional design description and technical design specifications. The

functional design description gives the conceptual organization of the system.

The technical design specifications give the detailed description of the system

design using top-down structured programming methodology. Human behavioral

characteristics, which specify the system design at the user interface; security

considerations; and standards for system design, implementation,-and maintenance

are also part of the technical design specifications. Detailed specifications of

the two most common computing system -types in use by the major aerospace companies

which could support the IPAD system design are presented. The report of a study

to investigate migration of IPAD software between the two candidate 3rd generation

host computing systems and from these systems to a 4th generation system is included
in this volume.

17. &y Words S~cgestrd by Autcr(s}) 1. Dish ibution Statement

Integrated Design System

System Design Specification

Online Computer System
Data Base Management

Stored Data Definitions

IS wuity cl, S'f Jr:

Unclassified
r. C it ,

Unclassified-j
>1i. 2 1ci;2.$'uiC~'No. of F%.-cs

367
22 ?-c*
Sl

i

FEASIBILITY STUDY OF AN INTEGRATED
PROGRAM. FOR AEROSPACE VEHICLE DESIGN (IPAD)

Volume IA

Summary of IPAD Feasibility Study
D6-6018 1 -1A

Volume IB
-- Concise Review of IPAD Feasibility Study.

D6-60181-]B

Part I-Final Report, Tasks 1 and 2

Volume It
The Design Process

... .6-60181-2

Volume Ill
...... Support of the Design Process

.D6-60181-3

Volume IV
IPAD System Design

_____________00 181-4

Volume V
Catalog of IPAD Technical Program Elements

D-60181-5

Part Il-Final Report, Tasks 3 through 8

Volume VI
IPAD System Development and Opetation

D6-60181-6

Volume VII

IPAD Benefits and Impact

D6-60181-7

-- =..--1

OPORGJaWPOOR PAGEQUALyM

SUMMI ARY

Volume IV describes the IPAD system design. The design is

based upon the requirements identified in the aircraft design

process and computational requirement studies documented in

Volumes II and IIT respectively. Tables 1 through Llsummarize

the relationship of these requirements to the IPAD system design

features, the IPAD sottware requirements and host operating

system reguiremnents.

These requirements reflect the user's environment. His
tasks are not completed in a day or with a single run on the
computer. His interface with the computer should be with
language and devices that give him capabilities he needs without
loading him with jargon and irrelevancies. Hc works in large
organizations whnre free communication is essential. But he
also works with vast volumes of data that must be controlled and
kept in a high state of integrity. The organization he works
for has a vested interest in his work and an interest in
maintaining some security on the results of his work. At the
same time, tho user is a creative individual and requires some
privacy for thought and invention. The product he is designing
is highly complex and he must work under rigid schedules.
Reliability of the computing system and the data base is

critical. These factors are dealt with ir the design of the

IPAD system.

The IPAD system is designed to manage data on the project
level. Project data and application software are treated as an
entry in the data base. The organization of application
software into sequences to perform some particular task is
supported by executive type routines. The execution of module
sequences and the handling of data are supported by the host
operating system and the IPAD data manager. Personal terminals
are the principal interface and dialogue language is the
principal means of communication.

Top-down structured programming is the design method. In
this method, the system is systematically refined from the most
general statement of requirements to the most specific. The
IPAD system design was refined to where host system hardware and
operating system software, not yet specifliOd, began to have a
major impact.

Human factors, security, and standards were studied in

detail and recommendations are given. A survey was made of

manufacturers of large scale computing hardware to obtain
performance and size characteristics of basic hardware
components. The results of this survey were utilized to

iii

formulate a CDC 6600 (CYBER 74) and an IBM 370/168 configuration

adequate for a large aircraft design project.

The acceptance of application software already in existence

and software that will be developed independent of IPAD system

standards was studied by Control Data Corporation. They

recommend in their report, included as Appendix C, development

of a machine independent FORTRAN language into which the

software can be translated.

In this volume, answers to task questions asked in the

original RFP from NASA are answered. They are followed by a

detailed description of the basic design reguirements. The

design requirements are then transformed into a functional

design that gives a broad diagramatic and conceptual overview of

-the system. Finally, detailed design specifications of the
system are given.

LV.

Table I IPAD Design Requirement-Continuity Over Task and Time

CONTINUITY OVER TASK AND TIME

DESIGN REQUIREMENTS

Continuity of day-to-day

work

Flow of information

throughout the user

cominunity

Project plans and progress
related to the user's

day-to-day work

Continuous user capability

while migrating across

computers

IPAD SYSTEM

DESIGN FEATURES

* 	Subtask interruption and
restart

* Community library and its

associated support routines

a Subtask setup and termination
linked to project plans and
reports

* 	Machine independent high
level design

IPAD SOFTWARE

REQUIREMENTS

* Unique identification of

subtasks

* Saving/retrieving subtask

library

* Subtask setup

o 	 User log off with job

executing

* Data display

o Information retrieval

* Explicit/Implicit i/0

* Unique names

* Qualifiers

* Data management discipline

and conventions

* Connecting user log-on/off

to plans and reports

* 	 High level code inthe IPAD
system written inmachine
independent source
statements

HOST OPERATING SYSTEM

REQUIREMENTS

0 Time sharing system

- multi tasking
- relationship to IPAD executive'
- allowable terminal disconnect

during execution

Permanent file system

0 Permanent file system

a Data management utilities

0 Compiler for a machine independent

language

Table 2 IPAD Design Requirement - User __-- Interface

USER INTERFACE

IPAD SYSTEM IPAD SOFTWARE HOST OPERATING SYSTEM

DESIGN REQUIREMENTS DESIGN FEATURES REQUIREMENTS 	 REQUIREMENTS

Personal Terminal a Unique user ID foreach *User ID tables
perso.

e Support for typical terminal *Logic to support terminal type a Tim sharing oystem supporting the
activities activities appropriate typ of terminal

Functional Capabili ties
* Define Variables * Defining library entries or

variables

" Enter code and data *Creating library entries
* Transferring Information

within IPAD 0 Disposition of library
C 	Sending Infottatln entries

outside IPAD

* Edit code anddats 'Modifying library entries

" Purge Information * Disposition of library * Executive and dataeanagament C Executiveandds management

entries software 	 so twar support

* Compare infornation * Displaying results
* Construct Jobs for 0 Construct an 04 sequence as

execution a Job

* Execute Jobs * Execute a job

SDisplay ng results

SDisplAY Inlformation *Searching through the

libraries

F Displaying results

" Find information •Serchlng through the
libraries

* Learning about [PAD o Learning about IPAO C Teaching software

General Control Commands Cintrutdsae opran systemuasrprgaPausing) 	 thefor

Contii l Interrupted states a Executive lo ic working with e Roll out, roll In controllable by.

* Log-off , o perating system log-off,
WAD log-off

* Log-on C Operating system log-on, 0 Subtask setup and Interruption C Terminal Interface for log-on ind
I:AD log-on logic log-off

" Assistance Learning about IPAD eTeaching software

Handling of Information * Stored data definition a Support for the stored data C FIse sesignment& changeable byainside IPADIs Invisible definition and aut"atic user program

to the user library entry handling for

* Coding moduleoperational constructed Jobs

module, and job

organization

Human Factors a Interactive dialogue emphasis I Intoractive logic in the code, a Interactive support to theuser
with helps toaid users atvarious levels of MMonologue,dialogue and teaChr Proper response time characteristics
proficiency modes

Table 3 IPAD Design Requirement- Privacy, Security, Control, and Integrity

PRIVACY, SECURITY, CONTROL, AND INTEGRITY

IPAD SYSTEM IPAD SOFTWARE HOST OPERATING SYSTEM

DESIGN REQUIREMENTS DESIGN FEATURES REQUIREMENTS REQUIREMENTS

Private and public data * Subtask library 0 Data management support * Permanent file system
regions for this library structure

* Community library 0 Data management utility routines

Protection against illegal 0 Data access Permission codes * Access code checks * Permanent file system with security
"access to information * Command access permission * Permission code checks lockout

codes
a Security control of access a Specialized procedure for * Central memory read/write protection

codes setting codes

Assurance of the integrity * Unique names for all library * Checks for name uniqueness * Permanent file names with qualifiers

of the data base entries and version numbers

* Mandatory version numbers * Version number generator

for all altered library

entries

e Automatic qualifier generation * Qualifier generator

to record the origin of

the data

& Trace of information leaving * Keeping records for all
IPAD information leaving IPAD

* Protection against * Warning about the

self-inflicted accidents implications of certain

actions

* Setting of permission and * Provision for handling such

access codes codes inproject plans 8.

eControlled relationship * Ability to control subtasks

between the project and on the basis of information
its subtasks inthe project plans

v

Table 4. IPAD Design Requirement- Reliability

RELIABILITY

IPAD SYSTEM IPAD SOFTWARE HOST OPERATING SYSTEM

DESIGN REQUIREMENTS DESIGN FEATURES REQUIREMENTS REQUIREMENTS

System unreliability * Recovery of subtask libraries * Logic to recover a subtask * Recovery of the subtask library file

negligible compared to after a system shutdown library that was interrupted and all files associated with it

user's unreliability out of IPAD's control

* Recovery of the entire * Logic to recover a community * Recovery of all permanent files after

community library after a library directory after a system shutdown

system shutdown a system shutdown

" Automatic incremental dumps * Controls for making * Incremental dump feature for the
of the system during incremental dumps at specified permanent files

normal running intervals

* Full community library dump * Records of when dumps were 0 Permanent file dump capability

capability taken

* Intermittent errors of small e Fault detection hardware

effect infrequent

* Small error recoverability 0 Check sums allowing correction * Check sums inall data transfers

CONTENTS

Page

1.0 INTRODUCTION....................................... 1

2.0 ANSWERS TO TASK 2 QUESTIONS 1,2,3,12, and 13 3

3.0 DESIGN REQUIREMENTS................................ 8

3.1 Continuity Over Task and Time.................... 9

3.2 User Interface................................ 14

3.3 Privacy, Security, Control, Integrity......... 18

3.4 Reliability................................... 18

4.0 DEFINITIONS AND ABBREVIATIONS......................... 19

5.0 FUNCTIONAL DESIGN DFSCRIPTION......................... 22

5.1 Primary System Features 22

5.2 Work Relationships 25

5.3 User Interface 27

5.3.1 Personal Terminal 27

5.3.2 Command Flow........................... 27

5.3.3 Sign On to IPAD 28

5.3.4 Communication with IPAD..................28

5.3.5 Sign Off from IPAD....................... 31

5.3.6 Batch Access31

5.4 Libraries..................................... 31

5.4.1 Library Entries 31

5.4.2 Library Variables 32

5.4.3 Library Dictionaries..................... 32

5.4.4 Library Entry Naming Corventions 32

5.5 The Job Concept 35

5.5.1 Entering Coding Modules.................. 36

5.5.2 Building Operational Modules............ 36

5.5.3 Constructing Jobs......................... 37

5.5.4 Execution of Jobs......................... 37

5.6 Data Base Management 37

5.7 Privacy, Security, Control, Integrity......... 41

6.0 TECHNICAL DESIGN SPECIFTCATIONS...................... 45

6.1 System Design Methodology........................ 45

6.2 System Design Specifications.................... 48

6.3 System Member Specifications.................... 63

6.3.1 Design Organization......................63

6.3.2 IPAD Executive 64

6.3.3 Data Manager 66

6.3.4 Data Structures 69

6.3.5 Directory Entry Specifications.......... 70

6.3.6 Library Entry Specifications............ 73

ix

6.3.7 	 Logical Organization of IPAD Libraries

in Data Base.............................79

6.4 	 Human Factors................................. 83

6.4.1 	User Behavioural Characteristics 83

6.4.2 	 Response Times......................... 85

6.4.3 	 User Classification....................... 88

6.4.4 	 Man-Machine Dialog........................ 90

6.4.5 	 Errors and Failures....................... 93

6.4.6 	 System Balance 94

6.5 	 Security 94

6.5.1 	Definitions 94

6.5.2 	 IPAD Security Initialization............ 97

6.5.3 	Accesses and Requests................... 100

6.5.4 	 Privacy and Integrity................... 102

6.6 	 Standards..................................... 102

6.6.1 	 IPAD Design Standards................... 103

6.6.2 IPAD Implementation Standards 104

6..3 IPAD Maintenance S-tandards............. 106

6.6.4 	 IPAD Application Standards 107

6.7 	 Language Requirements 107

7.0 HOST SYSTEM SPECIFICATIONS 109

7.1 	Vendor Survey 109

7.2 	 Hardware Characteristics and Capacity

Requirements 112

7.2.1 	 Host System............................ 112

7.2.2 	 Terminals.............................. 118

7.2.3 	 Networks 120

7.3 	 IPAD Host. Computing System Using a CDC 6600

(CYBER 74) 121

7.4 	 IPAD Host Computer System Using an

IBM 370/168 124

REFERENCES... 127

APPENDIX A - DETAILED SYSTEM DESIGN SPECIFICATIONS............ Al

LEVEL ONE ... A7

LEVEL TWO

State E - Subtask Setup............................ A18

- Subtask Command Mode A21

G - Learning About IPAD....................... A26

H - Searching Through the libraries.......... A31

I - Creating Library Entries.................'A35

K - Modifying Library Entries................ A38

1 - Constructing a Job....................... A41

N - Executing a Job............................ A44

o - Communicating with a Job A47

P - Displaying Results....................... A50

Q - Disposition of Library Entries........... A54

x

T - subtask Step Controlled Abort A58

U - Subtask Interruption........................ A60

V - Subtask Termination......................... A63

W - Defining Library Entries or Variables A66

LEVEL THREE

State E.A - IPAD Log-On A69

E.B -	Re-Activate Old Subtask A71

E.C -	Create New Subtask........................ A74

F.A 	- Request User Input and Interpret A77

Command................................. A77

F.B -	 DO-Activate Subtask Step............... A82

F.C -	Re-Activate Subtask Step.................. A84

H.C -	 User Controlled Search................... A87

H.D -	System Controlled Search A90

I.C -	Construct Library Entry..................A94

K.A -	Connect User with Data to be Modified.. Al00

K.B -	Perform Modifications with Dialog A104

M.A -	Determine Available Job Components..... All0
M.B -	Construct an OM Library Entry........... A113

M.C -	Construct a Job Library Entry A117

N.A -	Establish the Required LEN List A120

N.B -	 Check for LEN in Libraries A122

N.C -	 Prepare Job for Execution A125

N.D -	 Initiate Execution.......................A128

N.E -	Subtask step Executing.................. A130

Q.C -	Purge a CL Fntry....................... A132

W.C -	Construct Dictionary Entry.............. A136

LEVEL FOUR

State I.C.B - Enter Coding Module................... A140

I.C.C 	- Enter Data SetA144

I.C.D 	- Enter Stored Data Definition......... A147

I.C.E 	- Enter Dictionary.......................AI51

I.C.J 	- Enter Data Control Data............... A155

K.B.A 	- Modify CM A158

K.B.B 	- Modify OH A160

K.B.C 	- Modify Job A162

K.B.D 	- Modify DS A164

APPENDIX B - DETAILED PROBLEM SOLVING MODEL..................... B1

B.1 GENERAL WORK FLOW....................................... B1

B.2 "PLAN" NODE DEFINITIONS B5

B.3 "PREPARE" NODE DEFINITIONS 	 BB8.........................\

B.4 "MODIFY" NODE DEFINITIONS 	 BI

B.5 "WORK" NODE DEFINTIONS BI

B.6 "REPORT" NODE DEFINITIONS.......................... B14

APPENDIX C - MIGRATION OF IPAD SOFTWARE 	 Cl

xi

ILLUSTRATIONS

Figure 	 ai

1.1 	 Effect of Information Volume Increase............. 1

3.1 	 organizational Hierarachy of Product Design 10

3.2 	 Project Growth..................................... 11

3.3 	 Examples of Projects, Tasks, Subtasks and Jobs.... 12

3.4 	 Phasing of Design Levels........................... 13

3.5 	 General Work Flow 15

5.1 	 Representation of Project Plans 23

5.2 	 Characteristics of IPAD Community and Subtask

Libraries.. 25

5.3 	 Data Base and Work Relationships in IPAD 26

5.4 	 IPAD System Command Flow 29

5.5 	 SamplA Job Organization........................... 34

5.6 	 Sequence of Job Definition......................... 35

5.7 	 Steps in Job Construction..........................36

5.8 	 Data Base Contents 38

5.9 	 Relationships of Implicit and Explicit I/O

to The Data Base..................................
39

5.10 	 Attributes of Explicit and Implicit I/O 40

5.11 	 Example of Explicit and Implicit I/O

Operations... 41

5.12 	 Stored Data Definition Illustrations.............. 42

6.1 	 Structured Programming Diagrams46

6.2 	 IPAD System Design Level 1 Transition Diagram 49

6.3 	 IPAD System Design Level 1 Transition

Diagram (cont.)................................... 50

xii

Page

6.4 	 IPkD System Member Relationships.................... 63

6.5 	 IP&D Prototype Library Entry......................... 69

6.6 	 IPAD Data Base Library Organization.................80

6.7 	 IPAD Library Organization.......................... 81

6.8 	 Data Set Library Entry Organization.................82

6.9 	 Interactive Response Times........................... 87

6.10 	 Response Time Deviations 88

7.1 	 IP&D Host System - CDC 6600 (CYBER 74) 123

7.2 	 IPAD Host System - IBM 370/168..................... 126

APPENDIX A

A.1 	 Tree Structure Diagram A2

A.2 	 fPAD System Design Level 1 Transition Diagram..... A5

A.3 	 IPAD System Design Level I Transition
Diagram (cont.) A6

APPENDIX B

B.1 	 General Work Flow B2

8.2 	 Organizational Hierarchy of Product Design B4

B.3 	 An Expansion of PLAN B6

B.4 	 An Expansion of PREPARE B9

8.5 	 An Expansion of MODIFY B12

B.6 	 An Expansion of WORK B13

B.7 	 An Expansion of REPORT B15

8.8.1 	 An Expansion of the Total Work Flow model B17

B.8.2 	 An Expansion of the Total Work Flow Model. (contd.) B18

xiii

TABLES

2.1 	 IPAD Development Recommendations............... 6

6.1 	 IPAD System Design/Volume III

Requirements Comparison Summary............... 62

6.2 	 IPAD System Member Mapping 65

6.3 	 IPAD System Structures 74

7.1 	 Comparison of Vendor Hardware................111

xiv

1.0 INTRODUCTION

Integrated systems have generally been developed to support

a technical analysis requirement without consideration for the

information control and communication requirements of the

project organization. Within large project organizations, the

communication of information between specialized groups is

essential. The critical factor in communication is the volume

of information being controlled, transmitted or interpreted. As

volume increases, response times get longer, reliability

deteriorates, control diminishes and information becomes more

obscure.

LongerResponse Time - In figure 1.1, response time is plotted

against volume of information for several transfer rates. There

is a band of response times that is effective for a given

activity. Response times above this band result in information

being transferred too late to be useful to the receiving

organiza tion.

Upper limit of acceptable

response time

Increasing Transfer Rate 3

Information

Vol ume

Transfer Rate 2

BA

Transfer Rate I

Increasing Response Times

Figure I.1 Effect of Information Volume Increase

1

Response time is dependent upon the device used. For

example, if it were necessary to transfer a thousand order ten

percent populated flexibility matrix by letter or report using

a human typist, it would require between fifteen and thirty

hours at a steady typing speed of fifty to one hundred words per

minute discounting errors. Let this be response time A at rate

i on figure 1.1. A more efficient method could be punched

cards. If each card holds ten words and the card punch rate is

one hundred cards per minute, the transfer time will be one and

two thirds hours, shown as point B at rate 2 on figure 1.1. If

magnetic tape or disc is used, the response time would be one to

ten seconds shown as rate 3 on figure 1.1. Hence, acceptable

response times are volume and device dependent.

Deterioratinq Reliability - As the volume of information
increases the ability of humans to maintain reliability
decreases. Hence, a capability must be sought that will provide
near-ly perfect re-lia-bility and still -hrave-the transf-e-r-wte
necessary to produce the required response times.

Diminishing Control - An organization is managed by a small

number of individuals. Data is generated and used by a large

number of individuals. Control of creation and changing of the

data base is dependent upon the ability to collect and contain

the data in a manageable form Hence a capability is required

to store the data base and provide control methods.

Obscurinq ot Information - The thousand order flexibility matrix
in the previous example, coupled with a load mtrix,-contains
the deflections for a thousand points, but it does not
communicate those deflections to a user unless acted upon in
some way. Hence, for high volumes, methods are necessary to

manipulate, extract, and display the precise information needed

by the user to make a decision.

The problem is aggravated and compounded when several
disassociated groups become involved such as two or more
companies or a company and a government agency. In these
instances, local jargon and definitions, local methodology,
local data formatting and local preferences become part of the
problem.

Boeing's IPAD system design exploits the capacity of the

computer to process, transmit, and store data rapidly and

reliably to augment man's ability to communicate.

2

2

2.0 ANSWERS TO TASK 2 QUESTIONS 1, 2, 3, 12, AND 13

Answers to Task 2 questions which relate to the IPAD system

design are presented in this section. The remaining Task

questions which relate to the support of the design process are

answered in volume II and those which relate to the user

requirements are given in volume III.

Task _2_uestion 1 -- How should the (IPAD) system be

organized to provide sufficient flexibility to accommodate

independently developed codes, pre-existing and/or those created

in the future?

The system organization should be able to accommodate

multiple language processors, either compilers or translators

and provide a mechanism for data structure transformations.

IPAD should accept other language processors to either

directly compile to object code for a native mode version of the

application code, or to provide language converters for

interfacing with major existing languages. The burden for

development of these converters would be decided on a case by

case basis.

The stored data definition is the mechanism for interfacing

inconsistent data structures. The user must supply such a

definition ±or each data structure type and logic must be

provided to convert from one to the other. When this is done

for a particular convention, all other sets of pre-existing code

using the same conventions may then enter the system without

additional effort to define the data structure conventions.

lask 2 uaestion 2 -- What computer languages will be

admissible in the pre-existing codes?

There will be a standard OM language for IPAD (see Volume
VI). Additionally, any language that is acceptable to the host
operating system is acceptable to IPAD, although the user may
have interfacing problems between codes of different languages.
IPAD will execute any code compiled on the host system, but
cannot automatically interface data between codes having
different input/output conventions (see question 1).

ILAD is not dedicated to working with one language in its
library of coding modules. Since IPAD is using the host

operating -system for as many utilities as possible, any compiler

that can be called as a system utility is acceptable. The

consequences of the use of arbitrary languages are:

3

o 	 Input/output data structures may not interface with

current IPAD data.

o 	 Any or all of the specialized IPAD features may never

be usable.

o 	 An unknown quantity of machine dependence may be

introduced.

Task 2,_Q estion 3 -- What degree of machine independence

is acceptable to IPAD?

machine dependent code should be restricted to those areas
concerned with the host system interface. No portion of the
IPAD system communicating directly with the user should be
machine dependent; i.e., the user interface logic should be
independent of the host system. Machine dependent code for
efficiency purposes shouid be done only after the performance of
machine independent code is clearly demonstrated to be
unacce ptab le.

Task L2_uetion12 -- What will be the impact of the next
generation computers on IPAD?

Quantitatively the question is not answerable at this time.

Qualitatively the following areas could be affected:

o 	 increasing size and reliability of the data base,

o 	 introduction ot new source language capability

matching new hardware logic,

o 	 larger number of simultaneous users possible,

o 	 greater involvement in multi-machine networks

The primary aspects of fourth generation computers which

could affect IPAD are:

o 	 array type arithmetic,

o 	 virtual memory,

0. 	 distributed computing logic,

o 	 significantly faster CPU operations,

o 	 larger auxiliary storage devices.

4

Some of these are direct benefits and some will require IPAD

system modifications and internal redesign in order to receive

significant benefits.

ask_2._uestion 13 -- What is the first release capability

for IPAD which should he developed for subsequent extension.

Specific capabilities for three phases of IPAD development

are given in table 2.1.

Table 2.1 is related to the design nodes of section 6.2.

Continuity in task and time is the primary aim of the first

release system and emphasizes the following features:

o 	 subtask and community libraries,

o 	 continuity of the user's activities through the

subtask concept, and

o 	 constructing and executing jobs.

5

Table 2.1 IPAD Development Recommendations

NODE FUNCTION AND KEY FEATURES
IPAD DEVELOPMENT PHASE

I 2 3 1

E Subtask Set Up

" Connection to project plans
" Initializing of STL
* Recovery of STL with

executing STS

None
Partial
Partial

Partial
Partial
Partial

Full
Full
Full

F Subtask Command Mode

* Command decoding
" Utility set up and calling
" STS interruption/restart

Full
Full
Full

T Subtask Step Controlled Abort
• File clean up
* STS termination

Partial
Full

Full

U Subtask Interruption

* STL preparation for recovery
* Execution after sign off

Full
Partial Partial Full

V Subtask Termination

" Tie into plans
" Tie into report
* File disposition
* Keeping ST records

None
None
Partial
Partial

Partial
Partial
Full
Partial

Full
Full

Full

G Learning About IPAD

* Teaching mode
" Automatic tie-in to each

command

Partial
Partial

Full
Full

H Searching Through the Libraries

* Display capabilities for
all LE

* Selection criteria

Partial

Partial

Partial

Full

Full

Creating Library Entries

* Entering code
* Entering data
* Convenient transformations
* Implicit I/0

Full
Full
None
Partial

Partial
Partial

Full
Full

6

Table 2.1 IPAD Development Recommendations (Cont'd)

IPAD DEVELOPMENT PHASE

NODE FUNCTION AND KEY FEATURES I 2 3

K Modifying Library Entries

* Editing logic for code Partial Partial Full

* Editing logic for data -Partial Partial Full

* Display capability Partial Partial Full

H Constructing a Job

* OM specifications Full

* OH control program None Partial Full

* Job network specifications Partial Partial Full

* Library variable testing None Partial Full
" Job setup testing Partial Partial Full

N Executing a Job

* Qualifier specifications Full

* Execution time options None Partial Full

• Execution records Partial Partial Full

O Communicating with a Job

" Specialized input functions None Partial Full

" Specialized output functions None Partial Full

P Displaying Results

* Selection criteria Partial Full

* Display capability Partial Partial Full

Q Disposition of LE

* Options for outside IPAD Partial Partial Full

* STL to CL Full

* STL,CL to offline archive None Partial Full

* STL,CL to offl ine print None Partial Full

W Defining LE or LV

* Redundancy checking Full

GA,HA,IA, Interrupted States

KA,HA,NA, e Anytime interrupt Full

OA,PA,QA, * Interrupt aL pre-selected Full

states
WA

General Privacy/security inCL Partial Partial Full

Features Redundancy checking on name Full

references

Recoverability of IPAD Partial Partial Full

relative to HOST

Access/permission code Partial Partial Full

checking

Support for Report and Plan None Partial Full

Interactive Graphics Support None Partial Full

7

3.0 DESIGN REQUIREMENTS

The user requirements are the driving consideration in the

IPAD design. The IPAD system that is implemented will be a

balance of user requirements against software and hardware

constraints to achieve an improvement in cost, timeliness,

and/or technical capability over methods currently in use for

product design.

The basic user requirements for the IPAD system are:

a) 	 Continuity over task and time

b) 	 User interface

C) 	 Privacy, security, control, integrity

d) 	 Reliability

The dominating requirements are a) and c). Taken in their

broadest sense they imply

a) 	 a system that supports direct communication of

technical information between organizational entities:

b) 	 a system that accepts as a single task, work involving

many users that runs over time periods of days, weeks

and months;

c) 	 a system that supports all of the computational, data

storage, data display, data management, and data

communication requirements of an entire organization

engaged in the development of a product or products,

and;

d) 	 design control both through the automatic data

management and integrity controls built into the

system and through controls made directly available to

the management of the organization.

In this section the user requirements, independent of current

software and hardware constraints, will be described.

8

3.1 	 CONTINUITY OVER TASK AND TIME

The design process flow charts developed in Volume II are

representative of the type and organization of tasks necessary

to design an air vehicle. However, they are only

representative. The process actually followed will be an

outgrowth of the product being designed, the organizations

involved and the preferences of individuals at every level.
Hence, a computer system designed to only perform the tasks and

sequences shown in Volume II would have short term value to some

parts of the aerospace industry and very limited value to the

industry as a whole. To overcome this limitation, a study was

made of the general design environment. It was found that

continuity of activity and data over task and over time was an

essential characteristic of the design environment. Continuity

over task and time affects the design process in the following

ways:

a) Organizational Hierarchy

b) Integration of Individual Contributions

c) Phasing of Design Levels

Organizational Hierarchy - There is a hierarchy of planning and

control associated with the development of a product.

Information flows continuously through the hierarchy as shown in

figure 3.1. The terms in the parenthesis are basic descriptors

of the primary interest at each level. While the labels of

company, product, etc. are somewhat arbitrary, there are several
characteristics that seem universal.

a) 	 There is a level at which real work on the product

design is accomplished. Above that level, work is

centered around planning and management control.

Below that level, work is centered around preparation

of tools and methods. In the hierarchy shown in

figure 3.1, the level of real work on the product is

at the subtask level.

b) 	 Each level tends to transmit inforfation above and

desire action from below.

c) 	 Those above tend to be interested in what is being
done; those below tend to be interested in how things
are done; while the user concentrates on the actual

9

WHAT

INFORMATION 0 COMPANY (Profit)

S PRODUCT OR PROJECT (Marketing)

0 TASK (Technology)

USR

0 SUBTASK (Discipline)

* 	JOB (Programs & Data)

0 ACTIVITY (Computer Features)
ACTION

HOW

Figure 3.1 Organizational Hierarchy of Product Design

work, varying his interest between
depending on the immediate situation.

what. and how

d) The number of levels is not uniquely six,
neither large nor small compared to six.

but it is

Integration of Individual contributions - A user of IPAD will

execute a job, several jons, or the same job several times in

order to complete a subtask. The same user and other users will

complete other subtasks, which, together, will form a task.

Many tasks may be required to complete a project (which may be

a product). Figure 3.2 illustrates this relationship.

Projects, tasks, subtasks, and jobs may be large, small, or

nonexistent depending on the circumstances. Some possible

10

examples are given in figure 3.3. On large projects, the number

of users may be many hundreds and the volume of data may be of

the order of billions of words. Each individual working on the

project both receives and contributes data and information. The

effectiveness of each individual contribution depends upon the

effectiveness of his ability to communicate.

Phasing of Design Levels - In the.studies performed in Volume II

several levels, or phases, to the design process were defined.

A different design function is performed at each level. Each

level has its own characteristics of time, data volume,

technology required, etc. These levels will typically be time

phased as shown in figure 3.4 In general, each succeeding level

represents a refinement of the product design. Essential

information in the form of data and conclusions is passed

between the levels, as necessary, to ensure continuity of the

design process.

JOB - SUBTASK TASK PROJECT

of Jobs

Case 3

Figure 3.2 Project Growth

:11

PROJECT FIND BEST FIND BEST FIND USES FOR NONE
SST DELTA-WING SST S.A.S. ON AN SST

TASK
T

FIND BEST
DELTA-WING SST

CONFIGURE
IN LEVEL III

USE S.A.S. TO
IMPROVE RIDE NONE

QUALITY

SUBTASK CONFIGURE FIND BEST CHANGE S.A. S. DEVELOP GENERAL"
INLEVEL III CONFIGURATION ELECTRONICS SWEEP THICKNESS

WITH SUBSONIC LE. ONLY TRENDS USING
WIND TUNNEL DATA

JOB SUBSONIC L E. 4 ENGINES 	 SYNTHESIZE ANALYZE ONE
RIDE QUALITY SET OF WIND(Execution) 4-ENGINES ETC. ETC.
GAINS & FILTERS TUNNEL DATA

Figure 3.3 Examples of Projects, Tasks, Subtasks, and Jobs

In summary, the significant characteristics of this

environment are:

a) 	 There is continuity in the day-by-day work within the

organizational hierarchy, between individual

contributors and between the severai levels of

refinement of the product design.

b) 	 There is a flow of information (data, directives,

criteria, conclusions, etc.) throughout the entire

product design community. This flow of information

attempts to associate plans made, work done, and tools

and methods used into a single congruent whole.

12

ORIGINAL PAGE IS

OF POOR QTJALITY

Research & Dwelpment Develop Daslgn Concepts & New Technology

Resource Control Provide Cttlity (Productlon, Finance, Faciities,& Manpower

?Mrkutlng Determine Sales Potential &Customer Requirementbt

Conflguration Studies Identity Market Opportunities
I16Prellmlnary

Design Criteria Selection
Design Go-Ahaed

4- Firm offer to customersFirst Sill

Peiuct Dia Desgn

17 -ro Product Manufacture /

I Product Verification l

1- Preliminary Desigjn-.----	 Cerificatin Oranted,,, . P

1 	 ~Development Cycle .

l Project Milestone

Figure 3.4 Phasing of Design Levels

c) 	 At every level of the organization and of the design
there are individuals doing the actual work. Those
above give direction, review results and exercise
control. Those below prepare tools and methods and
supply information.

d) 	 Design activities are typically ongoing over periods

extending into years and decades.

It is a user requirement that the IPAD design be compatible

with and provide direct software and hardware support to this

environment.

13

3.2 	 USER INTERFACE

Although the design process flow charts in Volume II

represent the procedure a typical design organization might

follow, they do not represent the general activities users

perform. An understanding of the general activities a user

performs is necessary to design the IPAD system. To help gain

this understanding, a problem solving model was developed as

shown in figure 3.5 and given in detail in Appendix B. This

model was useful in isolating particular capabilities so that

the system design could be modularized effectively and general

language statements could be developed.

IPAD is primarily a design tool. Hence, its basic
organization is for a human hands-on operation using a command
structure tnat makes the computing system essentially
transparent to the user. As a consequence, the user is placed
in a des-ig-n environment -entirety comp-tible with his own
behavioural characteristics and the characteristics of the task
he is performing. The principal features of this environment
are given below.

a) 	 Accessing - Accessing will be through a personal

terminal, i.e., a terminal associated with one user at

a time during a work session. The minimal personal

terminal will be an alphanumeric CRT with passive, low

resolution graphics. High resolution interactive

graphics, hardcopiers, remote job entry devices, and

other equipment will vary from installation to

installation.

b) 	 Capabilities - The IPAD system will provide the
following capabilities:

1) 	 DEFINE - Entering or modifying definitions in the
IPAD libraries. The definitions include
abstracts, variable names, correspondence tables,
and other information necessary to interface an
element with the data base and provide
descriptive information to the user. An element
is a data set, a module of application code, a
display format, etc. DEFINE is separate from
ENTER to allow, for example, predefinition of
variables pertaining to a data set by a single
focal point followed by the actual entry of data
by other persons who must then conform to the

predefinition.

14

SREPORT

PLAN 	 The determination of objectives and constraints which
define a desirable product and the development of a
plan of activities to achieve these objectives within
the constraints.

PREPARE 	 Setting up to do work.

MODIFY 	 Altering preparations to do work when it can be done
without changing the plan. Generally, this isdue
to contingencies which are minor relative to the
overall plan.

WORK 	 The activity which aims directly towards completion
of a meaningful step in the plan.

REPORT 	 Recording and/or making visible the results of
WORK and determining if the planned work is done.

Figure 3.5 General Work Flow

15

2) 	 ENTER - Entering the actual library element.

This permits the user to enter information which

conforms with the definition made using DEFINE.

Many sets of information may be entered following

a single DEFINE, but each will have qualifiers

supplied by the user and the system to fully

identify and distinguish them.

3) 	 TRANSFER - Moving elements between libraries

within IPAD. This allows movement of elements

between private and community libraries. It does

not allow movement of information to a location

remote to the IPAD installation.

4) 	 SEND - Sending library elements to a location

remote to the IPAD installation.

5) 	 EDIT - Locating -a-nd- -mod-ify-ing ex-isti-ng- -library
elements. Automatic version changes will be made

by the system to accurately trace antecedents and

preserve integrity tor other users.

6) 	 PURGE - Erasing entire library elements. System

controls will exist to ensure against purging of

elements still being used or saved by some

segment of the user community.

7) 	 COMPARE - Making comparisions between sets of

information or between information -within the

system and information supplied by the user.

This would allow, for example, a check of all

moduli of elasticity within a data set to ensure

they are within a given range.

8) 	 CONSTRUCT - This triggers a dialogue mode in

which the user may form executable code from

groupings or modules of code previously entered

into the system,.

9) 	 EXECUTE - This causes a particular set of code
formed through CONSTRUCT to be executed. If the
executing code has a language structure of its
own, the user will interact in that language with
complete transparency of the IPAD system.
Commands will be available to interrupt an
executing code set to review its progress, change
its direction, or discontinue execution.

16

10) 	 DISPLAY - Bringing information from an IPAD

library to a display device. Display formats may

be entered separately through a DEFINE and ENTER.

There will be many display formats, each

providing a particular class of display.

Generally, activation of the display will trigger

dialogue to guide the user in inputting necessary

parameters.

11) 	 FIND - Locating information within the libraries.

This provides two capabilities: (a) locating

particular sets of information such as technical

code or data sets, and (b) locating particular

items within a data set.

12) 	 MESSAGE - Sending messages through the IPAD
system to another user.

13) 	 LEARN - N tutorial state that provides a
programmed learning course in the use of IPAD.

In addition to the specific capabilities defined

above, the systom will also provide tor (a) short term

pauses and returns allowing execution of other

capabilities between the pause and the return, (b)

long term interruptions extending over log-offs and

log-ons, (c) help from the system to the user to

prompt him, tell him of missing information, explain

commands which he has obviously misunderstood, and

otherwise smooth and assist the execution of work.

c) 	 Communication - The transfer of data between
application modules or between application modules and
the system libraries will be transparent to the user.
The actual locations of stored information will not be
known to the user. Rather, movement or communication
of information will be accomplished by the user
through command statements utilizing generic names and
adjectives.

d) 	 Human Factors - IPAD is a "hands-on" design oriented
system. Hence, the characteristics of the user are an
important consideration and include:

1) 	 the characteristics of the human mind,

2) 	 the experience or state of proficiency of the

user, and

17

3) 	 the characteristics of the task being performed.

3.3 	 PRIVACY, SECURITY, CONTROL, INTEGRITY

A review of the design process flow charts in volume II and

the manner in which an organization would proceed to work these

projects indicate requirements for privacy, security, control,

and integrity of system code, application code, and data. These

requirements are as follows:

a) 	 There is a need for both private and public data
regions. Private data regions provide space where an
individual user can do scratch work, correct errors,
etc. Public data regions provide space where data
important to many users can be stored, accessed, and
controlled.

b) 	 There is a need to protect information against

unauthorized access.

c) 	 There is a need to control use of the system and of

the data base.

3.4 	 RELIABILITY

The reliability of the IPAD system, hardware, and operating

system should be such that system unreliability need not be a

specific planning consideration for IPAD users. No definitive

studies have been made to establish the precise parameters and

ranges within which this criteria is satisfied. Nevertheless,

it is an essential criteria.

The reliability of application modules is outside the

control of the IPAD system. However, standards should be

established and a rating system developed and implemented

whereby application modules can be classified according to

established levels of reliability.

18

4.0 DEFINITIONS AND ABBREVIATIONS

Activity

Record (AR)

Coding

nodule (CM)

Community

Library (CL)

Data Manaqer System

(DMS)

Explicit Input/Output

IPAD Data Base

IPAD Executive (IE)

Implicit Input/Output

Job (J)

Part of a subtask library entry,

setup by IPAD for use in subtask

communication, documentation,^

recovery, and accounting.

A specific collection of symbolic

code that contributes to the

definition of one or more opera
tional modules.

The set of all programs, data, and

reference information available to

the total community of IPAD users

at any given installation.

- The collection of software
responsible for information flow into
and out of the IPAD data base.

- Input/output action to/from a library
entry which is under the control of a
user program. The data manager is
responsible only for the library entry
as a unit, and, in general, is not

capable of interpreting-the contents

of any library entry handled in this

way.

- The collection of all information
contained in the community and
subtask libraries.

- That portion of the IPAD software used
to control the basic IPAD functions.
It is the primary interface to the
user.

- Input/output action which is under
control of the data manager.
Information transfer by the data
manager is in terms of library

variables.

- A specific sequence of executable
operational modules and/or other jobs
which produces meaningful results for
a user.

19

Library
Entry (LE)

- The basic unit of storage in the
IPAD data base is the library entry.
The LE consists of a library -
directory entry (LDE) and an associ
ated library text entry (LTE).

Library Entry
Dictionary (LED)

- A dictionary containing definitions
of all the library entries in a
library.

Library
Directory (LD)

- An index to all the entries in a
library.

Library
Directory Entry (LDE)_

- That portion of a library entry
containing. clntxDl and, referencig
information for the associated
library text entry (LTE).

Library Text
Entry (LTE)

- That part of a library entry
containing the data associated with
the entry name.

Library Variable (LV) An alphanumeric data item whose
engineering significance is defined
to IPAD.

Library Variable
Dictionary (LVD)

A dictionary containing definitions
of all the library variables in a
library.

Operational
Module (OM)

An executable collection of coding
modules which contribute to the
definition of one or more jobs.

Operating System
(OS)

The operating system for the host
computer within which IPAD executes.

Personal Terminal The electronic or electro-mechanical
device providing the primary path
for the user to access IPAD data
and programs.

Project (P) The total set of subtasks to be
performed during a design or analysis
effort.

Project Plan The definition of all project tasks,

20

subtasks, and the associated control
in terms of a pert-chart type network.

Project Report - The collection of reports expected to
be completed during the progress of
the project.

Qualified
Library Entry
Name (QLEN)

- An unqualified library entry name
with a qualifier attached indicating
a specific instance of the LE&

Stored Data
Definition (SDD)

- The specifications for a logical
information structure for one or
more library entries in IPAD

Subtask (ST) - A sequence of IPAD activities which
represents a meaningful step in a
project.

Subtask
Library (STL)

- A library that is private to an IPAD
user during the execution of one of
his subtasks. Each subtask will have
a single associated subtask library.

Subtask Records - Records in each subtask library for
the purpose of holding activity and
other information during the life of
the subtask.

Subtask Step A single step occurring in a subtask,
normally defined by a host operating
system control card or the execution
of a single IPAD utility program.

Task (T) - A subdivision of a project.

Unqualified Library
Entry Name (ULEN)

- A generic or root name of a library
entry. Specific instances of data
may be identified by a ULEN appended
with a version number and/or an
additional qualifier.

User's Identification
(UID)

A unique identifier associated with
each user of IPAD. It is mandatory
that this ID be associated with a
person and not an activity or an
organization.

Version Number (V) An identifier appended to an
unqualified library entry name to
record the occurrence of a change.

21

5.0 FUNCTIONAL DESIGN DESCRIPTION

Early methods of organizing computing tasks involved

batching work of a similar nature and relying on well trained

personnel to maintain a reasonably efficient operation. ' As

volume and complexity increased, many of these administrative

functions were shifted to the computer, leading
day "operating" and "monitor" systems. Each
system development had two basic objectives:

to the
new operating

present

a) more efficient processing, and

b) new capabilities to aid the professional programmer.

In contrast, software has not been generated which helps the
applications user organize and manage his work. Moreover,. most
-opera-ting systems- are "one run" and "one user" oriented while
typical applications require numerous runs, spanning several
days or months and involve many people performing inter-related
activities. IPAD is designed to help the applications user
manage and organize his work. It will support continuity of
work on the computer involving many separate work sessions
extending over long time periods and requiring communication
between users through the data base.

5.1 PRIMARY SYSTEM FEATURES

Full Project Saport - A project is a set of tasks and a task is
a set of subtasks. ithin any project the sequence of tasks and
subtasks is not arbitrary. Figure 5.1 is a representation of
two projects showing the breakdown of tasks and subtasks and the
flow of information or interdependence between them.

There are specific items in the data base called "plans"

and "reports" that support management definition and control of

the work flow. Each project and subtask will be given a report

skeleton at the time planning data is entered in the data base.

Hence, completion of each subtask is a formally recognized event

in IPAD. That is, the completion of the subtask can be recorded

in a project report. If a PERT-chart type logic is used for

planning, as shown in figure 5.1, the sequence of subtasks can

be controlled through permission codes in the system. Managers

and technical users can also interrogate the status of projects

or subtasks from the project reports.

22

PROJECTA
TASK TASK2SK3

PROJECT B

Figure 5.-1 Representation of Project Plans

Continuity of Work - Subtasks are the prime working
interface between IPAD and the IPAD user Subtasks are
generally associated with one user and are organized within IPAD
to provide continuity of activity. All user activity is part of
some subtask which was explicitly initiated by a user and must
be explicitly terminated. The lite of a subtask is not limited
to an artificial work boundary such as a computer run or a
terminal session.

The IPAD system will accept any definition of a subtask.

In principal, a user may have any number of subtasks defined at

any point in time, although only one would be active at a time.

A subtask is a user's private domain in which he works

individually without impacting other users. He has access,

through the data base libraries, to application modules, utility

modules, and data common to all users. His accessing of

information in the data base libraries is controlled or
restricted as necessary to protect the community nature of the
data base.

23

Continuity of activity means that from the time the user

initiates a subtask until he terminates it, he works with the

sense of continuity of a single session. That is, having

interrupted his activities for lunch, sleep, or thinking, he

will resume activity with a subtask status identical to that at

the time of his interruption. This continuity will be true for

either interactive or batch type work.

Continuity between subtasks (and hence between users) will

be provided by the data base. As each subtask is terminated,

the user will transfer entries of common value into the

community library.

Libra rx Structure - The IPAD data base is organized into a

comunity library (CL) common to all users and subtask libraries

(STL) private to each user. The characteristics of these

libraries are:

a) 	 The community library contains all application

modules, data sets, and other information available to

the using community in general.

b) 	 Community library items may Le attached, copied or

transferred to the subtask library depending upon

permission codes associated with the entry and the

subtask.

c) 	 The subtask library contains all application modules,

data and records associated with a subtask.

d) 	 When the subtasE is inactive, all items in the subtask

library are logically located within the community

library. However, contents of the subtask library are

not accessible as community library items.

(e) 	. subtask library is created when a subtask is defined

and continues to exist until the subtask is formally

terminated.

(f) 	A non-community library item in a subtask library is

private to the subtask library.

The relationship between subtask and community libraries is

illustrated in figure 5.2.

24

IWSIDET
A

CERTI-FIED

INS IDE CL ":"" "

*
" .-:"

: :" - "

LIBAR (C.

OPRDI ASCAN D IS PAC

CERTIFIED . HISTORICAL
DEVELPENTAL - REPORTSPLAN .

- - STATISTICAL TABLES

ONLINE • OFF L IN E "

.

--

-

:: ." ."

0

*:-- PIET...

DATA '" .: .. .

" HISTORICAL " "/" "
:
"

. BECOMES' WHOLLY- ..

•DISC - DISK PACK
•ARCHIVE - TAPE

:
"•

. '

.CERTIFIED

- PROPRIETARY

--
0PPRRGRAMAS

- ". " .::]SURTiASKLiBRARY' ?",

BECOMES WHOLLY CLC
- RESIDENT DURING<

" "

:

-

.

SUBTASK

" SUBTASK b

" TASK I

. H/7/

- : :

,,, "',PREVIOUS

/- ',

1 - SIGNS ON,

* UDIFICATIO TL PROGRAN

Figure 5.2 Characteristics of the IPAD Community and Subtask Libraries

5.2 	 WORK RELATIONSHIPS

Figure 5.3 shows a schematic relationship of work within

IPAD. 	 A project consists of

a) Project Plans

o 	 Overall Project Plan

o individual Subtask Plans

b) Project Sleports

o 	 Project Summary Report

o 	 Individual Subtask Reports

25

Figure 5.3 Data Base and Work Relationships in IPAD

C) Subtasks

o 	 All user activity in IPAD occurs in a subtask.
o 	 The mode of communication in a subtask is

primarily interactive.
o 	 Batch mode is available. Continuity is retained

in the subtask whether accessing is interactive

or batch.

o 	 A user may have an arbitrary number of subtasks
defined at any one time.

o 	 A subtask has four distinct states: defined,

active, inactive, or terminated.

26

o 	 Records of subtask progress are contained in the

subtask library and are used to formulate project

reports.

o 	 Communication between subtasks is through the

community library.

o 	 Protocol is defined to maintain integrity of data

in the community library.

IPAD will provide a framework within which control and

reporting requirements may be defined to meet the needs of the

using organization. For example, project and task plans may be

placed within the system in the form ot subtask sequences as was

shown in figure 5.1. Control can then be exercised such that

subtasks can only be initiated as preceding subtasks are

terminated and subtasks cannot be terminated until subtask

reports are entered in the project report. However, project

plans could be entered in the system with no control and

reporting requirements or there could be a complete absence of

such plans. The minimum requirement in IPAD will be that the

subtask must be defined before it is activated so that resource

accounting and reporting can be done by the system.

5.3 	 USER INTERFACE

5.3.1 Personal Terminal

The primary interface between the user and IPAD will be a

"personal terminal". A "personal terminal" is uniquely

associated with a given user while he is active. Each user will

he identified to the system via his identification code. Since

the IPAD system will not have terminal handling software, the

user's first contact will be with the operating system. If IPAD

is the only system requiring terminal support, the operating

system will be a transparent message carrier.

5.3.2 command Flow

In general, each command to IPAD will be mapped into one or

more operating system commands. Control will then be given to

the operating system. When the operating system has completed

a set of commands, IPAD will be recalled to determine if all

commands have been processed. If not, the above process will be

repeated. When all commands have been processed, appropriate

entries will be made in the subtask records and all library

entries will be disposed of as requested by the user. An

activity in progress may be interrupted and another activity

initiated. Upon completion of the second activity the user may

27

continue the first activity. This sequence may be nested. The

execution sequences for data and programs may be stored as job

descriptions in the IPAD libraries. The general flow of control

for IPAD and system commands is shown in figure 5.4.

While many languages may exist within the total IPAD

domain, the IPAD executive itself needs a relatively limited

language capability. The basic commands are modal statements,

i.e., the command indicates the basic intent of the user. These

commands are the means of executing all application modules,

executive utility functions and data base management functions.

Recommended basic commands were given in section 3.2.

5.3.3 Sian-On To IPAD

The sign-on procedure initiates a new subtask or restarts

an existing one. A user must supply an identification number

(HID) and security passwords. Sign-on will allow the user

access to all library entries where his ID number appears in the

permission code tables. If no subtask name is input, a new

subtask will be assumed and IPAD will ask for a subtask plan

identifier so that planning data can be examined to find the

appropriate subtask name. Planning data can also be used to

search for subtasks in progress.

If an existing subtask name is given there will be a

library entry of that name in the community library, and the

subtask library will be established using the information in the

entry. Except for records involving time, the library contents

for existing subtasks will be as if the user had never signed

off, providing continuity across time lapses in activity.

If a new subtask is defined, the following information must

be supplied by the user or through system defaults:

a) 	 User validation information for the particular

project.

b) 	 Basic options such as display formats, etc.

5.3.4 Communication With IPAD

Having signed on, the user may initiate any of the IPAD

basic commands in his command permission profile. The system

will respond in one of three basic modes.

a) 	 Monologue - The user knows the command format and is

capable of delivering complete commands to IPAD.

28

COMMANDS

DAA APEATN

MANGERSYSEMNAECTIV

COOMMANDS

Figure 5. IPAD System Command Flow

b) 	 Dialogue - The user knows the general workings of IPAD

but is not capable of entering complete commands.

c) 	 Teach - The user may, at any time, request assistance

and IPAD will go into a partial or full teaching mode

depending on the request type.

When a user's response to the system is interpreted, the

following possibilities exist:

a) 	 Execution is possible and:

o 	 The command is correct in form and intent; or,

o 	 The command is correct in form but the user's

intent is different from the potential execution

results.

29

b) 	 Execution is not possible because:

o 	 IPAD understands the command but has insufficient

information, or

o 	 IPAD understands the basic command type, but

detects an error in format, consistency, etc. ; or

o 	 IPAD does not understand the command.

These responses are summarized in the following table and will

be built into the system. The number indicates sequence of

action, and parentheses indicate optional actions.

RESPONSES

EXECUTION OF
COMMAND Do It

Ask IfThey
Understand'Action

Ask IfThey
Would Like Help

Explain
Error

-Possible

Not Possible

- Unable

- Detectable Error

- Unrecognizable

(2) I (1)

(3)

(2)

(2)

(3)

2

30

5.3.5 Sign-Off From IPAD

Sign-off has two basic modes - inactive or terminated. If
inactive, the system will save the contents of the subtask
library in the community library and prevent purging or editing
of those versions of community library entries associated with
the subtask. If the subtask is terminated, disposition
instructions for all items in the subtask library must be given.

Sign-off is a discontinuation of activity on a particular

subtask and may or may not terminate the activity period.

