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Abstract. Using silhouettes in uncontrolled environments typically requires handling occlusions as well as chang-

ing or cluttered backgrounds, which limits the applicability of most silhouette based methods. For the purpose of

3-D shape modeling, we show that representing generic 3-D surfaces as implicit surfaces lets us effectively address

these issues.

This desirable behavior is completely independent from the way the surface deformations are parametrized. To

show this, we demonstrate our technique in three very different cases: Modeling the deformations of a piece of paper

represented by an ordinary triangulated mesh; reconstruction and tracking a person’s shoulders whose deformations

are expressed in terms of Dirichlet Free Form Deformations; reconstructing the shape of a human face parametrized

in terms of a Principal Component Analysis model.

Keywords: 3-D modeling, silhouettes, tracking, deformable surfaces, implicit surfaces, bundle-adjustment

1. Introduction

Occluding contours are a key clue to recovering the

shape of smooth and deformable objects. However,

they are notoriously difficult to extract against poten-

tially cluttered or changing backgrounds and in the

presence of occlusions. As a result, it is standard prac-

tice to engineer the environment and to use multiple

cameras, which limits the applicability of the resulting

methods.

By contrast, we show that representing deformable

3-D shapes as implicit surfaces lets us successfully

exploit occluding contours in monocular sequences

filmed in difficult conditions, such as those depicted by

Fig. 1. In these images, even the best edge-detection or

∗This work was supported in part by the Swiss National Science
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background subtraction algorithms cannot be expected

to work reliably. This is key to being able to exploit

silhouettes in uncontrolled real-world situations. Fur-

thermore, it also lets us effectively combine silhouette

information with that provided by interest points, which

can be tracked from image to image.

More specifically, we use implicit meshes (Ilić and

Fua, 2003), which are implicit surfaces that closely ap-

proximate generic triangular 3-D meshes and deform

in tandem with them. This formulation allows us to

robustly compute the occluding contours on the 3-D

surface as the solution of an ordinary differential equa-

tion (Rosten and Drummond, 2003). Their projections

can then be used to search for the true image boundaries

and deform the 3-D model so that it projects correctly.

This well-formalized approach yields a robust imple-

mentation that we demonstrate for monocular tracking

of deformable 3-D objects in a completely automated
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Figure 1. Detecting and using silhouettes for tracking and reconstruction from monocular sequences. The detected silhouette points are shown

in yellow, or white if printed in black and white. First row: Tracking a deforming piece of paper with a tiger on it and replacing the tiger by a

picture, which involves accurate 3-D shape estimation. This is done in spite of the moving book and the occluding hand. Middle row: Tracking

the head and shoulders of a moving person. The reprojected 3-D model is shown as a shaded surface. Note that, even though the background is

cluttered, we did not need to perform any kind of background subtraction. Bottom row: The face of a well known actor reconstructed from five

very low quality 160 × 236 images obtained by digitizing an old celluloid film.

fashion: We start with a generic 3-D model of the tar-

get object. For the examples of Fig. 1, we use a simple

planar triangulation for the deforming piece of paper,

a custom-designed head-and-shoulder model for up-

per body tracking, and a morphable model (Blanz and

Vetter, 1999) for facial reconstruction. We roughly po-

sition the model in the first image, find its occluding

contours, and use them to search for the corresponding

contours in the images. We then use the detected 2-D

contours and the constraints they impose, along with

frame-to-frame point correspondences, to refine the

model’s shape.

This approach is effective independently of the

specific way the deformations are parametrized. As

shown in Fig. 1, we validated the tracker in several

very different cases: Modeling the deformations of a

piece of paper represented by an ordinary triangulated

mesh; reconstructing and tracking a person’s shoulders

whose deformations are expressed in terms of Dirich-

let Free Form Deformations (Moccozet and Magnenat-

Thalmann, 1997); reconstructing the shape of a human

face parametrized interms of a Principal Component

Analysis model (Blanz and Vetter, 1999; Dimitrijević

et al., 2004).

In the remainder of the paper, we first review related

approaches and our earlier work (Ilić and Fua, 2003) on

implicit meshes. We then show how we use them first

to guide the search for silhouettes in the images, and

second to enforce the corresponding differential con-

straints on the surface. Finally, we present our results

in more details and quantify their accuracy.

2. Related Work

Occluding contours have long been known to be an

excellent source of information for surface reconstruc-

tion, and sometimes the only available one when the

surface slants away from the camera and makes it

impractical to use other approaches such as feature

point matching. This information has been put to very

good effect by researchers, such as Sullivan et al.

(1994), Vaillant and Faugeras (1992), Sullivan and

Ponce (1998), Cross and Zisserman (2000), Szeliski
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and Weiss (1998), Boyer and Berger (1997), Davis and

Bobick (1998), Cipolla and Blake (1992), Terzopoulos

and Metaxas (1991), among many others. In most of

these works, the technique used to actually extract the

occluding contours is relatively straightforward. It can

be simple edge detection and linking (Canny, 1986),

active contour models (Kass et al., 1988), or space carv-

ing (Kutulakos and Seitz, 2000). However, while per-

fectly appropriate in the context in which they are used,

these methods would fail in the presence of cluttered

and changing backgrounds.

Detecting occluding contours in such situations

requires much more sophisticated algorithms. Re-

cent color and texture-based segmentation algorithms

(Paragios and Deriche, 1998; Rother et al., 2004; Car-

son et al., 2002) have proved very good at this. How-

ever, since they are essentially 2-D, it is not trivial to

guarantee that the outlines they produce actually cor-

respond to the target object’s occluding contours.

