124 research outputs found

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result.Comment: 33 pages, 2 figure

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Random enriched trees with applications to random graphs

    Full text link
    We establish limit theorems that describe the asymptotic local and global geometric behaviour of random enriched trees considered up to symmetry. We apply these general results to random unlabelled weighted rooted graphs and uniform random unlabelled kk-trees that are rooted at a kk-clique of distinguishable vertices. For both models we establish a Gromov--Hausdorff scaling limit, a Benjamini--Schramm limit, and a local weak limit that describes the asymptotic shape near the fixed root

    STRUCTURAL SYNTHESIS AND ANALYSIS OF PLANAR AND SPATIAL MECHANISMS SATISFYING GRUEBLER'S DEGREES OF FREEDOM EQUATION

    Get PDF
    Design of mechanisms is an important branch of the theory of mechanical design. Kinematic structural studies play an important role in the design of mechanisms. These studies consider only the interconnectivity pattern of the individual links and hence, these studies are unaffected by the changes in the geometric properties of the mechanisms. The three classical problems in this area and the focus of this work are: synthesis of all non-isomorphic kinematic mechanisms; detection of all non-isomorphic pairs of mechanisms; and, classification of kinematic mechanisms based on type of mobility. Also, one of the important steps in the synthesis of kinematic mechanisms is the elimination of degenerate or rigid mechanisms. The computational complexity of these problems increases exponentially as the number of links in a mechanism increases. There is a need for efficient algorithms for solving these classical problems. This dissertation illustrates the successful use of techniques from graph theory and combinatorial optimization to solve structural kinematic problems. An efficient algorithm is developed to synthesize all non-isomorphic planar kinematic mechanisms by adapting a McKay-type graph generation algorithm in combination with a degeneracy testing algorithm. This synthesis algorithm is about 13 times faster than the most recent synthesis algorithm reported in the literature. There exist efficient approaches for detection of non-isomorphic mechanisms based on eigenvalues and eigenvectors of the adjacency or related matrices. However these approaches may fail to detect all cases. The reliability of these approaches is established in this work. It is shown, for the first time, that if the number of links is less than 15, the eigenvector approach detects all non-isomorphic mechanisms. A matrix is also proposed whose characteristic polynomial detects non-isomorphic mechanisms with a higher reliability than the adjacency or Laplace matrix. An erroneous assumption often found in structural studies is that the graph of a planar kinematic chain is a planar graph. It is shown that all the existing algorithms for degeneracy testing and mobility type identification, except those by Lee and Yoon, have this error. Further, Lee and Yoon's algorithms are heuristic in nature and were not rigorously proved. Several structural results and implicit assumptions for planar kinematic chains are proved in this work without relying on the erroneous assumption. These new results provide the mathematical justification for Lee and Yoon's algorithms, thereby validating the adoption of the Lee and Yoon's algorithms for practical applications. A polynomial-time algorithm based on combinatorial optimization techniques is proposed for degeneracy testing. This polynomial-time algorithm is the first degeneracy testing algorithm that works for both planar and spatial kinematic mechanisms with different types of joints
    corecore