5.3.6 Batch Access

IPAD commands are available in batch mode and must be

submitted in monologue fashion. Sign-on and sign-off will be

similar to interactive mode, including the subtask concept so

that continuity is preserved. The end of a batch run is similar

to sign-off with subtask inactive. A user may submit a job

through batch and, regardless of the results, make his next

access either from batch or from the terminal. Thus, the IPAD

system will leave an interrupted subtask in the same state for

batch as for interactive access.

5.4 LIBRARIES

When active on any given subtask, an IPAD user's data base

is his subtask library and that portion of the community library

to which he has access. Any new information must come through

his subtask library or from access to additional community

library information. In these two libraries, the user is

concerned with library entries and variables and the dictionary

which holds their definitions.

5.4.1 Library Entries (LE)

The primary unit of information storage in an IPAD library

is the library entry. In order to handle the wide variety of

information expected in the IPAD data base, many different types

of library entries have been defined. The most significant

distinction among types is between user and system entries.

User entries are composed of alphanumeric information which is

either input to or output from some operational module in IPAD.

This entry type is composed of one or more library variables

(see section 5.4.2). A system type does not contain library

variables. These entries contain source code, binary code,

project plans, etc. The set of library entry types is

expandable.

31

5.4.2 Library Variables (LV)

A library variable is defined in an IPAD dictionary (see

section 5.4.3) in terms of its technical significance. This

includes both its engineering meaning and its mathematical

meaning (e.g., single real number, rectangular matrix, complex

vector, etc.). The isolation of variables is a mechanism for

organizing information transfer between technical code and

between people. A library variable may be resident wholly

within more than one library entry, but a multiple valued

variable (e.g., a vector) may not be partially resident in

several library entries. Any variable may have any number of

values residing in separate library entries, but there will only

be one definition of that variable in any one dictionary.

5.4.3 Library Dictionaries

Each library in the data base has at least one dictionary.

Typically one would expect a subtask library to have only one

dictionary, but there may be several dictionaries in the

community library. When library entries or variables are

referenced, a specific dictionary will be used to reconcile

potential ambiguities. Generally the context of the reference

will be sufficient to define the situation; e.g., the user's

subtask library is assumed to contain any item referenced, and

if it cannot be found, a specified community library dictionary

will be used.

5.4.4 Library EntryjNaming Conventions

The user will reference library entries by a generic name

assigned by the entry originator. Some library entries (e.g.,

data sets and coding modules) will be modified during use and

will therefore require version numbers. In addition, the source

of data sets generated during the course of work will be

identified. Hence, qualifiers will be appended to the entry

name recording the names of data sets and application modules

used to generate the data set. Therefore, library entry names

will have the form

NA14E. VERSION(QUaLIFIER)

To access a library entry, the user, through direct command or

through job control, will give enough of the library entry name

to uniquely identify the entry. Less than that will cause the

system to request more information.

32

Name - The name is any set of characters supplied by the user.

When stored in the directory, the owners ID and password and the

subtask identification will be appended to the name by IPAD.

Version - Version is both a user and IPAD generated item. IPAD

will require a change in version number whenever modifications

are made to a library entry without changing the name. The

system will provide the capability of referencing the "latest

version".

Qualifiers

The basic intent of qualifiers is to insure documentation

of the origin of library entries. Both the user and IPAD

establish qualifiers. When the user initially creates a library

entry, he supplies a qualified name, except tor those entry

types which logically do not require qualifiers. As the entry

is used for various jobs, its qualifier is used by IPAD to

establish qualifiers for newly generated entries. The qualifier

is associated with a library entry and not individual library

variables within the library entry.

Figure 5.5 illustrates how qualifiers are generated during

the execution of a job. The elements in figure 5.5 are defined

as:

Job Components X, Y, Z

Input Library Entries A, B, C, F

Intermediate Library Entires D, E

Output Library Entries L, M, G.

If B is a library entry qualified by Q, it is
identified as B(Q) -where Q is either supplied by the user

or is a qualifier generated by IPAD as a result of a

previous execution. The qualifier generated for L in

figure 5.5 at job assembly time will be

L(Z(D(X(A(NULL))) ,E(Y(B(NULL) ,C(NULL))),F(NULL))).

33

L M G

D EF A

Figure 5.5 Sample Job Organization

The qualifier generated for G at job assembly time will be

G (Y(B(NULL) ,C(NULL))) .

The user will normally not deal with the long form of the

fully developed qualifier. Be will, in general, use only

enough of the name to insure an unambiguous reference.

The null qualifiers are supplied at execution time

to complete the qualification of the output library entries

for each specific job execution.

34

5.5 THE JOB CONCEPT

Operational modules and utility functions are executed as

one or more jobs- A job is a selected set of operational
modules (0H) and/or-other jobs organized by a user as part of a
subtask. An OM consists of a selected set of subroutines
organized as coding modules (CM) to execute in a sequence as
defined in a "main program". Without regard to execution
sequence, the above relationships are shown in figure 5.6. Any
set of source code used in several OM's should be entered as a
CM to make it more visible to the user community. The same rule
applies in the ON to job relationship.

CM'S OM's Job

(Source Code) (Relocatable/Absolute Binary) (System and IPAD Commands)

C --- - MI M Jobl
CMI

CM2

Symbolic Code used to Define
One or More OM's

Executable Sequence of Coding
Modules Used to Define

Executable Sequence of
Operational Modules and/or

One or More Jobs Jobs for User Results

Figure 5.6 Sequence of Job Definition

35

Entering aCoding Module Building an Operational Module Assembling aJob
I N3AMEZJ

ueode - Description
With KeyWords N C

Descriptionwith Key Words CM OptionalOpinliecipln OM Description J [-
wtod Ke

Variables andDtSesUsed

Execution Logici
Data St II
IDispsition I

I Key Wordsl
Execu lon/
Sequence Log[l

o
Job"iI=
L

I xenlFileSpecifications +

CMIA_ OM_

CIA

Figure 5.7 Steps inJob Construction

5.5.1 Enterinq Codinc. Modules

Source code and descriptions are entered as Coding nodules

as shown on figure 5.7.

5.5.2 Buildinq Operational Modules

A complete OM must have one main program, i.e., only one

main program may exist in the CM's being packaged into an OM.

Ifta main program does not exist in a CM, one must be written as

part of the OM building process. Library entry information, as

shown on figure 5.7 must be defined at ON build time. Any files

used by the OM and not linked to library entries by the CM's

must be linked at this time. If an OM is placed in the

36

community library, all its component CM's must be in the

community library also.

5.5.3 Constructin Jobs

Constructing a job is similar to building an OM. An

execution sequence with optional logic at -OS boundaries is

specified. The executable units in a job are OM's and other

jobs. During job assembly the qualifiers for all output library

entries will be partially constructed. Information supplied at

job execution time will complete the qualifier. Job

construction is illustrated in figure 5.7.

5.5.4 Execution of Jobs

When job execution is requested, the subtask library and

community library are searched for the correctly qualified input

library entries. The library entries for all intermediate and

output library entries are set up in the subtask library and are

qualified by both the set cf qualifiers generated during job

construction and the set received with the request for

execution. All tile linkages (as specified in the job

definition) are set. Activity record information for this job

request is written and commands are delivered to the operating

system for execution.

5.6 DATA BASE MANAGEMENT

The libraries contain two categories of informati6n

structures; system defined and user defined. No formal

distinction is made between these categories by the data

manager, but system structures are not generally accessed

directly by operational modules. The system structures are used

to store operational modules, referencing information, control

information, etc. User structures contain data produced and

-manipulated by application modules. Figure 5.8 gives a general

description of the data base contents.

The user is not restricted to a fixed set of data

structures. The two basic modes of access to data by

application modules are:

a) Explicit I/O - The user's code is written with
detailed knowledge of the data structure of the

library entry.

b) Implicit I/O - The user's code references variables

within a library entry by name, letting IPAD do all

storage and retrieval.

37

With explicit I/O, library entries are made availabl6 at

execution time by the data manager. The data manager then

assumes that the user's code will handle all read/write
operations.

With implicit I/O, the operational module definition
contains declarations naming stored data definitions, and
explicit I/O -statements are replaced by commands to the data
manager to fetch and store data. The data manager carries out
the required I/O as specified by the appropriate stored data
definition. A schematic of the two I/O modes is given in figure
5.9 with a table of comparisons in figure 5.10. An example is

given 	 in figure 5.11.

STORED DATA DEFINITIONS

DIRECTORIES

IPAD SYSTEM LIBRARIES

DATA STRUCTURES DICTIONARIES DATA SETS

CM's

JOBS

USER DEFINED
DATA STRUCTURES USER DATA

* The Number and Variety of User Data Structures Is Indeterminate.

* 	 DMS Uses Stored Data Definitions to Carry Out Actions Which Will Satisfy
User's Intent:

* Physical Addition I Modification I Deletion of Data

* Logical Linklng I Dellnking of Data

Figure 5.8 Data Base Contents

38

DATA BASE

SEWQ2 SDD75

SDD25' '

PROGRAM Ito
IMPLICIT * SYSTEM UTILITIES

110 FOR USER:

* Create
* Update
* Query

S USER OM's

Figure 5.9 Relationships of Implicit and Explicit 1/0 to the Data Base

Stored Data Definition JSDD I - All information in the IPAD

libraries may be accessed through a stored data definition (see

figure 5.12). SDDs for user data are user supplied, avoiding

the problem of forcing users to change their data formats and

structures to conform to a single standard.

Each library entry in IPAD may have one or more formats

associated with it. When described by a single SDD, multiple

formats imply tne use of subsets of the whole library entry or

possibly different unit conversions. Multiple format SDDs also

allow external formats (e.g. punched cards) to be-described.

39

SDDs are mandatory when using implicit 1/0 and optional for

library entry used in explicit I/O only.

Implicit 1/O - SDDs require each variable to have a definition

in the variable dictionary and a corresponding global name. The

utilization of jlobal names in the SDD eliminates many 'of the

ambiguities that could arise when different users are

interpreting data variables or when decisions are made regarding

the selection of a coding module for a specific computation.

The SDD also permits variables to be given local names for

different subroutines. During execution, calls on the data

manager will result in data being moved frow the storage media

to the user's working area. Data will be positioned in the

user's working area so that local name references to variables

in the user's code will be correct.

EXPLICIT 110 	 IMPLICIT 1/0

* DMS Connects OM to an Entire Data Set * DMS Connects User to All or Part
of Specifled Data Sets

* 	OM Performs all 110 Operations * User Requests Data
Without IPAD Intervention # By Library Variable (Data Item Key)

* By Position
* Sequential Data Sets
"Logical Chains

* 	DMS Functions Performed only on * DMS Functions Performed on Individual
Entire, Data Set Library Variables Within Data Sets

Figure 5.10 Attributes of Explicit and Implicit I/0

40

Pre-Existing (or Independent) Code May Require Data Input In aCertain Structure
" If Data Exists in Proper Form, DMS Connects Data to Program
" If Data Exists, But Not In Proper Form, a Pre-Processing OM Using SDD's

Can be Used to Interface Pre-Existing Code Without Changes to the Code

DATA BASE SDD25 SETA{Q) SDDY5 SETA(Q

PROCESS ING Start Om OvPre-Processor (Pre-Existing Code)

Figure 5.11 Example of Explicit and Implicit I/0 Operations

ExpicitI/O - When the data handling logic is explicitly
present in the source code, (as it is with all source code
generated without data manager type functions available) the
data manager's function is limited to module boundaries; i.e.,
the data manager will prepare the data linkage prior to
execution and dispose of the data after execution. Knowledge of
the library entry internal structure by the data manager is not
required during program execution.

5.7 PRIVACY, SECURITY, CONTROL, INTEGRITY

Many of the design features of IPAD, such as the library
facility, in themselves provide privacy, security, control, and
integrity. Other teatures are specifically designed to support
these requirements. All features supporting these requirements
are described in the following paragraphs.

Subtask and Community Libraries - The community library contains

all of the application modules and data generally available tothe

ORIGINAL PAGE 1,OF POOR QUALryT 41

* 	 AN SDD DESCRIBES A DATA STRUCTURE WHICH IS USER'S MODEL

OF REAL WORLD

* AN SDD FILED INTHE DATA BASE IS A TEMPLATE USED BY DMS WHEN
ACCESSING DATA

USER: Find Item X in Data Set SETA(Q)

DMS

TMPLATE 	 An IPAD Data Set

_-	 May Have More
Than 1 Structure

SETA SDD
INDEX'
SDDI

SDD25

7 SDD75

DATA 	 BASE

Figure 5.12 Stored Data Definition Illustration

community of users as a whole. The subtask library contains

elements ot the community library, and provides space for the

user to do scratch work and otherwise prepare or generate data

for entry into the community library. The subtask library may

contain entries peculiar to an individual user and not available

to the community at large. In this case, provisions are

required to preserve the integrity or protect the quality of

information being transfered to the community library.

Controlled Access to IPAD Data - Access will be controlled
through access codes associated with individual entries of
application code and data. For example all users could be
allowed read permission for a data set but only particular users
could be allowed write permission.

42

There will be at least five types of library entry access

codes: read, write, extend, purge, and execute. Read access

implies permission to read only. Write access implies

permission to change existing information to a library text

entry with corresponding changes in the library directory entry.

urq access implies permission to eliminate the entire library

entry. Execute access implies that the entry may be executed

but cannot be read for any other purpose.

The list of permission codes (i.e., identifiers for each

user permitted each type of access) for each library entry will

be listed in tne access part of the directory. Each user's

identification (DID) will be checked against these to determine

the allowable access permission.

The above discussion relates only to the community library.

Items originating in the subtask library are assumed to have all

levels of access to the subtask owner. In the event the user

requests write access to a community library entry for which he

only has read permission, items may be copied to the subtask

library in order to allow the task to continue without causing

undesirable community library changes.

Controlled Access to IPAD System Commands - Use of IPAD system
commands (see section 3.2) will be controlled through permission
codes. A new user entering the system will be assigned a
command profile internally within the system. This profile will
define command and data regions the user may access. For
example, except for exceptional circumstances, every user will
be allowed to purge information from his subtask library but

only specific users will be allowed to purge information from

the community library. Specific permission will be required to

send data outside IPAD. Transfer of information from a subtask

library to the community library may be controlled to allow

review before permitting the transfer. In tight security

situations, purge permission from particular subtask libraries

may be denied.

URiueness of Versions - Since IPAD is designed for large groups

of users worKing on the same or related projects, it is

necessary that they be able to change data sets and application

modules without destroying the work or disrupting the plans of

other users. Hence, any alteration of application modules or

data within the community library will result in a new version.

The root version will remain intact unless specifically purged

by a user having permission. The assignment of new versions

will be automatically required by the IPAD system whenever

modifications are made.

43

Trace of Antecedents - A trace of the data sets and application

modules used to generate a new data set will be compiled and

preserved as qualifiers in the data set identification. This

will allow users to trace the generation of a library entry.

Trace of Data or Code Leavina IPAD Control - A trace of data or

code either purged from IPAD libraries or sent to a location

outside IPAD control is required to protect the proprietary

interests of the owner anm to protect against sabotage, spying,

maliciousness, or accidents.

Personal User Identification - Entry to IPAD will be via a

personal user identification code to allow individual assignment

of responsibility for certain acts and assignment of permission

and access codes.

Reliability and Quality Controls - where possible, the system

should require contormity to standards and procedures that have

been developed to ensure the reliability and quality of the

system code, data and application modules. Further, a means of

rating the reliability of new application modules should be

provided according to the degree of checking that has been

completed.

Protection Anainst Self-Inflicted Accidents- Protection against

self-inflicted accidents will be made through the structure of

the command language and by provision for recovery from command

error where the action being taken has nonreversible

consequences.

Security of the IPAD Systen Code - Where possible, provision

will be made to control access to the IPAD system code itself to

prevent tampering or unauthorized extensions.

Secu ty of the Security Features Themselves - Careful

consideration is necessary to restrict access to permission and

access codes only to those persons authorized by the library

owners.

Controlled lelationship Between Subtasks Within Projects - An

important feature of the IPAD system will be the ability to

input project planning as data by which lower level work can be

monitored and regulated. Hence, a user responsible for a

subtask may be informed of the relationship of his subtask to

other subtasks forming the project.

Government or defense security provisions are provided by

law or by requirement from the specific agency involved and are

not considered here. Likewise, special security provisions

necessary for a company to protect proprietary material are not

considered.

44

6.0 TECHNICAL DESIGN SPECIFICATIONS

6.1 SYSTEM DESIGN METHODOLOGY

Structured Programming is a formal work dealing with

software engineeriig and hardware-software system design and

development (ref. 1, 2, and 3). The objective of this work is

to transform the development of computer systems from a seat-of
the-pants art, to a disciplined technology. This approach has

been utilized to develop the IPAD system design.

The structured programming approach is a top down design

method in which the design proceeds from the general to the
specific. Each refinement is a level in the system design.
Tree structure diagrams give the system functional components in
-levels of increasing detail. The nodes at any one level in the
tree structure are states of activity for the system. The
entire system is included in the total set of nodes at each
level, and in fact, higher level nodes are summaries of lower
level nodes.

Transition diagrams describe how the system components, at

each level, are functionally related. The diagrams also specify

the conditions under which there will be a transition or state

change within a node or from one node in the tree to another

node at the same level. These transition conditions are (1) the

input data or conditions that trigger the transition and (2) the

output data or results existent in the system at the time the

transition is made. Figure 6.1 is a sample tree structure and

transition diagrams for a three level system.

The IPAD system design given in section 6.2 and Appendix A
follows the general form described above. For level 1, twenty
nine nodes or states are described. Except for those level 1
states dealing with hardware or host operating system protocol,
the level 1 states are each refined into level 2 states. The
level 2 states are, in turn, broken out into level 3 states, and
so on. The emphasis in the design was placed upon consistency
in detail rather than consistency in levels documented. Hence,
there are differences in the depth or number of levels reached
in some of the tree branches.

While the design is presented in top down form, the actual

design process does not proceed monotonically. Generally,

design at level n will result in a review of some elements of

the design at level n-l, n-2, etc. The advantage of the method

is that the examination of effects is an orderly process and the

consequences of the iterative design process are highly visible.

45

TREE 	STRUCTURE DIAGRAM LEVEL I

A.B 	 2

A.A.A 	 A.A.B A.A.C A.B.A A.B.B

TRANSITION DIAGRAMS (input/conditions,

A.A 	 output/results) A.B

LEVEL 2

C input/conditions,

output/results)

A.A.A 	 A.A.C(i/c, o/r) A.B.A(i/C, 	 o/r

S o/r)

LEVEL 	3
i/co/r

A.A.B (i/c, o/r) A.B.B

Figure 6.1 Structured Programming Diagrams

46

Level 1 nodes are included in section 6.2. Level 1 and all

lower level nodes are included in Appendix A. Appendix A is

divided by level; i.e., all information is given for level 1,

then for level 2, and so forth. Level 1 in section 6.2 and each

level in Appendix A contains the following diagrams and tables:

State Description Tables--Three pieces of information are given

for each node.

a) 	 Short Structured Name--This name consists of a set of

one or two alphabetic characters catenated in the

form:

rs

rs. tu

rs. tu. rw

etc.

The syllable position denotes a level. For example,

if node A is at level 1 then node A.B would be at

level 2 and would be a state of node A. Hence, the

tree diagram can be formed from the short structured

names. There is no requirement that these names be in

sequence, i.e., the existence of node A.B and node A.D

does not presuppose the existence of node A.C.

b) 	 Long Name--This name is descriptive of the function of

the node. For example, node E has the long name

"Subtask Set-Up."

c) 	 Description--Several sentences describing the

capabilities of the node.

Allowed Transition Tables--This is a tabular representation of

the connections between nodes that have a common parent at the

next higher level. The states from which transitions are made,

along with the corresponding references to the input/condition

and output/result tables, which follow, are given. A bent arrow

is used to flag entry and exit points from the parent node.

When exits are shown, the level of the state exited to may be at

a higher level than the state being exited from, depending upon

the level of tree structuring completed.

Transition Diaqrams--These are a graphical representation of the

Allowed Transition ables. They can be constructed from the

transition tables and are valuable for visualizing

relationships.

IRRflZC2ditions List Tables--This is a list of the input or

conditions that trigger a transition or change of state. This

47

list should be used in conjunction with the Allowed Transition

tables.

Out2p!&tResult List Tables--This is a list of the output or

results that are existent in the state when a transition is

made. This list should also be used in conjunction with the

Allowed Transition tables.

Tree diagrams are not included. They can be constructed

from the structured names.

Abbreviations are not used in level 1. They are used in

lower levels to facilitate writing. Definitions of

abbreviations are given in section 4.0. The text part of

section 6.2 and Appendix A was created by a computer program

from data supplied by the system designers. This computer

program checked to ensure that transitions were made between

valid states and that lower level states were correctly

referenced to higher level states.

6.2 SYSTEM DESIGN SPECIFICATIONS

Figures 6.2 and 6.3 are the level 1 transition diagram.

Node F is repeated on figure 6.3 for reference. These figures

should be read in conjunction with the State Descriptions,

Allowed Transitions, Input/Condition List and Output/Result List

following the diagram. In some cases, the nodes at level 1 are

more generalized functions than those given in Volume III and in

section 3.2 of this document. The association is given in table

6.1.

48

FOLDOT FRAJE,

ALL NODESTOTHE RIGHT
OF THiS NODE RETURN 4
HEREIFTHEUSER
H-ANGS UP[U AS

SUETASK
SUBTASI(
STEP

TERMINATION CONTROLLED irom node. GA, HA. IA, A,
ABORT MA, NA, GA, PA, GAWA

*EMNLTERNADLOGUE WYTEMUIN
DURIN TRN

SUETSR< TERRPTE

INORATO NO-XSI MANG

MIA CN OF STATO

SUUBTASK

I~~EI ETR COTDSEOE

I~~~& WTC HERE 6.T3

I~~~~~BA SUTE K
ITERPED•.-R-

AN DURIL TERMINATIMOD

OF DIA OG E IT OU DONEN~ R

A~M CHANG OF ITT

NAMEOF ESytTI F igu . D L

Trarsition Diagram

49

VOLDOUZ FlA"9FOLDO1YT FRAME

** QUIT

T

STOP

SIJBTASK

COMDE TERMINATE

F

HELP

NOR L

SEARCH

NOR L

CREATE

NOR L

MODIFY

NOR L

CONSTRUCT

NORN L

EXECUTE

NOR L NOR L

DISPLAY

NOR L

DISPOSE.

NORML

DEFINE

NORM

RETURN MTRETURN EXTRETUR EXTRETURN EXTRETURN EXTRETUR XI RETURN EXTRETURN ETU1RN E TUR XI

LARNOT
FpAD

SEARCHING
THE LIBRARIES

\\.AS

CREATING
BBRARYENTRIES

MOIFYING
ENTRIES

CONSTRUCTING

AN OPERATIONS
MODULESEQUENCE

A JOB
KO

EXECUTING COMMUNICATING
WITHA

\

DISPLAYING
RESULTS,

DDEFINING

OF
LIERARYENTIE
NRE

E PH S

ENTRIES

*VARIABLES

G PAUSEAUSE GO PAUSE 0 EAUSE G

PAUSE GO PAUSE GO

PAUSE GO AUSE AUSE

LEARNING

AD

INERUTENTRUPE
THROUGH

TENTRIES
LIBDARIES

ITRRPEDITERPTINTERRUPTED
LE RNNGSE RC IING MONSTRUCTING
CREATING

SPA

AN
OPERATIONAL

MODULESEUEN
SAJOB

INTERRUPTED
EXECUTING

AJOB

INTERRUPTED
COMMNICTINGLLRARYOF

WITH A RESULTS

INTERRUPTED
DISPOSITION

LIBRARY
ENTRI

CA

INTERRUPTED
DEFINING

VARIABLES

ANY
COMMAND
EXCEPT

GO TERMINMALDIALOGUE WITHOUT
A CHANGE OF STATE

Figure 6.3 IPAD System Design Level I
Transition Diaqram,(Contld)

50

CJMPONENTS OF IPAD LEJEL ONE
ORtINAL PArrIE
OW POOR QUAIIq

* STATE OESGRI:TIONS

STATE LON.; NAME AND TEXT

A PERSO IAL TEVIINAL OFF

THE HJ4IPMENT £S NJT A'GTIVE.

P PERSO4AL TUF;IINAL ON

THE EAUITh5NT 13 A3TVE UT 0O DATA PATH TJ lH£
CO IPUTE.. EXISTS. THE L M.J1PMU-f IS A PERSONA" TE- MIrMA-
NOT A RL'JTE JCJ ENrf tERNIiNAL, BUT mAY .iE AUG' aITJ
WITri PEiPHERAL OEVICFS SUCH AS GASSETTE TAPE ,F.-I,TrZ,
PLTTER.

C -ESONML T&R_,'INAL CONNIrEtTEc,

THE9-- NON EXISTS A TWZ-W IY
TEJNINAL ANd THE GOPUTEZ,

UATA P4T 6ETNEEN THE

D CPERATIG SYSTEM COMMAND 1OOE

THE USrLt IS NO4 A-AU TO ThiTER COMMANDS
SHA.,ING SYSTEM IN THE HOST OPERATING YSTEM

TO THE TIME

E SUUTASK SET-uP

THE JSER IS NO4 IN GO,1MuNICATION WITH IPAL. AND
IS t:ITHER INITIATING A |Er, SU3TASK OR CJNTINJItI3 AN
OLD ONE. IN EITHER CASE, THcr .lET RESULT WILL 3E THE
ESTAdLISHiENT OF HIS ACTIVc SU6TASK LI3R&RY.

HE

F

TO

SJ6TASK C),IHAND 'iODE

THU'JSER, IS N, A.LE TO ISSUE
AdVANCE HIS SUETASK 40K.

IPAD £,ASIC C.MiMAW.OS

51

IPAD 'LEVEL, ONE
(CONTINUEO)

* STATE DESCRIPTIONS IGOATINUED)

STATE LO.'JG NAE ANOI TcXT

G LEARNING A-tiUT IPAU

THE ACTIVITY OF GAIN,4G INFORMATION ABOUT IPAD
EITHER AS A TAUGHT COUZSC u: AS HELP WITH A SINGLE
COIMAND 3- :1ODUE.

H SEARCHiliG THROUGH THE Lic,-'IRIES

THE PtOCES3 CF 3C ,t.41lG dIGTIONARIES A140 BIRELT-
ORIES TO IJENTIFY ANJ LJCATE INFORMATION IN THE IPAJ
UAT,4 SASE.

I C(EATIN4G ,..&,ARf 'NTRIES

THE P3CESS OF INSiTING OTA (NUI-ERICAL AND 0T-I-
Ezs INTO THE IPAO DATA 34S- -<ESULTING IN NEV4 Li WARY
ENTRIES(LE). INGLUDED IS THE ENTLR1NG UF SOURC- CObE
FO , CODING MODLES(i),tfiJF,<IATIuN FOR STOR-0 uATA 'JIF

- -- I-NI'TONStS)5-hTI-JS-TANC ES OFtNA- SET S--S-i OI-SPL-A-f--M E'4US

(01)1 AND WHE INSTA.E iF- THE SYSTEM DATA SET CJNTA1,-
IN. ACCESS ANJ PERO1SSIJN .ZOUrS.

K MOIFfING uM.RAf ENTRIES

ALTEING CURRENTLY LSIDENT LIdRAR.Y ENTRIES,. 1HIS
CAN INVCLV- -iA JGES TO AiY VqLIu.- IPAD LIRIARY E4qTRY
TYPE.

I CJNSTR.JCTI4G A JOi

ARRANGING AVAILABLE O6I,*I., MUOULS(CM) INTO GP.Z-
ATIONAL I1OJULES(OM) OPC-.ATICIAL MODULES IN]TO JOiS, ANO
OPERATIONAL MODULES ANO PREVIOUSLY OEFI4E0 JOt3S INTO
WE4 JOuS.

52

I

ORIGINAL PAGE]a
OF POOR QUAIU

IPAD LEVEL ONE

(CONTINUED)

STATE DESURIPTIOJt; (CONTINUED) *+-'4

STATE LONt NAME Arc TEXT

N EXEGUTING A JO,-

ACTIVATING A PEVIOUSLY CONSTRUCTED JOrt

0 GUHHU"4C'TIN 0 HI--H J.OL

'EsING I:ATE .ACTIVJ ttTl A USEt< COI4STiUCTEU a-jz

S££3LSPLAYIN.; "kS'ULTS

SCAAING, CHECKING,' O3 Ir TnRkObATINL, II'JFLRAATIJN
COjTpINrO IA Li-3RAkI EWI-cIEs JF ANY TYPE.

0 U.ESPCSITI)N OF L-6RARY UiT IES

TRANSEEKI 4G LIJRA.Uf ENTIES dETWE'4\ IPAD Lit
,ARIES, SENCJING ITEmW, ODTSiJE GF IPAO(OFFLINE, Jr, VIA A
GOIMUrJIGAfiON NTWO.K), AND hEIJVAL OF JJ'NANTEL LIE.U<,Y
ENTKIES FR]h THE DATA JASC.

SIJbTA;, ST-P GO4T'ZOLLED A3GR1

THE TERMINATIO4 OF T- E CURETLY i 4TERiUPTE- Sjj-
TASK STP.

U SJSTAS(IITL(U'TI3N

ACTION AIHED AF TE1lUmAP INTEr<RUPTION OF THE "U,
fAS3 ACT1JVTIES WiTH 1H- i'iTENT OF SE-STARTING AT A
LATEt, TitlE AT THE P-REGISE -01,T OF INTER-UPTIOk.

53

http:LIJRA.Uf

IPAD LEVEL ONE

(CONTINUED)

*' STATE DESGRIPTIONS (CONTINUED) "

STATE LONG 'iihE AND TEXT

V sLJ6TAS< TERMINATION

THE JSER HAS C,]JIPLETEJ THE DEFINED SUUTASK AND
NUN DESIRES T3 DISPOSE JF gLL REMAINING INFORMATION,
LOG THE TERMINATION IN THE PPOJECT PLANS, ANU ISSUE ANY
REaUIREO EPOfTS.

W DEFINING LILRARY ENTRIES OR vARIA3LES

A DEFINITION IS A OICTIONARY ENTRf hHICH CONTAI'4S

THE MEANIFl OF A VA; IAdLE Ck A LIBRARY ENTRY AND GOSS
REFERENCIAG INFORMATION. ALL OMOdUNITY LIBRARY NTRIES
AN.) VAkeA3LES REFERENCEd 14 DATA SETS REuUIRE uEFIN-
ITIONS. DICTIONARY ErTRIES ARE OPTIONAL FOR SUbTASK
LI3RA Y iENTRIES.

GA INTEjiRUPTED LEARNING AdOUT IPAn

T-H-I-S--IS -- S-T-TE FOLLOWI-f,-'ATIH i4 -D1-TTE-LY
PAUSE OU;tdG LEARNING AB0JT IPAD. EACH OF THE STATES

G, H1 I, K, ', 49 01 P, Up AN) v, HAVE A SIMILARLY
ASSOCIATED STATE.

HA INTERUPTED SEARCHING THKOuGH uiL'<ARIES

IA INTER-ZUPTEO CREATING LISRAi-J ENTRIES

KA INTERRJPT') MODIFYING L11,RARY ENIRIES

MA INTERRUPTED CONSTRUGTING A J03

NA Ir4TERRJPTEO LXECUTING A JO3

54

ORIGINAL PAGE IS
OF POOR QUALITYIPAO LEVEL ONE

(CONTINUED)

STATE DESCRIPTIONS (CONTINUED) "

STATE LONG N14iE AND TEXT

OA I4TERRIJPTED &01MUNIGATINu WITH A JOB

PA 1ITE&RJPT-J DISPLAYING RESULTS

GA IATER.JPT5O JISPUSITION OF LAIR'ARY ENTR.

WA IATLR, JFTE;J JEFINING LIdRARY ENTRY/VAX

55

IPAD LEVEL ONE

(CONTINUED)

ALO.EO TR4NSITIUNS

FROM STATE TO STATE INPUT / OUTPUT
(r# = ENTRY) (o EXIT) CONDITION RESULT

&A8 1
o A

O
14
-2

14
2

o 4 14 13
o 13 13
o 3 3

0 A 14 13
i3 13 13
d 15 15
C 12 12

4 4

E A 14 21
f 13 1F,
F 5 5
F 6 6
V 16 6

F A 14 17
a 13 17
6 17 22
G 34 35
H 13 22
H 34 39
I 13 22
I 34 39
K 21 22
K 34 39
£1 23 22

M 34 3S-
N 24 22
N 34 39
0 34 39
P 27 22
P 34 39J

Q 25 22
(34 39
T I9
U e
v 7 7
w 2i 22
W 34 39

56

ORIGINAL PAGE lb

OF POOR QUAIITh

IPAD LEVEL ONE

(CONTINUED)

*'' ALLJvED TRANSITIJNS (CONTINUEO)

FROA STATE TO STATE INPUT / OUTPJT

Cr = ENTRY) (r = LXIT) CONDITION ESUL.T

GA 14 4'2
a 13 4C
F 35 42

GA 31 oe

H A 14 4C

o 1J 4,
F 35 42

HA 31 36
I A 14 4

B 13 4,
F 35 ,2

IA 31 36

K A 14 4G
B 13 4'-

F 35 4i

KA 31 36
M A 1'+ 4'

B iS 4C
F 35 42

'iA 31 36

N A 14 41
8 13 4
F 35 -+2

0 25 Ea
NA 31 36

u A 14 40
13 4u

F 35 42
N 26 22
OA31 36

P A 14 4f

B 13 4C

F 35 42
PA 31 36

U A 14 4C

6 13 41

F 35 42
QA 31 3L

A 14 16
S13 1E

57

IPAD LEVEL ONE

(CONTINUED)

* * " AL OWEU TRANSITIONS (CONTINUED) '

FROM STATE TO STATE INPUT / OUTPUT /
rt = ENTRY) (* = EXIT) CONDITION rESULT

U A 14 19
3 13 19

O ii 11
P 10 IL

V A 14 21

o 13 21
0 11 11

13 1 E
w A 14 4(

13 4'
F 35 42
WA 31 46

GA A 14 4[
u 13 41
F 33

32
3o
37

HA A 14 4

0 13 41
F 33 se
H 32 37

IA A 14 4L
8 13 41

F 33 36
I 32 37

KA A 14 4
B 13 41
F 33 36
K 32 37

MA A 14 4C
9 13 41
F 33 30
m 32 37

NA A 1-4 4C

a 1 41
F 33 38
.4 32 37

OA A 14 40
3 13 41
F 36 36

0 32 37

58

IPAD LEVEL ONE
(CONTINUED)

* * ALLOWED TRANSITIONS (CONTINUED)

FROM STATE TO STATE IWPJT / OUTPUT /
(& = ENTkY) (, = EXIT) CONDITION RESULT

PA A 14 4C
b 13 41

.F 33 38
P 32 37

QA A 14 4
B 13 .41
F 3J 3b
Q 32 37

NA A 14 4C
d 13 41
F 33 3$
W 32 37

59

ORIGINAL PAGE 19

IPAD LEVEL ONE Ot ?OOR QUAUTU
(CONTINUED)

INPUT / CONDITION LIST

NU13ER TEXT

I SWITCH TURNEO ON
2 DIAL UP

3 VALID OS LOG ON INFORMATION IN THE PROPER{ SEQUENCE

4 VALID OS 3OMMANJ TO LxEZUT- IPAD
5 VALIO SULsTASK IJENTIFIE) FOPH A NON EXISTING SUETASK
6 VALID SUBT4SK IJENTIF1ER FOR AN EXISTING Su3TASK
7 TERMINATE

3 QUIT

3 STOP

1. ANOTHER

11 00E

12 - HELLO

13 USER HANGS UP

l4 SWITCH TURNEJ OFF

15 BYE

lb SU3TASK REZOROS SHOWING AN INTERRUPT OCCURRED DURING

THE SUB TASK TE.RMINATIO.
17 HELP

1l6 SEARCH

I- CREATE

2i UEFINE

21 HOOIFY

23 CO4STRUCT

24 EXECUTE

25 CO JOITION ODO0 SHOWING TER'INAL INPUT IS REQUIkED
26 LAST LINE OF USER INPUT
27 DISPLAY

23 UISPOSE

31 PAUSE
32 GO
33 ANY COIIMA'J3 EXCEPT A GO

34 RETURN

35 EXECUTION COMPLETED - NORMAL EXIT

60

IPAD LEVEL ONE QUI
(CONTINUED)

" ' OUTPUT / RESJL1 LIST

NUMi3ER TEXT

I

? PHONE LINE CONNECT

3 VALID OP&,ATINU SYSTEH 0-O; INFORMATION
'4 OPERATING- SYSTEM COMMANO T) EXECUTE IPAJ LOS-ON PRCS-AM

5 ESTA6LISHdENT OF A NEW SU, TASK LIdRARY I THE G,
n THE OLD SJ3TASK LIBRARY IN ACTIVE FOFRM
7 OS COMMAN'J TO EXECUTE TIE SU8TASK TERMINATION F'-OGFAI
a OS COMMAND TO EXECUTE TiE SUcTASK INTER-JUPTION P-7Ob-&lHl
A OS COMMAND TO EXECUTE TiE SUCTASK STEP irTE-PPRUFfIuN

PR36RAM

I] SUJTASt(IITEk UPTION CO-fPLETE
11

12_ VALID LOG OFF INFORMAIION

13 PHJNE LINE UISCJNNECT

-14

15
 -

13 SU,TASK LI ,<ARY ENT Y fCSTO.<ED TO ORIGINAL STATE

17 A PROCEOU-ZE AIL. bE £.XEGUTEU EQUIVALENT TO THE

FOLOWIwG INPJTS - 3,13.
13 COAPLETION OF TERMINATI)N, THRN PROCEEDING PEiR UJTPUT

17

13 CONIPLETION OF INTERRUPTION9 THEN PROCLEJING AS IF >4PUT

13 HAD BEEN RECEIVED.

2) OUTPUTS 16 AND 13

21 HOLDING OF THE TERMINATION INTACT SO IT WILL BE

ENTERED JPON RETURN, THE4 PROCEEOING AS 1F INPLT 13
HAD BEEN ENCOUNTERED

?2 PARSED COMMANO, UPDATED ACTIVITY ZE3Of D
30 LXPLANATORY TERMINAL CUTPUT(IF NEEOED), INPUT FEdUEST
31 INPUT TO SUSTASK STEP
36 CURRENT SJ3TASK STE iNTERPRUPTED IN RE-STARTABLE FO<A
37

33 POINTER TO 1NTERRUPTcD SU3TASK STEP PLUS RESTAiT

INFORMATION

3 OS OOMMAND TO RE-STA T F,ON P--ECEEOING PAUSE

4; IPAD PROSEJURE EXECUTEJ CUNSISlING OF A PAUSE, QUIT,

OONEBYE

+1 IP4D PROSEOURE EXECUTED CON'SISTING OF QJITDONE,RYE

42 NORMAL EXIr COCE

61

Table 6.1 IPAD System Design/Volume III Requirements

Comparison Summary

DESIGN NODE

E

F

G,H,I,K,M,N,

O,P,Q,W

DESIGN COMMAND

Name of Existing Subtask

Name of Non-Existing

Subtask

QUIT

STOP

TERMINATE

RETURN

HELP

SEARCH

CREATE

MODIFY

CONSTRUCT

EXECUTE

DISPLAY

DISPOSE

DEFINE

PAUSE

GO

CORRESPONDING COMMAND

FROM VOL. III

RESUME (from HOLD)

No explicit command given

for the initial log-on for

a subtask

HOLD

STOP

No explicit command given

for the ending of a subtask

RESUME (from PAUSE)

LEARN IPAD

FIND

ENTER

EDIT

CONSTRUCT,ENTER

EXECUTE

DISPLAY,FIND,COMPARE

PURGE,SEND,TRANSFER

DEFINE

PAUSE

RESUME (after PAUSE)

None None MESSAGE

62

6.3 SYSTEM MEMBER SPECIFICATIONS

6.3.1 Designorqanization

Section 6.2 contains the design specifications developed

using a top down approach. Starting with basic user functions

at the highest level, the various downward trails or "tree

walks" specify the action and data flow required by the, system

to carry out these functions. Viewing the complete system from

another perspective, four basic operational elements or system

members are identified whosp relationships are shown in figure

6.4. These elements are:

USER

OPERATING __

SYSTEM

__________ ____ DATA _ _ _ _ _ _ _ _

MANAGER

Figure 6.4 IPAD System Member Relationships

63

a) 	 ACTIVE JOB--A set of computer operations performing

work for a user.

b) 	 OPERATING SYSTEM--The collection of software which

controls the host computer and provides the interface

for the non-IPAD user.

c) 	 IPAD DATA MANAGER--The collection of software unique

to IPAD which controls and manages access to data in

the IPAD data base.

d) 	 IPAD EXECUTIVE--The collection of software unique to

IPAD which interprets user commands and controls and

manages system activities in response to those

commands.

No attempt has been made to map the design nodes of section

6.2 	 and Appendix A completely into the system members. Table

6.2 illustrates how this mapping might be done. Identifying

nodes with system members is primarily an implementation task.

The concept of community and subtask libraries and the

underlying system data structures is basic to the IPAD design.

Implementation guidelines for the IPAD Executive and Data

Manager are given in sections 6.3.2 and 6.3.3. Specifications

of the data structures are given in section 6.3.4.

6.3.2 IPAD Executive

A design goal has been to minimize the IPAD interface with

any given host hardware/software system. With regard to the

IPAD executive this implies that it should execute as an

ordinary job under the host operating system. The degree to

which this is not true is a measure of the host system

dependency of any given IPAD executive implementation.

The most significant result of these considerations is the

design feature of one executive program per user. If the IPAD

executive is to look like a user program and there is to be one

per user, at least three demands are put on the host operating

system:

* 	 It must contain 'a time sharing system with normal

terminal input/output handling features.

* 	 It must have a multitasking capability with the

ability for one task to interrupt another.

64

Table 6.2 IPAD System Member Mapping

SYSTEM MEMBER

EXECUTIVE

ACTIVE JOBS

DATA MANAGER

OPERATING SYSTEM

DESIGN
NODE(S)

E

F

T

U

V

G,H,I,K,M,

N,O,pQ,W

K.C.B.

N.D.A

EXPLANATION

Subtask setup

Subtask command mode

Subtask step controlled abort

Subtask interruption

Subtask termination

All utility operations and user

application modules.

Update usage information

This is an example to show that the

data manager enters the system design

at levels 2,3, and below. The data

manager is support to the executive

and active jobs and therefore will not

be visible to level I. Most nodes at

a lower level will use the data

manager in same way.

Initiate execution

The operating system supports IPAD;

therefore,the-interface to it appears

at the lower design levels.

65

It must be able to retain the linkage between a user

and his executing job without maintaining a terminal

connection.

The first of these requirements must be satisfied to

support perkonal terminals in IPAD. The second requirement must

be satisified if the executive is to initiate IPAD utilities and

user jobs, interrupt them, and restart them. The PAUSE command

(see figure 6.3) may be issued by the user at any time during

execution requiring the operating system to suspend execution of

the current activity and initiate a new activity. Repeated

interruptions are allowed, giving rise to multiple activities in

suspension associated with a single user/terminal combination.

Since an interrupted activity must be restartable, operating

system functions like roll-out and roll-in will be callable by

the IPAD executive. The third requirement is necessary to free

the user and his terminal during long executions. If an

execution requires more than a few minutes, the user may desire

to pursue other tasks and inquire at a later time about the

progress of his executing job.

6.3.3 Data-anager

6.3.3.1 Design Intent

The IPAD data manager will consist of a set of computer

programs written in IPADL (see section 6.7) and underlying

software provided by the host system. The IPADL programs are

intended to be machine independent but will be dependent on a

level of data base management software similar to that specified

by the CODASYL Data Base Task Group (DTBG) in their report of

April 1971, (ref. 4). If the host system does not include

software supporting a CODASYL defined data management system it

is recommended that it be added and used. Other software

providing the same capability would suffice. At the IPADL level

of implementation the underlying software should be invisible.

A fundamental concept in the IPAD data management system is

the separation of definitions of data structures from programs

that reference the data. The IPAD stored data definitions are

the basis for all IPAD controlled data functions as well as the

means by which implicit I/0 is provided to user programs. The

schema and subschema of CODASYL are stored data definitions, and

in the following sections modifications to the CODASYL

specifications necessary for IPAD are given.

66

6.3.3.2 Modifications to CODASYL Data Description Language
(DDL) Specifications

Extenal Data Structures--Provision for the definition of data
structures which reside on storage media such as punched cards

and magnetic tape are necessary for some IPAD utility functions

dealing with the movement of data into and out of IPAD.

Subschema should permit the differentiation of external and

internal structures and include facilities for storage device

and media control information. Examples are: field definitions

on punched cards, tape blocking factors and tape mode and'

density. The DDL, as specified in the April 1971 CODASYL report

of the DBTG, does not handle these problems but perhaps will by

the time IPAD implementation is begun. Additional work

currently under way in CODASYL by a new group, the Stored Data

Definition and Translation (SDDT) Task Group, is dealing with

this problem. Papers wer presented by this group at the

SIGFIDET Conference on Data Description held in Denver, Colorado

in November 1972, (ref. 5). The development produced by the

SDDT Task Group should be evaluated as an early part of the IPAD

implementation effort.

Local Variable - ibrarv variable References--The CODASYL DDL
specifications must be modified to allow subroutines to
reference a global variable with their own local variable names.
CODASY1 DDL statements for a schema include those for defining
variables as data subentries of record entries. CODASYL also
permits the definition of subschema which specify which parts of
a data set the program declaring the subschema may access. In
the DDL for a subschema there is a RENAMING section in which
variables and aggregates of variables (e.g., records) can be
given names local to a subschema. The CODASYL specifications,
however, require that all routines which use a given subschema
use the same local names. The RENAMING section must be
augmented for IPAD to accommodate the coding module to
operational module building block logic. The addition of a ZOR

phrase in the DATA renaming clause provides this augment for

variables.

As an illustration:

DATA data-base-identifier-i IS CHANGED TO data-base-data-name-i
FOR subroutine identifier-i (, TO data-base-data-base-name-2 FOR
subroutine identifier-2)

FOR phrases can be similarly used to rename sets and records.

When a coding module is generated, the snbschema required

for implicit I/O are identified by each subroutine in the CM.

Two or more subroutines declaring the same subschema may have

different names for the same variable in the data set identified

in the DATA statement by data-base-identifier-i. There is a

67

complimentary requirement (discussed in more detail below) that

all local-global name references be correctly resolved at

execution time- The modifications specified here for subschema

renaming can be used directly for this resolution.

It should be noted that the default mode uses the same

local and global variable names, and this mode will frequently

be used when new programs are developed under IPAD. The

renaming capability is needed, however, for incorporation of

pre-existing and independently developed code into IPAD.

6.3.3.3 	Data Manipulation Language (DML) for IPADL and the

TPADL Compiler

As of this writing the CODASYL DBTG has only specified a

COBOL DML. If CODASYL produces a FORTRAN DML, as planned, it

should be relatively simple to adapt it to IPADL. If a FORTRAN

DM1L is not available a DML for IPADL must be specified.

Assuming the resulting DML is modeled after the one which

exists for COBOL, a FIND command issued by a program will cause

the data manager to move the desired data from the data base

storage device to a system buffer. A subsequent GET command

moves all or part of the data from the system buffer into the

user's working area where it is manipulated by the calling

program. As mentioned above,_ different IPAD subroutines may

reference a single global variable with their own local names.

When an operational module is executing and a GET command from

a subroutine has moved some data into the user's working area

(UWA); that portion of the UWA resembles a FORTRAN common block

with respect to the data aggregate moved and the other

subroutines which use the same subschema. Three conditions must

be satisfied to provide proper referencing to the data in the

UWA:

a) 	 The FIND (or equivalent command) must identify the

requestor so the correct data aggregate is retrieved

from the data base;

b) The 	GET (or equivalent command) must identify the

requestor so the correct data aggregate is moved to

the UWA, 	and

c) The 	correct address references are made to variables

in the 	UWA from each subroutine using the same

subschema.

These requirements suggest modifications to the DML such as

adding a FOR phrase to the FIND, G commands. This, however,

68

would only satisfy condition (a) and partly satisfy condition

(b). Alternatively, the IPADL compiler could be designed to use
the subschema at code generation time which enables it to use
global names for all retrieval/storage commands, and to allocate
space for data in the UWA. A mechanism, like FORTRAN labeled
COMMON, would result from the compiler having obtained the block
structure and the local name equivalences from the subschema.
All local references, in effect, would then be transformed by
the compiler into global references without any action by the
subroutine other than to identify the proper subschema a*
compile time. The DML should, therefore, include subschema
declarations.

6.3.4 Data Structures

The IPAD system uses a set of data structures organized

into libraries as discussed in section 5.4. By convention, Ell

data stored in the IPAD data base resides in library entries.

Each library entry is divided into two parts, the library

directory entry and the library text entry. The directory

contains identification and control information pertaining to

the text. The text is the information set stored. The
directory/text relationship is essentially the same as an
envelope/letter relationship. Figure 6.5 shows the basic
elements of a library entry.

NAME

DIBRARY TYPE

DIRECTORY

ENTRY STATUS

LIBRARY USAGE INFORMATION

ENTRY

LIBRARY

TEXT TEXT

ENTRY

Figure 6.5 IPAD Prototype Library Entry

The structure of all library entries are defined in the

system by stored data definitions (SDD) which are themselves

library entries. By virtue of usage there are two classes of

69

library entries, user and system. User entries are defined by

the user as he supplies the appropriate SDDs. While there is

currently only one user type library entry (data set), the

number of user SDDs is not limited. System entries hold source

code, binary code, SDDs, etc. There are currently 17 types of

system library entries, but each one has one and only one

structure (or SDD). To contrast the two usages, there are many

ways one might need to store the geometrical information

describing an airplane body, but it is not difficult to find a

single, useful way to store binary code.

When the system is implemented, stored data definitions

will completely define all the system structures and be able to

process user supplied stored data definitions. Sections 6.3.5

and 6.3.6 contain specific details about the currently defined

library entry types.

6.3.5 Directorl Entry Specfications

a) NAME--External Form

N Unqualified library entry name

(ULEN) supplied by the user

N.V 	 V is a simple integer denoting a

version of N generated for any

other purpose than error

correction

N.V2CV1 	 V2 is a corrected version of N.V|

and should be used in its place

N 1 Q is the qualifier attached to the
N.V(Q) } LE by the user and possibly ap-
N. V2 CV1 	 pended to by IPAD.

Internal Form

This is the external form with the owner's
identification appended. OID/PW/PP = owner's
identification.

OID = 	 owner's identifier

PW = 	 owner's password active at the
time the LE was established

70

PP project pointer--linkage with
project (could be project
subtask).

the
or

b) TYPE--Must be one of the following codes

AL = Alias

CM = Coding Module

DY = Dummy

DF = Display Format

DC Dictionary

DR = Directory

DM = Display Menu

DS Data Set

OM = Operational Module

PL = Plan

RP Report

SDD = Stored Data Definition

SJ = Standard Job (synonym for Job)

ST = Subtask

SF Security File (see section 6.5
below).

c) STATUS--Basic Description One of the items under each
of the following headings must be selected.

Availability - (available, purged, archive)

Security - (unclassified, confidential, secret,

etc.)

Certification Level - (checkout, ... , certified)

Analysis Level - (1, 2, ...n)

71

Current Structure - (for any LE which may have

text in optional formats, the name of the current

SDD)

Current State of Access

For each user currently attached to the LE, the

user's identification (UID) will be kept along

with the type of access he is permitted to have.

ER2ponible Person/Oraniza tbon

.Identification of "owner" of the LE.

External Document Reference

When applicable, references which are pertinent

to the text associated with the LDE.

Text Control Data

Existence and contents of this category of

information is type dependent. Specifications

are given with the LTE specifications in settion

6.3.6.

Installation Table

Reserved for host system dependent data which may

be necessary for successful operation.

d) USAGE INFORMATION

Date, time or originating action with owner's

identification.

Date, time and type of last access with DID

72

User access table

DID READ WRITE EXECUTE EXTEND

UID1 PW1 	 pw1

AC 	 AC

U1D 2 PW2 PW2

AC AC

UID 3 	 P12

AC

ANY 	 PW4

AC

ANY 	 ANY

AC
AC = Date of last access, total access count.

Note: 	 For the ANY entries, there is the option to keep

additional statistics by UID.

6.3.6 Libsarxynt1 Specifications

The contents and use of the LTE, by type, are specified

below. The directory entries for some types of data sets

contain a collection of control information specific to the

type. This information, the Text Control Data, is also

specified below. Table 6.3 contains a summary of the system

structures.

a) ALIAS _AL--The ALIAS type is provided as a

convenience in resolving data set naming conflicts at the

operational module and job level. An ALIAS may have a qualified

or unqualified name, with or without versions. The ALIAS has no

text of its own but points to another data set. This "parent'

data set may be of any type and has appropriate text. All

access permission is based on the aliased (parent) data set.

b) Coding Module ICML--A CM is the basic building block

for the production of executable programs in IPAD. CM names are

unqualified library entry names with versions and the text

contains source and object code. The formats of the source and

73

Table 6.3 IPAD System Structures

- LIBRARY ENTRY USAGE DEFINITIONS LIBRARY ENTRY = LE

LIBRARY DIRECTORY ENTRY - LDE LIBRARY TEXT ENTRY - LTE

,.