A popular solution to this problem among re-

searchers involved in tracking articulated or rigid ob-

jects is to model them using volumetric primitives

whose occluding contours can be computed given a

pose estimate. The quality of these contours can then

be evaluated using either the chamfer distance to image

edges (Gavrila and Davis, 1995) or more sophisticated

measures (Sminchisescu and Triggs, 2003; Agarwal

and Triggs, 2004). This quality measure can then be

optimized to refine the pose, which has shown to be

effective, but mostly in cases where either the sub-

jects wear clothes that facilitate silhouette extraction

or where the background is relatively simple. An alter-

native approach is to search for the true image bound-

aries in directions that are normal to them Kutulakos

and Seitz (2000), Drummond and Cipolla (2002). This

Figure 2. Approximating an explicit mesh by an implicit one. (a, b) Spherical implicit meshes wrapped around an explicit mesh and shown as

being transparent. (c, d) Triangular implicit meshes. Note the much improved approximation.

gives good results but has only been demonstrated for

relatively simple shapes such as ellipsoids and trun-

cated cones. The work we present here can be under-

stood as a generalization of this approach to more com-

plex surfaces that can deform in less predictable ways.

3. Implicit Meshes

In earlier work, we introduced implicit meshes (Ilić and

Fua, 2003). They are implicit surfaces that are designed

to closely approximate the shape of arbitrary triangu-

lated meshes and to deform in tandem with them, as

shown in Fig. 2. To convert a triangulated mesh into an

implicit one, we attach a spherical or triangular implicit

surface primitive, and corresponding field function f ,

to each facet. We then define the surface as the set

S(Θ) = {x ∈ R3, F(x,Θ) = T } , (1)

where F = ∑
fi , i = 1 . . . N is the sum of the individ-

ual field functions, one for each of the N mesh facets,

Θ a set of parameters or state vector that controls the

shape of the explicit mesh, and T a fixed isovalue.

A spherical primitive is created by circumscribing

a sphere around the facet i so that the centers of the

sphere and of the circle circumscribed around the facet

coincide. In this case, fi simply is

fi (x) = exp
(−k

(
ri (x) − r0

i

))
i = 1 . . . N , (2)

where x is a 3-D point, ri is the Euclidean distance

to the sphere’s center, r0
i is the radius of the spherical

primitive and k is a free coefficient defining the slope of

the potential field function. For triangular primitives,

we replace the Euclidean distance ri by a piecewise
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polynomial C1 function di that more accurately approx-

imates the actual distance to the facet i . di is computed

as the squared distance from the facet plane for points

that project on the facet and as the squared distance

from its edges and vertexes otherwise. fi becomes

fi (x) = exp
(−k

(
di (x) − d2

0

))
, (3)

which has almost the same form as before, but where

d0 now represents the thickness of the implicit surface

and is the same for all facets.

Spherical primitives are best for relatively regular

meshes because they are computationally inexpensive.

Triangular primitives are more expensive but also more

general and provide better surface approximations, es-

pecially when the explicit mesh is either irregular or

low resolution. In any event, the method proposed in

this paper is applicable to both since it only depends

on the surface differentiability.

4. Silhouette Detection

As discussed earlier, given the estimated shape and

pose of a 3-D model, our goal is to compute its 3-D

occluding contours, project them into the image and

use that projection as a starting guess to find the corre-

sponding image boundaries, which should be the real

silhouettes. In this section, we first show some of the

problems involved in performing this task using tradi-

tional techniques. We then show that our implicit mesh

Figure 3. Occluding contours on explicit versus implicit meshes. (a) High resolution mesh of the face and low resolution mesh of the upper

body. (b) Shaded model with edges at the boundary between visible and hidden facets overlaid in yellow. (c) The same edges seen from a different

viewpoint (d, e) Shaded models with the occluding contour computed using implicit mesh, corresponding to views (b) and (c) respectively. Note

the much greater smoothness and improved precision.

formalism solves them and gives us cleaner and more

consistent results, which can then be exploited to detect

the right image boundaries.

4.1. Occluding Contours from Explicit Meshes

In the absence of the implicit surface formalism we

propose, one of the most popular ways of finding oc-

cluding contours is to perform a visibility computation.

For example, we can use OpenGL to project the model

into the images, which lets us use the z-buffer to dis-

tinguish visible facets from hidden ones. The edges

between these two sets of facets are then taken to be

candidate occluding contours.

As shown in Fig. 3(b, c), the results of this proce-

dure are heavily dependent on mesh resolution and the

resulting contours are rarely as smooth as they should.

Of course, more sophisticated heuristics would cer-

tainly yield improved results but we are not aware of

any existing technique whose results are as clean and

mesh-resolution independent as those of Fig. 3(d, e),

which were obtained using our implicit surface formal-

ism. As will be discussed in Section 6.1.2, this can have

a dramatic influence on the quality of reconstruction

results.

4.2. Occluding Contours and Ordinary Differential
Equations

Occluding contours of implicit surfaces, such as the

ones depicted by Fig. 3, can be found by solving
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an Ordinary Differential Equation (ODE) as follows

(Rosten and Drummond, 2003). Let x(s), s ∈ [0, L]

be a 3-D occluding contour on the implicit surface S(Θ)

of Eq. 1, where L is its total length and s is the curvi-

linear abscissa.

