694 research outputs found

    Implicit Meshes for Effective Silhouette Handling

    Get PDF
    Using silhouettes in uncontrolled environments typically requires handling occlusions as well as changing or cluttered backgrounds, which limits the applicability of most silhouette based methods. For the purpose of 3-D shape modeling, we show that representing generic 3-D surfaces as implicit surfaces lets us effectively address these issues. This desirable behavior is completely independent from the way the surface deformations are parame-trized. To show this, we demonstrate our technique in three very different cases: Modeling the deformations of a piece of paper represented by an ordinary triangulated mesh; reconstruction and tracking a person's shoulders whose deformations are expressed in terms of Dirichlet Free Form Deformations; reconstructing the shape of a human face parametrized in terms of a Principal Component Analysis mode

    Implicit Meshes for Effective Silhouette Handling

    Get PDF
    Using silhouettes in uncontrolled environments typically requires handling occlusions as well as changing or cluttered backgrounds, which limits the applicability of most silhouette based methods. For the purpose of 3--D shape modeling, we show that representing generic 3--D surfaces as implicit surfaces lets us effectively address these issues. This desirable behavior is completely independent from the way the surface deformations are parametrized. To show this, we demonstrate our technique in three very different cases: Modeling the deformations of a piece of paper represented by an ordinary triangulated mesh; reconstruction and tracking a person's shoulders whose deformations are expressed in terms of Dirichlet Free Form Deformations; reconstructing the shape of a human face parametrized in terms of a Principal Component Analysis model

    Multi-view Performance Capture of Surface Details

    No full text

    Robot Assisted 3D Shape Acquisition Optical Systems

    Get PDF
    In this chapter, a short description of the basic concepts about optical methods for the acquisition of three-dimensional shapes is first presented. Then two applications of the surface reconstruction are presented: the passive technique Shape from Silhouettes and the active technique Laser Triangolation. With both these techniques the sensors (telecameras and laser beam) were moved and oriented by means of a robot arm. In fact, for complex objects, it is important that the measuring device can move along arbitrary paths and make its measurements from suitable directions. This chapter shows how a standard industrial robot with a laser profile scanner can be used to achieve the desired d-o-f. Finally some experimental results of shape acquisition by means of the Laser Triangolation technique are reported

    Robot assisted 3D shape acquisition by optical systems

    Get PDF
    In this chapter, a short description of the basic concepts about optical methods for the acquisition of three-dimensional shapes is first presented. Then two applications of the surface reconstruction are presented: the passive technique Shape from Silhouettes and the active technique Laser Triangolation. With both these techniques the sensors (telecameras and laser beam) were moved and oriented by means of a robot arm. In fact, for complex objects, it is important that the measuring device can move along arbitrary paths and make its measurements from suitable directions. This chapter shows how a standard industrial robot with a laser profile scanner can be used to achieve the desired d-o-f. Finally some experimental results of shape acquisition by means of the Laser Triangolation technique are reported
    • …
    corecore