TYPE DEFINITION and/or USE NAME TEXT CONTROL DATA TEXT
ALIAS Allow name substitutions to resolve ambiguities. All Link I
(ALl Possible paren

CODING Smallest package of computer code in system. Used ULEN Link Sub-routine Block for each S-R (1) Source code
MODULE as a building block to create executable programs. with o V V / / S Secton 6.3.6B) (2) Object code
fCM) A CM may have more than one subroutine versions Text
DUMMY Allow LE names to be used asformal parameters. ULEN

t without- - - -
(DY) . versions K,

DISPLAY Allow identification of specific displays, May be a ULEN Link alI) OM or Job ID luser supplied), or Detailed format specifications or other contro
FO R M A T usr s pplioe udsp rp arame erisa- with to (lb) Syste m nutilityID info rm atio n req u ire d b y d ispla y proc essord la ypro essor po dap

DF A tion procedure for a system supplied display versions Text V V V V V (2) List of LE names or types which

function may be displayed
DICTION- All definitions to bestored which give meaning to GLEN Link Collection of dictionary entries
ARY LEs in data base. Used for certain types of retnev- Vo o V V V V V V (See Section 6.S6EI

DC) ale and user communication Text

DIREC. Used to locate, manage, and control data (LEs) in GLEN Link index o a set of LDEs Note that an entire
TORY data base. t/ V- library (CL or STLI or a part of a library mayConsists of index in text + the LDEs to

(DR) linked to by the index Text be referenced by a directory.

DISPLAY Allow users to specify display options for a series , ULEN Link
MENU (DM1 of sessions .v with to V V *V V V Display option table.Mversions Text
D TA Repository for data required by and produced by OLEN Link
SET users. Used to coordinate multiple users working - to V V V V V V- Data values

I on a project Text
OPERA Smallest package of executable code Used as a' ULEN Link (1) List of Coding Modules. On TIONAL building block when defining an execution V with tO Of Operationalmodule sp cifial ati
MODULE sequence. versions Text (3) Generated main program.

PLAN Used for project, task, sublask management. Link) UPert" chart with level(2LEN codes

(PL) with to V V V V/- 2) User control codes

versions Text V V (3) ComplettonActleon
_ (41 Metsae buffer

REPORT Used for reports produced at aubtak VUIth to n V V V V V - Report text.

(RP) termination time versions Text MVt uffer
V4_ _

TORED User supplied definition of a data setwhich con- ULEN Link Schema and sub-schemra for the data set
usthDATA DEFI tains* sufficient information to allow data access with to demnd bySD.cema e inCODASYL

NITION by user programs and system utilities to be man- / vrsions Text V V V V V V - lse .

(SOD) aged and controlled by DMS

STANDARD The unit of execution in PAD User defines jobs ULEN Link (1) Network description of job

JOB S) ascombination of OMaVand/or other jobs. V with to V- (2) "Symbol table".

versions Text (3) Control card skeleton

SUBTASK Used by the system to manage asubtask activities ULEN Link (I) Activity Record

1ST) and subtask library, to (21 Da a Set Reference Table

Text V VVV (3) TermnationRecord

SECURITY Used by the system to control accessto Data base. ULEN Link
'FILE V to Usesecurity profiles
ISF) Text

object code will be compatible with the host software provided

for maintenance of character string data and for the loading and

execution of compiled routines. A CM may contain more than one

subroutine.

Text Control Data for CM--A block for each subroutine

in the CM as follows:

1) 	 Subroutine Name

2) 	 Main Program Flag

3) 	 Entry Point List

Name, OM Call Flag

4) 	 External Refer@nce List

CM Name, Entry Point Name

5) 	 Common Reqions Referenced and Dimensions

6) 	 Data Control Specifications, for each data set

referenced

- Name: (gLEN)

- Use: IN, OUT, T/O, Scratch

- mode: Implicit, Explicit

- Set up: If mode -I mplicit, subschema name

If mode - Explicit, file name, position

of data set on file, and file

- unit correspondence.

The information in this block cannot be completely

specified until the programming language and host software are

known. The specifications given assume a FORTRAN-like language.

c) 212y_(2fID--The dummy data set type is provided to

allow data set names to be used as formal parameters at OM and

Job definition time. Substitution of actual data set names for

the dummy names takes place at execute time. There is no text

associated with a dummy, and the name is a simple gLEN.

d) Dis!ax_ FormatID--This type of data set is used to
identify specific display capabilities provided by the users
such that the displays may be readily invoked. The display
software may be user suoplied for a system utility driven by a

75

procedure parameterized by the user. DF names are unqualified

but may have version numbers. The LTE contains control

information, format specifications, procedures (which may be a

combination of IPAD commands and host OS control language

statements).

Text Control Data for DF

1) Processor identification

(a) User supplied Job or OM ID, or

(b) System utility ID, or

(c) Procedure flag

2) List of LE names or types which may be displayed.

e) DictionaryIDCX--A dictionary name may be qualified.

The fundamental purpose of a dictionary is to provide unique,

unambiguous definitions of data items. The dictionaries are

used to search the libraries, both through keywords and direct

references. The LTE of a dictionary contains the individual

sub-entries. A prototype follows:

Name (ULEN or Variable name)

Type

Defining Text

Documentation References

Responsible Person/Organization

Key Word List

"Used by" List

Variables used by Data Sets

Data Sets used by CMs

CMIS used by Ots

OMs used by Jobs

f) Directory_ DRL--A directory name may be qualified.

The text of a directory contains an index which points to a set

of LEs. A directory is used by the system to access the CL, and

each STL has a directory. The users do not have direct access

76

to the CL and STL directories that are maintained and
manipulated by the system.

g) 2israYMemnflfI--Names of Ds are unqualified but
may have versions. The LTE contains a display option table that

is used to simplify requests for displays which the user may

make frequently over the course of working a subtask.

h) Data SetsLDSI--Data sets contain user data in the LTE

whose structures are defined by stored data definitions. Data

set names are qualified and may have version numbers.

i) Operational Module IOM)--An OM is the smallest

executable unit in IPAD and consists of one or more CMs. OM

names are unqualified but may have version numbers. The LTE

contains a list of the CHs. An OM must contain one and only one

"main" program which is either included in one of the CM

constituents or produced by the system at the time the OM LE is

entered by the user. In this case the main program

specifications are given in a high level IPAD language and the

source statements are stored in a separate, newly defined CM.

j) Plan__IPLI--The Plan is used to contain control

information for a project. Plan names are unqualified but may

have version numbers. The LTE has four main categories of data:

1) 	 Description of subtasks and PERT type network,

2) 	 A set of user control codes for each subtask.

This information is used in conjunction with data

from the system security file and permission

codes in the LEs to control activities and data

access at all levels.

3) 	 Specifications of actions to be taken on

completion for each subtask. These include

references to Report LEs to be produced, the

establishing of other subtasks, issuing messages

to subtasks and to project management.

4) 	 Message buffer used to pass coordinating
information among active users on a day to day

basis.

k) KeoaRrt__Rl--Reports may have qualified names. The

report is linked to another LE of type SJ (Standard Job) which

contains the information required to produce a report at subtask

termination time. This includes a definition of the contents,

format, and data sources. The LTE of the Report LE contains the

actual report produced by the referenced job.

77

1) Stored ...Definition-ISDDL--SDD names are

unqualified but may have version numbers. The LTE of the SDD

contains the detailed specfications of the LTE being defined;

i.e., the schema and subschema referred to in the CODASYL DBTG

report.

m) Security
contained in the

File _iSF--The
LTE. The SF

security
is a uniq

information
ue system LE in the

is

community library. Each subtask library will also have a
security file representing the total security profile for that

subtask. Specifications of the LTE contents are contained in

section 6.5.

n) StandardJob_4SJ[--Job names are unqualified but may

have versions. The job is the unit of execution in IPAD and is

a combination of OMs and/or other jobs. Three categories of

information are in the LTE.

1) 	 Network description of job consisting of source

statements of the job definition language.

2) 	 A "symbol table" identifying logical file names

used and the unqualified names of data sets which

are external to the job.

3) 	 An execution procedure which is a combination of

OS. control cards and IPAD commands to be

parameterized at run time.

o) subtask (ST)--Subtask names are unqualified. There is

one ST type LE in each subtask used to record activities and

status of the subtask. The ST LE will only appear in subtask

libraries, never in the community library. Three categories of

information are contained in the LTE.

1) 	 Activity Record--A complete record of all

activities in the subtask such as IPAD commands

processed and status. Accounting information

showing resources (cost) used by activity.

2) 	 LE Reference Table--This information is used to

determine whether changes have been made to LE in

the community library which are referenced by the

subtask from session to session. Current line

numbers of the usage information table (in the

directory entry) of each LE are recorded at the

beginning and end of each session. Gaps in the

numbers between sessions indicate changes.

Analysis of the usage data will help determine

* the 	effect on a particular subtask.

78

3) Termination Record--The specifications of the

activities to be performed when the subtask is

complete are contained in the LTE of the Plan.

Each activity is logged here when it is started

and the status recorded, through completion.

This record becomes part of the project report.

6.3.7 Loqical_organization of IPAD Libraries in Data Base

IPAD data management is based on the use of the system LES

to contain the different types of information held in the

system. The total collection of data in the data base is

divided into one public aggregate, the community library, and

many private aggregates, the subtask libraries. With the

exception of subtask and security file types, LEs of all types

may be found in any library.

Access to the data base by the IPAD system is by way of a

location in the host operating system which points to the

directory of the community library. This directory is an index

to all LES in the CL. Each subtask has a directory in the CL,

which is an LE of type "Directory" having the name of the

subtask. The text entry of the subtask contains an index which

points to all the LEs which comprise the subtask library. An LE

in' the community lib'rary may logically be attached to one or
more subtasks, such attachments being shown in the directory
entry of the 1E. The index of each attaching subtask will in
turn reference the CL entry.

Figures 6.6 and 6.7 offer two views of the library

organization. The first illustrates the chaining of pointers

which connects the total data base. The second shows what

resides in the community library and subtask libraries. Note

that the community library directory is the text entry for a

library entry called DIRECTORY (CL). Also note that the subtask

libraries consist only of text entries and that all directory

information resides in the community library.

The effect of this organization is that subtask libraries

-are only partially visible in the CL. A scan of all the CL

entries will not disclose any subtask library entries except

those CL entries which are attached to subtasks, and the

directories of the subtask libraries. subtask libraries are

thus seen to be referenced indirectly, one level down from the

CL.

A relationship unique to data set type library entries is

shown in figure 6.8. A data set library entry is composed of

one or more library variables each of which must be defined in

the library variable dictionary (see 5.4.2 and 5.4.3). This'

79

box
outside this DATA BASE LIBRARY ORGANIZATION
isin the Data Base A "built

'system Entry Name:_________location contains
a pointer to the Community
Librar y , CL , D irect ory w hich LDEs Entr T e x
is the entrance to the data basen soe lk pText e

c LD ttguous thcfToLocationsi

Atth

E
Library Entry Compontiyon

ALibrary Entry. LE, consists
Text

etoadicorisnidx
hof two pars. Library Directory of~Thtwo

TntAr.L SibraryfEntrText
LT Diretor indexes allcor..E

the Lsnh lry cuiEyN ,
rcotistenmEntry, LTEE

'TEn LDE n TetcontiguoulctioneIs in the lbaym ud.Etr Entry TyLoation Spcfcto
n r y stxore Libraryinr sicinele eph ae

Th~~~~nr aeorEtr

necessarily~An
Tetotio peifcations in tex Loato SpcfctosTetoainS ii atis

Figure I DryLC D
Each~~~i cotinL.enm the

m

IPAD Data BaseE Oraizto
I6 Figure ILibrar

Text

is n index to the STL..nT
for subth ABC.
An LE named may also be in

e C L. Henc e also In an o the
STL._________

Name:
LegaldTypesialy-i

Textiolocaton Spcifiction

tryn

SampleL2

COMMUNITY LIBRARY SUBTASK LIBRARIES

COMMUNITY LIBRARY DIRECTORY COMMUNITY LIBRARY TEXT 1 SUBTASK LIBRARY TEXT

DIRECTORlY (CL)

DIRJ

'° ITEIJSD

DICTIONARY (CLLE
DIC

DICTIONARY Entolri
Entfl.,

DICTIONARY ICLLVI
DIC ______J~I ~

fDktlon aryEnties
Vmrdebles.f. ~byILZLTW.

DIR - In ubleek ST1
of Projlct A. T ext f7

Data LE of ST

DS _ _ _ _ _A (0aic Text for

s LE_______of SrI 00

DS6 I of Ora.z t o

Scum$stCode afoErfST
= CMTh. CodogmMo0dul. I-

I L Dirnttmfal.ntEdno

ST2 (PROJECT A)
Di

_______________to. i .1Ubrv
of "ProJ.ct A

I-

IT7~ ~ o

]r

Figure 6.7 [PAD Library Organization

collection of library variables is then defined in the library

entry dictionary as a library entry. This then defines a

conceptual data set which has an unqualified name but no actual

data associated with it. A collection of data representing a

particular instance of the defined data set has a qualified name

in the directory. The directory has the linkage to the actual

data.

LIBRARY VAR IABLE LIBRARY ENTRY

DICTIONARY DIRECTORY

Wing Geometry
LIBRARY ENTRY (SSCT-I)Wing Area DICTIONARY

ALL
Wing Geometry IPAD

Wing Span (SSCT-2) DATA

Wing Geometry --

Wing Sweep Wing Geometry
(747-200)

Wing Thickness

UNQUAL IFIED NAME QUAL IFIED NAME

Figure 6.8 Data Set Library Entry Organization

82

6.4 	 HUMAN FACTORS

The characteristics of the man as well as the computer must
be included in the design of a man-computer dialogue. The
ability of man to adapt to a wide range of circumstances directs
the designer of a man-computer dialogue to give greatest
consideration to the least adaptive of the two--the computer.
Too often the needs of the man are determined from a value-based
definition which leads to the ultimate conclusion that the real
needs of man are only associated with food, water, and shelter.
A more useful basis is a rational definition wherein a "need or
requirement is some demonstrably better alternative in a set of
competing known alternatives that enable a human purpose or
action to be implemented" (ref. 6). This definition
deliberately ignores the argument of value versus cost, an
argument that is never conclusive in the design of a man
computer dialogue. It does allow for an exploration of
alternatives and their implications on the quality of work,
efficiency, and general creativeness of man.

Language is the principal vehicle in a dialogue. Since man

is the dominant element in the dialogue, the following three

observations about the behaviour of man are pertinent:

* 	 Behaviour is strongly time associated.

* 	 Behaviour is conditioned by familiarity and

expectation.

Familiarity and expectation are the result of

experiences.

These observations are developed as the basis for man
computer dialogue design in the following paragraphs.

6.4.1 User Behavioural Characteristics

Reduction in computer response time from several days to

several minutes by going from a batch system to a terminal

system may be an adequate improvement if the objective is to

provide a more efficient operation through remote job entry.

However, if the objective is to establish an environment in

which the computer is part of a continuous thought process, the

improvement in response time from days to minutes is not

sufficient because the human mind requires response times in

the order of seconds for continuous thinking. Hence, the

following observed characteristics of the mind play an important

part in the design of a computing system.

83

Short Term MemorI--When tasks are performed, a body of

information is held in the mind at conscious level, termed

"short term memory" by Miller (ref. 6). Two characteristics of

short term memory, both associated with waiting, are important.

a) Short term memory is never passive. Noise from within

the mind or distractions from without can cause change

of its contents. The risk of loss of information

rapidly increases when a person is conscious of

waiting. Consciousness of waiting occurs within two

seconds after closure (see below) if new activity is

not begun.

b) During creative or highly innovative periods, large

amounts of work are performed within continuous,

concentrated, and relatively short time periods.

Interruptions of less than a minute during one of

these periods can cause loss of the entire line of

thought.

Closure--Humans spontaneously organize their activities into

"clumps" (ref. 6) that represent an action that is concluded

with a definite result. An example, is looking up a number in

the telephone book followed by dialing the number. At the end

of each of these activities there is a sense of completion.

Psychologists call this sense of completion a 'closure."

A closure is also the point where the minimum information

necessary to proceed to the next clump is held in short term

memory. Hence, interruption of a clump of activity results in

a closure and a partial purging of short term memory to only

that information necessary to handle the interruption. This is

observable when dialing the telephone where an interruption will

cause loss of memory of the number being dialed and, if the

interruption is intense enough, loss of memory that the phone

was being dialed.

When solving complex problems, short term memory is heavily

filled. The ability of a person to solve complex problems is

directly related to the amount of information he can hold in

short term memory and the concentration with which he can

achieve a chain of closures leading from one conclusion to the

next. Interruption of this process nearly always results in a

"restart" and, as stated above, can result in less of the entire

activity.

closures come in different degrees depending upon the

importance of the result. A person is much more tolerable to

interruption when an important closure has been reached than he

is at an intermediate closure.

84

Step-Down Discontinuities--The rate at which thought processes

decrease in efficiency as the number and length of response

delays increase is not continuous. For example, intense

creative dialogue is not possible with response times greater

than 2 to 4 seconds. Ordinary conversational dialogue becomes

awkward with response times greater than 2 to 4 seconds and is

not possible -with response times in excess of 15 seconds. When

two persons are holding the dialogue, the response need only be

a nod or a grunt but it must occur within the given time period

to avoid feelings of anxiety or a breakoff of communication.

Where a continuous thought process involving the computer

is not a necessary part of the problem solving activity the user

is engaged in, the above observations and the paragraph on

response time are not relevant. But it should be noted that the

user will not engage the computer for some types of activity

unless he can do so at conversational speeds in a mode that is

compatible with his thought processes. Useful tasks will still

be completed when these criteria are not met 1ut some of them

will be done less well. Direct use of the computer for problem

solving, creative processes, and complex interrogation requires

a converational man-computer dialogue.

6.4.2 Response Times

The response times given are those for which the user will

be comfortable and continue to utilize the terminal for his

purposes. They are a quantitative expression of a qualitative

phenomenon and, as such, are subject to interpretation.

However, they are based upon study and observation, and, while

the association between response time and activity may not be

precise, such an association does exist and is of the order

given. Response time is defined as the time elapsed between the

last input by the user and the first character displayed by the

computer.

Classifications--The following relationships between response

time and activities are extracted from Miller (ref. 6) and

Martin (ref. 7). They are illustrated in figure 6.9.

>1 minute - Essentially no interactive activity.

>15 seconds - (1) Some log-on/log-off functions where the
but user is familiar with the delay.

<1 minute (2) 	Single enquiries where the user is

familiar with the delay, preferably

cued by a message from the computer

85

within
command.

2 seconds acknowledging the

(3) System failures and recoveries,
preferably cued, where possible, by a
message from the computer within 2
seconds warning of the delay.

(4) Loading of programs and
execution and processing,
cued by a message within
acknowledging the command.

data for
preferably
2 seconds

(5) Restart from yesterday.

(6) Conversational
possible.

dialogue is not

>4 seconds
but

- (1) Low key enquiry dialogue possible but
awkward.

<15 seconds (2) Intense creative dialogue not possible.

>2 seconds
but

(1) Complex enquiries where continuity of
thought is necessary.

<4 seconds (2) Initial acknowledgment by the system
that it is "listening."

(3) Error messages.

<2 seconds - (1) Intense creative dialog

(2) Acknowledgment by the system that a
command has been received.

(3) Response to a paging request through
a keyboard.

<1 second - (1) Response to a paging request using
light pen.

a

<0.1 second - (1) Brightening of characters from a light
pen selection.

(2) Appearance of a line when using
light pen as a drawing stylus.

the

(3) Appearance of
keyboard.

a character on a CRT

86

r<.1 sec.
Scope drafting, character appearance

Interactive
Capability

r< 2 sec.
Intense creative dialogue

2 sec.< r<4 sec.
Continuity of thought

4 sec.< r<15 sec.

Low key dialogue

................
15 sec.< r<1 min.

on/llog-off, recovery

. .Effective dialogue
not possible

10 20 30 40

Response Time, r, sec.
50 60

Figure 6.9. Interactive Response Time

Miller (ref. 6) recommemds that error messages be delayed
for 2 seconds and displayed within 4 seconds. This delay allows
the user to reach closure before he is faced with a need to
redirect his thought processes to correct errors. Instantaneous
error messages or error messages that interrupt the user in mid
command are disruptive and cause confusion and frustration.
This is more true for the casual user than for the dedicated
user.

The critical threshold for effective creative dialogue is.

2 seconds. Beyond 2 seconds mental efficiency degrades rapidly.

Delays beyond 15 seconds should be structured to relieve the

user of both mental and physical captivity. Experienced users

will prefer faster response times.,

Deviations--Permissible devia+ions in response times vary. In

general, the permissible deviation depends upon the seriousness

87

of the closure to the user. Response times in the 2 second and

less category should not vary by more than 100%. The curves in

figure 6.10 from Martin (ref. 7) are illustrative of good and

bad response time deviation characteristics.

GOOD BAD

I "I a I I I I I I I I I I I I

1.0 ----------------------------- 1.0-------------------------------
0.9- 0.9

.E 0.8- 0.8-
I- I0.7 0.7

0.5- a. 0.6
(A .

0 0.5 - - 0.5

o
0.2

0
0.2

0.1 0.1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11
T (seconds) T (seconds)

Figure 6.10 Response Time Deviations

6.4.3 User Classifications

Familiaritx--The complexity of each problem step a user is able

to handle decreases proportionately, if, through unfamiliarity,

a user's short term memory is filled with personal concern or

memorized step-by-steD procedures. Hence, the unfamiliar user

must he helped by decreasing the complexity of each step,

increasing the number of steps, and increasing the volume of

reminder information supplied. The reverse is true when the

user is familiar with the activity.

Sxpectation--Responses strongly dissimilar to the user's

expectations are the same as an interruption. Less obvious and

88

less critical, but still important, is the style of the

language. Quick cryptic language statements may appear course

and rude to the manager who's day-by-day business requires close

attention to a smooth interface with people. On the other hand,

language that is polite anduses full English may be boring and

time consuming to the technical specialist. As Martin (ref. 7)

says, dialogue design must "steer a course between operator

boredom and bewilderment."

Classifications--The above factors lead to the following

classification of users.

a) 	 Totally Untrained or Novice--This user:

a 	 is likely to be intimidated by the terminal,

& 	 is consciously defensive,

V 	 has his short term memory almost completely

filled with information related to learning and

very little to problem solving, and

* 	 is easily frustrated by unclear terminal

responses or unusual response times.

He requires:

* 	 programmed learning,

tutorial dialogue,

* 	 minimum opportunity for error, and

display messages that maximize his confidence in
himself and in the system.

b) Casual--This user:

0 spends most of his time doing something other
than operating a computer terminal,

a is trained in terminal usage and feels at ease
using it,

a remembers qeneral procedures but forgets specific
commands and formats, and

& 	 expects to return to a system not grossly

different from his last use.

89

He requires:

* 	 optional tutorial dialogue,

0 	 descriptive cues and prompts to remind him of

missing information, errors in command structure,

etc.,

* 	 minimized use of mnemonics,

a 	 insignificant change to syntax and sequences

between uses, and

* small deviation in response times.

c) Dedicated--This user:

* 	 spends most of his time operating a computer
terminal,

0 	 has near instantaneous recall of command

structure,

* 	 is psychologically tuned to the response pattern

of the t~rminal,

* 	 is adaptive to command structure .changes, and

* 	 is intolerant to language structure beyond the

minimum required for uniqueness.

He requires:

* 	 abbreviated cues and prompts,

* 	 maximized use of mnemonics, and

* 	 faster than normal response times.

6.4.4 Man-Machine Dialoque

The system is visible to the user only through the command

structure. The command structure of the dialogue is related to

the system in the same way a person's speaking habits are

related to the person. The users expectations will follow

directly from the class of user he is (as defined in the

previous section) and his personal nonprofessional

characteristics. The users psychological acceptance or

rejection of the dialogue will be based upon how well the system

90

capabilities, language structure, and response times match his

expectations.

Tn general, the man-machine dialogue should have the

following characteristics:

a) 	 The dialogue should be compatible with the way the

task is organized, i.e., the dialogue should be

flexible where task organizations are variable.

b) 	 The extent of the computer responses and those of the

user should be compatible with the user's training and

experience.

c) 	 Completion of an activity should be punctuated by a

closing act in the dialogue.

d) 	 Signals should be given when the computer is

listening, both immediate and interim when the

computer activity is long.

e) 	 Where groups of associated data are being input

through a dialogue, the computer should "clean-up" and

appropriately display the data at convenient times.

f) 	 The structure of the dialogue should minimize errors

at input.

Specific classes of dialogue are discussed below.

User Initiated--User initiated dialogue implies a dedicated
user, or at least a user of such frequency that the dialogue
commands - are instantaneously recalled. Classes of user
initiated dialogue are given below. It should be toted that the
user is leading and the computer is interpreting and responding.

a) 	 Full English--Because of the alternate meanings of

words and the context dependepcy of English

statements, interpretation of full English syntax by

the computer is difficult. Further, full English is

responsive to characteristics of the human mind that

are not present when the computer is a party to the

dialogue. Hence, full English is not a viable

communication language for man-machine dialogue.

b) 	 Limited English Input--English words and phrases can

be used where distinctive meanings can be assigned.

However, use of full English statements where some of

the words are read by the computer and the rest are

ignored is often confusing to the user. For example,

91

PLEASE DISPLAY ALL BEAM ELEMENT NAMES AND

MARGINS OF SAFETY WHERE THE MARGIN OF

SAFETY IS GREATER THAN 0.95.

In this example, the underlined words are the only

words interpreted by the computer. In this type of

dialogue the user must know the precise words the

computer will read and their required order.

Misspelled command words will, of course, be ignored.

The possibility for misinterpretation is great. The

temptation to try a series of words without

determining the command words is also great. Hence,

this type of "mixed"-dialogue should be limited. If

used, the actual command read by the computer should

be displayed back. The above command would be better

given as

DISPLAY BEAM ELEMENT NMES AND MARGINS

WHERE MARGINS GT 0.95.

In this command, every word is read and has meaning to

the computer and the entire phrase has meaning to the

user. This type of language (i.e., limited English

without extraneous words, user initiated) is probably

the 	most useful language form for the casual user of

IPAD.

c) 	 Mnemonics--Mnemonics is the most efficient language

for the dedicated user. They given great flexibility

and forego extraneous characters not required to

uniquely identify the command to the computer. The

disadvantage is that they must be remembered and

present little in the form of memory aid. The above

command might appear in mnemonics as

D / 2 B ID, M / * M GT 0.95.

d) 	 Graphic--This dialogue is initiated by the user

drawing lines, shapes, or symbols; or graphically

supplying instructions to change the size or location

of the same either through the CPT face or via an

electronic tablet.

e) 	 Pictorial--This dialogue is initiated by the user by

manually or optically tracing and marking a drawing to

be stored in the computer. It may also be initiated

through calls for display of stored picture catalogs

with corresponding commands for paging and selection.

92

ComRuterj nitiated--Computer initiated dialogue is necessary

where the user is unfamiliar with the command structure or data

input formats and must be directed or "led through" the

procedure. It should.be noted that the computer is leading and

the user is following.

a) 	 Full/Limited English--Full English commands with

limited English or mnemonic user responses is the most

appropriate dialogue where the user is entirely

unfamiliar with the procedure. Menus, lists of

alternatives, explanations, and helps are all a form

of this command.

b) 	 Mnemonic--Where the user is entirely familiar with the

mnemonic set but unfamiliar with order of input, a

computer initiated dialogue using mnemonics can be

used.

c) 	 Form Filling--A form can be displayed giving

appropriate blanks and headings.

Hybrid--Combinations of user initiated and computer initiated

dialogue can be useful.

6.4.5 Errors and Failures

Effect of_Lanqua_ 2--The language response must be consistent

with the user's mode. If the user is making a single inquiry,

he will probably have note of it, and a request for reentry is

adequate. If the user is making a complex inquiry, it will be

necessary to display an index of categories or parameters he

previously input to place him back in context. If the user is

in a conversational problem solving mode, the data he has

constructed to the 9oint of error or failure must be available

to him. Reconstructing data is one of the most arduous and

unreliable activities he performs. Loss of a batch job means

only that the job must be rerun. Loss of a creative terminal

job means the model must be reconstructed. Reconstruction is a

demoralizing activity. Hence, error correction or restart after

system failure must be responsive to the user's need to (1)

retain confidence in the work thus far completed and (2) retain

confidence in the terminal as a problem solving medium.

Diversity of Source--The integrity of a data set will generally

be less when multiple independent users are inputting to it than

when the data is received from a single controlled source.

Hence, procedures for achieving integrity of the contents of

data sets increase in importance in a multiple user community.

The following procedure is recommended.

93

http:should.be

ORIGINAL PAGE 1b

OpPOOR QUALITY

a) 	 Real time dialogue to detect and correct errors.

b) 	 Software for performing scans, sums, cross file,

checks, etc., of the entire data set.

c) 	 Intelligent methods of correcting errors and the

effects of errors discovered at a time subsequent to

input and first usage.

d) 	 Designation of ownership responsibility to some member

or manager of the user community.

Interruptions--Interruptions have been discussed in the previous

sections. To summarize, interruption of the user to inform him

of errors or to warn him of impending system failure should

occur, if possible, at closure rather than during activity.

6.4.6 System Balance

Human factors must be balanced against other factors such

as cost, hardware capabilities, etc. For example, a dialogue

that has voluminous computer responses and mnemonic user

responses overbalances line usage in one direction, which, a)

affects response time, b) reduces the number of terminals that

can be multiplexed on a single long line, and c) increases the

cost of the system. In this instance it may be necessary to

shorten the computer responses, or store the responses locally

and trigger them with mnemonic signals from the computer. In

summary, factors such as transaction time, number of terminals,

line costs, and human effectiveness must be carefully balanced

to achieve the most cost effective system.

6.5 	 SECURITY

A secure system is a design goal of rPAD. Accessable items

will be protected from unauthorized access and use,, by a system

of passwords, answerbacks, security classifications, clearances,

etc. Accesses will be logged so that attempted security

violations may be determined through security audits.

6.5.1 Definitions

Securitz Classification XSCL--The security classification of an

entity is the total set of all codes, flags, passwords,

answerbacks, algorithms, access modes, etc., assigned to that

entity for the purpose of control. Entities a consist of:

94

ORIGINAL PAGE IS
OF POOR QUALITY

0 	 IPAD System

* 	 User

* 	 IPAD System Commands

0 	 Project

a 	 Subtask

0 	 Library Entries

The security classification assigned an entity will be used to

control log-on and access as well as functions performed after

obtaining access. This classification will be denoted SC, for

entity a.

Secrity. Clearance ICL--A security clearance is the security

classification for a user. It will consist of the following

items:

& 	 User ID

a 	 Password

0 	 Government or Company assigned clearance, i.e.,

CONFIDENTIAL, SECRET, etc.

* Allowed operations on specified entities
Required Log-on or Access Seq ence--Log-on will consist of the

sequence of input items required of a user. This may or may not

be an enforcead order sequence, i.e., constitute an ordered set.
Usually there will be an acceptable order that might he imposed.
Hence, it will be assumed to be an ordered sequence -unless
specified otherwise. Each entity will require a log-on seauence
&enoted byal,a2,....an. Note that thect's will be functions of
a user u so he must furnish the sequence 01(u) , c2(u) , ...,an(u)
in order to log-on (%= user) or access entity a (a7 user). For

example:

al(u) = user User ID
a2 (u) = user Password

a3(u) = user Clearance - CONFIDENTIAL, SECRET, etc.

denote the required (log-on sequence for user u by La(u).

95

http:byal,a2,....an

User SecuritY_ r ofileJSPj--For a given user u with log-on or
access sequence L. (u) for entity C , certain rights and
constraints will be granted and imposed subsequent to a
successful sequence input. These rights and constraints will
constitute his implied security clearance I a (u). This
clearance, together with the required input sequence, will
constitute the user's security profile for a, denoted COL (u).
Hence,

Ca(u) = Lt(u) U Ia(U).

CL (u) will also be called u's security clearance to access (.

It should be noted that Ca(u) must be contained in SCa, i.e.,

Ca(u) C- sc.

The totality of all such user profiles for each a will be called

the user's security profile SP(u). Hence,

SP(u) = UCau)-

Potential SecurityViola-tion--A user u is required to furnish an

input sequence LE(u), if he is to be validated for log-on or

access to entity
actually supplied

a.
by

Let
u and

L'a
!I. (u)

(u) denote the input sequence
the resulting implied

clearance allowed. Let

C1(u) L'a(u) U T'o(u),

then if

Ca (u) C((u)

a potential security violation is said to have occured. Thus,

if a-potential security violation (also called potential threat)

occurs, then L'a(u)! La(u). The reason for choosing "not a

subset" as opposed to "not equal" is that a partial input

sequence L1" (u)9;L(u) might be supplied by the user resulting

in the partial implied clearance I' (u)C I(u) Hence,

C'%1O (u) C_ c O(M).

This would allow the user some but not necessarily all the

access freedoms available.

Access and SecurityLRos--Two types of logs will be defined: an

access and a security log. Each time a user accesses an entity

an entry will be made in the access log. This entry will

consist of the triple (u,a , date-time). Here, a denotes

information about the access to 0.. The access log may exist

96

both as an explicit log used, for example, during IPAD log-on,

or an implicit log in the case of a data set. In the latter

case, access information will be saved in the library directory

entry.

The security log will be used to log access information of

a more sensitive nature. In particular, potential security

violations will be entered in this log. Entries will consist of

the quadruple (u, ? , V , date-time) where d denotes information
about access to a , and V denotes the nature of the security
associated with the access to 0 . This could include security
associated with the access to a . This could include security
needed and received, type of security threat, which occurrence
of consecutive threats, severity of threat, etc.

§ecurity Audit--A security audit will be performed periodically

on the security log to determine attempted security violations.

This audit will be available in greater or lesser detail, on

option, to the responsible users and managers. This audit may

be obtained by request or occur automatically, possibly

triggered by the severity of some potential threat.

6.5.2 IPAD Securitl Initialization

IPAD Security File--The IPAD security file will contain the

security profiles of all valid users as well as the security

classifications for the IPAD system, projects, subtasks, and

library entries. The file will consist-of an explicit part and

an implicit part. The implicit portion of the IPAD security

file will reside in the library directory entries of the various

entities and the explicit portion will be contained in an actual

security file. Unless context specifies otherwise the IPAD

security file will mean the explicit part.

The IPAD security file will reside as a proprietary file in
the IPAD data base. It will be initialized with a user's
security profile and a security classification for a = IPAD
system. This will constitute the log-on sequence required
together with the rights of a given user. Each user, to log-on
to IPAD, must have an IPAD security file entry.

Initialization of the security file with a user profile
will not be allowed in the normal mode of IPAD. This must be
done under management control or outside of IPAD. For example,
a special batch program will be reauired or only one special

terminal will be allowed to.create and update the security file.

The initial entries required for a user profile as regards log
on sequence are as follows:

97

0

* User 	ID--An identifier assigned a specific user.

* Password--A password assigned a user.

* 	 Answerback (Optional)

Last name

0 Mother's maiden name

0 Social security number

0 etc.

Optional entries needed to complete his profile are, for

example:

0 User may create and enter project definitions.

0 User may cancel a project.

* User may update another user's profile.

0 User's profile may not be altered by anyone without

user's status x.

0 User's status

* etc.

The above profile entries constitute the user's profile for

access to IPAD denoted Ci(u).

Proqect Security Information--Project security information will

be established as an implicit part of the IPAD security file.

It will be initialized by someone validated by the IPAD security

file to enter and define projects. The project plan will

contain a project security profile for each user associated with

the project and additional security classifications required by

the project. Entries in the project plan for a given user may

be:

0 User 	ID (input supplied by IPAD log-on)

* Answerbacks, etc.

0 User can enter and define project plans

* User 	may update a project plan.

98

* 	 Project related items.

The above entries will constitute the user-profile for access to

a project, denoted Cp(u). Note that Ci(u) must also be defined.

Subtask Securit File--The subtask security file is derived from

the project security information. Entries in this file may

include the following:

* Subtask Password

0 User may define data sets

* User may purge data sets

0 User may execute specific subtask related commands

* 	 User may change his subtask password

0 	 Subtask related items

The subtask profile for a given user is denoted CST(u).

Library Entrz Security Information--This information will

consist of the user library entry profiles together with library

entry security classification. Items included in this set for

a given user may be:

* 	 Library Entry Password

* 	 User ID

* 	 Access Mode Allowed

6 Read

a Execute

* 	 Extend

* Modify

a Purge

* 	 Clearance required, CONFIDENTIAL, SECRET, etc.

* 	 Accessable time or dates

* 	 Library Entry related items

99

The library entry profile for a user will be denoted CLE!u).

User Security Profile--The totality of all profile for all
entities constitute the user security profile SP(u) which is
equivalent to his clearance C(u). Moreover, it also consists
of all access input sequences required, together with clearances
granted on successful input sequence submission. Hence,

C(u) = SP(u) = U CaL LLa u) U I .

The last equation may be translated into the following matrix:

OC (u)

IPAD System User ID Password Answerback Projects* etc.

Project User IDs Password Answerback etc.

CdU) Subtask User IDs Password Answerback Library

Entries* etc.

Library User IDs Password Acess

Entries mode etc.

etc.

user is allowed to define these entities.

The above matrix, in skeleton form except for entries

needed to log-on to IPAD, will be entered into the IPAD security

file when a user's profile is initialized. Subsequent matrix

entries will be made by those validated as project, subtasks,

and library entries are developed. This matrix will be

available in the IPAD system for security checking when access

to various items or function is requested by the user.

6.5.3 Accesses and Reguests

IPAD LoogOn--The user must first satisfy the host operating

system log-on protocol. Having done so, he will enter IPAD by

supplying his log-on sequence, denoted L' (u). This will

consist of:

* User ID

* Password

* Subtask Identifier

100

o Answerbacks, etc.

Once his input sequence is complete,

L'C (u) C La(u) and I' (u) C T(u),

implying the user's stated clearance satisfies IPAD's security

classification for that user, he may proceed to log-on for his

subtask. The user will be primarily entering and accessing

library entries. His right to do so and in what mode will be

contained in his security profile established to date.

IPAD System Requests--Certain IPAD functions are catagorized as

security classifiable. Examples are:

0 DEFINE

0 ENTER

- DISPOSE

G MODIFY

* DISPLAY

* SEARCH

Each user's profile will contain persmission codes controlling

use of these functions. For example, only specific-users will

be allowed to send data to a remote location or purge a library

entry from the community library.

Suspendinq or Hevokinq Clearances--At any time, due to a

security alert, change of project plan, etc., a blanket

revocation of log-on or access may be imposed. This revocation

may be made by any one authorized to alter security profiles.

The revocation will be reflected in all appropriate user

profiles when entered. An affected user's progress will be

suspended the next time his security profile is checked by the

IPAD system.

Potential Security Violations--If during log-on, access or

requesting an IPAD function, a user enters an input sequence

L'a(u) not contained in the required sequence La(u), a potential

security threat exists. This threat will be logged in the

security log and a threat count started. Depending on the

severity of the violation; sensitivity of project, subtask, or

library entry, the threat count will trip a security alert when

it reaches a certain value. Again, depending on the severity of

the threat, action will be taken. This action may range from

101

requesting an additional password, certain answerbacks,

telephone, or even manual verification. If the threat is not

severe, the user may be logged out. If the threat is severe, a

security alert may be issued by automatic notification of a

security office.

6.5.4 Privacy andlInte1ritv

Privacy--Privacy is the right to keep information private to

oneself and the guarantee that such information will be kept

safe from unauthorized access. The question of whether such

information may be obtained and kept is a legal and

administration question. The IPAD software design allows

varying degrees of privacy depending on how the security

controls are used.

Intearity of Content--A checksum will be made of information

entered into the TPAD data base. This checksum will be updated

whenever the information is altered. A user may request a

checksum verification, at any time, to determine if a recomputed

checksum compares with an alleged checksum. To insure that a

checksum itself has not lost integrity, the checksum will be

kept with an additional check digit. The checksum verification

will ensure that, aftir entering information into the data base

and determining it to be correct, by visual read out, comparing,

displaying, etc., any loss of integrity can be detected by the

user.

6.6 STANDARDS

Webster's Dictionary defines standard as, "That which is

established by authority, custom, or general consent, as a model

or example; criterion; test."

Standards are necessary for an orderly working world.

Without them chaos would reign supreme; communication would be

ineffective or at best,- very difficult; time would be wasted;

and learning would be severely affected.

Standards are not to be had without a price. This price is

paid in work in defining and establishing standards and in

learning and observing them. Standards have advantages and

disadvantages. Some disadvantages are:

* Standards are inflexible

• Standards stifle creativity

102

However, standards must be inflexible to bring order to work.

Some also argue that standards stifle creativity and thereby

confuse creativity with the application or observance of

standards. The real difficulty with standards are:

* Standards must be decided upon

* Standards must be learned and observed

While most people agree that there should be standards,, it is

usually difficult for them to agree on what standards should be.

Standards are necessary for the orderly maintenance of

activity. They facilitate effective communication, reduce the

effort required to learn, and insure the effective application

of education. Standards enhance reliability,, consistency, and

integrity by reducing errors and mistakes. In summary, their

advantages are:

* Facilitate communication, teaching, and learning

* Save time

* Insure reliability, consistency, and integrity

* Minimize errors and mistakes

* Inflexibility

When establishing standards an attempt should be made to

optimize their definition and development, so as to maximize

their advantages and minimize their disadvantages.

6.6.1 IPAD Design Standards

Standards have been adopted in the design of IPAD. These

standards are given as follows:

Structured TopDown_ eslan--Top down design means starting with

the most general view of IPAD as seen by the user community, and

dividing it into constituent parts. Each refinement comprises

another level in the design. Any one level may be thought of as

describing what the design at that level consists of, with the

next level below giving the how of the preceding level.

Independent Modules--The design results in a set of program
modules that may be implemented and modified as independently as
possible from other modules. This is a design standard, and

103

fortunately a consequence of the structured top down design

process.

Ope Ended--It is envisioned that IPAD will undergo continual

development. To accommodate this development and expansion,

open endedness is a design standard.

Machine Independence--IPAD as a design is to be independent of
specific vendor hardware.

Data Base Manaqement--To facilitate I/O, a data base management
system is a basic design standard of IPAD. All standard I/O in
IPAD will be through the data base management system.

6.6.2 IPAD Implementation Standards

Standards adopted for IPAD implementation should be

consistent with those established in the desiqn. Implementation

standards should be chosen to facilitate program maintenance and

checkout. The code should be written neatly, uncluttered, and

readable; it should be written for the novice and not for the

coder.

The list of items given below fulfills the above needs.

Language--A common higher level machine independent language

should be adopted. it should be the implementation language for

IPAD 	in which most of IPAD would be written.

Modular and Open Ended--As code is developed, modularity and

open endedness should be kept in mind. They are IPAD design

standards.

Common Code--Areas in IPAD whose function can be served by one

common block of code should be identified. This will guarantee

consistency of function; coded, checked out, and performed in

one place as opposed to many.

ProgqaLmBlocks--Blocks of program code should be structured in

an overall sense much like a book or document. The program

block should contain the following items as a minimum:

* 	 Title Section--author, date, etc.

* 	 Revision Section--modification and revision history

* 	 Abstract Section--stating the purpose, method, etc.,

for the program block

104

9
 Bibliography Section--contains any external references

related to the program block

o 	 Usage, Input/Output, etc.--sections describing use of
the program block, input required, output generated,
and other such related items.

0 	 Quality Assurance Section--this would contain a

description and history of required steps and actions

needed to checkout and certify this block.

• 	 Certification Section--this would contain names and

references of who modified, tested, and approved the

block for release.

* 	 Program Section--this would be that portion of the

block comprising the executable statements, arrays,

variables, formats, etc. It may be further subdivided

into structured sections.

Minimize Host System Interface--One critical design goal of IPAD

is to minimize the host system interface. In the structured top

down design, the actual host system IPAD interface will be

delayed to the lowest level possible. Standards will be

developed for IPAD/Host system interfaces.

Documentation--The entire program documentation should be

structured to facilitate programmed extraction for production of

a particular program document.

Namin Conventions--A consistent convention should be adopted

for naming and distinguishing variables, arrays, tables,

constants, code block names, etc. These names should be short,

3 or 4 characters as opposed to long, 6 or 7 characters. Those

items related to general system activities should be identified,

named, and used throughout in a consistent manner.

Coding and Documentation Conventions--Prograr coding should

adhere to the framework of established program structure.

Executable program statements should be distinguished from

documentary statements. They may, for example, be offset by

blank lines and indented, using a hierarchal statement

convention.

The executable code program logic should be well

documented. This documentation should be meaningful and

uncluttered. Comments should be informative and not merely

restate executable statements. Liberal use of outline

conventions, blank lines, and blank spaces should be used.

Identifying and setting off items with non-blank special

105

characters should be avoided at all costs. Embellishments add

clutter and decrease readability.

Variables should always be used with the values

initialized in one place. Constants should be used

with discretion.

Labels should-be lexicographically ordered, increasing

in the direction code is read.

to checkout,
Certification--Certification is defined include

approval, and release of a block of code.

As part of the development of a block of code, a

description of the checkout necessary should be entered in the

quality assurance section of the program block. A checkout

procedure, test data, and code should be assembled and placed in

a quality assurance library. This will then be used to certify

the block. Individuals responsible for checkout and approval

will be recorded in the quality assurance section. The revision

section will be updated to reflect the change if meaningful.

The block will be checked out, approved, and released with the

appropriate entries having been made in the certification

section. This process will constitute certification.

6.6.3 IPAD Maintenance Standards

IPAD maintenance can include both ongoing development as

well as modification and maintenance of existing code. All code

should be developed using the same standards created for IPAD

implementation.

All development and modifications should be documented as

established by the standard. This would include both program

code annotation as well as updating the modification record

sections. Development, per se, is to be distinguished from

error correction.

Modifications should be described whether resulting from

development or errors, and the verification procedure documented

in the quality assurance section. The program code should then

be tested and certified in the usual manner to insure it will

work. The checkout procedure, decks, test data, and

documentation for the current modification should be added to

the quality assurance library. IPAD should then be re-certified

for release.

106

6.6.4 	IPAD Application Standards

Standards related to the IPAD user interface will be

determined primarily by implementation. For example, the IPAD

standard for packaging computing and operational modules will be

determined when the actual IPAD command language is defined, the

implementation language known, data base established, and the

host system hardware configured. Standards related to the IPAD

user community will also be determined by implementation. These

standards will deal specifically with a particular IPAD

implementation and must be user initiated.

One area related to the IPAD user community and standards,

however, needs further study. It is an area that greatly

impacts all IPAD users and should be considered as becoming an

IPAD 	standard. This area deals with the following items:

0 	 Dimensional Units--The metric system of units (MKS)

might well be taken as an IPAD standard.

0 	 Constants--Numerical constants such as 7T, e, etc.,

should be standardized with respect to nomenclature

and significance.

0 	 Physical Constants--Constants such as: speed of sound,

gas constant, gravitational constant, etc., should be

identified and standardized as to units, nomenclature,

and significance.

* 	 Physical Variables--The terms: velocity, acceleration,

mass, force, etc., should be identified and

standardized as to units and nomenclature.

* 	 Miscellaneous Terms, Abbreviations, and Symbols--Terms
such as Mach number, lift, planform; abbreviations
such as a.m., p.m., hr.; and symbols such as V, 1,
f,etc., should be identified and standardized.

* 	 Disciplines--Engineering and design process

disciplines, such as structures, loads, trade studies,

etc., should be defined and standardized. This could

include a standard for planforms, a global airplane

coordinate system, substructure coordinate systems,

and the like.

6.7 	 LANGUAGE REQUIREMENTS

A substantial number of computer programs currently exist

that are candidates for inclusion as application modules in

IPAD. These programs are predominately FORTRAN but other

languages are represented. Although FORTRAN is a universally

107

ORIGINAL PAGE IS

OF POOR QUALITi

accepted language, many dialects exist. Additionally, FORTRAN

contains machine dependent characteristics requiring a specific

combination of source language statements, compiler, operating

system and computer hardware.

It is a design requirement that IPAD be capable of

accepting pre-existing application modules. It is also expected

that IPAD host systems will be on third and fourth generation

hardware of more than one manufacturer. Further, it is very

desirable that IPAD have languages for all user functions that

are independent of the host system. That is, all IPAD functions

at the user interface should not vary with changes of the host

system.

A practical way of handling the investment of the aerospace

industry in existing FORTRAN programs must be developed

initially. For the long term, IPAD should accept other

programming languages such as ALGOL, COBOL, APL and PL/l. The

study made by Control Data Corporation, consultant to Boeing,

considered:

a) The general problem of software migration;

b)

c)

FORTRAN source code migration on
computers;
Migration from third generation to

third

fourth

generation

generation

computers;

d-) The development of a machine independent FORTRAN.

The final report of this study is. given in Appendix C. A
recommendation is made in the study for the development of a
machine independent FORTRAN language, IPADF, that could be used
for the implementation of the IPAD system. It is also
recommended in the study that utilities be developed for
translating existing FORTRAN application modules into TPADF.
The need for a machine independent language may be even more

general than recommended by this study. Such a language is

referred to elsewhere in this volume as IPADL.

Languages are also required at the user interface of IPAD.

One user interface is at the host operating system level through

languages such as OS360/370, JCL or CDC 6600 SCOPE or KRONOS

control statements. The language associated with the IPAD

commands and utilities must be specified. Human engineering

factors are given in section 6.4 but the syntactic forms remain

to be developed.

108

ORIGINAL PAGE is

DE POOR QUALITY

7.0 HOST SYSTEM SPECIFICATIONS

This host system specification considers current and future

hardware and operating system software. Information was

obtained from several manufacturers of large scale computer

systems detailing their products. Two sample host system

configurations have been given based upon:

a) 	 a Control Data 6600 (Cyber 74) and

b) 	 an IBM 370/168.

These computers were chosen for presentation because of their

widespread use in the aerospace industry. They are illustrative

and are not intended to be a recommendation of these particular

manufacturers at the exclusion of others.

7.1 	 VENDOR SURVEY

To maximize portability in the IPAD system design, and to

insure that all potential hardware was considered in the design

of the system, all manufacturers of large scale computer systems

were surveyed. The survey covered the following areas:

a) 	 Mainframe

o 	 System architecture, (multiprocessor, etc.)

o 	 Instruction type, complexity, timing, and rate

o 	 Character, integer, and floating point

representation

o 	 Main memory size/access rate

o 	 Input/output rates and number of channels

o 	 Multi-programming capability

o Time-sharing capability

0 Reliability

o 	 Member of a compatible family of computers

o 	 Cost

o 	 Public availability date

b) 	 High Speed Random Access Storage

o 	 Capacity

o 	 Transfer rates

o 	 Latency

o 	 Dismountability

o 	 cost

o 	 Public availability date

109

c) Mass Storage (,trillion bits)

o Capacity

o Transfer rates

o Number of ports

o Recording media

o Dismountability

o Cost

o Public availability date

d) Data Transmission Peripherals

o Rates

o Capacity

o Cost

o Public availability date

The questionnaire was mailed to the following vendors:

Burroughs Corporation

Paoli, Pennsylvania

Control Data Corporation

. Minneapolis, Minnesota

Honeywell Information Systems, Inc.

Waltham, Massachusetts

IBM Corporation

White Plains, New York

Sperry Rand Corporation, Univac Division

Washington, D.C.

Texas Instruments, Inc.

Austin, Texas.

Replies were received from all vendors contacted. They

were understandably reluctant to divulge future plans but were

quite willing to supply detailed performance specifications of

their presently marketed systems. The hardware characteristics

of the submitted mainframes and peripherals of all vendors

satisfy the IPAD system requirements. Instruction rate, or CPU

power, of some systems is sufficient for a small-to-medium scale

installation. In some cases, a medium scale installation would

dictate- a multiprocessor configuration. A large IPAD

installation (for example, one capable of supporting the design

of a supersonic transport as outlined in Velume II) would

require at least one CDC 7600, IBM 370/195, or Texas Instruments

ASC central.processor. There will be a heavy demand upon the

timesharing, data storage, and data handling capacilities of

these systems. The information presented is accurate as of late

1972. Table 7.1 is a condensed comparison of these computer

systems.