1. x(s) is on the surface and therefore

F(x(s),Θ) = T ; (4)

2. the line of sight is tangential to the surface at x(s),

which implies

(x(s) − COpt) • �F(x(s),Θ) = 0 . (5)

Differentiating Eqs. (4) and (5) with respect to the s
abscissa yields

0 = ∂ F(x(s),Θ)

∂x
∂x(s)

∂s
= �F(x(s),Θ)

∂x(s)

∂s
(6)

0 = ∂x(s)

∂s
� F(x(s),Θ)

+ (x(s) − COpt)H (x(s),Θ)
∂x(s)

∂s
(7)

Figure 4. Finding multiple silhouette edge points in the image. Notations are defined in Section 4.3.

where H (x(s),Θ) is the Hessian matrix of F ,

�F(x(s),Θ) its gradient vector and COpt the optical

center of the camera depicted by Fig. 4. Substituting

Eq. (6) into Eq. (7) allows us to eliminate the first term,

which yields

(x(s) − COpt)H (x(s),Θ)
∂x(s)

∂s
= 0. (8)

Note that Eqs. (6) and (8) imply that the vector
∂x(s)

∂s
is perpendicular to both �F(x(s),Θ) and (x(s) −
COpt)H (x(s),Θ). We can therefore write

∂x(s)

∂s
∝ ((x(s) − COpt)H (x(s),Θ)) × �F(x(s),Θ).

(9)

Since by definition of the curvilinear abscissa,

‖ ∂x(s)

∂s ‖ = 1, this implies that x(s) is a solution of

the ODE

∂x(s)

∂s

= ((x(s) − COpt)H (x(s),Θ)) × �F(x(s),Θ)

‖((x(s) − COpt)H (x(s),Θ)) × �F(x(s),Θ)‖ .

(10)

We solve this ODE in vector space using a 4th order

Runge-Kutta scheme, which involves computing the

Hessian matrix. In theory, this requires the distance
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functions to be C2, which is strictly true when using

spherical primitives but not triangular ones. In the lat-

ter case, the distance function is C1 everywhere and

C2 except at facet edges and vertexes. In practice, be-

cause the surfaces are smooth, this has not caused us

any problems. This approach results in the very clean

contours of Fig. 3(d, e) that are quite insensitive to the

resolution of the mesh used to compute them.

Obtaining those results requires an initial condition

for the ODE, which is given as x(0), a 3-D starting point

on the occluding contour. To find it, we use a visibility

algorithm similar to the one described in Section 4.1.

We select one single vertex of the explicit mesh that is

very likely to be an occluding vertex, and its location

is heuristically determined to be close to the wanted

beginning of the occluding contour. We then project it

onto the implicit mesh and search in the neighborhood

of the projection for a point that satisfies the two con-

straints given by Eqs. (4) and (5). Note that this is very

different from the approach of Section 4.1 because,

since we only need one 3-D point, we can impose very

tight constraints and thus ensure that it really is on the

occluding contour. The length of the resulting contour

is a function of the number of Runge-Kutta steps and of

the corresponding step size. In the tracking examples

presented in the results section, the expected length of

the occluding contour does not vary dramatically. We

therefore fix the step size and choose the number of

steps so that the resulting contour length is appropriate

in the first frame.

4.3. Finding Silhouette Edges in the Image

Given a 3-D occluding contour x(s) computed as de-

scribed above, we project it into the image and look for

the true silhouette edge in a direction normal to its 2-D

projection as depicted in Fig. 4. This is geometrically

consistent because, at a silhouette point xi ∈ x(s), s ∈
[0, L], the 3-D surface normal n is perpendicular to the

line of sight li and, as a result, projects to the normal np

of the 2-D contour.

In other words, at each point ui of the 2-D projection,

we simply have to perform a 1-D search along a scan-

line for the true edge location and we are back to the

old edge detection problem, but in a much simpler con-

text than usual. We use a technique that has proved ef-

fective for edge-based tracking (Vacchetti et al., 2004;

Drummond and Cipolla, 2002): Instead of selecting

one arbitrary gradient maximum along the scan-line,

we select multiple gradient maxima resulting in several

potential silhouette edge points u j
i and corresponding

lines of sight l j
i for each xi . Along these new lines of

sight, we could choose the x j
i where the line is closest

to the surface as the most likely point where the sur-

face should be tangent to the line of sight. However,

this involves a computationally expensive search along

the line of sight. In practice, as shown in Fig. 4, (a)

simpler and equally effective approach is to take each

x j
i to be the point on l j

i that is at the same distance from

the optical center as the original xi . These x j
i are then

used to enforce silhouette constraints, as explained in

Section 5.

5. Fitting Implicit Mesh 3-D Models

Silhouettes are a key clue to surface shape and defor-

mation in monocular sequences, but they are also a

sparse one since they are only available at a few im-

age locations. For objects that are somewhat textured,

point correspondences between interest points in pairs

of images complement them ideally. They can be es-

tablished best where silhouettes are least useful, that is

on the parts of the surfaces that are more or less parallel

to the image plane.

In the following section, we show that our formal-

ism lets us effectively combine these two information

sources. Given a set of correspondences and silhou-

ette points, we fit our model to the data by minimiz-

ing a set of observation equations in the least-squares

sense. To this end we use the Levenberg-Marquardt

algorithm (Press et al., 1992), which we have found

very effective at solving these kinds of non-linear

optimization problems. At each iteration, we recom-

pute the occluding contours and corresponding silhou-

ette points in the image using the technique of Sec-

tion 4.2. To increase robustness, we introduce an iter-

ative reweighted least-squares scheme that allows us

to discount erroneous correspondences or silhouette

points.

As we will see, the silhouette-based constraints are

best expressed in terms of the implicit surface formal-

ism while it is simpler to formulate the correspondence-

based ones using traditional triangulated meshes. Re-

call from Section 3 that both the implicit surface

and the underlying explicit one deform in tandem

when the state vector changes. As a result, we can si-

multaneously use the implicit formalism when deal-

ing with silhouettes and the explicit one when deal-

ing with correspondences as needed to simplify our
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implementation. We view this as one of the major

strengths of our approach.