110

APPROXIMATE MEORY I/O CHARACTER SIZE

INST. RATE SIZE/RATE RATE F.P. PRECISION COMMENTS

MILLIONS MILLION CHAR. # CHANNELS BITS,

PER SEC. MCHAR/SEC. MCHAR/SEC. BITS

BURROUGHS 12-18 7-8 32/1OP 6.8 HIGHLY MODULAR

B7700 EACH* 12 8/lOP 40 MULTIPROCESSOR WITH

VIRTUAL MEMORY

CDC 3-5 .6-1.3 12 6 OVERLAPPED SCIENTIFIC

CYBER 74 100 8-10 48,96 INSTRUCTION PROCESSOR

(6600)

CDC 20-25 1.6-5.7 15 6. OVERLAPPED SCIENTIFIC

CYBER 76 360 25-50 48,96 INSTRUCTION PROCESSOR

(7600)

HONEYWELL 1.2 1-6 24 6,9 GENERAL PURPOSE

6070/6080 EACH 40-90 6/IOM(1-4) 28,64 MULTIPROCESSOR (1-4), 6080

HAS MANY CHAR. INSTR.

IBM 4-7 .5-3 7-12 8 BIT EBCDIC THE 370/168 HAS VIRTUAL

370/165 16 1.3-3 21,53,109 MEMORY, BOTH HAVE 80 NS.

CPU BUFFER STORAGE

IBM 15-18 .5-4 7-12 8 BIT EBCDIC ELABORATE OVERLAP PLUS
370/195 170 1.3-3 21,53,109 54 NS. CPU BUFFER STORAGE

TI 30-50 4-16 4-12 8 1-4 PIPELINE VECTOR/MATRIX

ASC -3200 28 21,53 PROCESSOR WITH VIRTUAL MEMORY

UNIVAC 1.8 7.8 8-24 6,8,9 GENERAL PURPOSE

1110 EACH 12 24 TOTAL 27,60 MULTIPROCESSOR (2-4)

* Each processor of a multiprocessor machine
* Arithmetic only. Does not include fetch, store, index, and branch operations. v

Table 7.1 Comparison of Vendor Hardware

7.2 	 HARDWARE CHARACTERISTICS AND CAPACITY REQUIREMENTS

All 	 available large third generation computer hardware

systems are capable of supporting an IPAD implementation.

Limitations are quantitative rather than qualitative. They

include CPU speed, memory size, online mass storage capacity,

etc. Fourth generation computers from CDC, Texas Instruments,

Burroughs, and IBM will be much better suited to the expected

computation and data transfer volume required in a fully

utilized IPAD system. Additionally, the cost per operation

(e.g., addition) will drop by a factor of four to six. Timing

for 64 bit floating point add operations, for example, can be

expected to fall below 20 nanoseconds, while the machine cost

will 	remain roughly commensurate with today's CDC 7600 and IBM

370/195.

7.2.1 Host System

The characteristics of the hardware required to support an
IPAD implementation were determined from the studies documented
in volumes II and !II. These studies provided an estimate of
hardware capacity requirements in terms of:

o 	 CDC 6600 CPU hours
o 	 Input/output rate per CPU second (a measure of CPU -

I/O dominance)
o 	 Storage required for program libraries

o 	 Storage required for data.

Program usage frequency was estimated in the studies from

surveys of current and projected design practices for an

organization similar to the Boeing Commercial Airplane Company

and the Boeing Aerospace Company. These organizations include

nearly 7500 design and production engineers, who were assumed to

be involved in one detailed product design and seven concurrent

preliminary design projects. The characteristics of these

projects that affect hardware capacity are:

o 	 computer usage characteristics, including run
frequency,

o 	 desired flow time, and

o 	 interactive terminal requirements.

Central Processinq Unit - The CPU is the heart of a computer.

It is generally the limiting factor with regard to solving

extremely large problems, or allowing a great number of

simultaneous timesharing users.

112

A number of computer manufacturers offer highly modular and

interconnected computer systems with multiple instruction stream

processors, multiple memory modules, and multiple input/output

processors. This study considers the central processor to

consist of an instruction processor, memory, and channels or

memory ports. Computers with multiple instruction processors

and 	 memory modules are taken to contain one CPU with a memory

and processing capacity determined by the total capacities of

the modules. They should have the following characteristics:

a) 	 Instruction Rate

Of all the simple parameters used to describe a

computer system, the CPU instruction rate has the most

effect on the speed with which the computer can

produce results. Hence, any specification of

instruction rate is tied directly to the volume of

work expected in, for example, a 24 hour period. The

IPAD host computer system capacity requirements,

determined in Volume II, included the total number of

CDC 6600 CPU hours required to support the Boeing

Commercial Airplane and Boeing Aerospace companies.

The company mix is projected to consume 42.1 CDC 6600

hours, per 24 hour period. This is equivalent to an

instruction rate of 10 to 14 million instructions per

second (MIP), depending on central processor

utilization.

b) 	 Multiprogramming Capability

The IPAD system is inherently multi-simultaneous user

oriented. This dictates the need for central memory

write protection from concurrently running programs.

Read and execute protection would be highly desirable

but is not required. Also the hardware should support

task switching in the order of microseconds.

c) 	 Floating Point Precision

A CPU to support IPAD must be capable of at least 12

digit (40 bit) precision, with an exponent range of at

least -40 to +40 (decimal). Some IPAD technical code

modules will contain routines for solving very large

systems of simultaneous equations, inverting very

large matrices, solving nearly unstable differential

equations, and other similar activities requiring high

precision floating point arithmetic.. In practice, the

precision needed is dependent upon the problem

formulation and the algorithm used. Research, design,

and analysis anplications on the CDC 6600 almost never

require double precision (96 bits). However, double

precision on the IBM 360 (53 bits) is often required

and gives satisfactory results.

113

d) 	 Input/Output Bandwidth

Words input or output per CPU second on a CDC 6600

were obtained from the workload prediction study in

Volume III. These predicted IPAD CPU I/O ratios are

comparable to the average rates for the total work on

Boeing's CDC 6600. These rates are:

o 	 50000 words/CDC 6600 CPU second for IPAD

application modules,

o 	 56000 words/CDC 6600 CPU second for the Boeing

6600 job mix.

This is approximately 6 to 8 machine instructions

executed for each character transferred. A typical

IBM 370/165 installation for scientific work executes

about 5 to 10 instructions ner character transferred.

An IP&D host computer should have an I/O bandwidth

comparable to these figures.

e) 	 Memory Size

Application modules must be accommodated through an

overlay technique, virtual memory, or a very large

main memory. Virtual memory is preferred because it

simplifies the design and operation of the data base

manager. Application modules in the order of one

million bytes on an IBM 360-370 or 320K octal words on

a CDC 6600 are not unusual.

f) 	 Character Representation

The hardware representation of alphanumeric and

special characters in the computer system is not

important. It is important, however, that the

computer system support a full upper and lower case

alphabet and program constructable remote terminal

control characters (e.g., line feed, backspace, etc.).

ASCII-8 should be supported.

g) 	 Upward and Downward Compatibility

It is expected that the first IPAD system will be

implemented on a medium to large scale computer.

There will be a wide range of user performance demands

at different installations. It would be an advantage

to imolement IPAD on one or more compa+ible families

of computers. During the implementation period it

would be desirable to have a dedicated member of the

target family for software development and checkout.

Random Access StoraqaDevices - The IPAD system will utilize a

spectrum of online data storage peripherals. The IPAD data

management system is designed to take advantage of the speed and

114

capacity of these online data storage devices. High activity

library entries, or fragments thereof, will be kept on high

speed, low capacity devices. Inactive subtask libraries and

currently active community library entries will be sorted on low

speed, high capacity devices. Project and task histories, old

experimental data, documents, and other such information will be

retained on archival devices.

The specifications below are intended more as a definition

of terms than a specific requirement. For fourth generation

hardware, multiply the capacity-transfer rate product by 50.

a) 	 High Speed, Low Capacity Storage

High speed, low capacity storage will be used

primarily for program swapping, library indices, and

small active job scratch data sets.

A high speed, low capacity device has a latency time

of less than 10 milliseconds, a transfer rate of at

least 1.5 x 106 8-bit bytes per second and a capacity

of less than 107 8-bit bytes. Devices in this class

include fixed head disks (IBM 2305), drums (UNIVAC FH
432), bulk core (CDC ECS), and future solid state

memories using, for example, bulk MOS shift .registers

or magnetic domain techniques.

b) 	 Low Speed, High Capacity Storage

Low speed, high capacity storage will be used for

dictionaries, inactive subtask libraries, large

portions of active subtask libraries, and currently

active members of the community library. Library

entries stored on his class of device are generally

regarded as permanent, while the high speed, low

capacity devices contain predominantly temporary

copies.

A low speed, high capacity device has a latency time

between 10 and 200 milliseconds, a transfer rate

between 105 and 1.5 x 106 8-bit bytes per second, and

a capacity between 107 and 1010 8-bit bytes. Devices

in this class include dismountable moving-arm disks

(IBM 3330), non-dismountable moving-arm disks (CDC

6638), and magnetic strip storage (IBM 2321 data

cell). In the near future some magnetic domain

devices (Bubbles, DOT) and early holographic systems

will be in this class.

c) 	 Archival Storage

The use of archival storage is a distinguishing

feature of the IPAD system. It will contain project

115

histories, experimental test data, backup versions of

current library entries, and online data sets too

large for other storage devices.

An archival storage device is defined as having a

capacity greater than 1010 8-bit types. Transfer rate

should be at least 10s bytes per second. There are

three marketed archival storage systems using

different design approaches: Laser/aluminized mylar

strip (Precision Instrument UNICON), large reel video

tape (Ampex TBM), and cassette video tape (Grumman

Masstape).

Unit Record Eguipment - An IPAD host installation may have a

complement of unit record devices:

o Card readers (1 to 2000 cards per minute)

o Card punches (3 to. 600 cards per minute)

o Line printers (> 1000 lines per minute).

The terminal orientation of IPAD greatly reduces the user's

dependence on punch cards for program and data storage. For

example, the computer programs used to verify and format the

system design document in section 6.2. and Appendix A never

existed on punch cards. The programs were entered, edited, and

debugged entirely through alphanumeric CRT terminals. Card

readers and punches will still be required in the future, but to

a lesser extent than today.

Line printers, on the other hand, will remain important.

One or more very high speed, single copy printers, would be

satisfactory for program listings, checkout runs, and most mark
up and throw-away purposes. Also required is a high quality

printer, similar to, but perhaps not as versatile as, today's

page or photo composer used to compose books and newspapers.

Such a device will be able to produce document quality tables

and plots, if not entire documents.

MagneRic__TaDe_Egnipmrnnt - Half-inch magnetic tapes will be with

us many years into the future. An IPAD system installation,

while not dependent upon magnetic tape for its basic operation,

will require the ability to accept data recorded by offline

devices, non-IPAD computer systems, pre-IPAD computer programs,

and IPAD users. The IPAD installation may also be called upon

to create tapes for offline devices, very long term archival

storage, and mailing to installa-tions not reachable by a

network. Since the primary purpose of tape on an IPAD system is

communication, there must be both seven and nine track devices

available.

116

Graphical_Input/Outut - Graphical input/output devices are not

necessarily online to the central host computer. For example,

a digitizer or programmable film reader for loading drawings

into the system is generally a stand-alone device.

Two types of plotters are needed. The first is a high

volume plotter to produce cheap, marginally accurate drawings

(.01 inch), for check prints and inter-company communication.

The other is a very accurate (.002 inch) drafting machine or

flatbed plotter. Drawings produced would be used for

manufacturing, mockup, wind tunnel, and other purposes.

In addition there may be a requirement for a microfilm

plotter, which would be used for reducing and storing drawings

on microfilm.

Reliability - The user community demands the freedom from

considering the reliability of the IPAD host computer when

planning projects. Computer designers have devised several

techniques for detecting and correcting hardware errors, for

example: parity bits, Hamming code correction, and automated

voltage margin measurement and adjustment. They have served to

improve the mean time between failure of the computer system

hardware in the face of increasing logical complexity. The IPAD

host computer must have a minimum mean +ime between failure of

one to two weeks and should admit to prompt fault detection and

repair.

Summary

CPU Instruction Rate 	 10 to 14 MIP for the total company

mix.

3 to 4 MIP for Project I, subsonic

commercial transport.

Multiprogramming 	 Memory write protect, read/execute

protect desired.

Floating Point Precision 	 At least 12 digits with an exponent

range of -40 to + 40 (decimal).

Input/Output Bandwidth 	 Transmit one character per 5 to 10.

CPU instructions executed.

Memory Size 	 Allow .1megabyte IBM 370, and

330K CDC 6600 programs to run.

Character Representation 	 Full upper and lower case alphabet.

Terminal fnnction control charac
ters. Prefer 8 bit characters.

117

Upward and Downward Desirable.

Compatability

Random Access Storage 	 Some of each. The quantity is to be

determined at implementation.

o 	High Speed, Transfer rate 1.5 x 1.03 KB.

Low Capacity Capacity S 107 bytes.

o 	Low Speed, 102 KB S transfer rate S 1.5x10 3 KB.

High Capacity 107 bytes < capacity < 101 0 bytes.

o 	Archival Storage Transfer rate 102 KB.

Capacity 1010 bytes.

Unit Record Equipment 	 High speed card reader/punch.

Very high speed line printers, low

t
cos per page. High nuality page

or photo-composer for documents.

Magnetic Tape Equipment 	 7 and 9 track, industry compatible.

Graphical Input/Output 	 Digitizer or programmable film

reader.

High volume, marginally accurate

paper plotters.
High precision drafting machines.

Possibly a microfilm plotter.

Reliability 	 Mean time between failure at least
1 to 2 weeks.

7.2.2 Terminals

Personal Terminals - The primary means of man-computer communica
tion in the IPAD system is via terminals. This study has classi
fied terminals into three main types:

o 	 Personal terminals like teletypes or teletype
replacements,

o 	 Interactive graphics scopes, and

o 	 Remote job entry stations.

This study has defined a personal terminal to be a terminal

operated by one person at a time primarily for two-way

alphanumeric communication with the IPAD host computer. It will

118

be used for constructing and modifying CM's, OH's, jobs, and

other library entries. Jobs run on the IPAD host system will,

for the most part, be initiated, monitored, and interacted with

using the personal terminal.

Most of the engineering interaction requirement is easily

handled by purely alphanumeric devices like teletypewriters and

CRT terminals. A CRT terminal should hold at least 20 lines of

72 characters. Any fewer almost demands a printer attachment.

Silent printers and other terminal peripheral devices like

cassette tape recorders, small x-y plotters, low-volume card

readers, and simple digitizers have been identified as necessary

or desirable in the engineering design process. Many

manufacturers allow for switchable peripherals so that, for

example, two or more alphanumeric CRT terminals may share a

single printer. Personal terminals would be connected to the

IPAD host via a dial-up telephone line. Whether the lines were

public or private is an implementation decision. The use of

dial-up telephone lines limits the bandwidth to approximately

2000 bits per second which is more than enough for iiiformation

display but may just be adequate for a cassette tape attachment.

Through experimentation this study has concluded 110 baud (ten

character per second message transmission) is conducive to

boredom, frustration, and work-arounds. Therefore, 300 baud is

to be considered as a practical minimum line speed.

Interactive Graphics Terminals - The interactive graphics

terminal differs from the personal terminal in its ability to

display vector or line drawings. There is a definite

requirement for interactive graphics in an 1PAD system. Two

classes of interactive graphics activity have been identified.

One class is limited to simple keyboard input and is useful for

displaying plots and graphs. The other class is the full

interactive graphical input/output activity associated with

geometric design and topological problems. Besides the display,

hardware to support full interactive graphics includes a

keyboard, lightpen, function keys, analog input devices like

joysticks, graphical input devices like RAND tablets, and

hardcopy attachments. Most interactive graphics terminals have

self-contained minicomputers to refresh the display, poll the

user input interfaces, communicate with the host system, and

generally relieve the host system from minor interruptions.

Terminals containing minicomputers are generally able to

interface with a large set of peripherals, including printers,

small disks, slow half-inch tape drives, card readers and
punches, and telecommunications gear.

Remote Job Entrx Terminals - In a geographically distributed
engineering community there are flowtime problems associated

with bulk manual and vehicular transport of computer input and

119

output. A remote intelligent terminal connected to the IPAD

host system via a wideband line would provide medium speed

printers, punches, card readers and possibly tapes within

walking distance of users. Large volumes of newly generated

data will, for the near future, continue to be in the form of

punched cards. The remote job entry terminal allows the remote

user to enter his data into the IPAD data base and obtain a

printed copy for visual checking and backup. Its medium speed

printers complement the personal terminal printers when large

data sets are to be printed. The remote job entry terminal may

also act as a message concentrator to minimize line costs for

local personal terminals.

7.2.3 Networks

Networks of interconnected computer systems will be

prevalent in the future as users recognize their advantages.

Computing power will be distributed, much like the electric

power industry where failure of one component or subsystem may

be bypassed with a negligible interruption of service. Access

and response time will more closely approach optimum when work

can be partitioned among the network's computers.

Through network facilities, specialized installations such

as ILLIAC IV at NASA Ames, will become available to remote

users.

The greatest benefit computer networks hold for IPAD is

inter-installation communication. Government agencies may pass

specifications to contractors and receive reports. Contractors

and sub-contractors can share computer programs and data,

guarantee consistency of configuration, stress levels, -etc.

Public libraries of computer programs, standard reference data

like atmospheric properties, and cross indexes of technical

literature will serve to organize the engineering design process

to an unprecedented degree.

For the near future, an TPAD host system could be connected

into a wideband packet switching, store and forward network

similar to the ARPA net. ARPA uses 50 kilobit dedicated lines

between nodes and special-purpose minicomputers to interface the

local computer system to the network. The minicomputer is

responsible for all data transmission and error management. In

addition it can reconfigure the network in the event of a hard

line failure.

During the implementation of the first few IPAD systems,

careful thought will have to be given to the expected growth of

networks and network traffic. Flexibility of the network's plan

must be sufficient to allow individual hosts to evolve

separately.

120

7.3 	 IPAD HOST COMPUTING SYSTEM USING A CDC 6600 (CYBER 74)

The host configuration in figure 7.1 is recommended for an

IPAD implementation in a CDC 6600 installation. The

configuration is based upon the requirements from volume III and

those given in section 7.2. The recommended operating system is

KRONOS 2.1, primarily on the basis of its orientation to

terminal operations. SCOPE 3.4 would also be acceptable. Two

critical features, in terms of implementation schedule, absent

in both of these systems are:

a) 	 multitasking within a single users terminal control

and

b) 	 the ability to log-off the terminal with the job

active for later log-on and reconnection.

Implementation of these features would currently involve

operating system modifications.

Multitasking is an operating system feature which allows a

running program to command the operating system to execute

another program, usually in parallel with the originating

program. The originating program may obtain status information

through the operating system and may abort the subordinate

program and continue in execution itself. This process of

"attaching" other programs may be nested, or treed, to many

levels.

Specific equipment for personal terminals is not included

because of the rapidly changing technology. However, the

characteristics to support a selection at implementation time

are 1isted. The interactive graphics equipment is an example,

rather than a hard requirement because the specific needs are

unknown at this time.

The equipment list for this host configuration is given

below. A schematic diagram is given in figure 7.1.

a) 	 CPU and system control equipment

o 	 CYBER 74-18 CPU (131,072 CM)

o 	 6612 system CRT console

o 	 PP option for 14 PPU's and 18 data channels

o 	 Three each 844-2 disc drives with three each 7054

controllers (to be used for system storage and

job swapping)

b) 	 Online data storage for the user

o 	 Ten each 844-2 disc drives with three each 7054

controllers

o 	 Five each 821-2 disc drives with two each 3553

controllers and two each 6681 data channel

converters

121

ow~

c) 	 Tape drives for system and users 4t27
o 	 Two each 657-4 tape drives (7-track)
o 	 Four each 659-4 tape drives (9-track)
o 	 Two each 6681 data channel converters

o 	 One each 3528 controller

d) 	 Graphics

o 	 One each 1700 auxiliary computer with a 6674

controller

o 	 Two each 274 display CRT's each with a 17U4

controller

o 	 One each tape drive with a controller

o 	 plotters (off line, CRT slave, connected to

remote batch) drafting machines (offline)

e) 	 Remote batch entry

o 	 Two each 732 terminals (4800 baud) with 1 card

reader and printer each

o 	 Two each 732 terminals (9600 baud) with 1 card

reader and printer each

o 	 One each 6671 controller

f) 	 Personal terminals

o 	 Two each 6676 controllers

o 	 100 personal terminals

CRT

600/1200 baud

minimal vector capability

TTY interface compatibility

o 	 50 shared printers for the terminals

o 	 25 shared cassette drives for the terminals

g) 	 Local batch

o 	 One each 405 card reader with 3445 controller

o 	 One each 415 card punch with 3446 controller

o 	 Two 512 printers with 3455 controllers

o 	 One 6681 data channel converter

The CDC configuration of figure 7.1 will support the

computational load from two design projects similar to Project

1 (subsonic transport in Volume II). However, the peak efforts,

during level 4, in Project 1 (ccnfiguration refinement) would

have to be staggered about three months to prevent saturation.

Project 2 (supersonic transport) would require nearly one and

one third greater capacity than this host configuration for

either level 3 (configuration sizing) or level 4 (configuration

refinement),

122

CYBER 74-16

131,072
CPU

60 BIT WORDS

PPI
CH-

2

PP 2

3 R

PI3
CH
4

PPM
CH C

PPS5

79

PRO PR?
C

PP
CH

B89 PP
ClH C

12

PP I
C
13

PP 11
CH
14

PP 12
CH
15

CH
16

PPI13 P?'14
CH CH
17.I18

6681 6681

6627054 6681 358 6674 67

-E76754r,

8844q2-2E844-2

355

8212 I V
657.4

1

-1744

30 LOW
SPEED

L- 6676

7054

230
4286594

LOW
SPEED
LINES

82

8442

7054

821-2

6681

-I659-4

E l

659-4

14

16681

274
r

345

1732

84-2TAPES FOR
SYSTEM/USER

STORAGE

m
608

GRAPHICS

405

SYSTEM STORAGE
AND SWAPPING41

8422126671

LOW USAGE USER
FILES/ARCHIVE 731

HIGH USAGE
USER

STORAGE

7054

7

C12

r
844-2 3

844-251

USERISYSTEM
REMOVABLE

PACKS

REMOTE
BATCH

TERMINALS
LOCAL
BATCH

FiIgure 7.1 IPAD Host System-CDC 6600 (CYBER 74)

7.4 	 IPAD HOST COMPUTING SYSTEM USING AN IBM 370/168

The host configuration in figure 7.2 is recommended for an

IPAD implementation in an IBM 370/168 installation. This

configuration is based on the IPAD host capacity reqirements

from Volume III and the host hardware requirements from section

7.2.

Due to the essential time sharing nature of the IPAD

system, OS/VS2 with TSO (Time Sharing Option) is recommended.

VS2 was selected because TSO on VS2 allows 42 simultaneous

active regions, while TSO on MVT allows only 14. The +wo

critical features, in terms of implementation time, of the IPAD

design which currently will require system (TSO) modifications

are:

a) 	 implementation of "PAUSF" and

b) 	 the ability to log-off the terminal with the job

active for later log-on and reconnection.

The "PAUSE" command in the IPAD system enables a terminal
user, at any Tim-, to interrupt an executing program. He may
then give a "GO" command to resume execution, or he may enter
some other IPAD command. At the completion of the inserted IPAD
command he may resume execution of the interrupted program.
This process is nested and a user may have several programs in
suspension at one time.

The technology of personal terminals is changing so rapidly
that a specific selection at this time would serve no purpose.
Particular terminals will be selected at implementation time.
Four 2250 graphics consoles have been included. This number is
variable depending on the level of sophistication of the
graphics technology at an individual installation.

The equipment list for this configuration is given below.

A schematic diagram is given in figure 7.2

a) 	 CPU and Miscellaneous System Equipment

o 	 3168KJ CPU with

High speed multiply

Buffer expansion
3 million 	bytes

o 	 3067 power supply
o 	 3066 CRT operator's console

b) 	 Channels

o 	 One 2880-1 Block multiplexer channel
o 	 Two 2880-2 Block multiplexer channels

124

o 	 One 2860-2 Selector channel

o 	 One 2870 Multiplexer channel with

one selector subchannel

c) 	 Online Data Storage for the User and System

o 	 One 2305 Fixed head disk with its 2R35 controller

o 	 Three 3333/3330 8 spindle disk systems with three

3830-2 controllers

o 	 One 3333/3330 16 spindle disk system with 3830-2

d) 	 Tape Drives for the User and System

o 	 Two 3420-5 7-track, multi-density with 3803

controller

o 	 Four 3420-5 9-track, 800/1600EPI with 3830

controller

e) 	 Graphics

o Four 2250-3 Interactive graphics terminals

f) 	 Remots Batch Entry

o 	 One 2702 Transmission unit, 2-4 high speed lines

g) 	 Personal Terminals

o 	 One 2703 Transmission unit, 60 low speed lines

o 	 100 personal terminals

CRT

600 baud

Minimal vector capability

TTY compatible

o 	 50 shared terminal printers

o 	 25 shared terminal cassette units

h) 	 Local Batch

o 	 One 2821-5 Unit record controller

o 	 One 2540 Card reader/punch

o 	 Two 1403-Ni Printers, with Universal Character

Set feature

An IPAD system running on this IBM host configuration would

be capable of supporting two to three Project 1 (Subsonic

Transport) efforts in parallel. As with the CDC 6600 host

configuration, it would be very important to schedule the load

peaks of the individual projects to minimize saturation. This

configuration could handle levels 2 and 3 of Project

(Supersonic Transport) provided some rescheduling and stretchout

were done to reduce the peak capacity requirements given in

volume III.

2

125

H I 3M BYTES

1 .I

230-

30 6 7 3 3

3830-2832802

3 330 I H P E M L I L

2860-2

7-TRACK

30666

SPIDLE

LOW SPEEDTO

SSNDES SPNDES SPNDE

2701 SPEED LINES
45

Figure 7.2 IPAD Host System-IBM 370/168

ORIGINAL PAGE IS

ME Pocat QUA~y
REFERENCES

(1) 	Mills, H. D., "Mathematical Foundation for Structured

Programming", IBM Report FSC72-6012, Feb. 1972

(2) 	IBM eport FSC71-5108, "Chief Programmer Teams: Principles

and Procedures", June, 1971

(3) 	E. Glaser, et al., Proceedings of 1971 COMPCON Conference,

Sept. 1972, Set of Articles on LOGOS System, Case-Western

Reserve University

(4) 	Association for Computing Machinery, CODASYL Data Base Task

Group, April 1971 Report.

(5) 	CODASYL Stored Data Definition and Translation Task Group,

"An Approach to Stored Data Definition and Translation",

Sept., 1971, and unpublished paper by Taylor, R. W. "The

Translation Process", U. of Massachusetts, Sept., 1972.

(6) 	Miller, Robert B., "Response time in Man-Computer

Conversational Transactions", AFIPS Conference Proceedings

for Fall Joint Computer Conference, 1968

(7) 	Martin, James Systems Analysis for Data Transmission,

Englewood Cliffs, New Jersey, Prentice-Hall, 1972, pp 61
122

127

ORIGINAL PAGE IS

OF POOR QUAL1TZ

APPENDIX A

DETAILED SYSTEM DESIGN SPECIFICATIONS

Structured programming is a formal work dealing with

software engineering and hardware-software system design and

development (ref. 1, 2, and 3). The objective of this work is

to transform the development of computer systems from a seat-of
the-pants art to a disciplined technology. This approach has

been utilized to develop the IPAD system design.

The structured programming approach is a top down design

method in which the design proceeds from the general to the

specific. Each refinement is a level in the system design.

Tree structure diagrams give the system functional components in

levels of increasing detail. The nodes at any one level in the

tree structure are states of activity for the system. The

entire system is included in the total set of nodes of each

level, and in fact, higher level nodes are summaries of lower

level nodes.

Transition diagrams describe how the system components, at

each level, are functionally related. The diagrams also specify

the conditions under which there will be a transition or state

change within a node or from one node in the tree to another

node at the same level. These transition conditions are (1) the

input data or conditions that trigger the transition and (2) the

output data or results existent in the system at the time the

transition is made. Figure A.i is a sample tree structure and

transition diagram for a three level system.

The IPAD system design given in appendix A follows the

general form described above. In 'level 1, twenty-nine nodes or

states are described. Except for a few level I states dealing

with hardware or host operating system protocol, the level 1

states are each refined into level 2 states. The level 2 states

are, in turn, broken out into level 3 states, and so on. The

emphasis in the design was placed upon consistency in detail

rather than consistency in levels documented. Hence, there are

differences in the depth or number of levels reached in some of

the tree branches.

While the design as presented is in top down form, the

actual design process does, not proceed monotonically.

Generally, design at level n will result in a review of some

elements of the design at level n-1, n-2, etc. The advantage of

the method is that the examination of effects is an orderly

process and the consequences of the iterative design process are

highly visible.

Al

TREE STRUCTURE DIAGRAM A LEVEL I

A.A-

A.B 2

A.A.A A.A.B A. A.C A.B.A A.B.B

TRANSITION DIAGRAMS
 (input/conditions,

A.A output/results) A.B

LEVEL 2

(input/conditions,

output/results)

A.A.A. A.A.C A.B.A

i/c, o/r)
i/c,

i/c, o/r)

i/c, o/r)LEVEL 3

A.A.B (i/c, olr) A.B.B

Figure A.1 Structured Programming Diagrams

A2

Each level in appendix A contains the following diagrams

and tables:

State Description Tables - Three pieces of information are given,

for each node:

a) 	 Short Structured Name - This name consists of a set of

one or two alphabetic characters catenated in the form

rs

rs.tu

rs. tu. vw

etc.

The syllable position denotes a level. For example,

if node A is at level I then node A.B would be at

level 2 and would be a state of node A. Hence, the

tree diagram can be formed from the short structured

names. There is no requirement that these names be in

sequence, i.e., the existence of node A.B and node A.D

does not presuppose the existence of node A.C.

b) 	 Long Name - This name is descriptive of the function

of the node. For example, node E has the long name

"Subtask Set-Up."

c) 	 Description - Several sentences, in summary form,

describing the capabilities of the node.

Allowed Transition Tables - This is a tabular representation of

the connections between the nodes having a common parent at the

next higher level. The states from which and to which

transitions are made, along with the corresponding references to

the input/condition and output/result tables which follow, are

given. A bent arrow is used to flag entry and exit points from

the parent node. When exits are shown, the level of the state

exited to may be at a higher level than the state being exited

from depending upon the level of tree structuring completed.

Transition Diagrams - These are a graphical representation of

the allowed transition tables. They can be constructed from the

transition tables and are valuable for visualizing

relationships.

Input/Conditions List Tables - This is a list of the input or
conditions that trigger a transition or change of state. This
list should be used in conjunction with the Allowed Transition
tables.

A3

OtRLt/RL ult List Tables - This is a list of the output or

results that are existent in the state when a transition is

made. This list should also be used in conjunction with the

Allowed Transition tables.

Abbreviations are not used in level 1. They a-re used in

lower levels to facilitate writing. Definitions of

abbreviations are given in section 4.0 of Volume IV. The text

part of appendix A was created by a computer program from data

supplied by the system designers. This computer program checked

for consistency to ensure that transitions were made between

valid states and that lower level
referenced to higher level states.

states were correctly

Tree diagrams are not included.
from the structured names.

They can be constructed

Figures A.I and A.2 are the level 1 transition diagram.

Node F is repeated on figure A.3 for reference. These figures

should be read in conjunction with the State Descriptions,

Allbwed Transitions, Input/Condition List and Output/Result List

following the diagrams. Transition diagrams for lower levels

are included with the level.

A4

I EOLDOUT FRAME

ALL NODESto THEI4ftlfht
OF THIS NODE RE7I

'AN6.N AUPTAK

SUBTASnr
TERMINATN0 N'TROt..W F , HA,A. K .

ISORT MANAOA. PA, AWA

DURING TE MTIRMNAT

OERATING

ASYSTEM EXECUTE NAME OF
NON-EXISPING

IPADF ASIC 2

PERSONAL PERSONAL PER-ONL. OPERTINST

TERMINAL TERMINAL TER MINAL MMNTOnds, , ,"

OFF WCNNECE MODE N,0 , 1I

A a C 0 E AEO XTI

AN EL INCMA MD

".UI3= K IN EX N

USTASKA1

I ALL NODES TO THE R IGHT INTERRUPTON

SOFTHIS NODE RETUJRN MUIT
WERE IFTriE SWITCH "
J S TURNED OFF

SNAME OF EXISTnING
I SUBTAMK INTERRUPTED
| DURING TERMINATION

*kTERMINAL DIALOGUE WITrHOUT

A CHAN GE OF STATE

Figure A.2 IPAD System Design Level I
Transition Diagram

AS

V RGLHOUT ZRALi

.E EQUIT

STOP
SUSTAS<

.OM M AN
*MODE TERMINhATE

F

HE A N SEARCH CREATE MODIFY CONSTRUCT EXEINTERR ESLA DISPOSE DEFINE

OTEXIT L N H HEXIT L N O REXTTIT L NO N EXIT L N O R
EXIT

t
EXIT

R L NO
EXIT

NORO. NO R
Ex-X

LIL

PETH ETURN FTSRETUR -RETUR RET,., RET N HEhRETURN "ETUR

LEARNING SEARCHING tEATING MODIFYING
CONSTUCTING
AN OPERATIONAL E CUI LIRA

DEFINING
LIBRARY

ASOUTTHROUH UBRNY LBRARY
"BRARY~ ~ MODLEAD

A A.JOBSPL
EUT.LBAYb

GO

A
WA IRRE
THAUGH

PADDULESEEUAEC
jNRE NRE

UAU 11O 1 P A

EOERIESUL-SSEQLENRARYOENRIE

GO
SEUNEETISVARIABLE.

ODAUE 0THAN

ENT CEA
AENTRIES

APO

ASE OAR

TRN R IEAOITES

VARIABLES.

E×CEUE
r

AW

,

OU*TE IALDAOGEWITU

PAUSA CH ANGEFSTT

Figure A.3 IPAD System Design Level I

Transition Diagram (Contad)

A6

COMPONENTS OF IAD LEVEL ONE

ORIGINAL PAGE IS

OF POOR QUALITY

' STATE OESCUPTIONS

STATE LONG NAME AND TEXT

A PERSONAL TERlINAL OFF

THE E4'IPMENT IS NT ACTIVE.

PERSOJAL TERMINAL ON

THE EQUIPMENT IS AVT1VE -3UT NO OATA PATH TO ThE
COIPUTER EXISTS. THE EGJIPAENT Is A PERSONAL TLRMINAL,
NOT A REmOTE J0'3 ENTRY TERM1INAL, 13UT MAY 3E AUGIENTD
WITH PEdiIPHERAL OEVICES SUCH AS CASSETTE TADEPRItTER,
PLOTTER.

C FERSCNAL TERIINAL CONNECTED

THtRE NOW EXISTS A T"0,C-'AY
TERMINAL AdD THE COiPUTER

dATA PATH UET.4EEN THE

0 OPEFATiNG zYSTEd COMMANu AOOE

THE 'J3ER IS NOW A:3LE TO ENTER COMMANOS
SHARING SYSTEM IN THE H.;T OPERATING SYSTEM

TO THE TIME

F SJ3TASK SET-UP

THE USE:. IS NOn IN CCMMUZICgTION WITH IPAG AND
IS EITH-R INITIATINr A it.i SU3TASK OR CONTINUING AN
OLD ONE. IA EITdEP CASE, THE NET RESULT WILL BE THE
ESTA'JLISHIENT OF HIS ACEIVE SJBTASK LIBRARY.

HE

F-

TO

SUBTASK C.)MML:,NO MODa

THt: USER IS NOW A3LE TO ISSUE
AJVANCE HIS SU2TASK AO(K.

IPAO BlASIC LOMMAN3S

A7

IPAD" LEVEL -ONE

(CONTINUED)

,.- STATE DESCRIPTIONS (CONTINUED) '

STATE LCNS NAHE AND TEXT

G. LEARNING tIUJT IPAO

THE ACTIVITY OF GAIN'ING INFORMATIOA ABOUT IPAD
EITHER AS A TAUGHT COU&SE OR AS HELD WITH A SINGLE
COMMAND OR MODULE.

H SEARCHItNG THkOUGr THE LirlAkIES

THE 0,OCLS3 OF SCANjIr'G
ORIES TO IUENTIFY ANd LJ-,ATE
DATA BASE.

JiCTIONARI5S ANG LIPECT-
INFORMATION IN THE IPAj

I CREATING AInN-.ARY ENTRIES

THE PROCESS OF £NSERDiN, CATA (NUMERICAL ,NO CTH-
ER) INTO TmE IPAD DATA 3ASE RESULTING IN NEW LI3rZAY
ENTRIES{LE). INCLUDED 1S THE ENTERING OF SCURCE CODE
FO-R COOING :OUULES(Il) ,IINFOP11ATION FOR 5TOREO DAT4 *JF-
INITIONS(SJO),INSTAGES OF DATA SETS(LS),5DISPLAY MERDS
(01), AND THE INSTANCE)F THE SYSTEM DATA SET CONTAI.N-
ING ACCESS AND PE-RMISSIJN ZODES.

K MODIFYING LI-7(iA-Y ENTRIES

ALTE: ING CURRENTLY REAOENT
CAN INVOLVE CHAAGES TO ANY -VALIU
TYPE.

LIBRARY ETkIES. THIS
IPAD LIBRARY ENTRY"

CONSTUCTIJG A JOB

ARRApNCtNG AVAILABLE COOING HOWULES(Cr1) INTO OPER-
ATIONAL MOJULES(OM), OPERATIONAL MODULES INTO JOOS, AND
OPERATIONAL MCODLES AND PrEVIOUSLY DEFINED JORS INTJ
NEA JOBS.

AB

ORIGINAL PAGE IS

OF POOR QUALITY,

IPAD LEVEL ONE

(CONTINUED)

** * STATE DESCRIPTIONS (CONTINUED)

STATE LONG NAME AND TEXT

N EXECUTING 4 JO,

ACTIVATING A PREVIOUSLY CONSTRUCTEJ JO3

0 COMNUNCATINC WITH A JOb

BEING INTERACTIVE tllTH A USER CONSTRUCTED JOB

P DISPLAYiN'; RESULTS

SCANJING 3HECKING, [NO INTERROGATING INFC&MATIOq
CONTAINEO IN LIJRARY ENTRIES OF ANY TYPE.

C? OISPUSITiJN OF LI3RARY ENTRIES

TRANSFERRING LIi-RA-Y ENTRIES BETwEEN IPAD LIB-

RAZIES,-SENOING ITEIS OJTS:UE UF IPAD(OFFLINE, OR VIA A
COMMUNICATION NETWORK), AND REMOVAL OF UNWANTED LID-ARY

ENTRIES FRJM THE OATA RASE.

T SUBTASK STEP CONTeOLLEO A-30RT

IHE TERMINATION CF TmE CURRENTLY INTERRUPTED SJS-
TASK STEP.

U SUETASK IJTERrUPTION

ACTION AIMED AT TEIPV(ARY INTERRUPTION OF THE 3JB-
TASK ACTIVITIES WITH THE I;NTENT OF RE-STARTING AT A
LATER TIME AT-THE PZECI3E POINT OF INTERRUPTION.

A9

IPAD LEVEL ONE

(CONTINUED)

* STATE DESGRIPTIO4S (GONTINUEJ)

STATE LONG NAME AND TEXT

V SJ3TAS< TERMINATION

THE USER HAS COMPLETEJ THE DEFINED SUETASK AND
NOW DESIRES TO DISPOSE OF ALL REMAINING INFORMATION,
LOG THE TERMINATION IN THE PROJECT PLANS, AND ISSUE ANY
REQUIRED REPORTS.

W DEFINING LIb'ARY ENTRIES a', VARIAgLES

A OEFINITION IS A OICTIONARY ENTRY WHICH COnTAINS
THE MEANIAG OF A VARiABLE OR A LIBRARY ZNTRY Al-O CRJSS
REFEraENGING INFORMATION. ALL COMMUNITY LI3RARf ENTRIES
AND VARIARLES REFERENCEJ IN OATA SETS REOUIRE uEFIN-
ITIONS. DICTIONARY ENTRIES ARE OPTIONAL FOR SUETASK
LI3RARY ENTRIES.

GA INIERUPTED LEARNING AuOJT IPAD

THIS IS THE STATE I'lMEOIATELY FOLLOWING-A
PAUSE DURING LEARNING A3OUT IPAD. EACH OF THE STATES
G, H9 1I Ky Mi N, O, P, Q, AND W HAVE A SIHILAkLY
ASSOCIATED STATE.

HA INTERRUPTED 'EA CHING THROUGH LIRARIES

IA INTER'JPTED CREATING LIBRARY ENTRIES

KA INTERRUPTEO HOOIFfING LIBRARY ENTRIES

MA I TERZUPTO CONSTRUCTING A JOB

N4 INTERRUPTED fXECUTING'A Job

AI.

IPAD LEVEL ONE
(CONTINUED)

g
Q

+ STATE DESCRIPTIOS (CONTINUED)

STATE LONG NAME AND TEXT

CA IATERuF-TEo COMMUNICATING WITH A JOB

PA I'TLR-UPTEO DISPLAYING RESULTS

QA 1'4TcRPRUF'T.O DISPOSITION OF UIdRARY LNT.R

WA INTERRUPTEU DEFINING LISRAPY ENTRY/VA-)

All

IPAD LEVEL ONE

(CONTINUED)

'' 4 	 **4"RLLOWED TRANSITIONS

FROO STATE TO STATE INPUT / OUTPUT

(t = ENTRY) C = E XIT) CONDITION RESUL-T

4
& A 	 B

14 1-4
S 	 A

C 	 22

14 13
13 13

U 3 3

C 	 A

o 	 A 14 1

a1 13 13

S 15 15

o 	 12 12
E 	 4 4

14 2trE 	 A

E3 13 lb

F 5 5

F F c

v 16 6

F 	 A 14 17

b 13 17

G 17 22

G 34 39

H 13 22

h 34 69

I 19 22

I 34 39

K 21 22

K 34 09

N 23 22'

M 34 49
N 24 22
N 34 39
0 34 39
P 27 22
P 34 39

28 22

' 	 34 39
T .9 9
U 6 r
V 	 7 7

w 20 22
W 34 39

A12

ORIGINAL PAGE IS
OF POOR QUALITY

IPAD LEVEL ONE

(CONTINUED)

• ALLOWED TRANSITIONS (CONTINUED) *

FROM STATE TO STATE INPJT / OUTPUT
(o ENTRY) (=* EXIT) CONOITION RESbLT

G A 14 '4.
5 13 4G
F 35 42
GA 31 j(

H A 14 4,,
3 13 4t
F 35 4L
HA 31 36

I A 14 41
3 1i 4
F 35 42
IA 31 3f

K A 14 +E
o 13 4C
F 35 42

KA 31 3L

H A 14 4,
S 13 4f
F 35 42
MA 31 36

N A 14 4
3 13 4-
F 35 42
0 25 22
NA 31 36

0 A 14 4'
B 13 4r
F 35 42
N 26 22
OA 31 36

P A 14 46
B 13 4C
F 35 42
PA 31 .6

O A 14 4[
a 13 4C
F 35 42
QA 31 36

T A 14 18
A 13 18

A13

IPAD LEVEL ONE

(CONTINUED)

ALLOWED

FROM STATE

= ENTRY)

U

V

W

GA

HA

IA

KA

MA

NA

OA

TRANSITIONS

TO STATE

EXIT)

A

i
O

E
A

8
O
E
A

F3
F

WA

A
8

F
G

A
8

F
H
A
0

F

1
A
8

F

K

A
a

F
m
A
a
F

N

A
B
F

0

(CONTINUED) *

INPUT / OUTPUT /
CONDITION RESULT

14 19
13 19
11 1i

1$ Ic
14 21
13 21
11 11
13 C

14 45
13 4C
35 42
31 36
14 4[

13 41
33 3t
-32 37
14 4c
13 41
33 30
32 37
14 4C
13 41
33 38
32 37
14 4f
13 41
33 38
32 37
14 4C
13 41
33 3E
32 37
14 4Z
13 41
33 Lb
32 37

14 40
13 41
33 38
32 37

A14

IPAD LEVEL ONE
(CONTINUED)

ALLOWE) TRANSXT1JNS (CONTINUED) #444

FROM STAIE TO STATE INPUT I OUTPUT /
(o = ENTRY) (- = EXIT) CONDITION RESULT

PA A 14, 41
B 13 41
F 33 36
P 32 37

QA A 14 4
a Is '41
F 33 36
Q 32 37

WA A 1 4'f

B 13 41
F 33 3t

32 37

A15

IPAD LEVEL ONE

(CONTINUED)

* INPUT / CONDITION LIST

NUM3ER TEXT

I SWITCH TURNED ON
2 OIAL UP
3 VALID OS LOG ON INFaRMATION IN THE PROPER SEQUENCE
4 VALID OS CON 1 ANJ TO EXECUTE IPAD
3 VALID SUBTASK IDENTIFIER FOR A NON EXISTING SUBTASK

6 VALID SUBTASK I-JENTIFIE-1 F3R AN LXISTING SUiTASK
7 TERiINATE
3 QUIT
j STOP

13 ANOTHER
11 0O04E
12 HELLO
13 USER HANGS UP
14 SWITCH TURNED OFF
15 6YE
16 SUaTASK RECORJS SHO4NG AN INTERRUPT OCCURRED OURING

THE SUB TASK TERMINATION
17 HELP
13 SEACH
i CREATE
21 DEFINE
21 MODIFY
e3 CONSTRUCT
24 eXECUTE
25 CONDITION CODE SHOWING ER,1IAL INPUT IS REQUIRED
26 LAST LINE iF USER INPUT
27 DISPLAY
23 DISPOSE
31 PAJSE
32 GO
33 ANY COMMAND EXCEPT A GO
3,+ RETURN
35 EXECUTION COMPLETED - NORMAL EXIT

A16

ORIGINAL PAGE, aOF POOR QUALrI

IPAD LEVEL ONE

(CONTINUED)

* OUTPUT / K-SULT LIST

NUM3ER TLXT

I -
2 PHONE LINE CONNECT
3 VALIit OPERATING SYSTEM LJG-ON INFOR 1ATION
4 OPERATING SYSTEM COMMAND TD EXEGUTE IPAJ LOG-ON AJRO;-AM
5 ESTAdLISH;IENT OF A NEki iJ6ZTAS(LISAPrY IN THE LL
5 THE OLD SJ3TASK Li6RARY IN ACTiV-" FORM
7 OS COMMAN.. TO LXEUUTC TiE SUdTASK TER'IAATION FROR. M
3 OS COMMAN) TO EXCCUTE T-k SJBTASK INTERRUPTION POG-(4M
A OS COMANJ TO EXECUTE TH SUCTASK STEP INTERRUPT&UN

PROG, AM

i] SU3TASK I'JCERRUPTIO;J LOPLETE

12 VALIU LOG OFF INFORIATIJN
13 PHONE LINE DISCONNECT
14
15 -
15 SU3TASK LI3,3ARY ,ENTRY RESTJREJ TO ORIGINAL STATE
17 A PROCEOURE WILL uE EXEOUTED EUUIVALENT TO THE

FOLLOWING INPUTS - -.313.
13 COMPLETIGN OF TERMINATIJ, THEN PROCEEDING PER OUTPUT

17
13 GOAPLETION OF IATER-uPTI-jN, THEN PROCEEDING AS IF INPUT

13 HAD BEEN RECEIVED.
23 OUTPUTS 15 AND 13
21 HOLDING uF TH_ TERMINATION INTACT SO IT vILL BE

ENTERED UPON RETURN, THEN P.RO3EEDING AS IF INPUT 13
HAO BEEN ENCOUNTERED

22 PA.RSEU GO'MAND, UPDATED ACTIVITY RECORLO
3J EXPLANATORY TERMINA" OUTPJT(IF NEEDED), INPUT REQUEST
31 INPUT TO SJBTASK STEP
36 CURRENT SU3TASK STEP INTEPRPTED IN RE-STARTAdLE FOR.
ST -

33 POINTER TO INTEtRUPTEO SUbTAS,(STEP PLUS RESTART
INFOPMATIO

39 OS COMHMANJ TO RE-sTART FR.OM P ECEEOING PAUSE
4) IPA) PROEjUUE EXECUTEu CONSISTING OF A PAUSE, QUIT,

DOME ,BYE
41 IPAD PROCEDURE EXECUTED DUNSISTING OF Q-JITyOONEtbYE
42 NORMAL EXIT CGOE

A17

LEVEL 2

COMFONENTS OF STATE E

SJBTASK SET-UP

STATE OESC I,-PTICNS ***44

STATE LONG NA-.M At,; TEXT

E.A 1PAU LOG-'0'

USEL- SUPPLIES HIS USER lJ, PASSNORD, AND
SU3TASK I,]cNTIFrER. THE SYSTEM HILL- CHECK FOR
USER VALI)TY AN). THE EXISTENCE OF THE SJ- ITASK.

E.3 KE-ACTIVATE GLO SU13TASK

GIVE.N AA INACTIVE 3uFoTASK NAME, 'kiST.O-E THE
SU3TASK LI:3iARY TO ITS :'.E-INTERRUPTEC STATE. SPECIA
GOYJIOCRATIONS ARE N.'ECEgSA Y !F THE INTERRUPT C3CUR,,ED
OUTING SU3TASK TERMINATION.

E.C CKEATE NEd SJ3TASK

INITIATE A SUBTASK WILL GENERALLY DEPEND UPON TIE
EXISTENCE OF PRJJECT PLANS EFERENCING SUCH A SU3TASK.
AO-INISTRATIVE CONTRDL 41LL BE EXERCISEJ PRIMARILY
T, OUGH THIS MECHANISM. SUrSTASKS WITH NO FOVMAL
PR3JECT kELATIONSHIP MAY ,. HAtJOLEO Tik.OUGH A SPECIAL
CATCH-ALL PrOJECT.

4LLOWEJ TKVNSITIONS

FROM STATE TO STAT: INPUT / O /OUTPUT
(r, = ENTrY) (t'= EXIT) OONOITION kESULT

rE.A E.A 6- C

E.6 1
E.C 2 2

E .3 'F.A 3 3
rV.A -S

E.G E.C 7 6
rP.A 4 4

A18

" F.A

LEVEL 2 TRANSITION DIAGRAM

STATE E SUBTASK SET UP

A19

E t SUBTASK SET-UP

(CONTINUED)

" INPUT / CONDITION LIST

NUMBER TEXT

I USER 1O A.1 3 THE NAME OF A CURRENTLY INACTIVE SU3TASK
2 USER IL AND A SJSTASK NA4,PL NOT RESIDING IN TrIE CL
3 VALID SUBTASK LE IN THC CL
4 ALL INFORMATION NECESSARY TO INITIATE A SUBTASK.
5 INDICATIO- IN TiE SJ5TA3K LE [HAT TERMI',IlTION WAS IN

PROGRESS WHEN TIE UScR -luNG UP OR TURNED TH- SWITCH
OFF.
INSUFFICIENT VALIDITY CH-C, IWFOKMATION

7 INITIALIZATION INFOZIIATIuN FCR USER uPTIONS ANf/i<
PROJECT fElJIRt.lENTS

* ' OUTPUT / ,FQSJLT LIST

NUi 3P TEXT

I LOCATION OF THE SUBTASK TU BE ACTIVATEO
2 NAME OF T-ic NEW SUBTASK AND PO1NTER TO PHOJECT PLANS
3 SU-3TASK LIBRARY R ESTOREJ TO INTERRUPTION TIME STAIUS.

ONE EXCEPTION IS IF A JOj wAS LEFT IN EXECUTION AT THE
TIME OF INTERRUPTION AND IS NOW INACTIVE. IN SUCH A
CASE, THE NE4 STATUS rlL ACCOUNT FUR THE INTERIt"
ACTIVITY.

+ SUrITASK LI.3. AY INITALIZED CONSISTENTLY WITH THE
PRJJLCT PLANS.

5 EXPLANATION OF ALJItIONAL CHECK INFORMATION REQJIREJ

6 AODITIONS TO THE STL SET u"

C.OSS REFERENCE] TkANSITIONS "

STATE IS AtCLSSIBLE FROM

E.A U.73

U.0

VA.

A20@

LEVEL 2
COMPONENTS OF STATE F
SUBTASK COMMAND MODE

Qtr

STATE 9ESCRIPT1ONS " -

STATE LONG NAME AND TEXT

F.A REQUEST USER INPUT AND INTERPRET 30RMAND

THE SYSTEM WILL PROMPT THE USER TO GIVE A COMMAND.
AFTER READING IT, IT WILL bE £NTERPRETED TO DETERMINE
WHAT ACTION HE DESIRES. THE COMMAND SYNTAX WILL $E
DELT WITH ONLY TO THE LEVcL NECESSARY T3 DETERMINE THE
BASIC INTENT ANJ SEPARATE OUT ANY INFORMATION(E.G. kG-
UMENTS) FJi THE IPAO UTILIT .