5.1. Least Squares Framework

We use the image data to write nobs observation equa-

tions of the form

Obs(xi ,Θ) = εi , 1 ≤ i ≤ nobs, (11)

where xi is a data point, Θ the state vector of Eq. (1),

Obs a differentiable function whose value is zero

for the correct value of Θ and completely noise

free data, and εi is treated as an independently dis-

tributed Gaussian error term. We then minimize vT Pv,

where v = [ε1, . . . , εnobs
] is the vector of residu-

als and P is a diagonal weight matrix associated

with the observations. If estimates of the reliability

of each source of information were available, a min-

imum variance solution could be obtained by weight-

ing each source of information according to these es-

timates. Unfortunately, such confidence measures are

rarely available and we set these weights as described

below.

Because there are both noise and potential gaps in

the image data, we add a regularization term ED that

forces the deformations to remain smooth. Its exact

formulation depends on the chosen parametrization and

will be discussed in more details in the result section.

We therefore write the total energy that we minimize

as

ET =
nobs∑
i=1

ctypei

(
Obstypei (xi ,Θ)

)2 + ED , (12)

where t ypei is the type of observation i , Obstypei is

the corresponding observation function, and the ctypei

are weights that are taken to be equal for all observa-

tions of the same type. We introduce this heuristic be-

cause the iteration steps of the Levenberg-Marquardt

algorithm (Press et al., 1992) we use to optimize ET

are computed using the Jacobian matrix formed by

concatenating the ∇Obstypei gradient vectors of the

Obstypei functions. Given that they are computed using

different data types, the magnitude of these gradients

are not be commensurate in general. To ensure that the

minimization proceeds smoothly, they must be scaled

so that, initially at least, the magnitudes of the gradient

terms corresponding to the different observation types

have appropriate relative values. This is achieved by

writing

ctype = λt ype

Gtype
, (13)

where

Gtype =
√∑

1≤i≤nobs,t ype=t ypei
‖∇Obstypei (xi , S)‖2

ntype
,

(14)

and λt ype is a user supplied coefficient between 0 and 1

that indicates the relative importance of the observation

types. In practice we give the same influence to the two

observation types by choosing λsilh = λcorr = 0.5.

We now turn to the description of Obssilh and

Obscorr , the functions that handle silhouettes and cor-

respondences, the two data types we actually use here.

5.2. Silhouettes

In Section 4, we showed how to use our formalism to

associate 2-D image locations to 3-D surface points that

lie on the occluding contours. Recall from Section 4.3

that, for each 3-D point xi on the model’s occluding

contour, we defined a corresponding set of candidate

occluding points on the target object, the x j
i depicted by

Fig. 4. If the shape and pose of the 3-D model were per-

fect, one of them should be on the surface and therefore

satisfy F(x j
i ,Θ) = T , where F is the field function of

Eq. 1, and T the isovalue defined in the same equation.

During the optimization, this will in general not be true.

We enforce this constraint by introducing for each x j
i

a silhouette function of the form

Obssilh
(
x j

i ,Θ
) = w

j
i

(
F

(
x j

i ,Θ
) − T

)
, (15)

where w
j
i is a weight associated to the observation. It is

taken to be inversely proportional to its distance to the

line of sight l j
i depicted by Fig. 4. As the total energy

ET of Eq. (12) is minimized, the Obssilh(x j
i ,Θ) will

collectively decrease in the least-squares sense. Even-

tually, for each xi , only one of these candidates, xbest
i ,

will end up being close to li and having a large w
j
i

weight, while the others will be ignored. xbest
i will also

become closer and closer to actually being on the sur-

face and, because it minimizes the distance to the sur-

face along li , the normal at the closest surface point will

be perpendicular to the line of sight. Thus, xbest
i will

eventually tend to satisfy the two conditions introduced
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in Section 4.2 that characterize an occluding contour

point.

5.3. Correspondences

Given a calibrated n image-sequence, such as the one

depicted by Fig. 5, we use 2-D point correspondences

in two or more consecutive images. We begin with the

case of two images and then expand our approach to

the full sequence.

Let us first consider the pair of consecutive images i
and i+1, with 1 ≤ i < n. Let pk

i be a 2-D point in image

i and pk
i+1 a corresponding one in image i + 1, found

using a simple correlation-based algorithm. We back-

project pk
i to the 3-D surface and re-project the resulting

3-D point into image i +1, yielding p̂k
i+1 = ψ(pk

i ,Θ),

where ψ is known as the transfer function depending on

the state vectorΘ. We can now take the correspondence

function to be

Obscorr
({

pk
i , pk

i+1

}
,Θ

) = wk
i

∥∥ p̂k
i+1 − pk

i+1

∥∥
= wk

i

∥∥ψ
(

pk
i ,Θ

) − pk
i+1

∥∥ ,

(16)

Figure 5. Exploiting correspondences. First, the model, a face in this case, is projected into the reference image, labeled as image i . Depending

on the application, either the projection is densely sampled or the sample points are taken to be interest points detected using the Harris corner

detector. Then a correlation based algorithm is used to establish correspondences in the following i + 1 or in the preceding i − 1 and following

i + 1 images. The points from the reference image are back-projected to the 3-D model and reprojected into the other images. The sum of the

squares of the distances between these back-projections and the corresponding points is minimized in terms of only model shape parameters or

in terms of model and the camera parameters in case of uncalibrated sequences.

the Euclidean distance in image i + 1 between the cor-

responding point and the reprojected one multiplied by

a weight wk
i . Since some of the correspondences may

be erroneous, as in the silhouette case, this weight is

taken to be inversely proportional to the corresponding

residual at the end of the previous minimization. As

a result, after several minimizations, false correspon-

dences tend to be ignored.

Note that the simplest and fastest way of back-

projecting pk
i to the 3-D surface is to use OpenGl

and the graphics hardware of our machines to find

the facet that is traversed by the line of sight it de-

fines. Therefore, in our implementation, when com-

puting Obscorr ({pk
i , pk

i+1},Θ) and its derivatives, we

use the explicit representation of the model instead of

the implicit one.

In practice and depending on the application, the pk
i

points are either obtained by regularly sampling the 3-D

model projection into image i or are taken to be interest

points detected using the Harris corner detector. Note

that we can use correspondences {pk
i , pk

i−1} in image

i − 1 in exactly the same way since the ψ transfer

function can be defined between any two images. In
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this way, as shown in Fig. 5 we can use one set of pk
i

sample points to create observations that exploit the

correspondences in the image triplet i −1, i , and i +1.

When dealing with a full image sequence, we re-

peat this operation for all consecutive image triplets.

In other words, we sample the middle image, compute

correspondences in the other two, and use all these

correspondences to create additional correspondence

observations. In this way, we can simultaneously ex-

ploit the shape information present in the whole se-

quence. Since correspondences can be expected to be

noisy and sometimes erroneous, this increases our al-

gorithm’s robustness. All frames play equivalent roles

and there is no need to arbitrarily choose a reference

one.

5.4. Uncalibrated Video Sequences

When handling video sequences acquired using an un-

known camera in which the object moves, we fix the

camera parameters to reasonable values and estimate

the frame-to-frame rotations and translations in addi-

tion to the shape. More specifically, we introduce for

each frame i a vector Ci that contains the 3 rotations

and translations with respect to an absolute coordinate

system. Let C = {C1, . . . , Cn} be the vector of all

such camera parameters. The observation equation of

Eq. (11) becomes

Obs(xi ,Θ, C) = εi , 1 ≤ i ≤ nobs. (17)

We therefore end up minimizing the total energy

ET =
nobs∑
i=1

ctypei

(
Obstypei (xi ,Θ, C)

)2 + ED, (18)

with respect to both Θ and C. In practice, an approx-

imate value of C has to be supplied for initialization

purposes. To this end, we choose a frame, say i0 with

0 ≤ i0 ≤ n, as a reference frame and we compute

Ci0 so that the model’s initial projection roughly aligns

with the target object. In the case of the faces shown

in the result section, this is done by manually select-

ing five feature points in the reference frame and using

POSIT (David et al., 2002). The Ci vectors for frames

before and after i0 are initially taken to be equal to Ci0
and then refined during the optimization.

In Dimitrijević et al. (2004), we showed that min-

imizing the objective function of Eq. (18) is a well

conditioned least-squares problem, that yields reliable

estimates of both camera position and shape, if we

use enough correspondences. In practice, we there-

fore first estimate shape and camera parameters using

correspondences only. For that purpose we developed

an optimization schema where the shape parameters

are progressively added as explained in Dimitrijević

et al. (2004). We then refine the shape using the sil-

houettes, which require reasonably good estimate of

the camera positions to be meaningful. Note that in

our approach, there never is an explicit association

between 2-D sample points in the images and spe-

cific vertexes or facets of the 3-D models. Instead,

these associations are computed dynamically during

the minimization and can change. As a result, we do

not need to fix the Ci0 parameters during the opti-

mization. Instead, they are refined in the same way

as all the others and a rough initial estimate suf-

fices. Again, all frames end up playing the same role

and the reference one is only used for initialization

purposes.

6. Results

In this section, we demonstrate the applicability of

our method to the shape recovery of rigid and de-

formable objects from monocular video sequences. We

also show that our formalism applies independently

of the specific parametrization used to represent the

shape and its deformations. To this end, we use as

examples morphable face models (Blanz and Vetter,

1999), upper body models whose deformations are

expressed in terms of Dirichlet Free Form Deforma-

tions (Moccozet and Magnenat-Thalmann, 1997), and

ordinary triangulated meshes parametrized in terms of

the 3-D coordinates of their vertexes. In all three cases,

we validate our results using either laser scanner data

or side views that were not used for reconstruction

purposes.

6.1. Rigid Objects

Recovering the shape not only of human faces but

also of the complete human upper body—head, neck,

and shoulders—is a good proving ground for our tech-

nique because all the tools required to produce com-

plete models are available to us. We use uncalibrated

video sequences in which the subject, or the camera,

move rigidly from frame to frame. We supply approx-

imate values for the intrinsic parameters and use the
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technique outlined in Section 5.4 to recover the motion

and a first shape estimate using correspondences only.

We then use the silhouette information to refine it.

6.1.1. Face Reconstruction. We use morphable face

models (Blanz and Vetter, 1999), which are stored as

triangulated meshes with 75292 vertexes. Given such

a mesh, let us consider S, the shape vector obtained by

concatenating the X , Y and Z coordinates of all its ver-

texes. A database of 3-D faces was used to compute the

shape vectors for 200 people and Principal Component

Analysis to approximate them as

S = S̄ +
99∑

i=1

αi Si , (19)

where S̄ represents an average face model, the Si are

orthogonal vectors, and the αi are weights that can be

varied to create a whole range of new faces. We there-

fore take Θ, the state vector of Eq. (1), to be the set of

all these weights, initially set to zeros.

Figure 6. Head modeling using morphable face models. (a) Five of the seven images we used. (b) Reconstructed model using correspondences

only. (c) Reconstructed model using both correspondences and silhouettes. The white outlines are the silhouette edges detected by applying

the technique of Section 4.3 to the model of (b). We overlay them on the original images of row (a) to show that they correspond to the true

silhouettes and to those of row (b) to highlight the inaccuracy of the reconstruction in the vicinity of those silhouettes, as well as to those of row

(c) to indicate improved accuracy.

We take the ED regularization term of Eq. (12) to be

ED =
99∑

i=1

α2
i

σ 2
Si

(20)

where the σSi are the eigenvalues of the shape covari-

ance matrix provided with the model (Blanz and Vetter,

1999). To effectively minimize the total energy ET , we

developed an optimization schedule in which the num-

ber of state variables, that are allowed to vary, progres-

sively increases (Dimitrijević et al., 2004).