F3 OE-ACTIVATE SUBTASK STEP

THIS IS AN ALTERNAFE ENTRY POINT TO BE USED WHEN
A PAUSE HAS BEEN GIVrN, FOLLOWED BY A COMMAND OTHER
THAN GO. A PUSH-DOWN STACK WILL HAVE TO dE KEPT TO

-INSURE A LAST-I'J-FIRST-UUT PROCESSING ORDER.

F..) RE-ACTIVATE SUbTASK STEP

THE PJSH-DJv4N STACK OF INTERRUPTEU StJBTASK STEPS
MUST BE INTERROGATED TO LGOAT! THE STEP WHICH IS TO 3E
ACTIVATED.

A21

F t SUBTASK COMMAND MODE

(CONTI-NU D)

- * ALLOWED TRANSITIONS

FROM STATE.- 7-OST-ATE _- INFUT'/ OUTPUT f

(t = ENTRY) Cr = EXIT) CONDITION RESULT

31 8&F..A-
F*-C 4

rG.A 6 6

&,H,,A 7

e&IoA 8
&'K.A 1-'a .i ,

2&U. A 2
t'VA 3 3

& 17r4U-A
F.FA £3

- G , _. 1:8 7
-rH. , 19. - 7

.

-rK - . . ., , , -!2,2 ., 7

oM 24 7
rN 25 7
+0 26 7

2?
OP 7
- - ' 28 -. 77

W •30 -7

• Since these are transitions to interrupted states, the

node names at level 2 cannot be specified.

A22

ORIGINAL PAGE I

OF poor QUAIS1T

F877771
S1917 H.

12o/7 in
20 K_1 . .	 II 22/ _

124/7 M__(F.C

/ 	 26/7 N

31 8

•r

61/6 P.A W4
-
F.A 1716 B

L86 U.Ak , e.A .2/- -U06 I 1-87

M~.A_
13/6 NV.A

W/.A

12/63

LEVEL 2 TRANSITION DIAGRAM

STATE F: SUBTASK COMMAND MODE

F I SU9TASK COMMAND MOE
(CONTINUED)

'4*4 INPUT / CONDITION LIST *4*

NU i3E R TEXT

i STOP
2 QUIT
S TL,VINA TE
4 ikLTURN
1 RECOVERY INFORMATION FE,, SU3TASK sTEP ,t LLJUT -,ECC J,

OL) PUSH-9JI,, STACK
6 HE.P
7 SEARC
3 ENTER DATA

1) MOJIFY DATA
12 C JT,-TrULT JOt3
13 EXECUTE

V' OISPLA'
15 uISPJSE

17 DEFINE
13 PUSH-uvhN STACK WITH STTiE 6 OW TOP
19 PUSH-UOWN STACK WITH STATE H ON TOP
23 PUSH-UW\,, STACK WITH STATE £ ON TOP
21 PUSH-OOWN STACK wIT-i £TAT j ON TOP
22 PUSh-UOhK. STACK WITH STIT- K ON TOP
,3 PUSH-OOwN STACK WITH STATE L ON TOP
2-+ PUSH-O0 N STACK WITH STATE H ON TOP
25 PUSH-DON STACK 'ITH STAT -- N Of TOP
25 PUSH-00UNN STACK WITH STATE J JN TOP
27 PUSH-DOWN STACK WITH STATc. P ON TOP
23 PUSH-DOWN STACK WIT1 STATt U ON TOP
3) PUSH-DOWN STACK WiTA STATE H ON TOP
31 INCORRECT COMMA4U FO.MmT

*44'*4 UUTPJT / iZES,JL1 LIST -

NU'I-3E R TEXT

1 POX JERS TO SUBTASK STE T3 fBE TERMINATED
2
3 -

4 PUSH-DOWN STACK
5 NOOlFIEU PJSH-DOWN STAC<, A!NC THE OE-A&TIVATEO STS

A24

ORIGINAL PAGE 16
QUALESF I 	 SUSTASK COMMAND 1OE OF POOR

(CONTINUED)

CUTPdT / RESULT LIST (CONTINUED)

NUi13ER 	 TEXT

6 	 CUIMANO biKEN UP INTO THE 3ASI COMPUNDtTS
7 	 LAST FECO,DEO LINE SENT T3 THE TrRMINAL A;EFORE

THE INiTR&,UPTI1O IS iE-LSSUED TO THE ThzMIWAL; ,LSC THE
$O'JIFICCJ PJSH lO0WN STAG<.

3 	 EXPLANATlON OF THE EmZFJZ, RLQUEST FoR RETRY

v-" - f.JSS RLFERENEJ TANSITIONi S

STATE IS ACCESSIzLE FRO'I

F.A 	 E.3
E.j

o.E

G.I

-4.0
H.U

H.E
1.0

K.OL)
M.A

F .0

P.J
P.E

0.3

C.E

Q.F

Q.,;

U. A

Q.K

T.d
W.G

A25

LEVEL 2

COMPONENTS OF STATE G

LEARNING ABJJT IPAC

STATE OESCRIPTIONS

STATE LONG NAIE AND TEXT

G.A VALIDATE :JSaR

THE USER MJST 3E VA'uIOATEO FOR THE PRDORAN-EO
COURSE OF INSTRJCTIJO 4- WANTS TO BEGIN OrQ CONTINUE.
CO-IPLETE COU&SES GOVERIV4 DIFFERE1NT bUBJLCTS WILL tIE
OFFERED. A PARTICLL4R SJ$'JcCT MAY BE COVEREO AT SEVC(AL

LEVELS OF OETAIL.

G.3 RETRIEVE STUJENT RiECO(O

USER PROFILE I4FO..IATION IS MAINTAINED IN THE SYS
rE;i SECURITY FILE. A RE3ORL IS KEPT OF EACH USERS LEVEL
OF PROFICIENCY 3ASEO CN GZ-ADES FOR COURSES COMPLETE)
AND HIS DYNAMIC USE OF THE TEACHING FACILITY WHILE HE
N O KS.

rI, ESTABLISH STUDENT RECORD

IF THIS IS A FIRST RELaUEST FOR HELP OR FOR A PRO-

GRAMtEO COURSE A STUOE4T RECORD IS ESTA4LISHEU FO, THE

USE, .

G.] RETRIEVE LESSON PLAN

THE SCEJARIO FOR TilE PROPER LESSON IS OBTAINEO FOR
USE IN PRESENTING THE IATERIAL TO THE USEr..

G.E PRESENT L:SSON

THE MATERIAL IS PRESENTED TO THE USER AT A RATE
DETERMINED BY THE USERS AdILiTY TO LEArN.

A26

ORIGINAL PAGE IS

G Z LEARNING ABOUT IPAD OF POOR QUAlITY
(CONTINUED)

* STATE DESCRIPTIONS (CONTINUED) *'

STATE LONG NAME AND TEXT

G.F DETERMINE GO\ITEXT

THE USER HAS MADE A CEQUEST FOR hELP. HE IS EITHER

BEThEEN ACTIVITIES OR HZ HAS INTERRUPTEl HIMSELF TO GET

ASSISTANCE. IN THE LATTER CASE THE SYSTEM WILL ATTEIPT

TO DETERMINE nHAT TYPE .F SCEiJARIO IS MOST LI.KELY TO
SATISFY HIS NEEJS WITHOUT 6EING TOLD DIRECTL. IF THE
USER IS BETWEEN ACTIVITIES O, THE CONTEXT OF HIS PREV-
IOUS ACTIVITY DOES OT 'ROVIDE A GOOD SUESS, rHE SYSTEH
ANO USER ENGAGE IN A SIQLC'UE TO uETERmINE THE TYPE OF
HELP HE WANTS.

G.3 RETRIEvE SOENA'RIO

A SCENARIO TO GUIDE A HELP SESSION IS <ETRIEVED.
THIS HELP IS NOT PRJGRAA1MED TEACHING BUT QUERY-ANSiE

DISPLAYS OF. OPTiONS, ETC.

G., SELECT LANGUAGE LEVEL

THE USER RECOR,) IS USEd TO SELECT A LANGUAGE LEVEL

COAPATIiLE WITH THE USEb PROFICIENCY. THE USER MAY

CHANGE LANGUAGE LEVEL AT ANY TIME.

G.1 RESPON3 TO USER QUERIES

THE HELP SESSION IS A DIALOGUE BETWEEN THE USER

AND THE SYSTEM.

A27

G t LEARNING ABOUT IPAD
(CONTINUED)

* ' ALLOWED TRANSITIONS *444'

FROM STATE T.O-STATE INPJT / OUTPJT
(r = ENTRY) (r* = EXIT) CONDITION RESULT

roG.A G.A I I
G.8 2 2

G .- 3 G.0 ,11 2
6.0 3 " 2

G.G 11 2

G G.0 3 2

G.b 10 2

G. G.0 4
G.E 51

G.E .F.A 7' 2
6.E 6 3
G.8 9 2
G.F 3 3

u.G 12 2

G., G.H 13 2

G.H G.H 16 3

G.I 1+ 2 -
G.I rF.A 19 2

G.F 17 2
G.H 15 2
G.I 1 3

A28

f17/

13/2G. F.A91

G.B. 112G

LEVEL
 IGA
 1 3R;~T~i

SAEG:F LEAR/2l ABOU 13/PAD9/

14//3

G I LEARNING ABOUT IPAD

(CONTINUED) QOjQ L

** INPJT / CONDITION LIST *4#

NUMER TaXT

I USER NOT VALIDATEU FOR LROGRAMMED COURSE
e USER VALIJATEtD
3 USER TRAINING RECORDS AVaiLABLE
4 USER/SYSTEI DIALOGUE RELATIVt TO LESSGN SELECTiON

INCOMPLETE
5 LESSON SCEoARIO IN USER W7RKI4G AREA

, LESSON SESSION INCOIPLcTE

7 LESSON SESSION ZOMPLET
i MORE INFO;IA FlON REQUI(-EG 10 JETERMINL TYPE OF dELF

WANTED

3 INITIAL HELP CONTEXT OETERMINEu

i1 USER PROFICUIENCY DATA AJAILAOLE

it - SET UP NEN USER USE TRAINING rECORJ

12 SECOND AN3 LATER HELP CONTEXT uETERMINEO
13 HELP SCLNAi IO RETRIEVE] SJITA3LE FOR SELECTED CONTEXT
14 LANGUAGL LEVEL SELECTED
15 USER DESIRES CHANGE IN LAI4UAGE LEVEL
16 USER/SYSTEI DIALOGUE RE-ATIVL TO LANGUAGE CHANGE

INCOMPLETE

17 USER WANTS TO CHANGE HELP ONTcXT
1 USER/SVSTE4 HELP O1ALOSd'J INCOMPLETE

±3 HELP COMPLETE

* * OUTPUT / - ESJLT LIST

NU.-3ER TEXT

I MESSAGE TO SELECT ANOTHE- COURSE OR TERMINATE
2

3 MESSAGE TO USER INFORMiG HIM TO PIOGEE)

CROSS REFERENCEJ IR4ANSITIONS

STATE IS ACCESSIBLE F4O-l

G.A F.A

A30

H.3

LEVEL 2 OF, POOR QUPA-I
COMPONENTS OF STATE H

SEARCHING THROUGH THE LIBRARIES

STATE OESCIPTIONS

STATE LONG NAME AND TEXT

INTEROtT GOMMAND

THE JSER MAY WI-Ih TO GCNrROL HIS OWN SEARCH bY

SCANNING JIGTiOiARY AND OI'lECTORY LNTRIcS TO IDENTIFY
LI3RARY ENTRIES TO 3E DISPLAYED. HE HAY 4LSO NANT THE
SYSTEM TO PE;FO&M SEAKCHES UTIL1ZING SELECTION 2RITEQIA
HE SUPaLIES.

USEK CONTJLLEO SEARCH

A SEARCH FOR A zPECIFIC)ICTIONARY, DIRECTORY, OR

OR THE USER MAY PAGE THROUGh
LI3.RARY E4TRY MAY BE MAJE,

AN ENTIoE *3ITIONARI OR OIzECTOiY.

H.) SYSTEI COIT-?CLLEO SEARCH

AN INFORMATION sELECTION EXPRESSIO1 IS GIVEN TO

THE SYSTEM AND USED TO CONTROL THE SEARCH.

H.E DISPLAY SELECTEU INFORMATION

INFORMATION IDENTIFIED 3Y A SEAKCH IS DISPLAYED

TO THE USER FOLLOWING VALIDATION FOR REAU ACCESS.

A31

5/2

H.D

H.B 6/1 10/

9/44

H.B 7/ 6/ F.

LEVEL 2 TRAJSITION DIAGRAM

STATE H: SEARCHING THROUGH THE LIBRARIES

A32

H 9 SEARCHING THROUGH THE LI:ZARIES
(CONTINUED)

* ALLOWEO TRA1NSITIONS *

FRO. STATE TO STATE INPUT / OUTPUT
(,+ = ENTRY) (o, = EXIr)0ONOITION RESULT

rH.	 H.B - 2
rl.C 4 4
H.O 	 9 4

HC rF.A 	 11 1

HC 5 2
H .'E 6 1

HD rF.A 11 1
H.O 	 5 2

H.E 	 6 "

H.E 4F.A 	 11 i
H.c 	 7 1
H.0 	 13 1

H.E 	 5 2

A33

H I SEARCHING THROUSH TAE LIBRARIES
(CONTINUED)

INPUT / C3NDITION LIST

NUMBER TEXT

2
4

MORE INFORMATION REQUIRED TO COMPLETE COMMAND ANALYSIS
COMMAND ANALYSIS COIPLETE, USER CONTROLLED SEAFCH
DESIRED.

: ADDITIONAL USER INPUT REQUIREd
6 dATA FOR DISPLAf LOCATEO
7 USER SIGNAL TO START NEd USEK CONTRJLLED SEARCH
3 COIMAND ANALYSIS COMPLETE, SYSTEM CONTROLLED SLARGh

ULSIREJ.
12 USER SIGNA-. TO START NEW SYSTEM CONTRULLt. SEARCH
11 USER SIGNAL THAT HE HAS ZO'PLETED HIS ACT'IVITY

OUTPUT / 'ESULT LIST

NU.MTEhF TEXT

I MESSAGE INJFORMING USER fO H<OQEED
2 MESSAGE REQUESTING USER TG ENTER MORE INFORMATIOH
4 PARSED COMAND ANO COMMAND CCNTROL TABLE

CROSS REFERENCL-D TRANSITIONS

STATE IS ACCESSIBLE FROl

H.a F.A
F.A.0

A34

ORIGINAL PAGE IS

LEVEL 2 D POOR QUALITy
COMPONENTS OF STATE I

QQEATING LIBRARY ENTRIES

* STATE OESCkIPTIONS

STATE LONG NANL AND TEXT

I.A IATERPRLT 30MMANO

THE USER MAY ENTER OATA TO 3UILOD A NEW LIb&ARY

ENTY. THIS MAY B3E AN iNSTANCE OF A SYSTEM J4TA STPJ&T-

URE SUCH AS A CO0ING 0OJUL: O, A STORED DATA DEFINIT-
ION. THE DATA ENTERED MAY ALSO ti- VALUES WHICH CONbP,(,SE
AN INSTANCE OF A USER WEFINED DATA SET.

1.3 VALIDATE USER

THE JSER MJST HAVE PEPMISSICN TO ENTER 0 ARTICU-aR

TY~tS OF 9ATA INTO THE ;L OR HIS STL.

I.0 CONSTRUCT LKRARY ENTRY

A UO>PLETE, NEW LI'3ARY £NThY(OIREGTORY AND TECT)

IS CONSTROCTED. AUIZTIONARY ENTRY, IF REQUIRED, IS

ALSO MADE.

I.) DISGONNECT JSER FROM JATA

A35

I I CREATING LIBRARY ENTRIES
(CONTINUED)

ALLOWEd TP NSITIONS

FOM STATE TO STATE INPUT / OUTPUT
C'. = ENTdY) (f = EXIT) CUNDITIGN RESULT

AA 1 1
I.e 2 2

1.3 1.8 4

1.0 5 9
1 .0 1.8 ii i)

I.C i
I.-f a

I.F 7.F.A

TRANSITION DIAGRAM

I .B

2/2 5/9 11/9 I.D

6/5

0/1 7/6

I F.A

A36

ORIGINAL PAGE Ifs
OF POOR QUAITh

I I CREATING LIBRARY ENTRIES

(CONTINUED)

t4 INPUT /-CONDITION LIST ***#

NUM3ER TEXT

I MORE INFORMATION RE&UIREO TO COMPLETE COMMAND ANALYStS
2 COMMANO ANALYSIS COMPLETE
4USEk NOT Pt&MITTEO ,CQUiEJ ACTION
5 USENr VALIDATED FOR -ZEQUUSTED ACTION
6 LI3RARY ENTRY CONST-UCTXON COdPLETE
7 USER DISCONNECTEO FkOM LE

l) LI3RARY ENTRY CJNSTJCTION INCOMPLETE
11 MOOITICNML VALIDATION RgdJIREj FOR DERIVATIVE ACTIVITY

OUTPJT / LESJLT LIST

NUM'3E r TtXT

1
2
4

MLSSAGE R5)UESTIlNG USE TO SUPPLY MORE INFC MATiON
PARSE) CO.IANO TNU CuMM.iN CONJTROL TAbLE
AESSAGE INFORMI-G USER)F LACK OF VALIODAtTION. ASK
ALTERNATE REQUEST FROM Im-.

FOR

5 LE IN USER WORKING 4- EA
6 LE AVAILA'3lE IN DATA BA3E
3

Ii
-

** CRJSS RFERENCLO TANSITIONS #**4

STATE IS A3CESSIdLE FRU,

1.A FA

A37

LEVEL 2
COMPONENTS OF STATE K

MOOIFYING LIBRARY ENTRIES

- ++* STATE DESCRIPTIONS +

STATE LONG NAME AND TEXT

K.A GUNNECT 'JSEA WITH DATA TO -;E MOuIFIED

-K.3 PE.FOi' NJO1F.CATiONS WITH DIALOG

K. bU;OATE CI ECTORY ENTRY

K.J OISCONNECT bSE;' FROM DATA

ALLOWEJ T, NSITIdNS

FRO STATE TO STATE INPUT / OUTPUT /
(& = ENTRY) (r= LXIT) CONDITION ftESULT

#*.A K.A 1 1
K.8 2 2

K.3 K.8 6 S

K.C 4 4
K.G. K.U 7 b
K.3 r*F.A 7

A38

212

K. K.DK.B

9/7

tF.A

LEVEL 2 TRANSITION DIAGRAM

STATE K: MODIFYING LIBRARY ENTRIES

A39

K i MODIFYING LIBRA:f ENTRIES
(CONTINUEO)

INPJT / CONDITION LIST

N U M3E R TEXT

I IDENTIFYING AND LOCATIN; INFOMATION
2 LIdRARY EPJ[RY TJ BE MODIFIED EXISTS

ATED TO PERFORN MODIFICATIONS
4 MOOIFICATION COIPLEfUO
6 MODIFICATIONS INCOMPLETE
7 DIRECTORY ENTRY UPDATE COMFLETE
3 USER IS 9ISCONNEGTES FRJil DATA

4 * JUTPJT / &ESULT LIST

NU13E TEXT

INCOMPLETE
AND USER IS VALIJ

1

2
4
13
7

MESSAGE ISSUED TO USER iEQJESTING
ATION

.USER IS CO.NECTEO TO LI 3RA-Y ENTRf
UPDATED LE TEXT IN USER AR&A
UPJATEO LE ATTACHED TO JSE-Z
UPJATEJ LE AVAILABLE IN DATA 3ASE

ADDITILNAL INFORM-

CtOSS REFEREI4CO3 TRANSITIONS

STATE IS ACCESSIULE FROI

K.A F.A

A40

ORIGINAL PAGS]a

OF POOR QUAUI=LEVEL 2
COMPONENTS OF STATE 1

CONSTRUCTING A JOB

STATE OESCRIPT IONS '

STATE LONU3 IA;IF ANJ TEXT

N.A OETER,4.Nc AVAILALE JOB COMPONENTS

TAKE THE USERS LIST OF OIS AND FINO OUT HGN MANY
ARE CURKENTLY DEFINEU A l-] AGCCESSA3LE ANd HON MANY A&
YET TO dE OEFIwEib. TIE JSfL HAY THEN CH3OSE TO
CONSTRULT THE 0'4S 0, NOF

?.3 CJNSTRJCT AN OM LIdRARY ENTRY

N.3 CONSTUCT A JOG LIdRARY ENTRY

ALL:)YiEO T AAIrTIONS

FiOI STATE TO STATE INPUT / OUTPUT
(,- = ENTRY) (, = EXIT) CON-)ITION RESULT

rrl .A *F.A 6
4..B 14

Pt.3 M.A 3 1
M.B 8
M. 2 3
4.C 7

N.C roF.A 4 2
M.A 5 5
M.8 7 7
it.o 1- 9

A41

http:OETER,4.Nc

I F. A

44/2

1/5/5

TAEM. : OSTUTIGA O

A2/2

ORIGINAIJ PAGE l-
OR PAGE L6

M I CONSTRUCTING A JOB

OF POOR QUALITY

(CONTINUEO)

4*#4 ' INPUT / CONDITION LIST "

NUM.3ER TEXT

i Oi 0IRLOTORY INOICATING TmT AT LEAST 04E REQUIR EO OM
IS UNDEFINED AND/OR INAZCESSA3LE ArJJ AN INDICATION FROM
THE USEK THAT HE DESIRES TO CONSTRUCT TE CM(S),

2 ON 0IRETY INDICATING ThAT ALL REQUIRED OHS AR.E
DEFINEu AND ACCESSAdLE.

J NON-EMPTY LIST OF OAS TO FE UEFINED
S'EMPTY LIST OF JOdS TO dc-_ -FINEU
5 NON-EMPTY LIST OF JOGS T-) 3E JEFINED
6 ON DIRLCTORY INICATING THar AT LEAST OAE REQUIZED OHi

IS UNUEFINED AND/OR INACCESSA3LE AND AN 1NDICATJN F!0M
THE USER THAT HE ODES NOT WANT TO CONSTQUCT THE 3M.

I USERS INUIUATION THAT -1E UR lORE Ot4S MUST 3E CEFNEj
6 ENTRY FLAG FROM MC AND ALSO INPUT NO. 2
9 OM CONSTRUCTION INFOPMATION WHICH MUST COME FRCA THE

USER
ii J03 CONST.RUCTiO, INFORMATION W-sICH MUST COME FROm THE

USER

~~ OUTPUT / $ZLS.JLT LIST

NU-3ER TEXT

I ONE OR MORE NEWLY DEFINEu CMS IN THE STL AND THE

LIST OF UNJEFINED OilS
e JO3 DEFINITIONS COMPLETED IN THE STL
3 O'-IPLETE LIST OF OM NAMES BY LIBRARY
4 LIST OF NAlES FOUND(BY _I3RARY), ANO THOSE YET TO EE

FOUND
5 L1ST OF JJJS YET TO i3E UEFINLO

7 OM NAME(S)

3 PROM.PTS FROH THE SYSTE4 FCOR THE PROPER UM CONSTRUCTION

INFORMATIONl
9 PROMPTS FROM ThE SYSTE FO' THE PROPER JOB CONSTRUCTION

INFORMATION

CROSS REFERENCED3 IRANSITIONS

STATE 1S ACCESSIBLE FROA4

M.A F.A

A43

LEVEL 2

COMPONENTS OF STATE N

EXECUTING A JOB

+ STATE DESC, IPTIONS +

STATE LONG N4'IE AND TEXT

N.A ESTABLISH THE REUUIRED LEN LIST

SCAN THE JUb SPECIFICATIONS FO, ALL INPUT/OUTPJT
LE, ANO WITH THE QUALIFYING INFORMATIGN GIVEN WITH THE
EXCCUTION COMMA40, ESTAJLISh THE LIST OF NAMES FCOE
SEARCHIIG IN THE LIdRARIES.

N.3 CHECK F-C LLN IN LIORARlES

LOOK FOR THE LEH IN THE STL AND THEN IN THE CL.

N.2 PREPAPE J)3 FOR EXECUTION

THE SKELETON OF THE JB OEFINITICN MUST NGC BE
FILLED IN NITH ITEMS PERTINENT TO THIS EXECUTION. THE
EXECUTADLE CODE FILES rIJST 3E SET UP PPJPERLY, ANO THE

CONTROL CA, US FOR THIS EXECUTION MUST BE GENERATED.

N.) INITIATE EXE3UTION

N.E SUBTASK STEP EXECUTING

THIS REPRESENTS TiE STATE OF TE SYSTLM WHEi4 THE
JO3 IS EXECUTING ANO NOT COMMUNICATINi, AITH THE USER.

***** QLLOWEO T,AASITIONS ****

FROM STAlE TO STATE INPUT / UUTFUT /
(o = ENTRY) (= EXIT) CONDITION RESULT

&N.A N.d j 1
N.3 N.9 7 7

N.C. _ 2
N., N.0 3 3
N.J N.E 4 6

iN. E r*O.A 5 4

i.O.U 6 5

A44

717

4/6 5/4.

[O.A

LEVEL 2 TRANSITION DIAGRAM

STATE N EXECUTING A JOB

A45

N t EXECUTING A JOB
(CONTINUED)

'" INPUT / CONDITION LIST '

NUMJEP 	 TcXT

I LIST OF ULEN FROM J-J3)ESZ.IPTION AND QUALIFYING
INFORMATIO.J FROM THE EXECUTIO. REQUEST.

2 STL, CL DI, ECTC.UIES CONTAIrIsG ALL REQUIRED LEN WITH
PROPER AC-SS CUDES

3 STATUS COMPLETE ON ALL JOD ,OAPONENT FILES
4 INOIGATOR FROM THE OS TIAT THE STS IS EXECUTING
5 IN 0 UT R.UUEST COMMANJ) F.ZCr' THE STS
6 OUTPUT COAMAND FROM THE STS
7 STL, CL DI -CTOR£IES LACCING SOME OF THE LEN

OUTPUT / -kESULT LIST

NUI 3ER 	 TEXT

I 	 LIST OF ALL LEN REQUiRCJ) FOR TrE JOB
SLINKAGE ESTAOLISHE TO ALL RcLUIREO LE

3 EXEOUTALuLE CODE FILE(b) , -CNT--Lu CARD STREAA
. TERMINAL INPUT REQUEST

5 	 TERMINAL OUTPUT REL.UrST

7 	 EXPLANATION TO THE USE-', ('aQUEST FOR AUJITIONAL
INFORMATION TC JSE" IN L3ATING THE MISSING LEN

"RUSS RFEREA0E) I'ANSITIONS

STATE IS ACCESSIBLE_ FROI

1.A 	 FA

N.E 	 0.0

A46

LEVEL 2
c-M3ENTS OFSTE0RQts QCOMMUNICATING WITH A JO

STATE DESCkiPTIGNS

STATE LOIG NAME AND TEXT

0.4 SUBTASK STEP KE.JUESTING USER INPUT

0.3 SU3TASK STEP POCESSING USER INPUT

WOdK NECESSARY TO INIERPRET THE INPUT A14 G'RROT

ANY EKRORS.

O.X SJOTASK 'TEA OUTPUTTING INFORMATiON

ALLOWEJ Tk 4SITONS **

FROM STATE TO STATE 1NPUT / OUTPUT /
(t = ENTRY) (t = EXIT) CONDITION RESUZ.T

1O.A O.d8 ±
0.3 O.A 2

O.C 2 2

r O ZN.E 4 4

O.A 6 3

A47

LEVEL 2 TRANSITION DIAGRAM

STATE 0 COMMUNICATING WITH A "JOB

A48

U t COMMUNICATING WITH A JOB
(GONTINUEO)

INPUT / CONDITION LIST

NUl3ERP T'- XT

I USER- INPUT LINE TO STS

2 INPUT GOMMAND FPOM STS

i ENO OF OUTPUT INOIC TOR.

(4 COIPLETEO INPUT FROA USER

~~ OUTPUT / REFSJLT LISI

NUA 3E Pi TEXT

I T.E;,1INAL LINE
2 RElUEST FOrZ MORE IivPJT

3 1 0R MORE LINES TO Tz-MIlAL, INPUT RLIAUE.ST

+ OPTIONAL aCKNOWLEDGEMeNT OF jjPUT ,ZECEIVED &ORRECTLY

G'JSS REFEErUNCZ] ThANSITIONS

STATE IS ACGESSILE FFROMi

O.A N.

N.E.A

O.C N.E

)

) A49

http:RLIAUE.ST

LEVEL 2
COMPONENTS OF STATE P

OISPLAYIVIG RESULTS

STATE OESCRIPTIONS

STATE LO'40 NrIE ANO TEXT

P.A INTERPiFT DISPLAY REQUEST

ANALYZE THE CISPLAI REQUiST TO DETERMINE THE LE
AN) LV INVqLVEO ANO ,REILJmST THE >EL£CTrO CRITERIO

P.3 EVALUATE SELECTION CRITERIA

ANALYZE iHE GRITERIA FOR SELECTING LATA TO 3E

UISPLAYED AND FJNM TiHE Q4ALYTIGAL EXPRESSION

P.u ESTABLIS-i SUPE&-SET INFORMATION

FETCH INFORMATION EUIRED FOR THE SELECTION ANI

IF THE SELECTION EXPRESSIDN IS NOT IN THE TERMS OF TE

RAW INFCRAATION, TRANSFO:M IT PRIOR TG APPLYING THE

SELECTION CRITERIA

F.) SELECT P<OPER SU5-SET INFCNMATION

APPLY THE SELECTIOI C.ITEIA TI THE SUPER-SET

INFORMATI3N TO ESTA3LISH THE JLSIREJ SUBSET INFORMATION

P.E JISPLAY tE-tUESTEU INFORMATION

A50,

P t DISPLAYING RESULTS

(CONTINUED)

ALLOWED TANSITIONS

FROM STATE TO STATE INPUT / OUTPUT I

(. = ENTRY) (& = EXIT) CONOITION RESULT

&P.A P.A 3
P.B 1 I

P.8 P.C 2 2
0 F°.A 11 11

P.C I if
P.0 3

P.) AF.A E
PoC 5

P.E 4 4
P.E *F.A 7 .7

P.A 6 e

A51

P.B

2/2

I/I P.C

-. A 5/5 3/3 1I/II

F.A

LEVEL 2 TRANSITION DIAGRAM

STATE P DISPLAYING RESULTS

A52

P : DISPLAYING RESULTS
(CONTINUED)

INPUT / CONDITION LIST *

NUM3ER TEXT

I PROPERLY FURMATTED OISPl'.AY ,&EaUEST
2 SUFFICIENT INFO'{ MTIoN Tu ESTA3LISH A SELCTIO, CRIiTEkiA
3 PAZT OR ALL OF THE SUPCRSzT INFORMAi ION FROM THE

L IRARY
4+ EMPTY SEAiCH TAILE
5 NON-EMPTY SEARCH TA-3LE
6 USER 'REOUEST FGZ MORL .]ISPLAY
7 USER TEPMI4ATIOW COWE
3 USER INUICATOR THAT E DOES NOT WANT THE INFORhATION

OISPLAYEO(THIS IMPLIES THAT HE IS ONLY INTERESTE Il
KNOWING THAT THE INFORM TION EXISTS)
IMPROPE;. JR INSUFFICIENT INFCR"IATION FCR THE SELECTION
CRITERIA

1) LEN REQUIRE FG'- THE SEARCH A' L NOT ACCESSABLE 3Y THIS
USER

1i USERS GOHIAND T3 EXIT

* " OUTPJT / DESJLT LIST '

NUMER TEXT

I FO'ZNAL EXP;{ESSION OF OISLAY REQUEST
2 FOUMAL EXPRESSION OF SELUCTION CRITERION
3 SUPER-SET INFORNATI)N
4 INFORMATION TC 3E DISPLAYED
5 REMAINING SEARCH LIST
6 -

7
A
3 EXPLANATION OF ErROR, REQULST FOR CORRECTION/AOJITION

12 ERROR MESSAGE TO USER, .AIT FOK A RESOLUTION OR USERS
COAMAND TO EXIT

- -IN

* * CROSS REFENE J.TRANSITIONS

STATE IS ACCESSIBLE FO

P.A F.A
F. .Q

A53

LEVEL 2
COMPONENTS OF STATE Q ORIGINAL PAGO IM

DISPOSITION OF LI3RARY ENTRIES or poop.QUAIM

STATE OESC IPT1IONS **" '

STATE LONG VANE AND TEXI

0.4 IPJTERPRET CGOMAND

THE 0J,1M4tN.J
ACTION ±S TO [.E
PUWtU), !sOVEu TJ
STL TO STL, STL
TO A L STINATiON

IS ANALYZEO TO OETERMINE WHICH TYPE Oh
PERFOR-E. LI3RAPY ENTRIES MAY 3E

ANJ F-< J ARCHIVE STOR.AGE, IOVEJ FRMi
TO ,Ly 3L TO STL, AND Ft .M CL U:. STL

OUTBIfOE CF IPAD.

0.3 VALIDATE USER FOR ACTIVITY

VALIDATION k.EQUJIRES PERMISSION TO PE-RFORM OESIRED
ACTION mS WEL. AS PERMISSION TO ACCESS THE DATA WHICH
IS REFERENCED.

ACTIVITY VALIDATIOA FOR- THE ACTIVE USER IS OGNE
HERE. AODITIONAL VALiDATION MAY DE RELJIRED FOF THE E-
OIPIcrNT OF DATA WHICH IS M&VEU FROM AN STL TO ANOTHER
STL, OR TO A NCN-IPAO DESTINATION. THE SAME IS TRUE FOR
DATA RESIDING IN THL CL. A SPECIAL CLASS OF NON-IPAi
USERS ELIGIBLE TO REGEIV= IPAD CONTROLLED DATA HAVE
VALIDATION INFO MATIOH IN THE SYSTEM SECURITY FILE.

0.3 PURGE A Cu ENTRY

O.J &JRGE A ST. ENTPY

Q.E HOVE FNONI AkHHIVE TO 3L

O.F MOVE F,;,CM CL TO 4RCHIVE

O.G MOVE F'OM STL TO CL

O.H MOVE FROM CL TO STL

A54

ORIGINAL PAGE IS
OF POOR QUAITM

Q I DISPOSITION OF LIBRARY ENTRIES

(CONTINUEO)

'* * STATE DESCRIPTIONS (GONTINUEO) **

STATE LONG NAM E AND TEXT

0.1 MOVE FROM STL TO STL

MOVE FROM STL OUI OF IPAD

MOVE FROM CL OUT OF IPAO

ALLOWED 1RArISITIONS "

FROI STATE TO STATE INPUT / OUTPUT /
(. = EJT,<Y) (t EXIT) CONDITION' ESULT

Q.A Q. A 1 ±
14.8 3 3

Q.3 Q.C 5 5
Q.0 6 5
Q . E 7
Q.F a 5

Q.G 9 5

U.H JA 5
Q.1 11.
Q.J 12 5
Q.K 13 5

0.0 &F.A 15 S

Q .3 tF.A 15 5

Q.E rF.A 15 5
Q.F F.A 15 -

Q.G rFA 15 5
Q.H &F.A 15 5
O.I *F.A 15 5

Q.J *F.A 15 5
U.K -F.A 15 5

A55

S TO

Q.IK

5/5
to 15/5

13/5

___bQ. 1, / Q BF.A
%

LEVEL 2 TRANSITION DIAGRAM

STATE Q: DISPOSITION OF LIBRARY ENTRIES

A56

O 1 DISPOSITION OF LIBRARY ENTRIES
(CONTINUED)

INPUT I CONDITION LIST

NUMBER TEXT

I MORE INFORMATION REQUIRED TO COMPLETE COMMAND ANALYSIS
3 COMMAND ANALYSIS COMPLETE
5 USER VALIDATED FOR CL PURGE
6 USER VALIDATED FOR STL PURGE
7 USER VALIATED FOR IOVE ARCHIVE TO OL
3 USER VALIDATED FOR MOVE CL TO ARCHIVE
3 USER VALIOATED FOR AOVE STL TO STL

10 USER VALIDATEO FOR MOVE CL TO STL
il USER VALIDATEU FOR MOVE STL TO STL
£2 USER VALIDATED FOR MOVE STL OUT OF IPAD
13 USER VALIDATED FOR 'OVE GL OUT OF IPAO
£5 DISPOSITION COMPLETE

* OUTFUT / RESULT LIST

NUM6ER TLXT

i MESSAGE REQUESTING USER TO ENTER MORE INFORMATION
3 PARSED GOMIANO AND COMMAND CONTROL TALE
5 MESSAGE INFORMING USER TO PROCEED

CRSS REFERENCED TRANSITIONS

STATE IS ACCESSIdLE FROM

Q.A F.A
F.A.D

A57

LEVEL 2

COMPONENTS OF STATE T

SUBTASK STEP CONTROLLEO ABORT

"+" STATE DESCRIPTIONS

STATE LONG NAME AND TEXT

T.A SUSTASK STP CLEAN-UP

LOOKIIG AT THE NAT'JQE OF THE SUBTASK STEP, SEE
WHAT LE ARE AFFECTE9 AN) MODIFY THE STL AND CL IN l&--
PROPER WAY.

T. .3 ECII1IN&TE THE STACK ENTRY

PURGE THE SUtTASK -ZOLLOUT FILE AND ELIMINATE TME
TOP ENTRY IN THE PUSH OJtN STACK

4+"+** ALLOWEO TRANSITIONS 4-.--

E
FROM STATE TO STAT INPUT / OUTPUT /
(, = ENTRY) if = EXIT) CONDITION RESULT

r*T .A T.A 3 3

T.8 I 1

T.3 rF.A 2

TRANSITION DIAGRAM

3/3

A58

T I SUBTASK STEP CONTROLLED ABORT
(CONTINUED)

I£NPUT / CJNOITION LIST *

NU M3ER

i
2
3

TEXT

PUSH DOWN STACK
PURGE RESPONSE FROM OS
AMJIGUOUS STATUS IN AN LE(THE IMPLICATIONS OF
PURGING THE LE ARE JOT dcLL DEFINED)

SAS1NG OR

OUTPUT I KESULT LIST

NUMdER TEXT

I
2
3

-

-

EXPLANATION OF THE STATUS
TO SAVE OR PURGE THE LEI

AND A REQUEST FOR A DECISLJN

CUPOSS REFERENCEJ TkANSITIONS

STATE IS ACCESSIBLE FROO

T.A F.A
F.A.B

A59

LEVEL 2 L .AGT
COMPONENTS OF STATE U
SUBTASK INTE;RRUPTION

" " STATE OESC IPTIONS "

STATE 	 LONG NAM1E ANd TEXT

U.A 	 DETERMINE EXIT MODE

DUCI)E IF THE JSER iS JUST INTERRUPTING OR iE ALSO
WANTS TO ZuJNTINUE LXECUTINJG AFTER SIGNING OFF THE SUB-
TASK.

U.'3 	 PiEPAME THE SUbTASK LE FO-Z THE CL

CLEAN UP FROM TmE 2URZCJT STATE SO THAT REGOVEH.f
IS POSSIBL_ AT A LATE Tfie

U.0 	 P-EPAE F -R-XECUTION AFTER LOG-OFF

SET iP A MACRO PROEOURE TO EXECUTE AFTER THE
USER HAS JISCONNECTEO FMJ'1 THIS SUbTASK.

44444ALL.UVWEJ iRANSITIONS

FROM STATE TO STATt INPUT / OUTPUT
(ro= ENTRY) (,*= EXIT) CO1OITION <ESULT

rU. U.B 	 1 ±
U.C 	 2 2

U.3 	 , 3 3
*E.A 4 5

U.0C0 3 6

.+E.A 4
 4

A60.

BD)

A6A

09 POOR QUALITY
U t SUTASK INTERRUPTION

(CONTINUED)

* ' INPUT / CZNDITIGN LIST * *4

NUM3ER TEXT

I
e

4

INSTRUCTIONS TO iNTERRUPT IN THE CURRENT STATE
INSTRUCTIONS TO INITIATE EXECUTION OF A JOB OR
CU: RENTLV INTERRUPIEO SJ' TASK STLP AFTER TERMINAL
DONE
ANOT.HER

SIGN

,. v OUTPUT / RSJLT LIST '

NUM3ER TEX T

I
2
3
4

5

-

EXEXCUTE 3OMMANJy O.. A <ETUiN
COIPLETEO SU3TASK LE Id 1HE CL, EXIT COAMANU TO OS
MACRO PRO3EOURE TO :t ZXECUTEO, COMMAND TO os TO
EXECUTE THE MNC,O -P.JCEJURE PROCESSOR, &3OMMANO TO THE
OS TU EXE3JTE E SUGT4SK SET-UP PROCESSCR.
CO;IPLETED SUBTASK I.-THE SL; EXECUTION 30MMAND TO
THE JS TO EXECUTc THE SJf3TASK SET UP PROCESSOR.
MACKO PRJCEOURC TO 3E EXFCUTED, COMMAND TG THE OS TO
EXECUTE THE MACRO P.OCEDURE PROCESSOR, AND AN EXIT
COMMAND TO THE OS.

* CROSS REFERENCE) TZANSITIONS ,

STATE IS ACCESSIBLE FROI

U.A F.A
F.A.b

A62

LEVEL 2

COMPONENTS OF STATE V

SUSTASK TERMINATION

4* *+ £TATE OESCUIPTIONS

STATE 	 LOAG NAME AND TEXT

V.4 	 REPORT GENERATION

REPOQTS(PROBABLY SPECIFIED IN PLANS) WILL 3E P)rW-

PARED AT THIS TIME. THIS AiLL INCLUDE SUMM1ARY A40

UETAILEU REPORTS.

V.3 	 TABULATE IN PLAN

ALL OF THE SUBTASK EORJS(E.G. ACCCUNTIG) WHICH

ARE TO BE KEPT WILL BE TRANSFERRED INTO THE APPROPIATE

PLACE IN THE PLANS. THE EVENT OF SUSTASK TERMINATION

WILL BE TAJULATED WHERVE REQUIRED.

V.0 	 JISPOSITION OF LE

AUTOMATI (VIA THE PLANS) AND MANUAL OISPOSITICN OF
THE LE RESIdENT IN THE STL AT THIS TIME.

* ALLOWEJ TRANSITIONS *4***

FRO-1 STATE TO STATE INPUT / OUTPUT /
(,+ = ENTRY) (r = EXIT) CONOITION RESULT

tV.A V.8 	 £
V.9 vC 	 2 2
V.G 	 r0 3 3

sE.A 4 3
V.C 	 5 4

OF POOR QUM'A6 3

V.13

LEVEL 2 TRANSITIQN DIAGRAM
STATE V . SUBTASK TERMINATION

A64

/3

V, t SU3TASK TERMINATION
(CONTINUED)

* INPUT / CONDITION LIST

NU13ER 	 TEXT

I ALL INFORMATION REQUIRED T3 COMPLETE THE REPO&TS

2 SUMTASK ACTIVITY AND AC;OMPLISHMENT RECOrDS

3 dONE

4 ANOTHER

5 USER 1NOICATION THAT SOME MANUAL DISPOSITION IS NEEDED

OUTPJT / NESJLT LIST

NUME R 	 TEXT

I ALL REPORTS SPECIFIED IA THE PLANS AND/JR ANY CTHERS

DICTATED 3Y THE USEk.

2 ALL SUMHA-Rf AND ACCOUNTING INFOkMATtON TABULATEJ IN THE

PROJECT PLANS.

3 ALL STL RESIDENT ITEMS OIS OSEU OF.

4 REQUEST FDR AODITIONAL OISPJSITION COMMANDS

C&OSS REFERENCE) TR.AWSIT1ONS

STATE IS AGCESSIBLE FROM

V.A 	 E.8

E.B.B0

F.A

F.4.O

A65

LEVEL 2

ORIGNALPAGE9
COMPONENTS OF STATE W

OEFINING LIBRARY ENTRIES OR VARIABLES OF PooR QUAzn

S. STATE DESCRIPTIONS ***

STATE LONG Afllr ANJ TEXT

W.A iNTERPkET OGMMA4D

THE 3OMMANO IS ANA,_YZED TO OETERMINE WHETHEt THE
USER INTENUS TO INPUT A4 ENTRY FOR A DITfGNARY IN HIS
STL OR IN THE CL, TiE SPECIFIC bICTIONA< Y AND LI3RA,&.Y
ENTRY TYPE TO 3E OEFIN<m) AE- ALSO DETErZINEI.

W.3 VALIOATE USER

THE USER MUST HvE PEMISSION AND ACCESS CiDES-
THAT WILL 4LLOW HIM TO O RAY JUT HIS DESIRED ACTIONS.

W.o CJNST-ZUCT UICTIONAR.Y ENTRY

DATA FOR THE UJZT1 fIVARY ENTRY IS PRZOVIDED 3Y TrE
USER.

4LLOWEJ TRANSITIONS

FROI STATE TO STATE INPUT / OUTPUT /
(, = ENTRY) (r,= EXIT) CONUITION RESULT

tW.A w.A I i
W.C 3 3

w.3 4b
 5 4

.c 4 7

w.C rFA 3 6

A6C 6 A

A66

ORIGINAL PAGE T3

OF POOR QUALMT

8/6

F.A 1

LEVEL 2 TRANSITION DIAGRAM

STATE W: DEFINING LIBRARY ENTRY OR VARIABLE

A67

W I DEFINING LIBRARY ENTRIES OR VARIABLES

(CONTINUED)

* INPUT / CONDITION LIST 4

NUMB3R TEXT

1 MORE INFORAATION R&AUIREO TO COMPLETE COMMAND ANALYSIS
3 GO BAND ANALYSIS COIPLcT2
4 USER VALIOATE) FOR iEQUESTLD ACTIVITY

5 USER NOT PERMITTEu TO CARRY OUT THE REQUESTED ACTIC4
0 MORE INFOWMATION KLAdI(ED TO COMPLETE DICTIONARY ENfRY
13 JICTIONARY ENTRY COMPLETE

** OUTPUT / -ESJLT LIST

NUAcJER TxT

I MESSAGE REQUESTINb USER TC ENTER MO4E DATA
3 PA SED COIMANO AND COM-INO CONTROL TA5LE
L4 E3SAGE INJIGATING RcCUESTEO ACTION IS NOT VALI3.

ASK FO" ALTERNATE COMMAtJ
- OICTIONARf ENTKY AVAILAILwt IN THC OA-TA BASE
7 MESSAGE IiFOi{MIG USER TO PROCEED

CZJSS REFEReNCCJ TRANSITiONS

STATE IS ACCESSISLE FkOl

A.A F.A
F. .D

OFtok UALIUyOpIlyqjr QAGE I&

A68

LEVEL 3

COMPONENTS OF STATE E.A

IPA- LOG-ON

++ * STATE OESGCIPTIONS 44*4*

STATE LONG NAME AND TEXT

E.A.A USER VERIFICATION

GIVEN A USER 10 AND-PASSWORD, VERIFY THAT

THIS IS A JALI USER. A3UITIONAL CHECKS BEYOND THE

It) AND P4SSWOO MAY HAVE TD BE MADE.

E.A.B SUBTASK VERIFICATION

GIVEN A SUJTASK IDENTIFiER, CHECK TO SEE THAT

THE SUSTASK EXISTS AS A DIRECrOrY TYPE LE IN THE CL
OR AS A DEFINED ITEM IN THE PROJECT PLANS. 1F THE SJ3-
TASK EXiSTS IN THE CL, IT MUST NOT BE ACTIVE WITH
ANOTHER USER.

ALLOwED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT /

(r = ENTRY) (r = EXIT) CONDITION RESULT

&E.A.A E.A.8 I I

L.A.t &E.B.4 2 2

rE.C.A 3

-g QUALMOF P003

A69

E.A 	 t IPAD LOG-ON
(CONTINUED)

TRANSITION DIAGRAM

EiC.A

iNPUT / COnDITiJ; LIST

N Jr JE R 	 TE XT

I 	 VALId USER NU, SP-ACCGCU'fT NUM,'ER PAlrN.
2 	 SU3-TASK IJEiJTIFtER= STNi(PW) iHICH EXISTS INl THE CL A4t

IS NOT OCCJPIED 3Y Aw0T-iE USER..(aTN4= SJ'TASK N kAE,
PN=PROJLCT NAME)

3 	 SU3TASK IJENTIFIER= STN(PN) EXISTINS ONLY IN THE CL
LE TYPE PLAN FC PRJECfT PN.

**" OUTPUT / K SJLT LIST

NU BER TEXT

1 -

2
s

LOCATION JF THE
LOZATLON OF THE
ANJ THE SJ3TASK

OiRECTT<Y
OIRECTrJ.Y
NAME

2-ITRY
£I4TRY

FOR
FOR

THE
THE

SUBTASK
FROJECT ?L-,,

A70

ORIGmX,4 pAEi

P POORQA
LEVEL 3

COMPONENTS OF STATE E.3

RE-ACTIVATE OLD SUBTASK

STATE OESCRIPTIONS

STATE L6Nu NAME ANO TEXT

F.3.A CHECK GUR Ni STATUS

THE SJtTASK MAY OR MAY NOT HAVE AN ACTIVE STEP AT
THE TIME OF SICG ON. IF NO , THE NEXT STATE WILL ALAAYS
8E COMMANJ MODE(F). IF A STEP 1S ACTIVE, THE CCNNECTIOW
FROM THIS JSER TO THE 4CTIVE STEP MUST 6L MADE.

E,3,B CJNNEOT T) ACTIVc STEP

ESTA8LISH THE C3RRESFPNOENCL BETWEEN THE ACTIVE

sTEP ANJ TMIlS ACTIVE USER SO THAT IT WILL BE OF NO

COISEQUENCE THAT HE INTER JPTED.

* ALLOWED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT /

(b = ENTRY) (& = EXIT) 'CONDITION RESULT

fE.B.A E.6B 1 1

&F.A*A 2 2

E.B,.S*
&V*

3 2
3

*The state returned to is whatever state the currently

executing STS represents.

**Since V was interrupted, the precise state withih V

cannot be specified.

-A71

E. FBA AO

KNOWN..'

~4/3

V 11

LEVEL 3 TRANSITION DIAGRAM

STATE E.B RE-ACTIVATE OLD SUBTASK

A72

E°B t RE-ACTIVATE OLD SUBTASK

(CONTINUED)

* INPUT / CONDITION LIST

NUM3ER TEXT

I SUATASK DIRECTORY IN1CATING THAT A STS IS
CURRENTLY EXECUTING

2 INACTIVE SU3TASK DIRECT-zY IN CL, WHICH AS
NOT INTERRUPTED DURING STATE V

.3 CONNECT SJCCESSFUL rESSAZL FROH THE OS
~ INACTIVE SUdTASK DIRLCTcrY IN THE GL WHICH

WAS INTERRUPTED OURItG STATE V

OUTPUT / RESULT LIST *

NU13ER TEXT

2 LAST TERMI AL OUTPUT MESSAGE

RJSS REFERENCEJ TRANSITIONS

STATE IS ACCESSIBLE FROM

-E,8,A E.A.B

A73

LEVEL 3

COMPONENTS OF STATE E,C

CREATE NEW SUETASK OIG.NAL PA" '
POOR QUALIT

* : STATE DESC:CIPTIONS 4*4

STATE LOJG NAME AND TEXT

E.O.A SET UP SU3TASK DIRECTORY IN THE CL

CREATE A LE IN THE CL OF TYPE DIRECTORY WITH JAE
NAIE OF STN(PN) WHERE- STN=SUBTASK NAME AND Pi=PROJLCT
NAAE.

E.C.B SET UP SU ITSK "ECOROS LE Id THE STL

USINS INFORMATION F;GM THE PROJECT PLANS, THE
ACCESS ANO PERMISSI)N CODE TA,3LES wILL 3E FORMULATEd.
THE ACTIVITY RECORD dILL 6E 1iITIATED, ALONG WITH T-i
ACCOUNTING REGORD.

E.,;. C LIBRARY ENTkY IAITIATION

INITIALIZE ANY -E THAT A.,E KNOWN TO BE ASEJOIAT-D
IITh THE SUaTASK PER THE PROJECT PLANS. IHISYHOULO

AL-WAfS INCLUDE A REPORT SKELETON.

ALLOWEJ TRAJSITIONS-

FOI STATE TO STATE INPUT / OUTPUT
(# = ENTr.Y) (Cr = EXIT) CONDITION RESULT

C C. A E.C.Z3
E.C.8 E.CG. 2 2

r*F.A.A 3 2
E...C roF.A.A 4 3

A74

E.C. F.A;,A

E.C.- -

LEVEL 3 TRANSITION DIAGRAM

STATE E.C CREATE NEW SUBTASK

A75

E.C 	I CREATE NEW SUBTASK
(CONTINUED)

Op POot PA~er

" * INPUT / CONDIFION LIST 4*L

NUM3ER 	 TEXT

I VALIO SUBTASK NAME NOT CURRLNTLY IN THE CL.
POINTER TO ASSOCIATED PROJECT PLAN.