Using correspondences alone yields the results de-

picted by Fig. 6(b) for a seven-image sequence in which

the subject faces the camera. The reconstruction is quite

accurate in the front but the cheeks are too narrow. Since

correspondences can be expected to be less and less ac-

curate on the side of the face where the surface slopes

away from the camera, this is not particularly surpris-

ing. However, using both correspondences and silhou-

ettes yields the improved reconstruction of Fig. 6(c). It

is now accurate both in front and on the side, as evi-

denced by the fact that its occluding contours accurately

match the true silhouettes.
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Figure 7. Head modeling using morphable face models. (a) Four images from a short video sequence. (b) Corresponding Canny edge images.

(c) Reconstructed model using both correspondences and silhouettes. (d) Textured face model. As in Fig. 6, we overlay the extracted silhouette

edges on the images to show that the model’s occluding contours match the true silhouettes.

Figure 7 depicts a second example. The lighting con-

ditions were relatively poor, making the edges difficult

to extract, as evidenced by the output of the Canny

edge detector with standard settings. Nevertheless, the

model’s occluding contours still superpose correctly

with the true silhouettes.

To quantify the quality of these results, we have

used a Minoltatm laser scanner to acquire models of

the subjects of Figs. 6 and 7. Figure 8(a) depicts one

of them. When performing these experiments, our goal

was to demonstrate that we could achieve automated

shape recovery from completely uncalibrated video se-

quences. In theory, given high precision matches, we

should be able to recover both intrinsic parameters and

camera motion (Hartley and Zisserman, 2000). In prac-

tice, however, we must be prepared to deal with the

potentially poor quality of the point matches. There-

fore, we use an approximate value for the focal length

and assume that the principal point remains in the center

of the image, which results in a reconstruction that

can only be accurate up to an affine transform (Fua,

2000). To compare the video-based reconstructions to

the scans, we therefore compute an affine transform that

brings the reconstructed model as close as possible to

the scan. This is done by least-squares minimization

and results in deformations of the model such as the

one depicted by Fig. 8(c). In practice, if the intrinsic

parameters we supply are reasonable, these deforma-

tions are close to being simple scalings along the x,

y, and z axes. In Fig. 9, we plot for both subjects the

proportion of the 3-D points in the laser scan that are

within a given distance of the reconstructed model, af-

ter it has been deformed using the affine transform dis-

cussed above. The median distances are 0.98 mm and

0.73 mm respectively.

Our scanner has a theoretical precision of around

0.3 mm. However, this does not take into account some

of the artifacts it produces, such as those that oc-

cur when stitching together several scans of the tar-

get object seen from different viewpoints. A median

distance between two independent reconstructions un-

der 1.0 mm is therefore a good indication that they are
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Figure 8. Comparing against Laser Scanner Data. (a) Laser scan of the subject of Fig. 7. (b) Shaded view of the corresponding model

reconstructed using the video sequence. (c) Deformed model after an affine transformation has been applied to bring it as close as possible to

the laser scan of (a). Note that the deformation with respect to (b) is mild and close to being a simple scaling along the x, y, and z axes.
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Figure 9. Quantitative evaluation of the facial reconstructions. (a) For the subject of Fig. 6, proportion of the 3-D points in the laser scan that

are within a given distance of the reconstructed model, after it has been deformed using an affine transform. The median distance of 0.98 mm

is denoted by the dotted lines. (b) Same thing for the subject of Fig. 7 with a median distance of 0.73 mm.

consistent with each other and presumably both close

to the ground truth.

6.1.2. Upper Body Reconstruction. The morphable

models we used above are outstanding to model faces

but were never designed to model the whole upper

body. To this end, and to demonstrate our technique

in a different context, we use the model depicted by

the bottom row of Fig. 3. Even though its resolu-

tion is relatively low, parameterizing it in terms of

the 3-D coordinates of its vertexes would result in too

many degrees of freedom for effective optimization.

Instead, we use the Dirichlet Free Form Deforma-

tions (DFFD) formalism (Moccozet and Magnenat-

Thalmann, 1997; Ilić and Fua, 2002). DFFDs let us

control the model’s shape using a small number of con-
trol points. This, in turn, allows us to formulate the

shape recovery problem in terms of minimizing the en-

ergy of Eq. (12) with respect to a comparatively small

number of parameters. We briefly describe the DFFD

formalism below and refer the interested reader to our

earlier publication (Ilić and Fua, 2002) for additional

details.
Let {P1, . . . , PN } be the N vertexes of the upper

body triangulation of Fig. 3 and let {Q1, . . . , QM} be

the set of control points of Fig. 10(a), with M << N .

Here, the control points are taken to be a subset of the

mesh vertexes. Translating each Q j control point by
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Figure 10. DFFD formalism. (a) The control points are taken to

be a subset of the vertexes of the depicted model. (b) These control

points are triangulated to form a control mesh.

�Q j results in a displacement of vertex Pi by

�Pi =
M∑

j=1

si
j�Q j , (21)

where the si
j are Sibson coordinates (Moccozet and

Magnenat-Thalmann, 1997) that express the respective

influence of the control point Q j on the vertex Pi . In

practice, these coordinates are computed once when

the control points are chosen and do not need to be

recomputed thereafter. Furthermore, for any given Pi ,

they are non-zero only for a small subset of neighboring

control points. Therefore, we can take the state vector

of Eq. (1) to be

Θ = {�Q1, . . . , �QM} , (22)

the concatenation of the individual control point

displacements, initially set to zeros. Given a spe-

cific instantiation of Θ, the coordinates of the mesh

vertexes become⎡⎢⎢⎢⎢⎢⎣
P

′
1

P
′
2

...

P
′
N

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
P1

P2

...

PN

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣

∑M
j=1 s1

j �Q j∑M
j=1 s2

j �Q j

...∑M
j=1 s N

j �Q j

⎤⎥⎥⎥⎥⎥⎦ . (23)

Since we expect the deformation between the initial

shape and the original one to be smooth, we triangu-

late the control points of Fig. 10(a) to create the control
mesh of Fig. 10(b). We then take the ED regularization

term of Eq. (12) to be the sum of the square of the

derivatives of the �Q j displacements across this con-

trol mesh. By treating its facets as C0 finite elements,

we can approximate ED as the quadratic form

ED = Θt KΘ ,

where K is a very sparse stiffness matrix.

In the example of Fig. 11 we use as input an ini-

tially uncalibrated 14–frame video sequence in which

the camera is fixed and the subject holds still while

sitting on a rotating chair. We first performed model-

driven bundle-adjustment (Fua, 1999) to compute the

relative motion and, thus, register the images. We then

optimized the total energy ET of Eq. (12) with respect

to Θ, which yields the results depicted by the bottom

two rows of the figure. Once again the occluding con-

tours of the recovered model match the true silhouettes

quite accurately.

As for the faces of Section 6.1.1, we laser scanned

the subject’s upper body and plot the distribution of

distances between the scan and the reconstruction.

Fig. 12(a) depicts the distribution of these distances

for the face only and Fig. 12(b) for the whole model.

The median distances, 1.2 mm and 2.03 mm respec-

tively, are higher than those we obtained when using

the morphable models. This makes sense both because

the model we use here is coarser and because there is

very little texture on the subject’s sweater, thus making

it difficult to establish correspondences there.

To highlight some of the problems encountered when

using standard explicit meshes as opposed to implicit

ones we advocate here, we replaced the 3-D occlud-

ing contour points detected by solving the ODE of

Section 4.2 by those found using the technique of

Section 4.1. As shown in Fig. 3(b, c) they tend to

be inaccurate and discontinuous in 3-D. Furthermore,

when not using the implicit surface formalism, we have

to take the distance of an occluding contour point to

the surface to be the orthonormal distance to the clos-

est facet. This introduces non-differentiabilities in the

objective function when the closest facet changes. As

shown in 11(b), these two problems result in a much

degraded reconstruction.

6.2. Tracking Deformable Objects

We now turn to tracking the motion of deformable

3-D objects in monocular sequences where the cam-

era is fixed. We manually position the model in the

first frame of each sequence. We then minimize the

total energy ET defined for each two consecutive

frames with respect to the state vector Θ using both
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Figure 11. Reconstruction from an uncalibrated video sequence. (a) 5 of 14 images from a short video sequence. As before, we overlay in

yellow the extracted silhouette edges on the images. (b) Using a standard explicit mesh to fit the low resolution upper body model of Fig. 3 to

correspondence and silhouette data. Because the 3-D occluding contours are not accurately recovered using this formalism, the resulting shape is

inaccurate and its projections do not adequately match the detected silhouettes. (c) Using our implicit meshes dramatically improves the quality

of the result. (d) Texture-mapped version of the recovered 3-D model.

correspondences between two frames and occluding

contours. This procedure is recursively repeated for all

consecutive subsequent frames.

6.2.1. Head and Shoulders Tracking. We begin with

the model of Fig. 13, which was built in exactly the

same way as the one of Fig. 11, that is by asking the

subject to remain still while we rotated the chair he

sat on. We then acquired the sequences of Figs. 14

and 15 where he now faces the camera, wears different

clothing, and, most importantly, moves his head and

shoulders.

As in Section 6.1.2, the model is parametrized in

terms of the DFFD state vector of Eq. (22). In the

first row of Figs. 14 and 15, we show several frames

from the original sequences. Since the subject keeps

on facing the camera, the sequences provide much less

reliable information on the shape of the head than the

one of Fig. 13 where the head rotates in front of the

camera. Since our DFFD parametrization does not in-

clude a suitable regularization term for plausible facial

motions, using this unreliable information degrades the

quality of the head reconstruction rather than improves

it. We therefore constrain the head motion to be rigid

and allow the control points that influence the rest of

the model to move freely, which results in the mod-

els depicted by the second rows of both figures. In

the bottom rows, we texture-map and re-project the

deformed 3-D models into the original images. Note

that we used the texture of the light blue T-shirt worn

by the subject in the video of Fig. 13 used to build

the static model, as opposed to the dark blue sweater
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Figure 12. Quantitative evaluation of the upper body reconstruction of Fig. 11. (a) Proportion of the 3-D points in the laser scan that correspond

to the face area and are within a given distance of the reconstructed model, after it has been deformed using an affine transform. The median

distance of 1.2 mm is slightly larger than those of Fig. 9 because the model we use here is coarser. (b) Proportion for all the points in the laser

scan. The median distance of 2.03 mm is even larger because there are few correspondences on the subject’s torso, making the reconstruction

less accurate there.

Figure 13. Upper body reconstruction from short uncalibrated video sequence. (a) 5 of 7 images from a short video sequence. (b) Reconstruction

result shown as shaded. (c) Texture mapped reconstructed result. The extracted silhouette edges are overlaid on the images.

he wears in the videos of Figs. 14 and 15 in which

we track his motions. Again, the occluding contours

of the model closely match the true silhouettes. Our

technique is robust enough so that, even though the

background is very cluttered, we did not have to use

a background image, that is one without the sub-

ject, to make our algorithm’s task easier. As shown

in bottom row of Fig. 15, the model can be used

to resynthesize the subject in front of a different

background.