2 SUdTASK RECORD FROM THE PRIJECT PLAN CONTAINING AT
LEAST I LE TO BE INITIALIZED

3 SUBTASK RECORD FROM THE Pk,OJECT PLAN WITH iO LE TO iE
INITIALIZED.

4 LE SPECIFIGATlOA4S FOR INITIAL SUBTASK LIBRARY EATRIES

**4 OUTPUT / RES:JLT LIST

NUfM'1ER 	 TEXT

I NEW DIRECTORY ENTRY IN THE CL FOR THIS SU3TAS<
2 SUATASK RECORDS LE INITIALIZED IN THE STL
3 LE SET UP IN STL

CROSS REFERENCEJ T;hANSITIONS

STATE IS ACCESSIBLE FROI

E.G.A 	 E.A.B

A76

REQUEST

LEVEL 3
COMPONENTS OF STATE F.A

USER INPUT AND INTERPRET COMMAND

* STATE DESCRIPTIONS

STATE LONG NAME AND TEXT

F.A.A ASK FOR, C£Ai, AND PARSE USERS COMMANO

AFTEk PKONPTING THC USER TO INSERT AN
IPAD 0OH4I140, THE CONMASJO IS REAO AND
THEN THE OHARACTER STRIIG FOR THE USER CMMANO
PAiSEO TO PRODUCE CONSTITUENT PAPTS, THE MOST
dEING THE COMMAND VERB

IS
IIPO&TANT

F. .B DETER:IINL ZOAMAND INTENT

AN3
THE COMMAND INTENT 1AY OR MAY

IT MUST BE CHECKED AGPINST THE
NOT 3E LEGITIMATE
CURRENT LISI.

F.A.G VERIFY PERMISSION TO USE OCMMANO

USER
USINS THE SUBTASK *EO&US,
MAY EXECUTE THIS CJ'lMAND.

CHECK TO SEE THAT THIS

F.A.d ACTIVATE IPAD UTILITY-

INITIATE
COMMANO.

THE ACTIVITY REQUESTED FOZ IN THE

A77

F.A 	I REQUEST USER INPUT AND INTERPRET COMMAND

(CONTINUED)

' ALLOWED TR4NSITIONS *4

FROM STAI- TG STATE INPUT /
(rb = ENTPY) (& = EXIT) CONDITION

rF.A.A F.A. L I
F.A.B F.A.A 2

F.A.C 3
OF.C.4 5
*T.A 1i
+U.A 21

F.A.C F.A.A 21
F.A.D 4

F.A. -G ,
rm .8 7
&I 3
r&K.A.A 10
r*M .A.A 12
rN.A.A 13
&P4
rQ.A 15
r+V.A 16
*W.A 17

OUTPUT /

RESULT

2

5

It

6

6
6

0
6

6

e
7

A78

F.A.A

1I
5/5

{F.C.A

21/10 19/8

3/3 2/

F.A. C

F.A.BQ.A

t U.A

"-6/6

18/6
• 10/6

12,/67

13/6
14/6

115/60

,18/7
j17/6

G

V.A
K.AA !
M.AoA

NiA.A I
PoA

Q.A

V.A I

W9A

LEVEL 3

STATE

TRANSITION DIAGRAM

F.A: INTERPRET COMMAND

A79

F.A : REQUEST USER INPUT AND INTERPRET COMMANI
(CONTINUED)

4*44 INPUT / CNOITION LIST **#

NUM3ER TEXT -

I CHARACTER STRING FOgMATrED COR-ECTLY FOR AN IPAi
COMMANU.

2 UNRECOGNIZABLE COMMAND VrRL
3 VALID IPAS COI-AND VER>3
4 PERMISSION 3ODE INDIC-ATIN
5 RETURN
$ HELP
7 SEARCH
3 ENTER DATA

1) eOJIFY CATA
±2 GONSTRUCT JJB
13 EXECUTE
14 DISPLAY
13 DISPOSE
17 JEFINE
13 TEMINATE
I STOP
21 QUIT
21 PERMISSION CO&E INDICATING

OUTPUT / RESULT

NUt13ER TEXT

USE IS VALID

USE IS INVALID

LIST

I C.OPIMANO VERO, ANY OTHER INFORMATON SUPPLIED WITH
THE VERB

2 ER OR MESSAGE9 WQUEST FO: ANOTiER TRY

4 -
5 PUSH DOWN STACK
6 PARSED COMMANDJPOATEO ACTIVITY kECORD
7 -
.3 POINTER TO THE STS TO BE IERMINATED

I ERkOR MESSAGE, KEQUEST F:;" ANOTHER TRY

A8O

F.A 	: REQUEST USER INPUT AND INTERPRET COMMAND

(CONTINUED)

CROSS REFERENCED TRANSITIONS

STATE IS ACCESSL6LE FROI

F.A.A EB.A
E.G. G
E.G.C
F . 3.*

H.3.GHJ.8

Hi. 8

H.I.E

ORIGINA2 PUtI

OFP POOR QUA~IXIi

A8 1

LEVEL 3

COMPONENTS OF STATE F.8

DE-ACTIVATE SU.3TASK STEP

4-*#4 STATE ;JESCIPTIONS +

STATE LOaG .dAME AN. TEXT

F.,.A PrEPA-rE SU3TASK STEP FILLS

LOCATE ALL THE FILzS 4SSOCIATEJ WITH THIS STS A40
PACKAGE TH£l UP FOe REG)VER(AT A LATE; TIME. 1HIS 41-L
INTERFACE WITH THE OS.

P.UOJUST STACK

PUt TmIS STS IN T~iS STACK

+4++"" ALLOWED, TRANSITIONS 4#+

FROM STATE TO STATZ INPUT / OUTPUT /

(, = ENTRYYI (r =EXIT) CODOITION r(ESULT

rF .3. A F. .0 1
FB.6.*F.A.A 2 2

TRANSITION DIAGRAM

A82

F.8 	 I DE-ACTIVATE SIJ3TASK STEP
(CONTINUEO)

* INPUT / CONDITION LIST

NUM 3ER 	 TEXT

I 	 PUSH DOWN STACK FOR INTER.VuPTED STS: RECOVERY

INFOkMATION FkO1 THE STS -OLLOUT FILE

2 	 PUSH 3jO1e STACK UPDATE INFORMATION

* JUTPUT / ZESJLT LIST

NUfM3Ek 	 TEXT

I 	 COPLETELY UE-AGTIVTED STS
PUSH OONN STACK

2 UPOATED PJSH DON STACK

A83

LEVEL 3

COMPONENTS OF STATE FoC

E-AGTIVATE SU3TASK STEP

* STATE 3ESCRIPTIONS *4

STATE LONG NAME AND TEXT

F.C.A LOCATE STS

USING THE PUSH 00WN, STACK, IDENTIFY THE STS TO BE
RE-AGTIVATD

F.C.B PREFAiE STS FOR RE-ACTIVATION

THIS IS BASICALLY THE INqERSE OF F.q.A AS IT

PREPARES 4,L THE FILES JF THE STS FOR EXECUTION.

F.0.C ACTIVATE 3TS

RE-ISSUE THE LAST TERMINAL MESSAGE AND REQUJEST THL
OS TO ACIIVATE THE STS

#4*44 ALLOWED TRANSITIONS 4*44

FROM STATE TO STATE INPUT / OUTPUT /
(& = ENTRY) (r = EXIT) CCNDITICN RESULT

F.C.A F.C.8 I I

F.C.9 F.C.C 2 2

F..C * r*G 3 3

$4H 4 3

fI 5 3

&K 7 3

,wM 9 3

N In ,3

10 to10 jj 33

f.P 12 3

CPO 13 3

rW 15 3

*Since these are transitions to interrupted states, the

node names at level 3 cannot be specified.

A84

, 3/3 G i

I5/3 1

41/3 H~

LEVEL 3 TRANSITION DIAGRAM

STATE F.C :RE-ACTIVATE SUBTASK STEP

AS5

F.C I ZE-ACTIVATE SIBTASK STEP

(CONTINUED)

NUNl3ER

i

2

3

4
5
7
9

I)
11
1?
tS

15

NU MBER

I

2

3

STATE

F.C.A

*" INPUT / CONDITION LIST

TEXT

PUSH DOWN STACK AND THE LOCATION OF STS FOLLOUT FILE

AN' RECOVERY INFORMATON FOR THE STS AT THE TOP OF TH£
STACK
PROPER RESTORE CODES ON ALL STS FILES
STS FILE CONTAININu AN' IJTERRUPTEO STATE G
STS FILE CONTAINING AN INTE RJPTED STATE H
STS FILE CONTAINING AN IiTERRJPTEO STATE £
STS FILE C3NTAINING AN INTERRUPTED STATE- K
STS FILE CONTAINING AN INT-RRUPTED STATE M
STS FILE CONTAINING AN I;4TERtUPTEO STATE N
STS FILE CONTAINING AN INTERRUPTc0 STATE 0
STS FILE 3ONTAIJING AN Im4TERRUPTED STATE P
STS FILE 0ONTAINIWG AN INTERRUPTED STATE Q
ST3 FILE CONTAIIING AN INiTRRUPTED STATE W

-. OUTPUT / RESULT LIST

TEXT

STS FILE POINTER(S)

ALL STS FILES READY TO EXEOUT.

LAST RECO-ROEO LINE SENT TO THE TERMINAL

MOOIFIED 0JSH O0N STAG,(

-OSS REFERENCED4*44 - TAANSITIONS

IS ACCESSI8LE FR34

F.AGB

A86

LEVEL 3

COM'ONENTS OF STTE H.C

USER,CONTROLLED SEARCH

+' STATE DESC ,IPTIONS -

STATE 	 LONG I4lHE AND T=XT

H.C.A 	 DETERMINE SEARCH MODE

THE JSER HAS ACREAJY INUICATLO THAT HE WANTS TO
CONTROL THE LIBARY SLA{CH. HE ENTERS INTO AOOITlONA4.
OIALOG,IF NECESSARY, TO SPECIFY WHAT HE IS LOOKING F3R

ANJ HOW HE WANTS 	TO £NTE, AGT 4ITH THE SYSTEM

H,0.5 	 PERFORM SIJGLE ITEM SEAKCH

THE USER HAS rEQUESTEu AN EXISTENCE SEARCH FOR A
SINGLE ITEM. IF FOuN,+ HE -AY CHOOSE TO 3ISPLAY THE ITEm

H*V'.C 	 PERFORM PAGED SEARCH

THE USER WANTS TO PAGE THROUGH A DI.RECTORY OR A

JICTIONARY. WhEN EXAMINING OIRECTORY LNTRIES THE USER

MAY REQULST DISPLAYS OF INDIVIDUAL LIBRARYENTRIES.

ALLOWEJ Tk4NSITIONS

FRO1 STATE TO STATE INPUT / OUTPUT

(r- = ENTRY) (r = EXIT) CONDITION RESULT

r*H.C.A 	 H.C.A I I

H L. 2 2
H.C.C 	 7 a

rfH O.A 6 6
*F.A.A 5 6
H.C.f 	 b 1

H.C.3 	 3

-H.E 	 4 4
H.k.C - -F.A.A 	 5 6

H.C.A 	 6 1

H.C.3 	 3

SH.Eb

A87

IH, D A. H.

'

LEVEL 3 TRANSITION DIAGRAM

STATE HoC :USER CONTROLLED SEARCH

A586

ORIGINAL PAGE IS
OF POOR QTJALITh

H.C I USER CONTROLLED SEARCH

(CONTINUED)

**+ INPUT / CONDITION LIST +

NUM3ER. TEXT

I USE'./SYSTEN JIALOGUE INCOMPLETE
2 USER WANTS EXISTENCE SEARCH
S SEARCH COPLETEO
4 DISPLAY DESIRE0
5 USER FINISHEO WITH 3EAR2H ACTIVITY
6 USER WANTS TO IWITIATL A NEN-SEAkCH(WiTHOUT DISPLAY, IF

LTEm FOUND)

7 USER WANTS PAGED SEARCH
S USER WANTS TO SWITCH TO SYSTEiI OCNTROLLD-SEARCH

+ + OUTPUT / ,ESJLT LIST +

NU114ER , TEXT

1 SYSTEM MES.AGE :ZEUUESTi'NG MOPL DATA
2 SEARCH/SELEO TION CGITERIA
3 USER COMMAND TO DISPLAY OP NOT, TO END, OR TO BEuIN NEw

SEARC H
4 LOCATION OF ITE,1 TO dE JISPLAfED

5 LOCATION JF OICTIONARY Oi JIECTORY

A89

LEVEL 3

COMPONENTS OF STATE H.A

SfSTEM CONTROLLED SEARCH ORIGIN L PA6E

OIooaQUAurr

STATE OESCIPTIONS

STATE LONG NAME AND TEXT

H,).A EVALUATE SELECTION EXPRESSION

THE USER PROVIJES A SET OF INFORMATION USEO 3Y THE

SYSTEM TO SELECT AND EXTRACT DATA FOR DISPLAY. THE EX-
PRESSION EVALUATION ALSJ 0ETERMINES THE TYFE OF ScARCH
WHICH WILL BE UNDERTAKEN.

H.D.B KEYWO-RD SEARCH

KEYWOROS 1N DICT10IARY ENTRIES (EITrEF CL J;- STL)
ARE USED TO LOCATE LLSA-0Y ENTRIES.

H.,. REFERENCE SEARCH

EXPLICIT REFERENCES SUCH AS *USED 3Y* ARE JSED T3

LOCATE LI3rZARY ENTRIES.

H.J.D ATTRI3UTE SEARCH

SIMILAR TO KEYWORO SEARCH. ATTRIBUTE INOEXES GAN
BE ESTABLISHED BY THE USER EXPLICITLY BY UTILIZING LE
TYPE OIRECTORf. THE DATA BASE MANAGEMENT SYSTEM WILL
INCLUDE FACILITIES FOR ESTABLISHMENT AND MAINTENANCE
OF ATTRIBJTE INOEXE3 bY SUPPORTING FILE INVERSION.

H.J.E VALUE (CONTENT) SEARCH

DATA AGGREGATES ARE SELECTED BASED ON VALUES OF

VARIABLES. THIS FOR'I OF SEARCH MAY RANGE OVER MORE TIAN
ONE DATA SET.

A90

H.U I SYSTEM CONTROLLED SEARCH 0iT 2O ~

#'4" ALLOWEJ TRANSITIONS

FrOM STATE
(ro = ENTPY)

TO STATE
(r = EXIT)

INPUT I
CONDITION

OUTPUT /
RESULT

#H.0*H G11
H. U.A1
H.D.6

H .0.L
H.O.u

13

2
7
5

2
2

H.0.e

H.i.G

H.O.E
#F.A.A
H.O.A
H.O.3

,*- .E
4F.A.1
ii.O.4
ti .0.4H.OC

9
5
6
3
4
5
6
33

2
5
1
3
4
5
1

rH.E 4 4

H .-.0

H°.E

'.F.A.A
H.D.A
H.0.3

.1H.E
F.A.t
H.O.A
H.D.E

rH E

6
Is
4
5
6
3
4

5
I

4

1
3
4

A91

/3
I-.D.B

2/2 61 H.D.C 4/4 H.E

H.D.A 6/I H.D.D

9/2

5/5 F .10/5 H.D.E .00--,

4 4,

H.C

LEVEL 3 TRANSITION DIAGRAM

STATE HD :SYSTEM CONTROLLED SEARCH "

A92

H.0 I SYSTEM CONTROLLED SEARCH
(CONTINUED)

NU43ER

I
.2

3

4
5

6

7

3

9

13

NUMi.ER

1

?
3

4

5

STATE

H.D.A

'* INPUT / CONDITION LIST '

TEXT

USER/SYSTE4i DIALOG INCOAPLETE
KEYWORD SEARCH REQUIRE-)
SEARCH COMPLETED
DISPLAY DESIkEO
USER FINISHEO WITH SEAR;H ACTIVITY

USER WANTS TO 1JIT'IATE >J5,- SEARCH

USER WANTS REFERENCE SEARCI

USER WANTS ATTRIBUTE SEARCH

USER WANTS VALUE (CJNTEgT) SEA(CH

USER WANTS TO SAkTCH TO ,JSEr(CONTROLLED SEARCH

OUTPUT / RESULT LIST -

TEXT

SYSTEM MESJAGE REQUE:Tlqu AORE DATA

SEARCH/SELECTION CRITERIA
USER COMMAJ TO OISPLAY OFP 1CT, TO END, CR TO tEGIN NEh
SEARCH
LOCATION OF DATA TO 6E)iS LAYED
-

- ,-v CROSS REFERENCEd TRANSITIONS .*4

IS ACESSIOLE FROM

H.C.A

A93

O POiP
LEVEL 3

COMPONENTS OF
STATE 1.0

CONSTRUCT LIRRARY ENTRY

*44~ STATE OESC.,IPTIONS

STATE 	 LONG NAME AND TEXT

I .G. A 	 SELECT APP-,OPRIATE PROCESSING MGDE

I.C.B 	 ENTER COOING MODULE

I.G.G 	 ENTER iATA SET

I.C.O 	 ENTER STO: mD DATA OEFINITION

I.0.E 	 LNTER JiCTIONARY

I.,3'.F 	 EATER dISPLAY FORMAT

I.Z.G 	 ENTER OISPL4Y MENU

I.S.H 	 ENTER PLAN

1.C.I 	 ENTER REPJ&,T

i.0.J 	 EJTER ATA CONTROL DATA

THIS IS THE STATE)F LNTERING THE INITIAL DATA TO
CONTROL ACCESS TO DATA AD SYSTEM FUNCTIONS. ALL SUJ-
SElUENT'C-ANGES TC THIS % JT*OL INFORIATION IS JONE 4IA
THE MODIFY 	STATE.

I.C.K 	 ESTA6LISH DIRECTORY ENTRY

A OIRECTORY ENTRY IS ESTABLISHED IN THE USERS iORK
AREA

A94

ORIGoAL pAGE L9

I.C 	t CONSTUCT LIBRARY ENTRY

(CONTINOEd.) ,''
 1

STATE DESCRIPTIONS (CONTINUED) 4*444

STATE LONG NAME ANJ TEXT

I.C.L 	 COMPLETL dIRECTORY ENTRY

AUITIONAL INFORMATION IS ADDED TO THE ESTABLISiED
DIRECTORY ENTRY

1.O.M 	 REPCRT ERROR

A95

I.C t CONSTRUCT LIBRARY ENTRYV'lXtp

(CONTINUED) 	 0p *I&.zOOR

FROM STATE
(r = ENTRY)

r*I.C.A

1.3.8

I 	.C.C

I.C.G

1.0w.H

l.0.I

I.O.J

I.C.K

ALLOWED TrANSITIQNS

T,O STATE INPJT / OUTPUT
Ct = EXIT) CONDITION RESULT

I.U., - I 1

I.C.c 	 2 i

i.C.0 	 3 1

.G.E4

I.C.F 	 5 1

I.C.G 	 6 1

I .C .	 7 1

i .C.J 	 3 1

I.C.R 	 £3 1

.C. 22 1

1 G. m Is 1

.t.C.(13 1

I.C.L 22 ±

I .C..Mi 14 1

I.C.L 	 22 i

I.C.H 	 15 i

1.C.L 	 22 1

.C. M lbI

I.C.K 	 19 .

I.C.L 	 22 1

I.C.m 	 17 1

I.C.K 	 13 1

I.U.L 	 22 ±

I.C. f 	 id 1

I.C.K 	 i0 1

I.C.L 	 22 1

I.G.M 19 1

iC.K 10 1

I.C.L 	 22 1

1.0 .I 	 23L

I.C.K 	 13 1

1.G.L 22 ±

I.C.;1 21 1

I.C.S 	 12 1

I.C.C 	 12

I.C. 	 12 11

S.E 	 12

A96

ORIGINAL PAGE r

I.C : CONSTRUCT LIBRARY ENTRY
(CONTINUED).

*+ ALLOWED TRANSIlMONS (CONTINUED) "

FROM STATE
= ENTTY) -

TO STATZ
(= EXIT)

INPUT /
CONOITION

OUTPUT /
RESULT

1 .3.K

I.0.L
1.1.M

I.G.F
I.C.G
I.C.H
I.C.u
I.C.J
1.C.K
*1.0
I.C.B
I.C.C
I.G.
I.C.E
I.C.F
I.C.G
I.C.H
I.C.1
I.C.J

,

12
12
12
12
12
ii
23
24
24
24
2,4
24
24
24
24
24

1
1
1
1
1
L
1
1
±
1
±
1
1
1
i
1

A97

22/1

I ~TOCA 9TO
 J I C
9/ 1 " 12/1

13/1
to 24/1

21/1

LEVEL 3 TRANSITION DIAGRAM

STATE I.C: CONSTRUCT LIBRARY ENTRY

A98

I.C t CONSTRUCT LIBRARY ENTRY
(CONTINUED)

INPUT / CONDITION LIST

NUMBER TEXT

I ENTER GM
2 ENTER OS
3 ENTER SOD
4 ENTER OIC
5 ENTER OF
0 ENTER OH
7 ENTER PLAN
6 ENTER REPORT
4 ENTER 0CD

10 REAOY TO 3EGIN LIbRARY ENIRY CONSTRUCTIJN
il USER SUPPLIED DIRECTORY INFORMATION INCOMPLETE
12 DIRECTORY LNTRY ESTASLISIES IN USER WORKING SPACE.
13 ERROR MESSAGE
1, ERROR MESSAGE
15 ERROR MESSAGE
16 ERROR MESSAGE
±7 ERROR MESSAGE
16 ERROR MESS4GE
19 ERROR MESSAGE
23 ERROR MESSAGE
21 ERROR MESSAGE

(COASTRUCT Gil ERROR)

(COISTRUCT DS

(CONSTRUCT SOD

(GONSTRUCT DIG

(CONSTRUCT OF

(COISTRUCT ON

ERROR)

ERROR)

ERROR)

ERROR)

ERROR)

(CONSTRUCT PLAN ERROR)

(COSTRUCT REP ERROR)

(CONSTRUCT JCO ERROR)

22 L1JRARY ENTRY CONSTRUCTION GO.PLETEf LE IN USER WORKING

AREA

23 DIRECTORY ENTRY FOR NEW LE COMPLETED

24 ERROR CONDITION CLEAREOSOME RECOVERY POSSIBLE

#4444 OUTPUT / RESJLT LIST

NUMB3ER TEXT

I

2 MESSAGE REQUESTING MORE INFORMATION

A99

LEVEL 3

COMPONENTS OF STATE K.A

CONNECT USER WITH DATA TO BE MOOIFIEJ

STATE OESCRITIONS *

STATE LONG NAME AND TEXT

K.A.A INTERPRET COMMAND

THE AUDIFY ACTIVITY POTENTIALLY INV'ILVES UPDATiNG
ANY LIBiZY ENTRY IN THE DATA BASE. THIS MAf BE ENGIN-

EERING DATA IN A UATA SET OR SOURCE CODE IN A (M.

MOIFIGATION MAY INVOLVE THE CREATION OF A NEW
VERSION CF AN LE IN ThIGH CASE THE PREVIOUS VER3ION IS
AVAILABLE UNCHANGEU IN THc DATA BASE. IF MODIFICATION
INVOLVES CORRECTION 3F A PREVIOUS VERSIOt THE RETENTIOi
OF THE PREVIOUS VERSION IS OPTIONAL.

K.A.6 RuTRIEVE)IRECTORY ENTRY

DIREGTORY ENTRY FOR TIE LE TO BE MJDIFILO IS USED

FOR VALIDATION AND TJ ATTACH TEXT TO USER

K.A.C VALiDATE USEk _

AS FOi LNTER A USES MJST HAVE PERMISSION TO CARRY

OUT MODIFICATIONS. PERMISSION IS GRANTEJ BY PROJECT

MANAGEMENT AND ADMINISTEED 6Y IPAD. PERMISSION MAY GE
SPECIFIC AITH RESPECT T) LE TYPESCL OR STL, SECURITY

CLASSIFICATION, AND PARTICULAR OCCURRENCES

K.4.D CHECK PREVIOUS USAGE

INADVERTENT PUgbING OF DATA BY REWRITING DATA THAT'
MIGHT STILL 3E L(AUIRED MJST BE AVOiDED. PREVIOUS USERS
VdILL 3E INFORMED THAT MOO1FICATIONS HAVE dEEN MADE ANO
THE UNMODIFIED OATA NETAINED.

K.A.E ATTACH EXISTING LE TO USER

K.A.F ATTACH COPY OF EXISTING LE TO USER

A100

KoA I CONNECT USER WITH DATA TO BE MODIFIED
(CONTINUED)

* STATE DESCRIPTIONS (CONTINUED)

STATE LONG NAME AND TEXT

K.-AG SELECT MOJIFY PROCESSOR

INFO.MIATION COLLLCTEb FROM THE COMMAND IS USED TO
DETERMINE WHICH MODIFY PRC-ESSOR IS TO 3E USED

***** ALLOWEU TRANSITIONS **

FROiM STATE TO STATE INPUT / OUTFJT /
(r = ENTRY) (r = EXIT) CONDITION RESULT

rbK.A.A K.A.A i 1
K.A.8 2 2
K.A.C 5 5
K.A.3 a 9
K.A.F 12

K°A.8 K.A.A 4 4

K.A.C K.A.A 6 iC

K.A.O K.A.E 10 if

K.A.F ii

K.A.E KA.G 13 IC

if
K.A.F K.A. 13

K.#.G K.b.4 14 IL

&K.6.8 15 1e
4K.8.0 16 10
&KA8.D 17 IC
*K.B.E 13 I
oK.B.F 19 l0
,K.B.G 20 1[
K.t.H 21 iu

#KB.I 22 IC
+K.B.J 23 10
&K.B.K 24 1C

A101

K.A.B L..

K.,B.A

TO
K. B.K

_

2 414 to

K.A.A K.A.C . G

99K.A.F K.A.E

LEVEL 3 TRANSITION DIAGRAM

STATE K.A: CONNECT USER WITH DATA TO BE MODIFIED

A1I02

K.A I CONNECT USER WITH DATA TO BE MODIFIED

(CONTINUED)

+++ INPUT / CJNDITION LIST +

NUMBER TEXT

I
2
4
5
S

MORE -INFORMATION REIUICEJ
LISRARY ANd LIB-ZARY ENTRY
DIRECTOPY ENTRY FOR LE OB
VALIUATIO4 REQUIRED
VALIDATION CHECK OK

TO
TO

TAIN

CO
BE

ED

MPLETE
MOUIF

30M
IED

MAND
IDEN

ANALSIS
TIFIED

3 VALID USERCOMIANu ANAL#SIS COMPLETEREdITE REQUESThD
13 NO PREVIOUS USAGE OF LE TO dE MODIFIED
ii PREVIOUS Lr USAGE DETERMINED
12 VALID USERCOMmANJ ANAYSIS COMPLETEUSc.R WANTS TO P:<E-

SERVE P EVIOUS VERSION AND CREATE NEW VERSION CONSIDER-

ED A VARIANT RATHER TH44 A COR-RECTION.

13 LE ENTRY ATTAZHEJ TO USE
14 USER DESIRES TO MODIFY A GOOING MODULE
15 USER OESIRES TO MOIF f A OPERATIONAL MODULE
16 USER DESIRES TO MODIFY A JOa
7 USER DESIRES TO MODIFY A £ATA SET

13 USER DESIRES TO MODIFY A DISPLAY FORMAT
13 USER DESIRES TO MODIFY A DICTIONARY
23 USER DESIRES TO MODIFY A DISPLAY MENU
21 USER DESIRES TO MODIFY A PLAN
22 USER DESIRES TO MODIFY A REPORT
23 USER DESIRES TO MODIFY A STORED DATA DEFINITION
2% USER DESI.ZES TO MODIFY JATA CONTROL DATA

+++ OUTPUT / RESULT LIST

NU 4ER TEXT

I MESSAGE REQUESTING USER TK ENTER MORE JATA
2 LI3RA&Y ID AND LE NAMETYPE
4 DIRECTORY ENTRY IN USERS HORKING AREA
5 SPECIFIG ITEM/ACTION REjUlfING APPROVAL

3 LIST OF PREVIOUS USERS

j PARSED COMMAND AND COMMAND CONTROL TABLE

13

+ :RUJSS REFERENCED TRANSITIONS

STATE IS ACCESSIBLE FROM

K.A.4 F.A.U

AI03

LEVEL 3

C.OMPONENTS OF STATE K.8

PERFORM NODIFICATIONS WITH DIALOG

STATE OESORIPTIONS *

STATE LONG NAML A4D TEXT

K.3.A MODIFY CM

K.3.B MDIFY Oi

K.3-.C MODIFY J33

K.3.0

K.3.E

MOlIFY DS

MO DIFY OF

ORIGINAL PAGE IS
OE POOR QUAIY

K.3.F MODIFY DIX

K,3.G MODIFY D(l

K.,3.H MODIFY PLAN

K.5.1 MODIFY REPORT

K.B.J MODIFY SS-

K.3.K MOD1Ff DOD

Ai4

K.B 	: PERFORM MODIFICATIONS WITH OIALOG

(CONTINUED)

+ ALLOWED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT
(x = ENTRY) Ct+ = EXIT) CONDITION RESULT

&KB.A K.B.A I I
rbK 2G.,k 2

K..B K.B.5 I ±
&K. 2 2

SK .3.C K. 3.C 1 1
. K.C.A 2 2

rK.°3.0 K.B.O 1 i
,K.C.A 2 2

rbK.i.E K.B.E 1 1
&K.C.4 2 2

&K.3.F K.B.F I I
cK.C.A 2 2

oK. 3 .6 r,.B.G 1 1
nK.C.A 2 2

*K.3.H K.B.H 1 I
*K.C.A2 2

I K.B.I.K..3. I
'.K.O.A 2 2

&K.3. J K.B.J 1 i
rK.CA 2 2

,*K.3.K K.B.K 	 Ii

&K.C.A 	 2 2

TRANSITION DIAGRAM

2/2 	 "
K.C.A %

K.B.K

AlTO

4

- K.8 t PERFORM MODIFICATIONS WITH DIALOG
(CONTINUED)

INPUT / CONDITION LIST

NUM3ER TEXT

I MOOIFICATIDNS INCOMPLETE

2 MODIFICATIONS COMPLETE

OUTPJT / i{ESJLT LIST

NUM3ER TEXT

1 MESSAGE REQUESTING MORE OATA

2 LE TEXT CO'IPLTE IN USER WORKING AREA

CJSS REFERENCE) T:ANSITIOWS

STATE IS ACCESSIBLE FRO,4

K.B.A K.A.G

K.t3.8 K°.G

K.B.G K.A.G
K.d.O K.A.G

K.S.E <.f.G
K.B.F KoA.G

-K. B.G K.A.G

K.B.H K.A.G

K.B.I K.A.G

K.B.J K.A.G

K.13.K K.A.

A106

LEVEL 3

COMPONENTS OF STATE K.C

UPDATE DIRECTORY ENTRY

STATE DESCRIPTIONS

STATE LONG NAME AND TEXT

K.C.A UPDATE TEXT LOCATION SPECIFICATiONS(TLS)

ALL BUFFERS ARE FLUSHEO MOVING ANY REMAINING DATA

OUT TO THE DATA BASE, REOCRUING AODITIONAL LOCATING IN-

FORMATION IN DIkECTORY.

K.3.B UPDATE USAGE INFORMATION

OATE OF LAST ACCESSp UID OF. ACCESSER, ACCESS COUNT

ARE ENTERED IN dIRECTORY.

K.C.C UPDATE DAT SET REFERENCE TAPLE

THL SU5TASK LE DATA SET -EFERENCE TAdLE IS UP-

OATEO FOR THE OTA SET 4HICH wAS MODIFIED.

K.C. UPDATE STATUS INFORMATION

THE USER MAY CHANGE THE STATUS OF THE LE (IF HE IS

VALIDATED TO 00 SO). THIS lAiV-INVOLVE LEVEL OF CERTI-

FICATIUN, ANALYSIS LEVEL, INTERNAL STRUCTURE, ETC.

* ALLOhEJ TRANSITIONS ***

FROI STATE TO STATE INPUT / OUTPUT /
(r = ENTRY) (r,= EXIT) CONDITION RESULT

&K.C.A K.C.6 1 1
K.C*B K.CC 2 1

K.C.D 3 1
K.0.0 K.s.O 4 1
K.G.O K.0.0 5 2

K.D6 1

A107

5/2

LEVEL 3 TRANSITION DIAGRAM

STATE K.C UPDATE DIRECTORY ENTRY

A108

K.C t UPOATE DIRLOCTORY ENTRY
(CONTINUED)

' " INPUT / CONDITION LIST '

NUMBER TEXT

I. BUFFERS FLUSHED, ENTIRE LTE ON DATA BASE STORAGE OEVICE

2 USAGE INFORMATION UPLJATE SOMPLETL. LE IS TYPE OS AND IS

IN THE CL.
3 USAGE INFORMATION U 0OATE COMPLETE. LE IS NOT TYPE DS.
4 OATA SET REFERENCE TAbL,-- IN THE ST LE UPDATE COMPLETE

5 STATUS INFJRMATION UPDATE NOT COMPLETE

o STATUS INFORMATION COMPLETE

OUTPUT / RESJLT LIST **"

NUMaER TEXT

i

2 MESSAGE TO USER TO ENJTE tZ WORE INFORMATIJN

~ ~C~ROSS REFLRENGEJ TkANSITIONS * _

STATE IS ACCESSIBLE FRO-t

K.C.A K.,3. A
K*i3.A.d

K.B. A.O

K.3.8

K.d.B.C

K.J.C°
K.3.C.3

K.3.C. 3

K.B.0
K.6.0.3

K.3.D.C

K.3.E

K.3.F

K.3.H

K.3.1
K.i3. J
K.3. K

A109

LEVEL 3 ORIGINAL PAGE IS
COMPONENTS OF STATE H.A of POR QU

DETERMINE AVAILABLE JOB COMPONENTS

4* 4 STATE DESCRIPTIONS

STATE 	 LONG NAME AND TEXT

M.A.A 	 ESTAB3LISH THE LIST OF OMS FOR THIS J03

ASK FOR AND INTERPC.ET THE LIST OF OMS GIVEN BY

THE USEK.

M.'A. 8 	 SEARCH FOR OiL NAMES IN THE STL

TRY TO SATISFY THE LIST OF REQUIRED OHS WITH THE

LIST OF OHS RESIDING IN THE STL.

M.A.C 	 SEARCH FORZ OH NAMES IN THE CL

T.RY TO SATISFY THE LIST OF REQUIREO OMS NiTH THE

LIST OF OS RESIDIN IN THE CL

.A.D 	 CHECK ACCESS TO CL RESIDENT OMS

ANY OHS REQUIR&d WHiCH RESIDE IN THE CL MUST 4E

ACCESSABLE TO THIS USER IN EXECUTE MODE.

ALLOWEJ TRAOSITIONS

FROM STATE TO STATE INPUT / OUTPUT
(r' = ENTRY) (, = EXIT) CONDITION RESULT

&M.A. 	 1 1

1.A.B 	 M.A.C 3 3

,&M.C.A 2 2
M.A.C 	 M.A.J 5 5

r'M.B.A 4 4
M 	A .0 r'N.B.A 6 6

$K1.B.A 7 7
FoMCA 	 o

A11O

http:INTERPC.ET

M C.A

3/3 8/8

oA.D
M

/
-AM'

M.B.A

LEVEL 3 TRANSITION DIAGRAM

STATE M.A : DETERMINE AVAILABLE JOB COMPONENTS

A1i

M.A I DETERMINE AVAILABLE JOB COMPONENTS

(CONTINUED)

* INPUT / CONDITION LIST

NUMBER 	 TEXT

I LIST OF REQUIREO OHS
2 STL OH DIRECTORY CONTAINING THE NAMES OF ALL REQUIRED

OHS
3 STL OH DIRECTORY CONTAIAING LESS THAN ALL THE NAMES OF

REQUIRED J1MS
4 CL ON DIRECTORY CONTAINING NONE OF THE NAMES It, THE

GIVEN SEAR3H LIST
5 CL OM DIRECTORY CONTAlNINS AT LEAST ± Om NAME IN THE

GIVEN SEARCH LIST
6 ACCESS CODE TABLE DENYING EXECUTE PERMISSION FUR AT

LEAST i CL RESIJENT OM
7 	 ACCESS CODE TABLE GIVING EXECUTE PERMISSION FOR ALL

CL RESIDENT OHS FOUNO AND A CL OH DIRECTORY CONTAININu
LESS THAN ALL THE REQUITED GMS.

3 	 ACCESS CODE TABLE GIVING EXECUTE PERMISSION FOR ALL
CL RESIuENT OMS FOUND, AND THE COMBINED STL, CL OM
DIRECTORIES CONTAIN ALL gEQUIRED OHS.

*e~e OUTPUT / RESULT LIST 	 _

NUM3ER 	 TEXT

I USERS OM LIST

2 LIST OF NAdES FOUND IN THE STL

3 LIST OF NAMES FOUND IN THE STL AND THOSE NOT FOUND
4 LIST OF NAMES FOUND IN THE STL AND THOSE NOT FCUND

IN THE CL
5 LIST OF OHS FOUND IN THE CL AND THOSE NOT FOUND

6 LIST OF STL OHS FOUND, CL CES FOUND AND ACCESSABLE, AND

CL OMS FOUND BUT NOT ACCESSABLE
7 LIST OF FOUND AND ACCESSAeLE OHS ND THOSE NOT FOUND
3 LIST OF ALL REQUIRED OHS

~-ROSS REFERENCED TANSITIONS

STATE IS ACCESSIBLE FROA

M.A.A 	 F.A.D

M.3.F

M.C.D

A112

LEVEL 3

COMPONENTS OF STATE M.B

CONSTRUCT AN OH LIBRARY ENTRY

4~4* STATE DESCRIPTIONS **

STATE LONG NAME AND TEXT

M. .A FJRH INITIAL DIRECTORY ENTRY

SET UP THE OIRECTOiY ENTRY PROTOTYPE AND FILL IN

CURRENTLY AVAILABLE ITE.IS LIKE NAME AND TYPE;

MB.6 PROCESS FUNCTIONAL DESCRIPTION

REQUEST A FUNCTIONAL JESCRIPTIDN FRCM THE USER,

VALIOATE THE FORM, AND INSERT IT iN THE DIRECTCRY ENTRY

ti.3.C PROCESS THE TEXT CONTRCL DATA

REQUEST THE ELEMENTS OF THE TEXT CJNTROL DATA,

JALIUATE FROM CJRRENT CM LE; AND CONSTRJLT THE TCD

1.3.0 CREATE THE TLXT ENTRY

GATHER ALL THE GO;I'ONENT OMS, EXTRACT THE INAdY
OEGKS, DO ANY NECESSARY PRE-LOADINGI AND CONSTRUCT
THE EXECUTABLE LOAD FILES.

M.3.E C' EATE CONTROL CM

IF THE CMS MAKING JP THE ON DO NOT CONTAIN A MAIN

PROGRAM, A CONTROL PROGRAM MUST BE SUPPLIED OY THE USER
AT THIS TIME.

t d. F ENTER OH INTO THE STL

MAKE THE FJRMAL ENTRY OF THE OH INTO THE SUBTASK

LIBRARY.

A113

M6 I CONSTRUCT AN 01 LIBRARY ENTRY
(CONTINUED)

ALLOWED TRANSITIONS 4

FROM STATE
(t*= ENTRY)

TO STATE
C& = EXIT)

INPUT /
CONDITION

OUTPUT /
RESULT.

bM.B.A
M.13.8
N.B.C

M.3.O
M.B.E
M.3.F

M.8.3
M.B.C
M.B.O
M.B.E
M.B.F
M.B.O

&'N.A.A
A1.C4.
,-"M.•C.C

I
2
3
4
5
6
6
7

I
2
3
3
4
5
6
6
E

A11l4

MiB.A M.i M.A.

M.B.F M.C.A II

LEVEL 3 TRANSITION DIAGRAM

STATE M.B CONSTRUCT AN OM LIBRARY ENTRY

A115

H.8 I GONSTRUCT AN ON LIBRARY ENTRY
(CONTINUED)

* INPUT / CONDITION LIST

NUMER TEXT

I NAME OF THE Om
2 VALID FUNCTIONAL DESCRIPTION
3 VALID USER SUPPLIED PORTION OF THE TEXT CONTROL DATA
4 LIST OF CGOPONENT OMS LACKING A MAIN PROGRAM

DIRECTORY AND DICTIONAR? INFORMATION COASISTENT WITH
THE USERS PORTION OF THE TEXT CONTROL DATA

6 VALID CMO CONTROL PROGRAM
7 OM DIRECTORY INOICATING ThAT ALL REQUIRED OMS ARE

DEFINED ANd ACCESSABLE
.3 NON-EMPTY LIST OF OMS TO FE DEFINED
-3 NON-EMPTY LIST OF OS TO BE DEFINED AND AN ENTRY FLAG

FROM M.C.C.

OUTPJT / RESJLT LIST 4**

NUM3ER TEXT

I PARTIALLY COMPLETED DIRECTORY ENTRY
2 FUNCTIONAL OESCrIPTION PLACED IN THE DI&ECIORY ENTRf
3 USERS PORTION OF THE TCO IN THE DIRECTORY ENTRY
4 COMPLETE dIRECTORY AND TExT ENTRY FOR THE OM
5 NEACM DEFINED IN THE SJBTASK LIBRARY, AND OUTPUT 3

5 NEW OM DEFINED IN THE SUBTASK LIBRARY

.ZROSS REFERENCE] IRANSITIONS

STATE IS ACCESSIBLE FROI

M.B.A M.A.C

M.A.i

M.A.D

Al16

LEVEL 3 	 ORroA PAG
COMPONENTS OF STATE M.C OF POOR QU GLiTQCONSTRUCT A JOB LIaRARY ENTRY

** STATE OESC iIPTIONS *

STATE 	 LONG NAHE AND TEXT

M.C.A 	 CONSTR.UCT THE OM NETWORK

REQUEST THE NETWOR< DESCRIPTION FRDN THE USER AND

GOISTRUCT AN ANALYTICAL EXPRESSION OF THE NET WORK

M.G.B 	 VALIDATE THE INTERNAL/EXTERNAL UATA FLOW

TAKING THE OM SPECIFICATIONS, CONSTRUCT THE ACTUAL

DATA FLOW WHICH WOULD OCCUR DURING EXECUlION AND ASK

FO" USER VALIDATION. NOTE THAT EXECUTION TIME DECISIONS

MAKL IT IMPOSSI3LE TO ANTICIPATE ALL POSSIBILITIES

M.C.C 	 MODIFY THE ON NETWiORK

IF THE DATA FLUN IS NOT AS DESIRED, NETWORK
MOJIFICATIONS MAY BE NECESSARY.

M..D 	 DEFINE THE J>3 IN THE SUBTASK LIBRARY

TAKING THE NETWORK uESCRIPTION AND THE COMPONENT

OMStCONSTRUCT THE JOB DIRECTORY ENTRY AND THE SYSTEI

CONTROL "rZD SKELETON RECORD.

*** ALLOWED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT /
(t = ENTRY) (o = EXIT) CONDITION RESULT

tM.C.A M.C.6 	 1 1
M.C.B M.C.C 	 2 1

M.C.U 5 3
'M.C.S .M.B.A 4 2

M.C.b 	 -3 ±
M.C.D 	 tF.A.A 6 4

*M.A.A 7 4

A117

V- -

5/3 1 F.A.A

2/1 3/1, /

M.CC M .

4/2 M6AiA

M.BA I

LEVEL 3 TRANSITION DIAGRAM

STATE M.C CONSTRUCT A JOB LIBRARY ENTRY

Al18

M.C I CONSTRUCT A JOB LIBRARY ENTRY

(CONTINUED)

INPUT / CONDITION LIST

NUM;3ER 	 TEXT

i VALID NETWORK SPECIFICATIONS

2 USERS RESPONSE THAT THE DATA FLOW IS NOT AS DESIRED

3 VALID NETWORK MODIFICATION SPECIFICATIONS

4 USERS RESPONSE THAT ONE OR MORE GMS ARE MISSING

5. 	DICTIONARY AND DIRECTORY INFORMATION COAPATIBLE WITH

THE NETWORK SPEC1FICATIONS.

6 EMPTY LIST OF JOBS TO 3E DEFINED

7 NOA-EMPTY LIST OF JOdS TO BE DEFINED

* OUTPUT / RES.JLT LIST

NUM3ER 	 TEXT

I ANALYTICAL EXPRESSION OF THE NETWORK

2 LIST OF OAS

3 ALL NECESSARY INFORMATION TO DEFINE THE JOB.

4 JOB ENTEREO INTO THE SUr3TASK LiBRARY

"* * C' OSS REFERENCED TRANSITIONS **

STATE IS ACCESSIBLE FROA

M.C.A 	 M.A.B

M.A.D

M.B.F

M.C.C 	 M.3.F

A119

LEVEL 3

COMPONENTS OF STATE N.A

ESTAdLISH THE REQJIRED LEN LIST

STATE OESC.IPTIONS

LONG NAME AND TEXT
STATE

N.A.A CONSTRUCT ULEN LIST FOR ALL I/0 LE USED

FROM THE Jfl DEFINITION, FORM THE LIST OF LEN USED

BY THE jD'3 AS INPUT, OUTPUT, OR INPUT/OUTPUT.

CuNbTidGT LLN FOR A DIRECTORY SEARCH
N.A.B

ThE QUALIFYING INFORMATIUiN FROM
USING THE JLEN ANi
THE EXECJTION CJMMAA (EXFLICITLY GIVEN ,R IMPLIEd IN

THE UEFAULT SENSE), CONSTRJCT THE NAMES iHICH ARE
bE FOUND IN THE STLGL SEARCH.EXPECTEU TJ

4LLOWEO TRANSITIONS

FROM STATE
(& = ENTRY)

TO
(=

STAlE
zXIT)

INPUT f
CONDITION

OUTPUT
ZESULT

&N.A.A
N .A *B

N.
#N .

A.G
.A

I
2

I

TRANSITION DIAGRAM

A120

OR GZAZm 4G, T

N.A 	 Z ESTABLISH THE REQUI EO LEN' LIST 0pp0R QUA - -7i

(CONTINUED)

* INPUT / CONDITION LIST

NUMBER 	 TEXT

I 	 LIRARY DIRECTORY ENTRY FOR THE JOB WITH EXECUTE
PERMISSION FOR THIS USE.

2 QUALIFICATION INFORMATIJN FRO THE EXECUTE COMMAND

OUTPUT / RESULT LIST

NUM3ER 	 TEXT

I 	 LIST OF ULEN FROM THE DIRECTORY ENTRY

2 	 LiSl OF NAMES SUITA3LE FOR A DIRECTORY SEARCH

+ CR3SS REFERENLJEJ TRANSITIONS

STATE IS ACCESSIBLE FROM

N.A.A 	 F.A.J

A121

LEVEL 3

COMPONENTS OF STATE N.,B

CHECK FOR LEN IN LIBRARIES

STATE DESCRIPTIONS

STATE LONG NAMlE AND TEXT

N.S.A SEARCH THE STL FOR RE2UIRED LEN

EXAMINE THE STL OL>ECTORY TO FIND THE REQUIRED
LEN. NO ACOESS PERMISSION :EQUIREO

N,.B SEARCH THE '- FOR REQUIRED LEN

EXAMINE THE CL DIRECTURY TO FIND THE REQUIRED LLN.

AGESS PERAISSION MUST 3E INOICATEO IN THE LEO FOR THE

CORRESPONOING USE OURING EXECUTION

ALLOhED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT

(t = ENTRY) (r = EXIT) CONDITION RESULT

r*N.3.A N.B. . 1
&N.C.A 2 2

N.3.1 N.C.A 3 3

A122

'

\2/23/3

-0- -

LEVEL 3 TRANSITION DIAGRAM

STATE N.B CHECK FOR LEN IN LIBRARIES

A123

N.8 	: CHECK FOR LEN IN LIBRARIES

(CONTINUED)

**#44 INPJT / CONDITION LIST

NUMBER TEXT

I SEARCH LIST OF LEN NOT ALL CONTAINED IN THE STL
2 SEARCH LIST OF LEN ALL JF WHICH ARE CONTAINEU IN THE

STL
3 SEARCH LIST OF LE ALL OF viHICH ARE CONTAINED IN THE

CL AN!J HAVE PROPER ACCESS PERMISSION COIES'

OUTPJT / RESJLT LIST 4**

NUiIBER 	 TEXT

I LIST OF LEN LOCATED IN THE STL, THOSE YET TO BE LOCATED
2 LIST OF 4LREAJY EXISTING LI$RARY ENTRIES TO t3E USED

OURING EXECUTION, WITH APPROPIATE LINKING INFORMATION.
3 -

C&OSS kEFERENCE9 TRANSITIONS

STATE IS ACCESSIBLE FROM

N. B.A

A124

LEVEL 3

COMPONENTS OF STATE N.C

PREPARE J09 FOR EXECUTION

#44 STATE DESCRIPTIONS

STATE LONG NAlE AND TEXT

N.S.A PREPARE LiN FOR ALL OUTPUT AND I/O LE

PREPAiE AHEAD OF EXECUTION ALL THE NAMES (QUALI-

FIEU AND UNQUALIFIED) FOR THE LE TO BE CREATED DURING
THE JOB. QIRECTORY ENTRIES ARE MADE WIT9 NO TcXT ENTRY.

N.C.B SET UP FILE LINKAGES

ACTUAL LOGICAL FILE NAMES USED BY THE OMS MUST 3E
RECONCILED WITH CURRJNT LOCATIONS FOR INPUT LE 4N0 TIE
ACTUAL LINKAGES TO THE LTE MUST dE SET UF.

N.G.C PREPARE THE EXECUTABLE CODE FILES

THE 0M TEXT ENTRIES MAY 3E READY TO RUN OR NEE)

SOlE PREPARATION, BUT IN ANY CASE THE LOCATION OF TiE
COJE MUST 3E KNOWN FOR ZONTROL CARD FILL IN.

N.0.D CREATE GOJTkOL CARDS FOR THIS EXEGUTJ

TAKE ALL THE EXECUTION 'TIME DEPENDEpT INFO-MATiON
AND PLACE/SUBSTITUTE IT IN THE CONTROL CARD SKELETCA.

ALLOWED TRANSITIONS

FROM STATE

(* = ENTRY)

rIN.C.A

N.C.B

N..C
N.C. L)

TO STATE

(ro = cXIT)

N.C.3

N.C.C

N.C.J

&N.A

INPUT / OUTPUT
CONDITION RESULT

1 1
2 c
3 3
4t 4

A125

NCoD N, D.,

LEVEL 3 TRANSITION DIAGRAM

STATE N.C PREPARE JOB FOR EXECUTION

A126

N.C t PREPARE JOB FOR EXECUTION

(CONTINUED)

** INPUT / CONDITION LIST

NUM3ER TEXT

I O NETWORK AND THE LIST OF LEN USED DURING EXECUTION
2 CORRESPONOANCE LIST FOR EACH OM GIVING THE RELATIONSHIP

BETWEEN LEN AND LOGICAL FiLE NAME USED IN THE OS
3 ON TEXT cNTRt AND THE CORRESPONDING TEXT LOCATION

SPECIFICATIONS.
4 COMPETE STATUS ON CONTROL CARD RECORD

** OUTPUT / RESULT LIST

NUM3ER TEXT

I NAMES OF ALL LE USEO FOR THIS EXECUTION

2 CONSISTENT FILE DEFINITIONS FOR ENTIRE DATA FLCW

3 EXECUTABLE CODE FILES.

4 ALL JOB COMPONENTS REAOY FOR EXECUTION

* Z OSS REFERENCEO TRANSITIONS #

STATE IS ACCESS1SLE FROM

N.C.A N.3.A
N.3.B

A127

LEVEL 3

COMPONENTS OF STATE N.O

INITIATE EXECUTION

* * STATE DESCRIFTIONS **4*

STATE LO' NAME ANO TEXT

N.0.A INITIATE EXECUTION

ISSUE A ZOMMANO TO THE OS TO EXLCUTE THE CONTROL
GARO RECOZO AND WAIT UNTIL THE EXECUTIC4 CCMMMNJ HAS
BEEN ACCEPTED.

ALLUdES TrANSITIONS

FROA STATE TO STATE INPUT / OUIPUT /
(o = ENTRY) (= = EXIT) CONOITION RESULT

rN.0.A - rN.E.A

TRANSITION DIAGRAM

NE.A
A- lo

A128

N.0 	I INITIATE EXECUTION

(CONTINUED)

* INPUT / CONITION LIST

NUMBER 	 TEXT

I SIGNAL FROM TIE OS THAT THE JOB EXECUTION COMMAND H4S

BEEN ACCEPTED ANU THE J03 IS EXECUTING.