6.2.2. Tracking a Piece of Paper. Our final set of

examples involves the tracking of a piece of paper us-

ing a coarse rectangular mesh. This time, it has suf-

ficiently few vertexes so that we can parameterize its

shape directly in terms of their 3-D coordinates. Let vi

be the coordinates of vertex i , Nv be the set of all pairs

of neighboring vertexes, and Nt be the set of triplets

of neighboring vertexes aligned along a horizontal or

vertical line. To keep the paper’s deformations physi-

cally plausible, we write the ED regularization term of
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Figure 14. Tracking the subject’s rising shoulders in a 61-frame sequence. Top and third row: Images from the original video sequence with

extracted silhouette edges overlaid. Second row: Recovered model’s shape shown as the shaded model in the same position as the original

images above. Bottom row: Recovered model’s shape shown as the textured model in the same position as the original images above. Note that

silhouette edges are correctly fitted.

Figure 15. Tracking of the moving head and shoulders in a 125-frame sequence. Top row: Images from the original video sequence with

detected silhouette edges overlaid. Second row: Recovered model’s shape shown as the shaded model in the same position as the original images

above. Bottom row: Recovered model placed in front of a different background.

Eq. (12) as

ED = wbend Ebend + wext Eext ,

Ebend =
∑

(i, j,k)∈Nt

‖2v j − vi − vk‖2, (24)

Eext =
∑

(i, j)∈Nv

(‖vi − v j‖ − L)2,

where L is the distance at rest between neigh-

boring vertexes and {wbend , wext } are user defined

weights. Ebend models the bending stiffness of the

paper by penalizing excessive curvature. Eext rep-

resents the paper’s inextensibility by preventing

large variations of the distance between neighboring

vertexes.
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Figure 16. Occlusion handling. The front of the paper is taped to the table and one hand pushes the back of the page while the other passes in

front and pushes down. First and third row: The recovered mesh is overlaid on the images. Note that the hand is in front of the paper even though

the overlay may give the impression that it is behind. Second and fourth row: Corresponding synthetic side-views of the recovered shape. The

algorithm is undisturbed by the large occlusion and the flattening of the paper against the table is correctly modeled.

Figure 17. Handling a changing background. Top and third row: Original sequence with a book sliding in the background. Second and bottom

row: A new texture is applied on the deformed mesh and reprojected in the images. Note that background subtraction techniques could not have

been applied in this case.
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Figure 18. Using side-views to validate our results. First and third row: Front view of the paper used for actual tracking. The recovered model

is reprojected as a triangulated wireframe mesh. Second and fourth row: Side images used for verification purposes only. The model is again

reprojected onto the images. The front and top of the model accurately matches the paper’s outlines. The back of the model is not recovered as

well, which makes sense because no shape information is available there.

In the examples of Figs. 16 and 17, the paper initially

lies flat on a table and the end closest to the camera is

taped to it. It is then pushed from the back. Note that

our algorithm automatically detects the apparition of

an occluding contour as follows. For each incoming

frame, it uses an OpenGL visibility computation to de-

tect whether or not the paper partially occludes itself.

In the affirmative, it estimates the 3-D occluding con-

tour using the method of Section 4.2 and matches it to

appropriate image edges, as discussed in Section 4.3.

The physical borders of the paper are represented by the

actual edges of our 3-D model. We also match the pro-

jection of the unoccluded ones to nearby image edges

and there is no possible confusion between the two

kinds of contours. We initialize the process by select-

ing the four corners of the sheet in the first frame and

computing the homography that maps the corners of

the initially flat model onto them.

Figure 16 shows that our approach correctly han-

dles the large occlusion created by a hand moving in

front of the piece of paper and pushing it down. In the

first and third rows, we overlay the recovered model on

the original images. In the second and fourth rows, we

show corresponding synthetic side-views of the mesh

as it deforms. In the left-most image of the fourth row,

it can be clearly seen that the front of the sheet of paper

is flattened against the table. Figure 17 highlights the

robustness of our algorithm to a changing background.

The first row shows the original sequence with the same

tiger image as before and a moving book behind. In the

second row, we used the deformed mesh to map a new

texture onto the images. The new images look realistic

and, because of the moving book, this result couldn’t

have been obtained by using a simple background sub-

traction technique.

Because our laser scanner is not designed to ac-

quire dynamic scenes, we chose to validate these re-

sults by filming the deforming piece of paper from the

side, using a second synchronized camera. We used

a commercially available photogrammetric calibration

package to compute the relative orientations of the

two cameras, thus allowing us to re-project the recon-

structed 3-D models in the side-views. As shown in

Fig. 18, even though these side-views were not used

for reconstruction purposes, the front and top of the

model, that is where there is either correspondence or

silhouette information, project at the right place while

the back does not. This was to be expected since we

have no information there and use an oversimplified

physical model. If our intention had been to recover

the shape of the whole sheet of paper, we could of

course have also extracted and used the silhouettes

from the second sequence, but this was not our purpose

here.
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7. Conclusion

In this work we have presented a framework for the

efficient detection and use of silhouettes for recovering

the shape of deformable 3-D objects in monocular se-

quences. We rely on an implicit surface formalism that

lets us look for occluding contours as solutions of an

ordinary differential equation and enforce the resulting

constraints in a consistent manner.

To demonstrate the range of applicability of our

method, we applied it to three very different problems:

Reconstructing a PCA based face model from an uncal-

ibrated video sequence; tracking a deforming piece of

paper undergoing a partial occlusion or with a changing

background; recovering head and shoulders motion in

a cluttered scene.

In other words, our implicit surface based approach

to using silhouettes is appropriate for uncontrolled en-

vironments that may involve occlusions and changing

or cluttered backgrounds, which limit the applicability

of most other silhouette-based methods. Furthermore,

our approach is independent from the way the surface

deformations are parametrized, as long as this param-

eterization remains differentiable.
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