OUTPUT / RESJLT LIST

NUH3ER TEXT

I

44 4* CROSS REFERENCGEO TRANSITIONS *4*

STATE IS ACCESSIBLE FkF0

N.O.A 	 N.C.D

A129

LEVEL 3

COMPONENTS OF STATE N.E

SUBTASK STEP EXECUTING

STATE DESCRIPTIONS '*

STATE LONG NAME AND TEXT

N.E.A SUBTASK STEP EXECUTING

SOME ARKITRARf PORTION OF THE .SUdTASK STE- IS NOW
EXECUTiNG AN0 INOICATES NO REIUIREMENT FG USEk OR IPAu
EXECUTIVE INTERACTION.

* ALLOWED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT /
(r = ENTRY) (r = EXIT) CONDITION RESULT

*NE.A *O.A 1 1
r0 ,C 2 2

TRANSITION DIAGRAM

OA.A/

N% O.C°A

A130

N.E 	 t SUBTASK STEP EXECUTING
(CONTINUED)

INPUT / CONDITION LIST

NUM3ER TEXT

I INPUT REUEST COMHAND FROM THE STS
2 OUTPUT COMMAND FROM THE ST3

OUTPUT / RESULT LIST

NU*13ER TEXT

I TERMINAL INPUT ZEUEST
2 TERMINAL OUTPUT REQUEST

C.ROSS REFERENCEd TRANSITIONS

STATE IS ACCESSISLE FROMI

N.E.A 	 N.l.A

A131

LEVEL 3

COMPONENTS OF STATE Q.C,

PURGE A GL ENTRY

* * STATE DESC&LPFTIONS **

STATE LONG NAME AND TEXT

G.S.A RETRIEVE JICTIONARY ENTRY

0.0.B RETRIEVE JIRLOTORY ENTRY

?kAGEFXI
UU&~k WASZ1

ORIGINAL PAGE IS
OE POOR QUALITh

CAN
THE SJ-TASK ICI

BE EFFECTED.
LIST MUST BE EMPTY 3AFORE A PURGE

Q.1.C TRACE DEPENDENCIES

THE DICTIONARY AND DIRECTORY ENTRIES ARE CHECKcO
FOR DEPENDENCIES. IF THE USEU-t3Y LIST IN THE DiCTIONARY
IS NOT EMPTY THE DEPENDENCY CHAINS ARE TRACED. THE SJL3-
TASK i'D LIST IN THE JiRECTJRY ENTRY MUST ALSO EE EmiPTY
BLFORE A PURGE IS PERMISSIBLE.

G.0.* PUBLISH OEPEM0ENCY LIST

AN3

A COMPLETE LIST OF ALL DEPENDENT LIBRARY ENTRIES
THE OWNER OF EACH 1 PUdLISHED

O.C.E SET STATUS

THE STATUS IS SET = *PURGE REQUESTED * IF
ENCIES WERE FCUND. STATUS IS SET = *PUKGED* IF
RELEASED FROM DATA 3ASE.

UEPEkO-
DATA IS

Q(X.F PURGE uAT-A

RZELEASE DATA F4GM TEXT OF LE.

A132

ORIGINAL PAGE M

OF POOR QUAIJT

!oC I PURGE A CL ENTRY
(CONTINUED)

' STATE DESCRIPTIONS (CONTINUED)

STATE LONG NAME AND TEXT

Q.C.G 	 CLEAR -EFERENCES

REFEIENCES IN EXISTING LIiRARY ENTRIES WH13H SHNW

PU GEU LE AS A USER ARE CLLARED.

Q.O.H 	 CLEAR DIRECTDRY ENTRY

THE DIRECTORY ENTRY IS CLEARED OF ALL INFCQMATIuiJ
EXCEPT NAMETYPE, FINAL STATUS RECORD.

ALLOWED TRANSITIONS 4

FROM STATE
(r = ENTHY)

TO STATE
(ro = EXIT)

INPUT /
CUNDITION

OUTPUT /
RESULr

tQ.C.A 2 Q.0.13 I 1
Q.C.3 Q.C.C 2 ±
Q.G.w t4.C.-a 3

Q.C.F 4 1
(.G.O Q.C.E 5 0

Q.C.E Q.C.H 9 i.
u.C.F d.C.G 7 1
Q.C.G Q.C.E o 1
Q.C.H rF;A*A 10 1

A133

2/1/3/2 5/3

LEVEL 3 TRANSITION DIAGRAM

STATE Q.C: PURGE A CL ENTRY

A134

Q.C I PURGE A CL ENTRY

(CONTINUED)

* INPUT / CONDITION LIST

NUM3ER TEXT

I OI3TIONARY ENTRY RETRIEVED
2 DIRECTORY ENTRY RETRIEVED
3 DEPENDENCIES FOUND
4 NO DEPENOENCIES FOUND
5 LIST OF OEPENOENCIES PU3LISHEJ
7 DATA FROM TEXT ENTRY RELEASED FROM DATA OASE
8 ALL REFERENCES TO PJHGEd LE CLEARED FROM DATA BASE
- STATUS SET = *PJRGEO4

ij DIRECTORY ENTRY CLEA'kEU OF ALL BUT FINAL STATUS

4** OUTPUT / KESJLT LIST *

NU'1 3ER TEXT

2 ERROR MESSAGE
3 ERROR CONDITION TO 3E CLEARED

A135

LEVEL 3

COMPONENTS OF STATE W.C

CONSTRUCT DICTIONARY ENTRY

' ' STATE OESCRIPTIONS "**

STATE LONG NAME AND TEXT

W.C.A RETRIEVE 3OD FOR DICTIONARY

THE SOO FOR LE TYPE &ICTIONARY IS RETRIEVED FOZ

USE IN SUBSEQUENT PRJCESSING.

W.C.B ENTER DICTIONARY INFORMATION

THE USER ENGAGEs 14 A DIALOGUE WITH THw SYSTEM

UURING WHICH THE INFORMATION FOR THE DICTIONARY ENTRY
IS PROVIDED.

W.,.G REVIEA ENTRY

THE NEW DIGTIONARY ENTRY IS DISPLAYED TO AND RE-

VIEWEd BY THE USER.

W.C.D A90 ENTRY TO DICTIONARY

THE NEW ENTRY HAS 6EEN APPROVED BY THE USER AND
IS ADDED TO THE DICTIONARY- IN THE DATA 3ASE

WO.E ERROR RECOVERY

RESOLUTION OF A CONFLICT OVER AN ENTRY IN A CL
DICTIONARY IS MADE. AN ENTRY HAVING SAME NAME,1YPE WAS

MAdE BY ANOTHER USER IN THE TIME INTERVAL AFTER THE

FIRST CHECK MADE AT THE TIME DIALOGUE BEGAN AND THE

TIME THE USER WAS READY TO ADO THE ENTRY.

W.0,F SAVE ENTRY TEXT IN SL

THE JSER HAS BEEN UNABLE TO SATISFACTORILY RESOLVE

A NAME-CONFLICT AND SAVES THE ENTRY LOCALLY.

A136

W.C : CONSTRUCT DICTIONARY ENTR{Y
(CONTINUEd)

* ALLOWED T-4J5ITIONS

FROM
Go =

TAT-
ENTRY)

TU 3TAT-
(* = EXIT)

INPUT /
CONITION

OUTPUT
R-SULT

/

rW.C.A
vv.C. B

J.G.C

t4.0.0
rW .2'.E

d.id
.C.3

,1.~u4
d.O.d
,J.C.O

rF.Aa

rFA.A

I
2

5
6
7

1:

2
4
4
4
6

1

W.G~f -4

W.C.F rFA.A

W.C.F

12

11
i

2

A137

8/44
SAEW.C:AW COSRDITONR ENR

W. C...E

W.C.FF.A.A,

LEVEL 3 TRANSITION DIAGRAM

STATE WC: CONSTRUCT DICTIONARY ENTRY

A138

OR~rjPAGE l

w.C I CONSTRUCT DICTIONARY ENTRY OR POOR F,
(CONTINUEO) OF P00 Qak

INPUT / CONDITION LIST

NUTNBER TEXT

I SOO FOR DICTIDNARY RETRIEVED
2 USER/SYSTEM DIALOG INCO.IPLETE
4 DICTIONARY ENTRY COMPLETE BUT NOT APPROVEO
5 USER WANTS TO MODIFY ENTOY
5 DICTIONARY ENTRY COMPLETE ANO APPROVEU
7 ENTRY ADDED TO DICTIONA: Y
3 NAME CONFL ICT RESOLVED
3 CONFLICT NOT RESOLVED-USE . viANTS TO SAVE ENTRY TEXT

LOCALLY
10 USER WANTS NO FURTHER{ ACTliON ON THIS ENTt.Y
11 USEK/SYST-:i DIALOGUE SPECIFYING LOCAL SAVE OF 1-XT
12 ENTRY SAMEI IN SL AS bPECIFIED BY UNER.

OUTPUT / 'ESJLI LIST

NUMBER TEXT

I
2 14ESSAGE TO USER REQUESTIiG MO," E INFORMATION
4 DITIONARY ENTRY TEXT I USER WORKING AREA
6 UPDATEO DICTIONARY AVAILARLE IN DATA dASE

A139

LEVEL 4

COMPONENTS OF STATE I.C.B

ENTER CODING MODULE

STATE DESCRIPTIONS

STATE LONG NAHE AND TEXT

I.C.B.A CHECK LI3ZARY ENTRY

THE APPROPR{IATE LIIPA<Y JIRECTQRf IS SEARCHED FOR
A CODING MODULE HAVING THE SAME NAME. IF ONE IS FOUAC
AN ERROR CONDITION EXISTS AND IS REPORTED.

I.G.B.d CHECK UICTI.NARY ENTRY

THE APPROP&IATE O1.ETICNA. Y IS SEA?:GHEV FOR A PRE-
VIOUSLY MAJE DEFINITION. IF WORKING IN THE CL ANJ CAE

IS FOUND IT IS OFFEREU FUR REVIEW. IF 1*' THE CL AND NO
OICTIONARf ENTRY EXISTS ONE MUST BE MADE. IF IN THE

STL THE OE IS OPTIONAL.

I.C13. C REVIEW Di0iIONARY ENTRY

USEk MAY CESIRS TO EXAMiNE EXISTING DEFINITION FOR
CORRECTNESS. IF A CH4NGT IS DESIRED HE ENTEkS THE
MODIFY DEFINITION MODE VIA A PAUSE.

I.Cd.O DEFINE C.1

A DEFiNITIUN FOR THE NEW CM IS ENTEREO (A DICTION-

AR? ENTRY AADE)

I.C.B.E RETRIEVE 300 FOR CM

I.C.B.F REPCRT ER&OR

IG.BG C CONSTRUCT CM

THE SOURCE COOE AND AUXILIAY DATA WHICH COMPRISE

THE LIBRARY ENTRY FOR THE >1 ARE ENTEREJ

A140

I.0.8 t ENTER COOING MODULE

(CONTINUED)

FROM STATE

= ENTRY)

rIG.U.A

.C. B.3

1.0.8.0

I.C.B.U

I.G.B.E

I.C.B.F

I.G.B.G

ALLOWED TRANSITIONS

TO STATE

(r = EXIT)

I.C.3.A

I.C.B.3

I.C.3.F

sI.C.K

IC...c

I.C.S.D

I.C.-3.E

I..B.E

I .. 8.o

I.C.3.E

I.C.t3.F

I..,3*G

rI.G.M

I.C.d.F

I.G.3.G

"I.C.L

INPUT / OUTPUT
CONDITION RESULT

i i
15 7

2
4 7
5 S
6 4
1 4
a 4

11 4
9 4

i 5
16 7
3 7

14 6
13 4

12 7

A141

ORIurIijU PAGE 1BI.c K,OF PooR QUALrP4

114

11/5

1517 104 1 .B.C I.C.BoG

LEVEL 4 TRANSITION DIAGRAM

STATE ICCoB: ENTER CODING MODULE

A6142

I.C.8 s ENTER CODING MODULE

(CONTINUED)

4 INPUT / CONDITION LIST

NUMBER TEXT

I A CH WITH SAME NAME 4S NEW CM FOUND IN LISRARY
2 AMBIGUOUS GM NAIES NOT RESOLVED
3 ERROR CONDITION POSTED
4 NO PREVIOUS LE FOR CM EXISTS
5 PREVIOUS DICTIONARY ENTZY EXISTS
5 NO DICTIONARY ENTRY EXI3TS ANJ ONE IS &EOJIREO 0:

DESIRED
7 NO DICTIONARY ENTRY EXISTS ANO ONE NOT REQUIRED OR

WANTED
8 OICTIONAY ENTRY APP,(OVE3
- dICTIONARY COMPLETE 4NU IN QATA BASE
I) MO.RE INFORMATIG4 RE)UIREO TO COMPLETE DICTIONARY EN'TRY
11 IMPOSSIBLE TO CONPLEIL JICTIOrNARY ENTRY
12 ALL OATA FOR CM LE 40QUIREU
13 MORE DATA RE.QUIRED FOR zL
14 IMP.OSSiBLE TO COMPLETE LE
15 DIRECTORY ENTRY FOR NEW L' ESTABLISHED Ili USER WORKING

4REA.
13 S03 RETRIEVEO

OUTPUT / RESJLT LIST

NUMISR TXT

I MESSAGE TJ USER GIVING OPOUTU.41TY TO REAOVE AMEIGUITY
2 ERROR MESSAGE (AM-IGJOUS CM NAME)
3 TEXT OF DICTIONARY ENTRY AV41lABl.E FOR JISPLAY
' MESSAGE INFORMING USER TO PROCEOE
5 ERROR MESS4GE (DE NOT COMPLETED)
6 ERROR MESSAGE (LE NOT COMPLETED)
7 -

A143

LEVEL 4

COMPONENiS OF STATE I.C.C

ENTER DATA SET

STATE DESCRIPTIONS

STATE LONS NAME ANO TEXT

T.C.C.A RETRIEVE STOtED DATA DEFINITION

THE USER WANTS TO CRE4TE AN INSTANCE CR OCCURRENCE
OF A DATA SET BY ENTERING VALUES FOR VARIABLES CONTAIN-

ED IN THE JATA SET. SUBSEQUENT PROCESSING REQUIRES AN

SOD. IF THERE IS NO SO IN HIS STL JR IN THE CL WHIrs
THE USEK HAS PEr1ISSIGN TO USE AN ERROR CONOITION IS
ESTABLISHED PREXENTING CCNTINJATION AT THIS POINT.

I.0.C.B CJNSTRUCT TExT FDR NEW LE

THE JSERS JATA IS ACCEPTEJ, TRAVNSFOPNMFU, FORMATTEU
AN) Pe'EPAREO FOR STORAGE FOLLOWING SPECIFICATIONS CON-
TAINED IN THE S)0. THE JATA MAY COME FROM THE TERMINAL
OR FROM OTHER ORIGINS EXTERNAL TO IPAO SUCH AS MAGNETIC
TAPE, PUNCHED CARDS, DISK FILES, AS INDICATcD BY THE
USER. DATA FROM SEVERAL SOURCES MAY BE CGMeINED.

I.C.C.C REPORT ERROk

SOME ERROR GONOITIJNS MAY OCCUR AFTER HUSH VAL-
UA3LE PfOCESSING HAS OCCURRED IN WHICH CASE THE USE&
MAY ELECT TO SAVE THE UATA ENTERED FOR LATER CLRRECTION
VIA MODIFY.

A144

I.C.C I ENTER DATA SET

(CONTINUED)

ALLOWEd TRANSITIONS

FROM STATE TO STATE iNPUT / OUTPUT I

(,*= ENTRY) (r = EXIT) CONDITION RESULT

rI.C.C.A I.C.C.B 3 1

1.0.C.C 2 2

rI .C .K 1 1

I.0.C.8 I.C.C..B 4 3

1 4

rI.C.0.C L..C.L 7 1

rI.C.MM

TRANSITION DIAGRAM

I-C.

C I.C.IM

A145

I.C.C : ENTER DATA SET
(CONTINUED)

" INPUT / CONDITION LIST *

NUMER TEXT

I STORED DATA DEFINITION CORRESPONDING TO NEW LE EXISTS
2 SOD OCES NOT EXIST
3 DIRECTORY ENTRY FOR NEW LE ESTABLISHED IN USER WORKING

AREA
4 DATA INPUT AND LE CONST OCTION INCOMPLETE
5 LE CONSTRUCTION COMPLETE IN USER WORKING; AREA
5 IMPOSSIBLE TO PROCESS SOME SPECIFIC INPUT DATA
7 USER DES!IES TO SAVE DATA SET AS IS
3 ERROR CONDITION TO 3E "LEAPED

* ' OUTPUT / RESJLT LIST

NUN-SER TEXT

I -

2 LRROR MESSAGE (SO DOES NOT EXIST)
3 MESSAGE PE$IUESTING USER TO ENTER MORE DATA
4 ERROR M-SSAGE (DATA PrOCESSING EK-(OR)
5 APPROPRiATE ERROR COVE

QA146

LEVEL 4 OP114N?
COMPONENTS OF STATE I.C.D P0.U ,.!,

ENTER STORED JATA DEFINITION Qu

* STATE DESCRIPTIONS

STATE LONG NAME AID TEXT

I.G.D.A CHECK LIB3RARY ENTRY

THE APPROPRIATE LI±34RY DIRECTORY IS SEARCHED
FOR AN SOO HAVING THE SAME JAME. IF ONE IS FOUND AN
ERROR CONJITION EXISTS ANCi IS REPORTEO.

I..D.3 C-iECK OICTIONARY ENTRY

THE APPROPRIATE O1]TINAZY IS SLARCHED FOR AN
EXISTING OEFINITION. IF '03K1"JG IN THE ;L AND GNE
IS FOUND IT IS OFFERED FOQ NEVIEW. IF WOkKING IN
THE CL AN) NO OICTIONARY ENTRY EXISTS, ONE MUST BE
MADE. IF IN THE STL THE OE IS OPTIONAL.

1.3.D.C REVIEW OITINARY ENTRY

USER MAY DESIRE TO EXAMINE EXISTING OEFIWTTION
FO- CORrtEOTWESS. IF A CHANSE IS DESIRED HE ENTERS
THE MODIFY DEFIw4ITION MODL VIA A PAUSE

l,;.O-.u UEFINE SD

A DI&TIONARY ENTRY F0Z THE DATA SET IS MADE.

I.C.D.E RETRIEVE SOD FOR SJO

THE SOD WHICh SPECIFIES THE STRUCTJRE IN WHICH
ALL STORED DATA OEFIlITIONS APE STORED IN IP4J £3
RETRIEVE:).

IC.O.F REPORT ER Ok

A147

I.G.D 	t ENTER STORED DATA DEFINITION

(CONTINUED)

'* STATE DESCRIPTIONS (CONTINUED)

STATE 	 LONG NAME AND TEXT

I.C.O.G 	 CONSTRUCT SOD---

THE INFORMATION WHICH SPECIFIES THE CONTENTS
AND ORGANIZATION OF THE DATA SETS FOR WHICH THIS
SOD IS TO BE USED IS ENTERE9 AND A LE OF TYPE SD
CONSTRUCTED.

ALL.OWEO TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT
(r = ENTRf) (ro= EXIT) CONDITION RESULT

I.C.u.A 	 I.C.D.A I 1
i.C.D.5 	 15 7
I.O.U.F 2 2

&I .C.K ,+ 7
i.0.D.B 	 IoC.D. 5 3

I.C.U.0 	 6 4
i.C.D.E 	 7 4-

I.0.D.C 	 I.G.0.E 4
I.C.O.0 	 I1C.J. 10 4

I.C.j.E 	 9 4
I.C.O.F 	 11 5

1.C.O.E 	 I.G.D.G 16 7
I.C.D.F tI.C. 	 3 7
I.C.O.G 	 I.C.D.F 14 6

I.C.U.; 13 4

C.L 	 12 7

A148

I .c.K

4

I.CD.II15

. C.D IC.L

I6/

13/45/3 8/4

LEVEL 4 TRANSITION DIAGRAM

STATE I.C.D :ENTER SDD

A149

I.C.0 I ENTER STORED DATA DEFINITION

(CONTINUED)

44 ~N- INPUT / CONDITION LIST #*4

NU,+SER TEXT

I AN SOD WiTd SAME NAME AS NEW SOD FOUND IN LIBRARf
2 AM3IGUOUS NAMES NOT RESOLVEO
3 ERROR CONJITION POSTED
4 NO PPEVIOJS LE FOR S3D EXISTS
5 PREVIOUS OICTIOrJARf ENTDY EXISTS
6 NO DICTIONARY ENTRY EXISTS ANJ ONE IS REUUIRED OR

JESIRED
7 NO DILTICNARY ENTRY EXI.;TS AN) ONE IS NE1THLR FE-

QUIRcO NOR AANTED.
a DICTIONARY ENTRY APPROVED

'3 DICTIONARY COMPLETE AND IN DATA OA E

13 MORE INFORMATIO.4 RE.'lJRED TO COMPLETE DICTiONARY ENTRY
11 TNPOSSIdLE TO COMPLETE DICTIONARY ENTRY
12 ALL DATA FOR SDJ ACQU1,1ZU
13 MOR.E DATA FOP SOD RE-JUIjED
14 IMPOSSI.dLE TO COMPLETE LE FOR NEt SLD
15 DIRECTORY ENTRY FOR NEW LE ESTABLISHED IN USEK WORKING

AREA
16 SOO FOR SJJ ZETRIEVEO

' ' OUTPUT / RESULT LIST "

NUX23ER TEXT

I MESSAGE TO USER GIVING OP'PCRTUNITY TO REMOVE AMBIGUITY'

2 ERROR MESSAGE (ANdIGJOUS SJD NAME)

3 TEST OF DICTIONARY IENT.aY AVAILASLE FOR dISPLAf

4 MESSAGE INFORMING USER TO PROCEEO

'3 ERROR MESSAGE (GE 40T GOIPLETEO)

6 ER&OR MESSAGE (LE AOT COMPLETED)

7

A150.

LEVEL 4

COMPONENTS OF STATE I.C.E

ENTER DICTIONARY

* STATE DESCiIPTIONS

STATE LONG NAME ANO TEXT

I.C.E.A CHECK LIB3ARY ENTRY

THE USER CAN ONLY OEFINE NEW DICTIONARIES FOR -iIS

STL. TWO -31TIONAFIE3 FOR STL VARIABLES ANG LIS5ARY
ENTRIES ARE GIVEN DEFAULT NAMES EQUAL TO THE CL DIr-
IONARY NAMES WITH SUoTASK !i: 4PPENDED. tHE USLR IS FREE
TO OEFINE DOITIONAL DICTIONARIES TO SUIT HIS OWN NEEDS
dUT THE DEFAULT DICTIONARIES ARE USED FO,? SJSirASKS IN A
MANNER ANALOGOUS TO THE CL USAGE.

I.C.E..B CHECK DICTIONARY ENTRY

THE LOCAL OR SL DIOTIONARY IS CHECKED FOR PREVIOJS

UEFINITION OF NON-DEFAULT NAMED OICTICNARY.

I.C.E.C REVIEW DICTIDNARY ENTRY

I.C.E.O DEFINE NEW DICTIONARY

I.C.E.E RETRIEVE SOD FOR OICTIONARY

I°C.E.F REPORT ER.(OR

I.C.E.G CJNTRJZT 'ICTIONARY

A151

I.C.E I ENTER DICTIONARY
(CONTINUED)

ALLOWED TRANSITIONS 4

FROM STATE
C, = ENTRY)

.I.C.E.A

I.C.E.B

I.C.E.C

I.G.E.D

I.C.E.E

I.C.E.F
I.C.E.G

TO STATE

(o = EXIT)

I.G.E.A

I.C.E.B

I.C.E.E

I.C.E.F

,*I.C.K

I.C.E.u

I.C.E.O

I.C.E.E

I.C.E.D

I.C.E.E

I.C.E.F

I.C.E.G

&1l.0.N
I.G.E.F

I.C.E.G

r*I4 C.L

INPUT / OUTPUT

CONDITION RESULT

I

15 7

7 4

2 2

4 7

5 3

6 4

s 4

13 4

9 4

11 5

16 7

3 7

14 6

13 4

12 7

ORIGINA PAG&I
OF Poor QUAL=I

A152

2/2/

•- -

LEVEL 4 TRANSITION DIAGRAM

STATE l.C.E :ENTER DICTIONARY

A153

ORIGN,4 PAGIJ I$

I.C.E I ENTER DICTIONARY OF POOR QUALIT'
(CONTINUED)

.* ,"r INPUT / CONDITION LIST "

NUM3ER TEXT

I A OICTIONARY WITH SAME NAME AS NEW DICTIONARY FOUND IN
STL

2 AMI3GUOUS JICTIONARY NA,4ES NOT RESOLVED
3 ERROR CONJITION POSTED
+ NO PREVIOUS LE FOR DICTIONARY
5 PREVIOUS DICTIONARY ENTRY EXISTS
6 NO UICTIONARY ENTRY EXISTS
7 USER WANTS DEFAULT NAMEJ LE DICTIONARY
3 DICTIONARY ENTRY APPROVED
e DIGTIONARY ENTRY COIPLETE AND 1N DATA BASE

1) MORE INFORMATION RElUIR--'J TO COMPLETE DICTIONARY ENfRY
ii IMaOSSIBLE TO COMPLETE JIGTIUNARY ENTRY
12 ALL UATA FOR DICTIONJARY LE ACQUIRED
13 MORE OATA <EQUIDED FOR LE
14 IMPOSSIBLE TO COMPLETE LE
15 DIiECTORY 'ENTRYFOR NEW LE ESTABLISHED IN USER WORKING

AREA
I SUD RETRIEVED

$ OUTPUT / RESULT LIST

NU.135ER TEXT

I MESSAGE TO USEK GIVING OPPORTJNITY TO REMOVE AMBIGUITY
2 ERROR MESSAGE (AM1IGUOUS DICTIONARY NAME)
3 TEXT OF DICTIONARY ENTRY(DEFINING NEW DICTIONARY) IS

AVAILABLE FOR DISPLAY

4 MESSAGE INFORMING USER TO PROCEED

3 ERROR MESSAGE (DIRECTORY ENTRY NOT COMPLETED)
6 ERROR MESSAGE (L3AARY --NTRY NOT 13OMlPLETEJ)
7 -

A154

LEVEL 4

COMPONENTS OF STATE I.OJ

ENTER DATA CONTROL DATA

* STATE DESGIPTIONS 4

STATE LONG NA1E AN-] TEXT

I.G.J.A RETRIEvE ;OD

THE SUL) FOR THE SY3TE, OATA STRUCTURE WHICH HOLDS
THE SECURITYACGESS JATA IS RETRIEVEU FO. USE IN THE

PR)CESSING OF THE INPUT DATA

I.C.J.B CONST.UCt TExT

THF CONTRGL uATA IS ACCEPTED,PROCESSEO ANL PRE-

PARED FOR STORAGE.

I.O.J.C REPORT ER 3 e

ALL ERROR GNOITIO;43 NCOUNTERED IN THIS STATE ARL
FATAL. PROCESSING IS A.dJ,*TEO.

* 4LLOWED ThANSITIJNS

=ROM STATE TO STATE INPUT / OUTPUT
C,. = ENTRY) (& = LXIT) CONOITI'ON RESULT

&I.G.J.A L.C.J.B 3 1

I.C.J.C 2 2

I .C.K 1 1

I.C.J.B I.C.J.6 4 3
I.C.J.C 5 4

rOI.C.L 6 ±
r. .J.c rI.6."4 7 5

OPAGE A5

A155

I.C.K ..

I.C.J.B /I I.-.

LEVEL 4 TRANSITION DIAGRAM

STATE I.C.J ENTER DATA CONTROL uATA

A156

I.C.J 	I ENTER I3ATA ZONTROL DATA
(CONTINUED)

INPUT / CONDITION LIST

NUMER 	 TEXT

I SOD FOR SYSTEM LE TYPE 0D EXISTS
2 SOD DOES NOT EXIST
3 DIRECTORY ENTRY FOR CONTROL DATA LE ESTABLISHED IN USER

WORKING AREA
4 OATA INPUT AND LE CONSTUCTION INCOMPLETE
5 IMPOSSlbLE TO PROCESS SOME SPECIFIC INPUT DATA
6 LE CONSTPJCTIUN COHPLETE IN USER WORKING AREA
7 ERROR CONDITIUN TO E CLEAREu

"-~ OUTPUT / !RESJLT LIST

NUM3ER 	 TXT

2 ERROR MESSAGE

3 MESSAGE REQUESTING USER TO ENTER MORE DATA

4 ERROR MESSAGE

5 APPROPRIATL ERRUR COJE

A157

LEVEL 4

COMPONENTS OF STATE K.B.A

MODIFY CH

* STATE DESCRIPTIONS

STAtE LONG NAME AND TEXT

K.3.A.A RETRIEVE STORED DATA DEFINITION

THE SOD FOR A Cr1 13 RETkIEVED FOR USE IN FOLLOWING
PROCESSING.

K.d.A. 8 PERFORM C4 MOIFICATIONS

THE USER ENGAGES 1-4 DIALOGUE WITH THE SYSTEM TO
CARRY OUT HIS CHANGES.

K.3.A.C REPORT ER&O

ALLOWED TRANSITIONS

FROM STATE TO STATE INPUT / OUTPUT
(& = ENTRY) (r = EXIT) CONDITION RESULT

&K.3.A.A K.B.A.8 I I

K.3.A.8 K.B.A. 3 2 2

roK.C.A 3 1
r K.3.A.C *K.C.A 6

A158

K.B.A : MODIFY CM
(CONTINUED)

TRANSITION DIAGRAM

KB.A.B %K.C.A |

II'NPJT / CONDITION LIST

NUABER

1
2
3
4
2

TEXT

SDJ FOR 0 RETRIEVEJ
MODIFICATIONS INCOMPLETE
MOOIFICATIONS COMPLETE
LRkOR CONJITION ENCOUNTERED DURING MODIFICATION
ER&OR CONDITION CLEARED

4 * OUTPUT /-RESULT LIST

NU dB8ER TEXT

I
2
3

-

MESSAGE TO USER
ERROR MESSAGE

REQUESTING ADDITIONAL DATA

A159

LEVEL 4
COMPONENTS OF STATE K..BB

MODIFY OH

* STATE SESCkIPTIONS

STATE LONG N4E AND TEXT

K.6.B.A RETRIEVE SDD FO> O

K.d.8.8 PERFOVM OM MOOIFICATIONS

K.3.8.C REPORT EROR

ALLOWED T<ANSTIJNS -

FROM STATE
(r = ENTRY)

I STATE
(o = EXIT)

INPUT /
CONOITION

OUTPUT
RESULT

rK. .. A
K.3.B.B

K6.9.
K.B.3.9

±I
2

I
2

K.C.34C
rK.G.4

"4 31

TRANSITION DIAGRAM

A1660

K°B.B : tODIFY OM
(CONTINUED)

+ + INPUT / CONDITION LIST +

NUt443ER TEXT

I
2
"3
4

6

SDO FOR 01 RETRIEVED
MOOIFICATIONS INCOMPLETE
MODIFICATIONS COMPLETE
ERROR CONDITION ENCOUNTEREu
ERZ1Oi(CONDITION GLEARE)

DURING MODIFICATION

+++ OUTPUT / RESJLT LIST +

NU13ER TEXT

2 MESSAGE TO USER REQUESTING AOJITIONAL DATA
3 EROR MES3AGE

A161

LEVEL 4

COMPONENTS OF STATE K.B.C

MODIFY JOB

'* STATE DESCRIPTIONS

STATE LONG NAME AND TEXT

K.8.C.A RETRIEVE -3D FO' JOB

K.9.C.B PERFORM JIB MODIFICATIONS

K.3.C.C REPORT ERRO

ALLOWED TRANSITIONS **4

FROM STATE 10 STATE INPUT / OUTPUT/
(o = ENTRY) (& = EXIT) CONDITION RESULT

&K.3.G.A K.3.C.B I 1

K.3.C.B K.B.S.B3 2 2

K.B.G.0 4
rK.C.A 3 i

&K.8.C.G &K.C.A 6 1

TRANSITION DIAGRAM

2162

K.B.C t MODIFY JO

(CONTINUED)

INPUT / CONDITION LIST

NUM3ER TEXT

i SO0 FOR JO RETRIEVED
2 MODIFICATIONS INCOMPLETE
3 MODIFICATIONS COMPLETE
4 ERROR CONDITION ENCOUNTERED DURING MOOIFICATION
6 ERROR CONDITION CLEAkEO

'-' OUTPUT / RLSJLT LIST 4*

NUMeER TEXT

I

2 MESSAGE TO USER REQUESTING ADDITIONAL DATA

3 ERZOR MESSAGE

A163

LEVEL 4

COMPONENTS OF STATE K.B.O

MODIFY DS

STATE DESCRIPTIONS *

STATE LONG NAME ANO TEXT

K.3.D.A 	 RETRIEVE SDD FO.R DATA SET

MODIGICATIONS ARE TO AE MADE TO A USER DEFINED

DATA SET AND THE CORRESPONDING SOD IS RETRIEVEU FOR

USE IN THE SUBSEQUENT PROCESSING.

K.3.D.B 	 PERFORM DATA SET MODIFICATIONS

K.3.O.C 	 REPORT ERROR

* ALLOWED T. ANSITIONS *

FROI STATE TO STATE INPUT / OUTPUT
(= = ENTRY) (= EXIT) CONDITION RESULT

rK.3.D.A K.d.D.:3 1 1
K.'3.0.6 K.B.0.B 2 2

K.b.O.C 4
&K.C.A 3 ±

*K.1.D.r rK.C.A 8 1

TRANSITION DIAGRAM

4/3
 3A

Ak164

K.BD I MODIFY DS
(CONTINUED)

* INPUT / CONDITION LIST

NUMBER TEXT

I SOO FOR DS RETRIEVEU
2 MODIFICATIONS INCOMPLETE
3 MOOIFICATIONS COMPLETE
4 ERtROR CONDITION ENCOUNTERED DURING MOD1FICATION
a ERROR CONDITION CLEAEU

OUTPJT / ZESJLT LIST

NUMBER TEXT

2 MESSAGE TJ USER REQUESTING AUJITIONAL DATA

3 ERROR MESSAGE

A165

APPENDIX B

DETAILED PROBLEM SOLVING MODEL

B.1 GENERAL WORK FLOW

The design procedures in Volume II are representative of

the type and organization of tasks necessary to accomplish the

design of an aircraft. However, a computer system designed only

to perform the tasks shown in Volume II in the sequences given

would have limited value. A generalization of the design

procedure into basic elements is needed so that the design of

the computing system will support the development of a wide

range of air and space craft. The work organization presented

in Volume II has been divided into five basic activities. These

activities, and their relationship, are shown in figure B.I.

Each of the nodes in figure B.1 should be looked upon as

actions. The nodes are defined as follows:

PLAN 	 The determination of objectives and constraints

which define a desirable product and the development

of a plan of activities to achieve these objectives

within the constraints.

PREPARE 	 Setting up to do work.

MODIFY 	 Altering preparations to do work when it can be done

without changing the plan. Generally, this is due

to contingencies which are minor relative to the

overall plan.

WORK 	 The activity which aims directly towards completion

of a meaningful step in the plan.

REPORT 	 Recording and/or making visible the results of WORK

and determining if the planned work is done.

The work flow diagram shown in figure B.I. was used to make

the following observations:

a) 	 Entry can be made at any node; however, activity in

preceding nodes affecting the entry node must have

been completed.

b) 	 The nodes are coupled: i.e. activity in a node is

directly affected by the quality of the information

coming to it from a preceding node.

Bl

REPORT

Figure 5.1 General Work Flow

c) 	 all nodes are not connected to all other nodes, nor do

all connecting lines.have double arrowheads. Examples

are:

1) WORK always terminates in a REPORT with a return

to PLAN. This preserves accountability and

management control.

2) 	 There is no direct connection going from PLAN to

WORK bypassing PREPARE. Doing so would encourage

resource waste and ineffectiveness in WORK.

3) 	 MODIFY always results from an attempt to PREPARE

to do WORK. The result of MODIFY is either that

a change can be made and PREPARE continue without

B2

affecting PLAN or that an error or weakness has

been exposed in PLAN that must be corrected

before PREPARE can continue.

d) 	 The flow diagram can be applied to a single person or

a group of persons. Some nonqualitative-observations

on efficiency can be made. For example, working only

within the WORK node is the mark of an undisciplined

individual and a poorly managed organization. Working

without the REPORT node signifies a lack of personal

or supervisory review of work progress relevant to the

plan.

These considerations are typical
organizing functions. The IPAD system
within this environment.

of human planning and
will work compatibly

A study was also made of how product development is
generally organized. It was found that there is a hierarchy of
planning and management control as shown in figure B.2. There
is a flow of information through the levels of the hierarchy
with each level essentially summarizing the level below and
providing feedback about the direction of work. The labels of
company, product, etc., are somewhat arbitrary. The terms in
the parenthesis are basic descriptors of the primary interest at
eazh level. These descriptors are only representative and are
not accurate for all organizations. There are, however, several
common characteristics.

a) 	 There is a level at which real work on the product

design is accomplished by the user. Above that level,

the activity is planning and management control.

Below that level, the work is preparation of tools and

methods. In the hierarchy shown in figure B.2, real

work on the product is at the subtask level.

b) 	 The user at a particular level tends to transmit

information aboVe him and desire action below him.

c) 	 Those above the user are interested in what is being
done, those below the user are interested in how
things are done, while the user concentrates on .the
actual doing, varying his interest between what and
how depending on the immediate situation.

d) 	 The number of levels shown in figure B.2 is not

uniquely six, but it is neither large nor small

compared to six.

B3

Some further comments on a) are useful. In general terms,

there are activities that relate to thinking, planning, and

preparing criteria from which to work. In figure B.2, these

activities are included in working out the product description,

refining the description into a group of tasks that signify

areas of responsibility, and further refining each of the tasks

into subtasks that signify actual work packages. Once the work

package is defined, activity centers around collecting and

defining tools and methods into packages with which to perform

the work. This latter activity is called a "job" in figure B.2.

If the tools or methods do not exist or have to be modified,

another class of activity is required called an "activity" in

figure B.2. From these considerations, the IPAD system should

be formulated around a principal work activity called a subtask

and that all other activities support or relate to working on a

subtask.

WHAT

INFORMATION S COMPANY (Profit)

* PRODUCT OR PROJECT (Marketing)

* TASK (Technology)

-USER* SUBTASK (Discipline)

* JOB (Programs & Data)

ATO ACTIVITY (Computer Features)

.ACTION

HOW

Figure B.2 Organizational Hierarchy of Product Design

R4

Figures B.3 through B.7 are an expansion, of each node of

figure B.l. 'For example, figure B.3 is an expansion of PLAN

with the unexpanded nodes, MODIFY, PREPARE, WORK and REPORT,

appended to show connectivity.

The following definitions will be helpful in reading the

flowcharts and descriptions:

Objective - The result to be achieved from a design
activity.

Constraint - A bound placed on a design activity as a
limit or assigned value.

Report - The collection of objectives and constraints
which, when satisfied, will describe and
specify the product design and serve as a
basis for judgement on the success or
quality of intermediate design activities.
(This is distinct from the verb "REPOFT"
used as one of the nodes of the work flow
model.)

Other definitions are given in section 4.0 of volume IV.

B.2 "PLAN" NODE DEFINITIONS - Figure B.3

Node 1 - DEFINE Product into Tasks
DEFINE is a general node meaning refinement of an
existing definition by dividing it into subparts; for
example, in this case, dividing a product development

program into several tasks. Hence, this define is a

description of the desired product objectives and all

the major work tasks necessary to achieve these

objectives. The results of this definition need to be

available for review, revision, and comparison

throughout the product development period. This, and

other similar information generated in later DEFINE

blocks, is compiled in a record which serves as a

continuing source of direction.

B5

Begi Product

EiNot Possl~eERROR

yeno
tet next

S e le c t

. 3 Ex pN si noEP A
starte

Tak it

Node 2 - ERROR?
A YES choice in an error branch means an inconsistency

was found during refinement in the previous DEFINE

that requires reconsideration of a higher level

DEFINE. In practice, the ERROR box at Node 2 probably

does not exist because the implications of a YES

choice at this level are too far reaching. Any

changes in the original product definitions would have

been corrected prior to compiling the record in Node

1.

Node 3 - DEFINE Tasks into Subtasks
See Node 1 definition. Tasks are divided into
subtasks. Note that an error found in Node 8 may
force a redefinition in Node 3. This is primarily a
dependent variable problem that would not exist if the
tasks were independent. Subtask definitions are

characterized by a record of objectives and

constraints. A subtask appears to be the basic level

at which meaningful work on the product is done. The

objective in PLAN is to identify the necessary

subtasks closely enough so that scheduling and

resource requirements can be estimated and to assure

that a workable set of activities has been defined.

Node 4 - ERROR?

See Node 2 definition.

Node 5 - Initial Planning?

The dividing line between planning and actual work on

the product design is at the subtask level. There may

be a division in the PLAN activity centered around

this distinction. During initial planning, some

critical subtasks may be planned in detail, i.e.,

while others may be left until the work actually

begins.

Node 6 - Select First Subtask(s)

There will be many subtasks. Critical ones may be

selected for initial planning, others left for later.

Node 7 - DEFINE Subtasks into Jobs

The relationship between the subtask definition and
the tools and methods available to do the work is

established here. Within IPAD, this activity usually

means collecting and assembling computer programs into

working packages. See Node 1 definition also.

Node 8 - ERROR?
See Node 2 definition.

B7

Node 9 - DEFINE Jobs into Activities

Specific computing techniques enter into the planning

at this level. Any job involving computational tools

already developed and tested need not enter into this

level of planning. Typically, the non-computing user

would only work in this level during the original tool

planning and specification phase. This is the typical

level at which computer programming and system design

support will be utilized.

Node 10 - ERROR?
See Node 2 definition.

Node 11 - Select Next Task

This is either

a), 	 a return from REPORT at the completion of a task

with the intent of beginning a new task, or

b) a: return from
subtask is unw

MODIFY
orkable

with
and m

the
ust b

conclusion
e redefined

a
at

the task level.

Node 12 - Evaluate and Select Next Subtask

This is a return from REPORT after subtask completion

and before task completion. The completed results of

this subtask are evaluated against the task plan to

determine if the results of the subtask ate

satisfactory and what the next subtask is.

Node 13 	 Subtask Already Defined

If the review at Node 12 introduces an unplanned

subtask, a redefinition at the task level is required.

B.3 	 "PREPARE" NODE DEFINITIONS - Figure B.4

Node 1 - Sit Down

"Sit Down" is the activity of addressing ones self to

performing a job. It expresses the act of focusing

attention to a relatively narrow field of potential

accomplishment that can be completed in hours or days

as opposed to weeks or months. That is, the time span

for completion is small compared to the total task and

very small compared to the product. Generally, the

job is capable of being accomplished through the

primary involvement of one user.

8

Unsatsfie

FiuruesntxpnsoiooPEPR

n 5 no2Jb Ma

Node 2 - May I?

Given the user has some plan of action, he then

proceeds to initialize. Initialization generally

consists of collecting all the data and capability the

user understands to be pre-requisites to starting.

The user knows in principle what data, computer

programs, sequences, etc., is needed. He must now

package specific items and in so doing determines

availability, adequacy, permission requirements, etc.

Node 3 - Can I?

While "May I?" concentrates on availability, general

adequacy, and authorization; "Can I?" emphasizes

workability. That is, "Will the program execute on my

hardware?"; "Will sequential computer programs

interface data automatically?"; etc. If the user has

complete control over his tools, this step diminishes

in importance. When the user is utilizing tools

developed and controlled elsewhere, this step can be

of commanding importance.

Node 4 - Determine Unsatisfied Requirements

Any requirements not previously identified must be

satisfied before continuing.

Node 5 - Job Impossible?

The job may be threatened by any of the following:

a) 	 Requesting access without permission.

b) 	 Requesting access to nonexistent information.

c) 	 Illogical relationships in planning not

identified until now.

The problem is resolved by either taking an alternate

equivalent route or by modifying the plan.

Node 6 - Revise Question
Local variations in PLAN implementation are possible.
This box allows for such a variation (provided it does
not change the basic plan), as well as for the
conclusion that the user asked a bad question.

BIO

B.4 "MODIFY" NODE DEFINITIONS - Figure B.5

Node 1 - Can I Redefine Job?

The current job is not executable and somehow must be

altered if the subtask is to be continued without

compromise. Sufficient information is required to

avoid an unnecessary NO answer to this question, and

be clear about why the job is impossible in its

current state. A self teaching system would be useful

here.

Node 2 - Redefine Job

The full power of job construction and modification

must be available at this point.

Node 3 - Can I Redefine Subtask?

Because the current job execution is not possible, the

subtask definition is threatened. A NO answer to this

question means a review of basic plans.

Node 4 - Redefine Subtask
The remarks under Node 2 apply here. Redefining the
subtask may or may not require job redefinition.

B.5 "WORK" NODE DESCRIPTIONS - Figure B.6

Node 1 - Execute
Activities in this box tend to be associated with
computation in the general sense. Upon completion of
this box, the user expects results from which subtask
or task decisions will be made. To the scientific
user this is where the "floating point arithmetic"

takes place. The distinction between some activities

done in WORK and those done in PREPARE can be user

dependent. For example, FORTRAN compilation could be

done in either place. This node is where the primary

use of the central processing unit occurs. All

technical code will execute in this box.

Node 2 - Interaction Required?
The user may need to interact with an executing
computer program to query certain parameters, alter
sequences, stop execution, test optimization

convergence, etc. Any type of control that is not

exercised through the technical code falls into the

category of system code interaction.

Bl

RedefinJob Job?*

Redeine ye Con I

L E Ebts subtak?

Figure B.5 An Expansion of MODIFY

B12

ololRAAD PAnG I

OF POOR QUAi:4

"

EXECUTE

non

FigurenerctonnEpnso fWR no

done?

Node 3 - Perform Interaction
In this activity, the user inserts his judgment and
control into the execution sequence. Activity status
needs to be maintained while interaction takes place.
The point at which interaction will take place is
specified at the time of interaction without having to
alter the initial execution plan. The physical and
logical interface characteristics are all important
and must support any aim the user may have in desiring
interaction.

Node 4 - All Interactions Complete?

Node 5 - Continue Current Job?
When interactions are complete, the current job may or
may not be useful. If yes, restart must be able to.

take place. If no, the option must be available to

continue the job at a later time.

B.6 "REPORT" NODE DESCRIPTIONS - Figure B.7

Node 1 - Save Job and Subtask Data
Since the current job is not to be continued at the
moment, restart data may need to be retained for
restart at a later time. Whatever has been completed
in this job needs to be logged on the subtask record
sheet unless the user desires an elimination of all
job effects and accomplishments. All data-saved must
be sufficiently labeled to avoid ambiguity and
confusion later on. Time and date are minimal
components in this identification.

Node 2 - Save Task Data
This implies a knowledge of task data as opposed to
subtask or job, which implies a knowledge that a task
exists. Thus some kind of task plan must be visible
in the system, or at least identifiers of task level
data that can be matched must exist. This can be
extremely important when data from one subtask feeds
another subtask. Otherwise a user could invoke a job
where execution is dependent upon data sets not yet
generated.

B14

oP POOrQU.ARyj

MODIFY PREPARE

Task Report

Sav
ubK no t

comlte

n Task

Ts Repor

Figure B.7 An Expansion of: REPORT

B5

Node 3 - Tabulate Results for Task Report
Assuming that the report is defined and carried over

from PLAN, any subtask data that is also part of the

task report should be identified and logged so that

the degree of report completion is clearly observable

on a timely basis.

Node 4 - Subtask Complete?
A subtask plan must be available (even if it is only
a mental picture) before this question can be readily

answered. A NO answer implies that the user is now in

the middle of an interrupted subtask, trying to follow

a path to allow restart of the subtask.

Node 5 - Task Complete?

Similar to Node 4.

Node 6 - Issue Task Report

Report generation capability is clearly needed here.
Each item in the report needs to be threaded to the
data which contributed to the item. The report should
have several levels of detail, depending upon the
level within figure B.2 to which it is issued.

Node 7 - Product Complete?
Similar to Node 4.

Node 8 - Issue Product Report
Similar to Node 6.

B16

Begin
Produc
Planning ORIqjnA PAGI y

DEFINE ORIIALPG
Producs Into POOR QUAIJTW

subtask~Tasks

rrer Y aelctt h rt

Subt.5ks

Task(Error? Into

DEFINE

Figure B.8.I An Expansion of the Total Work Flow Model

B17

oasbtaskDermn

Intertctio

Jobav I'D a"CandDtrmn

Unoisiey mposeinle

ISU~

Job n Itrc insProruetrcto

Re re portcio omlt

B181

APPENDIX C

MIGRATION OF IPAD SOFTWARE

A special study was conducted by the Control Data

Corporation as a subcontract of the Boeing IPAD contract, to

investigate the problems of:

a) 	 migrating applications programs and the IPAD system

software from a 3rd generation computer to a 4th

generation computer within a computer family and

b) 	 migrating applications programs and IPAD system

software across 3rd generation computer families.

The following is the final report of their study.

Cl

ORIGINAL PAGE 1h

OF POOR QUALITY

IPAD

SOFTWARE MIGRATION

5 January 1973

Approved: " . , j

TA. Kershaw
General Manager

Submitted by

W. E. Glass

Control Data Corporation

Advanced Systems Laboratory

4201 	North Lexington Avenue
St. Paul, Minnesota 55112

C2

TABLE OF CONTENTS Op AL P4.Z

IPAD 	SOFTWARE MIGRATION

SUMMARY AND CONCLUSIONS

1.0 	 THEORETICAL BACKBROUND

1. 1 	 The General Problem

1.2 	 Language Conversion

1. 3 	 A Model Language Converter
1.4 	 Problems of Language Conversion

1. 5 	 Comparison of Conversion Methods
1. 6 	 Implementation of Language Converters

1. 7 	 Preliminary Remarks on Common Language Design

2.0 	 FORTRAN SOURCE CODE TRANSLATION ON THIRD GENERATION

COMPUTERS

2.1 	 Features in CDCF not in IBMF

2.2 	 Features in IBMF not in CDCF

2.3-	 Syntax Differences Between CDCF and IBMF
2.4 	 Machine Dependent Statements in CDCF and IBMF
2.5 	 Input/Output and Data Transfer Statements in CDCF and IBMF
2.6 	 Implementation Restrictions in CDCF and IBMF

2. 7 	 CDCF and IBMF Interfaces with Job Control Languages

2.8 	 Translation from IBMF to CDCF

3.0 	 INTRODUCTION TO THE DEVELOPMENT OF A MACHINE
INDEPENDENT FORTRAN

3. 1 	 Preliminary Remarks

3.2 	 IPAD FORTRAN (IPADF)

3. 3 	 FORTRAN Dialect to IPAF Translation

3.4 	 IPAD Implementation Language

C3

4.0 	 MIGRATION OF OM'S FROM THIRD GENERATION TO FOURTH

GENERATION COMPUTERS

4.1 Introduction

4.2 IPADF Extended for Vector and String Processing (IPADFV)

4.3 IPADF to IPADFV Translation

C4

SUMMARY AND CONCLUSIONS

A solution of the general IPAD problem (Section 1. 1) includes, as one of its

principal parts, development of methods for moving operational modules (OM's)

freely among the various computers in the IPAD system. Since most of the OM's
are written in some form of FORTRAN, a solution for this case alone can be

expected to be useful.

A number of methods for solving this migration problem, at least in principle,

are examined in Section 1. 2. Of these, only two showed sufficient promise to

be retained for further consideration. The first, Method 1, requires that each

source language program be translated to a common language before compilation

and execution. The second, Method 3 in the original list, is based on a pairwise

set of source - host translators. The principal advantage of Method I is that

the common language becomes, by definition, the IPAD standard. The advantage

of Method 3 is that its initial cost is probably lower, but as new dialects enter

the system, new translators must be written, and documentation standards would
be, difficult to enforce. Method 1, thus appears, on balance, to be the preferred

choice, and is accordingly recommended.

The design of the common IPAD language is the next concern. Three require

ments are basic. It must be possible to translate existing programs to it, the

translated programs must not contain machine dependent code, and the language
must be extensible to accommodate fourth generation computers entering the

IPAD system.

As a preliminary step, two FORTRAN dialects, one for CDC computers and the

other for IBM computers, are examined in detail and differences in syntax and
usage noted (Section 2). Syntax differences are numerous, but do not constitute

a serious translation problem, since the intended interpretation for the source

code is known, and the corresponding statements in the host language can be

constructed from this knowledge. Several examples of this syntax conversion

are given in Section 2. 8.

A more difficult problem arises out of the interaction among the program, the

job control language, and the compiler. Fortunately, the areas in which this

problem are most likely to arise are known, and even if translation cannot be

C5

carried out automatically, the suspect parts of the program can be flagged for
programmer examination.

The most difficult translation problem occurs when code adhering to a common
FORTRAN syntax makes use of machine dependent constants or variable values,
since here there may be no indication that the code is machine dependent, and
therefore, there is nothing for the translator to detect. Even here, however,
there are constructions in which this problem is more likely to occur, and these
too can be flagged for review. The conclusion that follows is that much of the
translation process can be automated, but a substantial residue remains for
hand translation, and the signficant problems are the detection of machine inde
pendent code and then fathoming of the programmer's intent.

It follows from examination of FORTRAN dialects in current use that the common
IPAD language can be machine independent only if it requires that much detail
that is now implicit in the computer environment for which the program was
written be specified explicitly. Accordingly in the proposed common language,
IPADF (Section 3), it is required that all variables be declared, either explicitly
or by class, together with their lengths in appropriate units. The collating

sequence must either be given explicitly, or fixed once and for all. (The decision
here was left open, pending further study). Explicit reference to overlays is
banned, but it may be desirable to allow declaration of variables by level in a
presumed hierarchy of storage.

To allow for extension of the language to the new class of vector and string
processors IPADF allows elementary arithmetic and logical operations on one
dimensional arrays, but not on subsets of declared arrays. This rationale
allows operations favoring fourth generation computers that can still be

implemented readily on third generation machines.

More extensive vector and string operations analogous to those available as
primitive functions in APL are reserved for IPADFV, the fourth generation
IPAD FORTRAN, which contains IPADF as a subset. The architectural differ
ences between third and fourth generation machines is so fundamental that it can
be assumed that most OM's will in time be reprogrammed for the newer com
puters. Consequently, IPADFV is not expected to be introduced until fourth

C6

generation machines have effectively replaced their predecessors. An example

illustrating this reprogramming is given in Section 4. 3.

The conclusion reached in this study is that the IPAD software migration

problem is best solved by translating current OM's into, and writing all future

OM's in a common machine independent FORTRAN based language, IPADF,

developed especially for IPAD, that can be extended to include vector and string

processing in its fourth generation version, IPADFV.

C7

IPAD SOFTWARE MIGRATION

1.0 THEORECTICAL BACKGROUND

1. 1 The General Problem

The IPAD software migration problem can be stated as follows: given an

open-ended set of programs, called Operational Modules (OMs), written in

several languages for different computers, design a machine independent

system, IPAD, in which the OMs are linked by an executive program through

a data management subsystem to a common data bank. The system should

execute as a job in batch mode under the standard operating system at any

installation having the minimum equipment configuration required.

1. 2 Language Conversion

Suppose that m different source languages are represented among the OMs

and that IPAD must execute on n different host computers. If d of the source

languages are also languages for the host computers, then mn-d source

language to host machine language conversion algorithms will be required.

Most scientific programs (in the United States at least) are written in some

form of FORTRAN. It will be assumed, therefore, that the OMs are all

written in a dialect of FORTRAN and that each source and host computer is

provided with a compiler for converting programs to its own machine code.

Now let -

L i be the ith FORTRAN dialect

M. be the jth machine language

P(A, L.) be a program for algorithm A expressed in L.

P(A, M.) be a program for algorithm A expressed in M.

T.. be a translator for converting programs from L. to L.

C.. be a compiler for converting programs from L. to M.

Also let A -- E - C denote the execution of program B with input A and

output C.

Co

With thi§ notation, a software migration process can be described concisely.

For example -

P(A,L.) P(3, L.)_ (. M L_P(D, Mk)

In words, algorithm A written in L i is translated to L. in machine r to

produce a program for the modified algorithm B. The new program is

compiled on machine s yielding a machine language program for yet another

modification of the algorithm which can be executed on machine k. In real

processes, r and s normally belong to the set (j, k), but it is not necessary.

Nor is it necessary that A, B, and D be the same algorithm. Indeed, there

is no general way to decide if they are or not, except at the machine language

level where the outputs of a program and its translation can be compared.

In what follows, however, it will be assumed that the algorithm is carried

unchanged through the steps of a migration process, unless deliberately

altered.

The migration process sketched in the example above can be partitioned in
=three different ways, depending on whether j o, i, or k.

Method 1. j = o. For this case, each

is translated to a common l

compilation. Schematically

source language program

anguage, L0 , before

-

P(A L ffi.3Mr)P(A, L)

Here, m translators Tio and n compilers Cok are required.

Method 2. j = i. Since Ti. is equivalent to the identity translation,

this method simplifies to -

P(A,L) P(C P(A, Mk

and requires mn-d compilers.

=Method 3. j k. Here -

P(A,L.) ?TCMU P(A, Lk) -- FCkkMk)-P(A, M)

C9

This method requires mn-d translators, but makes use of

the already existing host language compilers.

If t represents the cost of a translator, and c the cost of a compiler, then

mt + nc, (mn-d)c, and (rn-d)t are the cost functions for these three methods

respectively. The relative ranking of these cost functions depend, of course,

on the values assigned the parameters. However, under the plausible

assumptions that i) d=o, (ii) m + n < mn, and (iii) t < c, it is easy to see

that Method 2 is more costly than either Method I or Method 3. Accordingly,

it will be dropped, at least for the time being, and Methods 1 and 3 retained

for further consideration.

One other method merits introduction at this time. Let I..be an interpreter

for converting programs from M. to M.. Then -

Method 4.

This method requires mn-d interpreters.

Sometimes translation and execution are combined, so that each instruction

in M. is translated as needed, yielding -

Method 4a.

P(AM 1) -P(IM)- P(A,M) R

1. 3 A Model Language Converter

It will be useful to have at hand an idealized model of a converter which can

represent, in turn, a translator, compiler, or interpreter. Suppose the

conversion to be performed by a finite state machine defined by the two

functions

Y(i + 1) = -r [s(i), x(i), Y(il

and

S(i + 1) = [Si), x(i), Y(i + I)]

CIO

where x(i) is the current character from the input source language text, Y(i)

is the current (possibly empty) sequence of output characters of the converted

text, and S(i) is a vector defining the current state of the machine. The

converter, thus, can be conceived as a black box that accepts the source

text, one character at a time, and after a certain number have been received,

depending on the state, issues a string of one or more characters of the

converted text. For certain combinations of input and machine state, con

version may not be possible, and Y(i + 1) will be issued as an error message.

In the simplest case, well-defined (as to beginning and end) substrings of

input text are replaced by substrings of output text, where a one-one corres

pondence exists between the two strings. In the worst case, the complete

input text must be received by the converter before the first character of the

converted text is emitted.

In general, conversions will range between these extremes. Well-defined

substrings (called here sentences) are presented to the converter in sequence.

As each sentence is received, it will have 0, 1, or many conversions.

If the input sentence has no conversion, and is a syntactically correct sentence

of the input language, it denotes an action of the source computer that cannot

be expressed in the output language, either (i) because of a shortcoming in

that language, or (ii) because no comparable action exists for the host machine.

In either case, a special message is inserted in the output text.

If an input sentence has just one conversion, the corresponding output sentence

(or sentences) is issued.

If an output sentence has more than one translation, it must be saved until

sufficient text is accrued to resolve the ambiguity.

1. 4 Problems of Language Conversion

There are a number of problems associated with the design of a practical

converter. The main task is to establish a correspondence between the

sentences of the source and host languages. Most sentences in most languages
are ambiguous when taken by themselves. In FORTRAN, statements (sentences)

are made up of a fixed part and a variable part (which may be empty). The

Cli

fixed part serves to identify the class to which the statement belongs, and, in

fact, is a sort of distributed name for that class. If the variable part is absent,

the statement cannot be ambiguous; it will either have exactly one meaning, or

none. On the other hand, the variable part, when present, is composed of
parameters whose values in a given program may be determined by the charac

teristics of the source computer; i. e., the statement may be machine dependent.

If every statement containing parameters needs to be analyzed in its (often
unbounded) context to ascertain its true meaning, the conversion task, if not

impossible, becomes one of truly formidable proportions.

Despite the fact that many FORTRAN statements are potentially ambiguous,

most statements actually appearing in a pair of FORTRAN programs written
in different dialects are identical in form and have almost the same meaning.

Of the remainder, most involve merely syntax differences, in which again
essentially the same meaning is expressed in another way. The residue,

comprising only a small part of the source program, requires the most effort,
and here the difficulty lies more often in detection of the anomaly than in its

correction.

While similar statements in the source language generally have close to the
same meaning as in the host language, they are seldom identical, due to
differences in the computer's word lengths, data representation methods,
memory organization, etc. When a statement has a different meaning for the
host machine than for the source machine, a decision must be taken as to which
meaning the converted text is to carry. If the host computer's interpretation

is accepted, the statement and its conversion are identical. If the source
language interpretation is to be preserved, the converted text becomes a set
of directions for reproducing the source machine action on the host computer.

In the latter case, conversion reduces to imitation (emulation or simulation)

of the source computer on the host machine. This is essentially Method 4 above.
The advantage is that conversion is exact. The dfsadvantages are that (i) writing
an interpreter for one computer in the language of another is not a simple task,
and (ii) simulation of one machine on another leads to very inefficient program

execution.

C12

1. 5 Comparison of Conversion Methods

It is obvious from the analysis so far, that the major problems of program

migration lie not so much in the differences between FORTRAN dialects as in

the differences between the source and host computers. Even if they used a

common language, programmers writing for different computers would produce

different programs.

As can be seen, each of the methods so far described has advantages and dis

advantages. Method 1 is attractive from the standpoint that a common language

for IPAD would impose a standard FORTRAN on all source programs. Pre

existing code would be converted to it, and all new programs would be written

in it. The major disadvantage is that it is still possible to write machine

dependent code in a common language, and the temptation to do so would be

as strong as ever - namely, to improve performance on one's own computer.

A priori, Method 2 appears to have little to recommend it. The writing of a

new compiler, or the rewriting of an already existing one to provide for different

dialects is on the face of it more difficult than making the conversion at the

source language level. Metlod 3 does just that, and it should be more cost

effective than Method 1. However, without a common language and an official

version of each program, uniform standards of program documentation and

maintenance would be difficult to enforce. Method 4 has the advantage that

conversion is exact, but execution is inefficient - again there is no common

language.

An interesting, but expensive possibility, denoted Method 5 provides for a

common language as in Method 1, and allows as an option, the exact conversion

of Method 4.

Method 5.

P(. P(io -P(A, Lo) _(C,) P(A, M i) P(iM)_(,M)i) - r) o(A ML MlTTT(

M.) j jTPA,

Here, if d=o, m translators, m + n compilers, and mn interpreters are needed

for the full system.

C13

The advantage of a common language is expected to be decisive for IPAD users,
and in what follows, the emphasis will be placed on conversion by way of Method

1, but much that will be said will apply to the other methods as well.

1. 6 Implementation of Language Converters

While not strictly necessary, it is of some advantage that the conversion pro
cesses themselves be machine independent. This is not as easy to achieve as it
might at first appear. Suppose it is required that all conversion programs be
written in a common implementation language. Then a compiler is -needed for

each target computer. By hypothesis, this condition is fulfilled if FORTRAN is
chosen for this purpose. But this approach must be handled carefully to avoid
machine dependencies creeping into the conversion code, since it is just as easy

to write machine dependent conversion programs as OMs. For example, for
Method 1, the implementation process is represented by

P(Tio L) jP(C, k P(Tio'Mk)

where Li is the source FORTRAN dialect, L is the common IPAD FORTRAN,

and L.
I

is a machine independent subset of L. (e.g., ANSI FORTRAN).

Another approach that reduces the labor of creating a special implementation

language compiler makes use of a two stage process. Here a simple bootstrap
compiler, Clk, written either in machine independent FORTRAN, or in the
assembly language of the target machine k, is compiled and then used to compile
the second stage compiler, C2 k, written in language L . C2 k is a macro pro
cessor for the macro language L2 . The converter (translator, compiler, or
interpreter) is written in L 2 and compiled by C2 k. This is essentially the method
of STAGE 2 [i] . Schematically,

P(C 2 k, L 1) -k) P(CC2 k'Mk)

P(Tij L2) (C1)4P(Tij, Mk)

C14

A macro processor provides a reasonably efficient way to resolve syntactic

differences between 'a pair of languages, since in principle, all that is required

is the substitution of one string of characters for another. The fixed part of the

first string is a template representing the distributed macro name. The macro

body generates a new fixed part, inserts parameters to replace those from the

original string, and produces the replacement string.

Either method solves the context-free conversion problem. When a syntactic
unit (sentence, statement) of the input text can have more than one meaning,

depending on the context in which it is embedded, the problem becomes more
difficult. By way of illustration, suppose the following subroutine was written

to be executed on the CDC 6600, which is capable of storing 10 6-bit alpha

numeric characters in one 60-bit word. It is desired to translate this routine
for compilation and execution on a computer in which 8-bit alphanumeric

characters are stored four per word.

SUBROUTINE PACK

C THIS ROUTINE READ IN AN 80 COL CARD INTO AN ARRAY IN

C WHICH THE CHARACTERS ARE STORED, ONE PER WORD, RIGHT
C ADJUSTED WITH ZERO FILL. THE CHARACTERS ARE THEN PACKED

C INTO 8 WORDS, 10 TO A WORD.

DIMENSION IN (80), IOUT (10)

READ 1000, IN

1000 FORMAT (80 RI)

I=l

DO 10 J= 1,8

IOUT (J) = 0

DOIO K = 1, 10

IOUT (J) = IN (I) + lOUT (J)* 64

10 I=I+1

PRINT 1001, IOUT

1001 FORMAT (A10)

RETURN

END

The only dialect statement in the subroutine is the first format statement, yet

nearly half the statements are machine dependent and, therefore, ambiguous.

C15

The translator can detect and replace the dialect statement although the details

of implementation may not be simple. For example, replace

1000 FORMAT (80R1)

with

1000 FORMAT (80Al)

CALL PATCH (IN)

and insert

SUBROUTINE PATCH (IN)

DIMENSION IPT (64), JPT (64)

=
DO 10 1 1,80

D05 J =1,64

IF (IN(I). EQ. IPT(J) GO TO 10

5 CONTINUE

10 IN (I) = JPT (J)

IPT and JPT are preset with a data statement to the character set left adjusted

with space fill, and right adjusted with zero fill, respectively.

What the translator cannot do without considerable analysis, is detect that the

indices on both DO-loops in the original program are machine dependent. The

detection and conversion of machine dependent code is the central problem for

automatic language translation and will be discussed more fully in subsequent

sections of this report.

1. 7 Preliminary Remarks on a Common Language for IPAD

Method 1 requires that all programs be translated to a common machine inde

pendent FORTRAN dialect, called here, IPADF.

At the syntax level, a language is just a set of rules for stringing the symbols of

an alphabet together. At the semantic level, a language is a method for recording

and communicating information. The two aspects of language are joined by the

process of interpretation, whereby symbol strings generated by a set of syntax

rules are assigned meanings. It is easy to see that a symbol string can be given

more than one interpretation, so that fixing the syntax is not sufficient to fix the

interpretation. As any student knows, there is no way to infer the meaning of a

word in a strange language by just looking at it. If it can't be found in a dictionary,

C16

its meaning must be determined by observation of the response it evokes in a

user of the language.

The interpretations given FORTRAN statements vary among users. The

relevant response to an interpretation is the action taken by the user's computer,

and that response is determined by the compiler. Thus, it is not always

possible to know what a statement in a FORTRAN program means without
knowing the computer on which the program is to run and what the compiler does

in translation. This is clearly unsatisfactory for IPADF whose statements are
intended to be interpreted in just one way.

While it is not possible to structure a language in a way that compels the user
to adopt the intended interpretation, it is possible to develop the syntax in a
way that will make it easier for him to do so. It is most important that the

language be rich enough so that useful concepts can be given explicit statement.

This means that if it is customary for a user of one machine to interpret a
FORTRAN statement differently than a second user does, the statement must

be replaced with a pair of statements, one for each interpretation. Thus, it
turns out that a machine independent language is of necessity richer in detail

than one specialized to a single computer.

Following an examination of two well known FORTRAN dialects in Section 2, the

main features of a machine independent IPAD FORTRAN are described in

Section 3.

C17

2.0 FORTRAN SOURCE CODE TRANSLATION ON THIRD GENERATION

COMPU TER S

It is expected that IPAD will be implemented first on conventional third genera

tion computers with later transfer to fourth generation vector processors. For

both Method I and Method 3 of the preceding section, translation from one
FORTRAN dialect to another is required, either to a common language (Method 1),

or between pairs of source-host dialects (Method 3). In either case, the feasi

bility of translation must be demonstrated.

In this section, two well known FORTRAN dialects are examined, FORTRAN
Extended for the CDC 6000 series computers, and FORTRAN IV (H Extended)

for the IBM 360 series computers. For convenience, the former will be called

CDCF, the 	latter IBMF.

Neither language includes the other as a subset. Each contains statement forms

peculiar to it, some denoting extensions to the basic FORTRAN language, others
included to utilize certain machine features, and others representing little more

than variations in syntax.

The catalogue of differences between CDCF and IBMF given below were obtained
by comparing the respective reference manuals [2] , [3] ,and do not include

deviations introduced by the compilers.

2. 1 Features In CDCF Not In IBMF

(2.1. 1) ENCODE-DECODE (allows data moves in main memory under

format control)

(2. 1. 2) 	 Implied DO-loops in data statements
(2.1.3) Data initialization in labelled COMMON by DATA statements

outside a BLOCK DATA subprogram

(2. 1.4) 	 Two branch arithmetic and logical IF statements

(2. 1.5) 	 Literals and octal constants in arithmetic statements

(2. 	 1. 6) Masking expressions (permits use of logical operators on

non-logical variables)

(2. 	 1.7) Abbreviated subscripts on arrays, and abbreviation of logical

symbols

(2. 1.8) 	 Left and right justified literal constants with zero fill

C18

2.2 Features in IBMF Not In CDCF

(2.2. 1) IMPLICIT type declaration by initial letter

(2.2.2) Maximum of seven subscripts in array declarations
(2.2.3) Data initialization in type declaration
(2.2.4) GENERIC statement (allows function calls by generic name)

(2.2.5) Dummy variables on ENTRY statements
(2.2.6) List directed I/O (allows data transfers formatted by separators)

(2.2.7) Call-by-name for.subroutine variables

2. 3 Syntax Differences Between CDCF And IBMF

Element CDCF IBMF

(2.3.1) comment C, *, or $ in col. I C in col. 1

(2.3.2) string delimiter in *
FORMAT statements

(2.3.3) maximum name length 7 characters 6 characters
(2.3.4) alphabetic symbol set A - Z A - Z, $
(2.3.5) PAUSEn n (octal) n (decimal)
(2.3. 6) END termination program does not terminate

program
(2.3.7) TYPE in type optional no

declarations
(2. 3. 8) computed GO TO abort CONTINUE

out of range
(2.3.9) assigned GO TO go to absolute abort

out of range address
(2.3. 10) RETURNS declaration SUBROUTINE SUB, SUBROUTINE SUB

RETURNS (A, B)
(2.3. 11) Complex argument in real part taken not allowed

IF statement
(2.3.12) PROGRAM statement yes no

(2.3.13) NAMELIST $ NAME & NAME

$ & END

2.4 Machine Dependent Statements In CDCF And IBMF

(2.4.1) type ECS in CDCF (identifies variable in Extended Core Storage)
(2.4.2) type *S statements in IBMF

(2.4.3) Any other FORTRAN statement in which the value of a parameter
depends on the word length of the machine, the collating sequence,
or the way in which memory is organized.

C19

2. 5 Input/Output And Data Transfer Statements In CDCF And IBMF

(2.5.1) Asynchronous read-write

CDCF

BUFFER IN (ap) (A, B)

BUFFER OUT (a, p) (A, B)

IF (UNIT(a))r, s, t

a is data set number, p is parity mode, A, B first and last

address in main memory; r, s, t are respectively, unit ready,

end-of-file detected, parity error.

IBMF

READ (a, ID=n) list

WRITE (a, ID=n) list

WAIT (a, p) list

a is data set number, n is identifier, list defines area in main

memory, and is either an array name or first and/or last

address. If list is not specified on READ, a record is skipped.

(2.5.2) Random access

CDCF

OPENMS (a, ix, d, p) open mass storage file

READMS (a, fwa, n, i) read mass storage file

WRITMS (a, fwa, n, i) write mass storage file

STINDX (a, ix, 1) store index

a is data set'number, ix is first word address of index, I is

index length, p is parity mode, fwa is first word address of

record, n is number of words to be transferred, and i is the

record number or address of record number (name).

IBMF

DEFINE FILE a (m, r, f, v)....

READ (a'r, b, ERR=c) list

WRITE (a'r, b, ERR=c) list

FIND (a'r)

where a is data set number, m is number of records in data

set, r is maximum size of each record in a, f is the format

control, and v is the poihter to the record involved in the

current operation.
.C20

2. 6 Implementation Restrictions In IBMF'And CDCF

There are no uniform standards restricting the range of most FORTRAN para

meters. As a result, part of the definition of the language is left to implementive

decisions which may or may not be documented. For example, in IBMF, the

following restrictions are imposed:

(2.6. 1) 	 DO-loop nesting is limited to 25 levels

(2.6.2) 	 The test value in a DO-statement may not exceed 231 _ 2

(2.6.3) 	 No more than 255 characters allowed in a literal constant or in
a field in a FORMAT statement

(2.6.4) 	 Up to 50 nested references to another statement function can be
made in the definition of a statement function.

In CDCF,

(2.6.5) DO-loop nesting can extend to 50 levels

(2. 6.6) The test value in a DO-statement may not exceed 215.

(2.6.7) A literal in an expression is
statement, the length cannot
FORMAT statement, 136.

limited to 10 characters; in a DATA
exceed 19 continuation cards; in a

(2.6.8) The number of nested references to other statement functions is
undocumented; up to 63 arguments are allowed.

2. 7 CDCF 	And IBMF Interfaces With Job Control Language

There exists a close relationship between a version of FORTRAN in use with a

given operating system, and that system's job control language. In a general

way, the algorithm is described in FORTRAN, and the manner of execution in

a given computer system is specified in the job control language. The distinction

is not precise, and in some systems run time specifications are made in

FORTRAN that in other systems are given in the job control language. In CDCF,

for example, overlays can be defined and called explicitly in the program. In

the IBM, system, overlays are defined in the job control language, and called

implicitly in the program. Again, CDCF requires that the names of all input/

output files be given in a special PROGRAM statement. The IBM system provides

this information in the job' control language.

C21

2.8 Translation From IBMF To CDCF

Now suppose it is desired to translate programs written in IBMF to CDCF. For

this case, items under 2. 1 above play no role, except perhaps for optimization.

Items under 2.3 are the most common cause of trouble whenever an attempt is

made to run an IBMF program on a CDC computer without preliminary editing,

but they are in fact easy to translate since each can be converted as encountered.

Those features of IBMF having no precise counterparts in CDCF listed under 2.2

are more-difficult to translate. For example, the IMPLICIT type declaration,

(2.2.1) IMPLICIT INTEGER A-H requires in CDCF that each variable beginning

with one of the letters A through H be included in a type INTEGER declaration.

Arrays having more than three subscripts (2.2.2) must be converted for CDCF.

One way to deal with this problem is to define a function subprogram with the

same name as the array, that returns the specified array element from the

original array, renamed as a one dimensional array. For example, in IBMF

DIMENSION A(5, 10,20,3)

x = AU, J, X, L)

would be translated to

COMMON/B/13(3000)

X = A(I, J, K, L)

where A is defined by

FUNCTION A(I, J, K, L)

COMMON/B/B(3000)

M = I - I + 5 - (J-1+10*(K-I+20*(L-1)))

A =B(M)

RETURN

END

For CDCF data initialization must be removed from type declarations (2.2.3)

and put in a separate DATA statement.

GENERIC statements (2.2. 4) must be deleted for CDCF, and the appropriate

subprogram name inserted in all function and subroutine calls.

C22

IBMF allows a parameter list on ENTRY statements (2.2. 5); CDCF does not.

This problem can be solved in several ways. One solution that leaves the

subroutine calls undisturbed is illustrated below.

IBMF code

SUBROUTINE SUB (W, X, Y, Z)

(body 1)

ENTRY SUBA (Y, X, U)

(body 2)

END

CALL SUB (A, B, C, D)

CALL SUBA (B, A, E)

CDCF code

SUBROUTINE SUBT (W, X, Y, Z, U)

(body 1)

ENTRY SUBTA

(body 2)

RETURN

END

SUBROUTINE SUB (W, X, Y, Z)

CALL SUBT (W,X,Y, Z, U)

RETURN

END

SUBROUTINE SUBA (Y, X, U)

CALL SUBTA (W, X, Y, Z, U)

RETURN

END

List directed I/O (2.2.6) will have to be handled by a list scanning

subroutine.

Call-by-name for subroutine variables (2.2.7) is taken care of in

CDCF either by the LOC library function, or by making the variable

a one dimensional array.

C23

Real numbers in the IBM 360 are expressed in base 16 (hexadecimal notation).

All have a 2-digit exponent. The characteristics for REAL*4 (single precision),

REAL*8 (double precision) and REAL*16 (extended precision) are 6, 14, and

28 digits respectively. For most mathematical work, satisfactory precision is

preserved if REAL*4 and REAL*8 variables are represented as single precision

(REAL) variables in CDCF, while REAL*16 are classified as double precision.

No difficulty should arise if LOGICAL*1 and LOGICAL*4 are replaced by

LOGICAL; similarly for INTEGER*2, and INTEGER*4. Hexadecimal constants,

on the other hand, can be expected to be involved in machine dependent operations,

and will require manual translation.

The input/output and data transfer statements of 2.5 are more subtly machine

and software system dependent. For example, the asynchronous read/write

statements (2.5. 1) in the two languages are quite similar and, except for the

record skipping feature in IBMF, translation involves little more than syntax

changes. It is not clear, however, that a CDC programmer and an IBM pro

grammer would resort to asynchronous operation at the same place and under

the same circumstances in their respective programs. For the present, it will

be assumed that the translator makes the translation, but inserts a warning

flag that all might not be well.

The situation with regard to the random access statements is similar, except

that here translation is complicated further by the two languages specifying

different parameters as well as different formats. Those statements probably

should be flagged for manual translation.

The conclusion that emerges from the above thicket of detail is that, while not

always easy, machine translation of FORTRAN programs from one dialect to

another is possible, provided that the translator can detect that translation is

required.

Machine dependent data and parameter values are most likely to occur in

DATA statements

FORMAT statements

IF statements

DO statements

C24

integer assignment statements

logical assignment statements

and can be expected to require the most attention from the programmer to

resolve.

The translation process as it is presently conceived, proceeds in -the following

way. All programs are submitted with test data and the expected output. An
attempt is first made to compile and execute the program without preliminary

translation to determine adherence to IPAD programming standards. If the

program fails to compile correctly, a preliminary examination of the error

listing should be made to determine if translation will resolve the difficulty.
(The error may be an untranslatable statement.

If, after translation, the program compiles but fails to execute correctly, it

can be assumed that the program contains machine dependent code. At this
point, the programmer takes over, and begins a detailed examination of the

suspected parts of the code aided by the IPAD compiler's cross reference

listing. His editing comments are keypunched to create a correction deck for

the program.in UPDATE (editor) format. The edited code is compiled, execution
is attempted, and the cycle repeats until a correct executable program is

obtained.

C25

http:program.in

3.0 	 INTRODUCTION TO THE DEVELOPMENT OF A MACHINE

INDEPENDENT FORTRAN

3.1 	 Preliminary Remarks

One conclusion that emerges from an examination of both CDCF and IBMF is

that neither language is appropriate for use as the machine independent IPAD

FORTRAN (IPADF). Both languages contain explicit machine dependent

statement forms and, more important, statement forms they share in common

are often given different interpretations by the respective compilers.

The proliferation of FORTRAN dialects, of which the above two are examples,

is caused by a number of factors, not the least of which is the "not-invented

here" syndrome. A less frivolous reason is that computer language development

has been directed toward incompatible goals. While the language theorists

sought to develop languages suitable for the machine independent description of

algorithms, another and more influential group, wanted languages for practical

programming use that allow the programmer to reduce the amount of detail he

need write, and yet produce programs that execute satisfactorily on predeter

mined computers. The result was an odd compromise. The theorists specified

nothing quantitative in languages designed primarily for numerical calculations.

In fact, in the hope of preserving machine independence, they defined nothing

that was not, in some sense, common to all machines. The developers of

practical languages merely added what they felt they needed either, explicitly

to the syntax, or implicitly in the interpretation given by the compiler.

The error of the theorists was in leaving so much undecided. What is not

specified is left to the user to interpret as he sees fit, and each will avail

himself of the freedom granted. A truly machine independent language will

require more, not less, information than one intended for a single class of

computer. For example, if the FORTRAN statement, C = A + B, is interpreted

routinely as a 24-bit operation on one machine, and as a 48-bit operation on

another, the two computers are very possibly not working the same problem.

The numerical precision with which an arithmetic process is carried out is

generally crucial to its accuracy, and it is a fundamental shortcoming of a

machine independent language if it is incapable of expressing this most basic

of parameters.

C26

In IPADF it is expected that the precision of real numbers is to be specified
by an explicit statement of the number of significant decimal digits desired;

thus, REAL*s, has s significant digits. There is to be no default option, and
hence no REAL or DOUBLE PRECISION declaration. No penalty is expected if
calculations are carried out with higher precision than required. The treatment
of complex numbers is similar, and needs no separate discussion.

The declaration INTEGER*s specifies the number of decimal digit positions
required, and is included for the sole purpose of aiding the compiler in deter
mining storage requirements.

Integers expressed to bases other than 10 constitute a special class, denoted
by the declaration BASE*n. s, where n is the base and s is the number of base
n digits. Logical constants have a fixed length and require no additional

specification.

A similar sort of vagueness plagues most FORTRAN dialects with respect to

their character set, or alphabet. Few dialects have common alphabets, or
order them the same way, ANSI standards notwithstanding. Even when the
sets more or less agree, they are often partitioned into subsets differently.
For example, IBMF counts "$" as an alphabetic character; CDCF, as a special
symbol. Clearly, IPADF must either (i) specify once and for all what its

character set is, how the symbols are to be classified, and in "hat order they
are to be ranked (collating sequence), or (ii) this information must be provided

explicitly with each program requiring it. It is expected that the first of
these alternatives will be adopted for IPADF.

Packing and masking operations occur frequently in FORTRAN programs, and
almost invariably are machine dependent involving an addressable unit, usually
a machine word, capable of storing n characters of the alphabet, where n is
a machine dependent parameter. It seems likely that the requirements for
machine independence will make it necessary to introduce a type LITERAL*s
declaration to define the number of characters in the addressable unit.

Because every variable must be given an explicit length declaration in IPADF,

the default rules for implicit typing must be dropped. However, the IBMF

C27

"IMPLICIT type *s declaration will be retained to provide blanket typing, except

that the length specification s, optional in IBMF will be mandatory in IPADF.

It is tempting to consider a general overhaul of FORTRAN mixed mode arithmetic

for IPADF, since different dialects often produce differeht results for simple

arithmetic statements involving mixed real and integer operands. At the very

least, arithmetic operations involving non-numeric variables should be disallowed;

For the IPAD environment, it is undesirable that run-time specifications appear

in the body of a program. Specification of overlays, for example, would have

to be deleted, or ignored, if the program is to execute on a virtual address

computer. Leaving aside development of a machine independent job control

language as visionary at present, it would appear that the best solution for IPAD

is to require that all run-time information be provided on printed forms for

operator use in constructing the job control deck for the host computer.

The above discussion applies primarily to so-called third generation computers

in which instructions usually involve one operation per instruction, the most

notable exception being block transfers of data. Fourth generation computers are

distinguished by a capability to perform arithmetic and logical operations on

all or a selected subset of the elements in a one dimensional array or vector.-

It turns out that very little modification of the FORTRAN language is required

to permit elementary vector operations. The usual convention isthat the name of
a one dimensional array represents the array in an arithmetic or logical expression,

while a vector in a higher dimensional array is selected by replacing the index

of its elements by a * in its indexed name. For example, if DIMENSION A(10,20),

B(10) then B = A(*, 5) means that the fifth column of A is transferred to the

vector B.

A proposed machine independent IPAD language incorporating the features

discussed above is sketched briefly in the following paragraphs.

C8

3.2 IPAD FORTRAN (IPADF)

The character set of IPADF are the 26 letter symbols A-Z, the 10 digit symbols

=0-9, and the special symbols + - * / () , . $; Letter and digit symbols are

called collectively alphanumeric symbols.

Names begin with a letter and can contain up to 7 alphanumeric symbols. Varia
bles are identified by name and declared by type and length. The following types
are recognized by IPADF: REAL, COMPLEX, INTEGER, LOGICAL, BASE,
LITERAL. For real and complex numbers, the length is the minimum number
of significant decimal digits in the fraction part of its floating point representa

tion. Logical variables are of constant length and require no specification.
For all the remainder, the length specifies the maximum number of elements
denoted by the variable, for integers, decimal digits; for base variables,
the number of base a digits; and for literals, the number of characters. Type
REAL, COMPLEX, INTEGER, and LITERAL follow the form

type *s name,, name2, '"
where s is the length. Based variables are declared by

BASE *n. s name1 , name2 , ...

where s is the maximum number of base n variables (octal, hexadecimal, etc.)

For logical variables

LOGICAL name1 , name2 , ...

is sufficient.

Arrays may have up to 7 dimensions and are declared in a dimension statement

of the form

DIMENSION Array name (d I , d2 dn

C29

---- ----

--

---- ---- ----

---- ---- ---- ----

Arrays can be referenced in a number of ways. An array name, standing alone,

denotes the whole array. An array name followed by coordinate variables,

A(I, J, K) picks out an element in the array, while A(*, J) designates the Jth

column vector in the array A.

There are no default type declarations. However, the IMPLICIT declaration

allows variables to be typed by their initial letter. The statement form is

IMPLICIT type *s

followed either by the specific letters involved, or by their range (e.g. I-N).

Arithmetic operations involving variables of different type is called "mixed

mode arithmetic. " The results of valid IPADF mixed mode arithmetic operations

are shown in Table (3. 1) below.

L iteral

Real Complex Integer Logical Base n Literal

Real Real Complex Real Real

Complex Complex Complex Complex ----.....

Integer Real Complex Integer ----..---

Logical Logical

Base n Real Base n

--- -.--.-----..--.-

Table (3. 1) Mixed Mode Arithmetic

Definition of IPADF assignment statements follow normal FORTRAN rules

except for the restrictions imposed on mixed mode arithmetic shown above,

as well as scalars.and the extension of the notion of variable to include vectors

Thus, if A, B, and C have been dimensioned as N element one dimensional

arrays, C = A+B, has the same meaning as:

DO 1 I= 1, N

1 C(I) = A(I) + B(I)

C30

Run time declarations are not permitted in IPADF. Directions for segmenting

memory, definition of overlays and input/output files, etc. are relegated to the

job control language.

In general features common to both CDCF and IBMF are retained in IPADF.
For unshared features, the decision on which to incorporate and which to reject
is based on estimated ease of coding in a machine independent environment, a
purely subjective judgement. This list below is not complete, but covers most
of the differences between CDCF and IBMF noted in Section 2.

(3.2. 1) 	 ENCODE-DECODE is not implemented

(3.2.2) 	 Implied DO-loops in DATA statements are permitted
(3.2.3) 	 Data initialization in labeled COMMON is allowed outside a

BLOCK DATA subprogram
(3.2.4) 	 Two branch arithmetic and logical if statements are not allowed
(3.2.5) 	 Literal and Base n constants can appear in arithmetic statements

subject to the rules of mixed mode arithmetic
(3.2.6) 	 Masking expressions are not permitted
(3.2.7) 	 Abbreviated subscripts on arrays, and abbreviated logical

symbols are not permitted
(3.2.8) 	 Left and right justified literal constants are permitted, but

with blank fill.
(3.2.9) 	 Data initialization is confined to DATA statements
(3.2. 10) 	 No GENERIC statement

(3.2.11) 	 Dummy variables are permitted on ENTRY statements,
following IBMF rules

(3.2.12) 	 List directed I/O not implemented

C31

3. 3 FORTRAN Dialect to IPADF Translation

For the implementation of Method 1, it is necessary that OM's written in each

of the m FORTRAN source dialects, Li, be translated into L , the common

IPAD FORTRAN (IPADF).

It will 	be assumed that the translator Tio is written in Li though, of course,

this is not necessary; any language at the source installation will do. The

main point is that each source user is expected to develop and checkout his own

translator, and convert his own OM's. The complete process is depicted

schematically below.

(1) compile -translator on source computer

P(T. ,L. P(Ci M) - P(Ti°'

(2) 	 translate test program A

P(A, Li)- PTM) --- P(A, L 0

(3) compile test program on source computer

P(A, Li- P(Ci, M i) -- P(A,M i)

(4) execute test program on source computer

D---1P() ---P RS

(5) compile translated test program on host computer

P(A, Lo)---	 1 DPMMP(A, M)

(6) 	 execute test program on host computer

D-- P i---RH

(7) compare results RS and RfH from steps (4) and (6) respectively.

The validation process was described in some detail to direct attention to the

fact that final certification of each translator will have to be made on a host

computer. Initial translator checkout and translation on source computers is

C32

proposed here to distribute the workload more evenly, but this approach Involves

considerable travel between source and host installations until checkout is com

pleted. The alternative is to perform all translation on the host computers. If

the workload permits, this may be the better way. A final decision cannot be

made at this time.

Translation from source dialects to EPADF is mainly a matter of removing

machine dependent code from OM's. Some of this code can be expected to

satisfy the syntax rules for both languages, and will be impossible for a trans

lator to detect. An example of this type was given in Section 1. 6.

Each installation is responsible for its own OM translation, and, consequently,

is free to develop whatever aids It chooses for the purpose. However, it is

expected that most will find it useful to incorporate into the translator the

capability for flagging sections of code having a high probability of being

machine dependent. Particular attention should be given to:

(3.3. 1) DO-loops involving integer variables

(3.3.2) Logical IF statements

(3.3. 3) Non-standard library functions operating on characters
(e.g., SHIFT, PUT, GET, etc.)

(3. 3.4) DATA statements containing binary, octal or hexadecimal data

(3.3.5) FORMAT statements (non-standard, literal)

Hand corrections to programs will normally be made via the installation's

standard editing program (e. g., CDC UPDATE). Final validation of an OM

will require comparison of its output with that obtained from the untranslated

program, and for some cases, it can be expected that several passes through

the translate-correct-edit loop will be necessary.

3. 4 IPAD Implementation Language

Implementation strategies were discussed briefly in Section 1. 6, and the con

clusion was reached that the implementation language for IPADF should itself

be machine independent. One language description will suffice then for all IPAD

users involved in the development of IPADF, and if the implementation language

is one for which a compiler is generally available, it remains only to determine

£33

its suitability for the task.

The main operations performed by a compiler are (I) parsing of the statement

symbol strings to separate the fixed and variable parts and establish the pre

cedence of operations, (ii) conversion of constants and data to internal machine
representation, (iii) allocation of storage to variables by name and type, and

finally (iv) generation of the machine language code.

There is no obvious reason why algorithms performing each of those operations
cannot be described satisfactorily in FORTRAN, augmented, as necessary, by
the addition of library subprograms. Call this implementation language, IMPF.
The principal advantage of this approach is that, if care is taken to keep machine

dependent code out of the program Itself, IPA'DF and its successor for fourth
generation computers, IPADFV, can be written in IMPF for each host computer
and compiled by its standard FORTRAN compiler.

It is not intended that the compiler itself be machine independent. Much of the

code could be made so, but at exorbitantly high cost. Very likely it would be
necessary to settle on FORTRAN character as the information unit, and store
data one character per machine word. Every variable name in the symbol table
would then be.represented by an array, named by a pointer variable. Storage

allocation strategies would have to be made uniform, and this could cause
undesirable system repercussions. Then, too, it would be desirable to translate
the FORTRAN statements to an intermediate language so that the only machine
dependent operation was the final generation of machine code. It is unlikely
that very efficient compilers would result from an approach subject to so many

restraints.

C34

4.0 	 MIGRATION OF OMIS FROM THIRD GENERATION TO FOURTH

GENERATION COMPUTERS

4. 1 	 Introduction

A rudimentary capability for expressing vector operations is incorporated in the

proposed design for IPADF. More extensive features are required for fourth

generation computers such as Control Data's STAR-100, which can perform
arithmetic and logical operations on character and bit strings, as well as normal

and compressed (sparse) vectors.

For concreteness, STAR will be taken as representative of fourth generation

computers, and a brief sketch of its salient features will be useful.

STAR is a virtual address computer able to distinguish 248 distinct address bits.

These addresses are automatically converted by the instructions using them into
bit, byte, half-word or full-word addresses. The central memory consists of

500, 000 full words of core storage, and a high speed register file of 256 words.

Arithmetic operations are carried out on either 32-bit half-words or 64-bit full
words in either scalar or vector mode.

Vector operations can be performed on normal or sparse vectors. A normal
vector is just an ordered list of half-words or full-word elements. A sparse

vector is a vector formed by application of a binary mapping function, or order

vector, that extracts in order a subset of elements from the original vector.

When arithmetic operations are performed on sparse vectors, these elements of

the original vector not appearing in the sparse vector are taken to be zero.

In addition to the standard arithmetic and logical operations, a comprehensive

set of macro and APL functions (c. f. IversonPare implemented such as contract,
expand, merge, mask, element sum, element product, maximum element,

minimum element, vector dot product, search, and select.

4.2 	 IPADF Extended For Vector And String Processing (IPADFV)

Part of the usefulness of FORTRAN is that programs in it are shorter and more

readable than if written in a computer's assembly language. To preserve this

feature for fourth generation computers, it will be necessary to extend the

C35

capabilities of the language to encompass the more sophisticated instruction
repertoire of these machines. This can be done in two ways: by enlarging the
syntax, or by creating new in-line functions.

In fact, both methods will be found to be useful. Certainly, new declarations

will be needed to accommodate the new variable types, and logical functions
extended over all the members of an ordered set will require quantifiers in
addition to the standard Boolean functions. On the other hand, many of the
macro and APL instructions in STAR can be implemented easily and efficiently
by in-line functions. Probably, frequency of use and readability should be the
criteria for deciding whether an operation should be represented by an in-line
function or by a new statement form. Elements in a function argument list tend
to be anonymous, particularly when they can be distinguished only by their
position in the list. The alternative is not always better - witness the -bewildering

array of infix operators in APL.

Fourth generation computers are distinguished from third generation machines
primarily by their capability for processing lists efficiently. In the computer, a
list is just a consecutive set of storage locations, and is defined by a starting

location and the number of elements contained in it. From the programmer's
point of view, the meaning assigned a list depends on how it is to be used. For

example, a list A can represent (i) an n-dimensional vector A (with ith component
Ai) which enters as single variable in a calculation f(A, b, c,...) or (ii) the set
of values of.a single variable a, whose typical element a.1 is the value of a in

=in the ith calculation of f(ai , b, c, in) for i 1,2 n. Often a list contains

logically distinct sublists which are extracted to become new lists in subsequent

operations.

The case for which the elements of a sublist form an arithmetic progression in

the master list occurs often enough to justify a special notation of the form

B = A(M1 :M 2 :M3)

where B is composed of those elements of A whose indices i satisfy the inequality

M + M 3 (i - 1) < M2 . More generally, IPADFV allows any of the following

forms to apply as well to the component vectors of an 'array.

C36

(W) M : M2 :M 3

(ii) MI: M2

(iii) *

(iv) M1 :*:M 3

(v) M1 :1

Here M and M3 have the value 1 when omitted. The symbol * denotes that M2

has the value of the dimension length. For example, if

DIMENSION A(20), B(10, 6)

then

A(3 :18 7) represents A(M), A(10), A(17)

B(2 : -':6, 4) represents B(2, 4), B(8, 4)

Reference to sparse vectors in IPADFV have the general form [V, L . where

V is the vector from which the elements were obtained, and L is a logical vector

specifying which elements of V occur in [I L] Subscripts can appear on.

either V or L, and follow the rules given above. For example,

(I::J), L(50:100]

The logical operators

"NOT. negation

"OR. alteration

"XOR. disjunction

"AND. conjunction

of IPADF which can take either vector or scalar arguments is extended in IPADFV

by the unary logical vector quantifiers

*ALL. L universal conjunction of all elements of L

*ANY. L existential alternation of all elements of L

*NONE.. L universal negation denial of all elements of L

Logical expressions are evaluated by scanning from left to right with precedence

of logical connectives established by

C37

. NOT.

.ALL. .ANY. .NONE.

.AND.

.OR. .XOR.

If L is a scalar logical variable, the . ALL. L and . ANY. L reduce to L,

and . NONE. L reduces to . NOT. L.

A relational assignment statement is introduced in IPADFV of the form

P=Q. R. S

where Q and S are vectors, and R is one of the relations

. EQ. . NE. . GE. . LT.

Execution of this statement leads to three different results depending on the type

of P. If P is an integer variable, P is assigned the index of the first elements

of Q and S to satisfy the relation R. If P is an integer vector, each element

of Q is compared with successive elements of S, and whenever the relation R

is.first satisfied, the element of P corresponding to the element of Q is

assigned the index of S. If P is a logical vector, each element of P is set to

. TRUE. if the corresponding elements of Q and S satisfy R; otherwise,

.FALSE.

The scalar (dot) product C of two vectors A and B is simply

=C A*B

The notation

B=+A

and C =*A

where A is a vector and B is a scalar, denote the sum and product of the

elements of A, respectively.

In addition to the extensions of the IPADF syntax noted above, the set of in-line

functions is enlarged in IPADFV to include most of the STAR macro and APL-like

instructions. These include:

C38

MERGE (A, Z, B) selects an element from vector A or vector B,
depending on whether the corresponding element value in logical vector
Z is . TRUE. or .FALSE. No elements of A or B are skipped.

MASK (A, Z, B) selects an element from vector A or vector B,
depending on whether the corresponding element value in logical

vector Z is . TRUE. or .FALSE. The element not selected is

passed over. The symbol * in either vector position indicates

that no selection is made if the element normally selected would

have come from the vector in that position. For example

MASK (A, Z, -) is equivalent to selecting an element
of A whenever the corresponding value of Z is . TRUE.,

while (-, Z, B) selects an element of B whenever the

corresponding value of Z is . FALSE.

4.3 IPADF To IPADFV Translation

The principal problem for IPADFV, the fourth generation FORTRAN, for IPAD
-is the same as for its predecessor, IPADF, namely to preserve machine inde
pendence. Clearly, the introduction of list parameters (vectors, strings, etc.)
in fourth generation computers does not of itself aggravate the situation unduly
since the same length prescriptions can be applied to the elements of a list as
to individual variables. What must be taken into account is the near certainty
that during the lengthy transition phase from third to fourth generation processors,
the IPAD host computers will be a mixed bag - some belonging to one class and
some belonging to the other. Nevertheless, if machine independence is to be
preserved, the OM's written in this period should execute on all host machines,
though it is unreasonable to expect them to execute on all with the same efficiency.
This concern for linking third to fourth generation computers was the prime

reason for introducing elementary vector operations in IPADF. For a third
generation machine, the definitions are little more than abbreviations for simple
DO loops. For a vector processor, each represents a basic machine operation.

It follows from considerations such as the above that the shift from IPADF to

IPADFV should be delayed until fourth generation machines are IPAD standards.

C39

As the migration from third to fourth generation processors progresses, it will

become necessary to decide in the case of individual OM's whether to reprogram

or not. The incompatibility in structure between vector and conventional com

puters is reflected in the programs written for them.

An example illustrating this point is the discrete Fourier transform defined by

n-i

(4..1) f(u) = T g(v)exp(-2iuv/n) u = 0, 1,..., n-i

v=0

where f(u) and g(v) are suitably chosen complex functions of the integer variables

u and v, and is a basic tool in the analysis of complex wave forms, so that much

effort has gone into the search for efficient procedures for making the calculations.

The most successful of these have come to be called Fast Fourier Transform

(FFT) algorithms, and all depend upon some form of factorization of the exponent.

When the sample size n is a power of 2, n=2m, the execution time on a digital

computer is reduced in this way to approximately the fraction m/n of that

required by direct calculation.

The STAR algorithm consists of two parts. In part 1, the n/2 sine and cosine

terms are calculated by an application of the polynomial evaluate (DE) instruction

which performs a power series expansion

= 2 + ' =yk a0 +alxk +a 2 x .. +a r xr k 0, 1, n-

Part 2 is the main loop, executed m times. The calculations of (4. 1) are carried

out by 10 instructions operating on vectors of length n/2 followed by a merge of

the upper and lower halves of the real and imaginary components, respectively.
This step is required to position elements x(0), x(i) and y(O), y(i) n/2 postions

apart for the next stage. That it does so is easily seen, since at stage k, the

matching elements for stage k + 1 are n/4 postions apart. The merge moves

all elements aki k <n/2, to a! and all elements ak k>n/2 to a'

where j = 2k(modn)-k(mod2 S-), andjl = j +2 s. Thenif, j= i +n/4 it

follows in either case that jV - i' = n/2.

Finally, a compression instruction followed by a merge instruction replaces

40

every other group of length s in the sine and cosine lists by the group just

preceding it.

Besides eliminating the final sort required by most FFT algorithms, the pro

cedure described above eliminates memory bank conflicts when (as in STAR)

the number of banks is a power of 2.

The main loop of the FFT program written in IPADFV is given in Figure 4-i

below. All functions are in-line and represent single STAR instructions.

100 UO = YO + Y1

=
U1 Y0 - Y1

Y0 = X0 + Xl

Y1 = XO - X1

XO = Y1 *COS

X1 = Y1 * SIN

E Ul * SIN

Y1 =XO+E

E =U1* COS

U1 =X1+E

X = MERGE (Y0, Z, Y1)

Y = MERGE (U0,Z, U1)

U MASK (COS, Z,*)

COS = MERGE (U, Z, U)

U MASK (SIN,Z, *)

SIN = MERGE (U,Z,U)

Z = BIT (Z,Z)

NN- I

IF(N) 110, 110, 100

110 CONTINUE

Figure 4-I. FFT Main Loop (Vector)

C41

A FORTRAN version for the same algorithm, but for a conventional computer is

given in Figure 4-2. The above subject was discussed at some length to empha

size the critical point that, while software migration from local FORTRAN

dialects to IPADF (or its extension, IPADFV) will permit execution on either

third or fourth generation host computers, hand reprogramming will be required

if the full potential of a vector computer is to be realized.

DO 2 PASS=1, N4POW
NXTLTH=2**(N2 POW-2*PASS)

LENGTH=4*NXTLTH

SCALE=6.283185307/FLOAT(LENGTH)

DO 2 J=l, NXTLTH

ARG=FLOA T(J- 1)*SCALE

C1=COS(ARG)

SI=SIN(ARG)

C2 =C1*C1-S1*S1
S2 =C1*S1+C1*S1
C3=CI*C2-SI*S2
S3=C2"SI+S2"CI
DO 2 SEQLOC=LENGTH, NTHPOW, LENGTH
J =SEQLOC-LENGTH+J

J2 =J+NXTLTH

J3 =J2 +NXTLTH

J4=J3+NXTLTH

RI=X(JI)+X(J3)

R2=X(JI)-X(J3)

R3=X(J2)+X(J4)

R4=X(J2)-X(J4)
II=Y(J1)+Y(J3)

12=Y(Jl)-Y(J3)

13=Y(J2)+Y(J4)

14=Y(J2)-Y(J4)

X(J1)=RI+R3

Y(Jl)=I1+I3

IF(J. EQ. 1)GO TO 1

X(J2)=C*(R2+I4)+SI*(I2-R4)

Y(J2)=-S1*(R2 +14)+C1*(I2-R4)

X(J3)=C2*(R-R3)+S2*(II3)

Y(J3)=-S2*(R1-R3)+C2*(I-I3)

X(J4)=C3*(R2 -I4)+S3*(2+R4)

Y(J4)=-S3*(R2-I4)+C3*(I2+R4)

GO TO 2

X(J2)=R2+14

Y(J2)=I2-R4

X(J3)=R1-R3
Y(J3)=I1-I3

X(J4)=R2 -14

Y(J4)=12 +R4

2
 CONTINUE

Figure 4-2. FFT Main Loop (Scalar)

C42

REFERENCES:

1. 	 The Mobile Programming System: STAGE 2, W. M. Waite, Comm. ACM
Vol. 13, no. 7, July 1970

2. 	 FORTRAN Extended Reference Manual 6400/6500/6600
Computer Systems 60176600 Rev. E., Control Data Corporation

3. 	 IBM System/360 and System!370 FORTRAN IV Language 9th Edition,
GC28-6515-8 International Business Machines Corporation

Both a Source and Target Language,4. 	 The Use of An Algebraic Language as
P. 	 H. Knowlton, Proc. 23rd Nat. Conf. ACM, 1968

5. 	 A Programming Language, Kenneth Iverson, Wiley, 1962

C43

