8 research outputs found

    Ontology Enrichment from Free-text Clinical Documents: A Comparison of Alternative Approaches

    Get PDF
    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships, as well as difficulty in updating the ontology as domain knowledge changes. Methodologies developed in the fields of Natural Language Processing (NLP), Information Extraction (IE), Information Retrieval (IR), and Machine Learning (ML) provide techniques for automating the enrichment of ontology from free-text documents. In this dissertation, I extended these methodologies into biomedical ontology development. First, I reviewed existing methodologies and systems developed in the fields of NLP, IR, and IE, and discussed how existing methods can benefit the development of biomedical ontologies. This previously unconducted review was published in the Journal of Biomedical Informatics. Second, I compared the effectiveness of three methods from two different approaches, the symbolic (the Hearst method) and the statistical (the Church and Lin methods), using clinical free-text documents. Third, I developed a methodological framework for Ontology Learning (OL) evaluation and comparison. This framework permits evaluation of the two types of OL approaches that include three OL methods. The significance of this work is as follows: 1) The results from the comparative study showed the potential of these methods for biomedical ontology enrichment. For the two targeted domains (NCIT and RadLex), the Hearst method revealed an average of 21% and 11% new concept acceptance rates, respectively. The Lin method produced a 74% acceptance rate for NCIT; the Church method, 53%. As a result of this study (published in the Journal of Methods of Information in Medicine), many suggested candidates have been incorporated into the NCIT; 2) The evaluation framework is flexible and general enough that it can analyze the performance of ontology enrichment methods for many domains, thus expediting the process of automation and minimizing the likelihood that key concepts and relationships would be missed as domain knowledge evolves

    Foreword

    Get PDF
    The aim of this Workshop is to focus on building and evaluating resources used to facilitate biomedical text mining, including their design, update, delivery, quality assessment, evaluation and dissemination. Key resources of interest are lexical and knowledge repositories (controlled vocabularies, terminologies, thesauri, ontologies) and annotated corpora, including both task-specific resources and repositories reengineered from biomedical or general language resources. Of particular interest is the process of building annotated resources, including designing guidelines and annotation schemas (aiming at both syntactic and semantic interoperability) and relying on language engineering standards. Challenging aspects are updates and evolution management of resources, as well as their documentation, dissemination and evaluation

    Una herramienta basada en terminologías estandarizadas para la anotación semántica de información textual

    Get PDF
    El objetivo de esta tesis es el diseño e implementación de técnicas léxicas, sintácticas y semánticas que permitan aprovechar al máximo los recursos de conocimiento disponibles para mejorar la extracción y el análisis de la información relevante contenida en las publicaciones científicas

    Word-sense disambiguation in biomedical ontologies

    Get PDF
    With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important

    Pacific Symposium on Biocomputing 10:174-185(2005) IMPLICATIONS OF COMPOSITIONALITY IN THE GENE ONTOLOGY FOR ITS CURATION AND USAGE

    No full text
    In this paper we argue that a richer underlying representational model for the Gene Ontology that captures the implicit compositional structure of GO terms could have a positive impact on two activities crucial to the success of GO: ontology curation and database annotation. We show that many of the new terms added to GO in a one-year span appear to be compositional variations of other terms. We found that 90.2 % of the 3,652 new terms added between July 2003 and July 2004 exhibited characteristics of compositionality. We also examine annotations available from the GO Consortium website that are either manually curated or automatically generated. We found that 74.5 % and 63.2 % of GO terms are seldom, if ever, used in manual and automatic annotations, respectively. We show that there are features that tend to distinguish terms that are used from those that are not. In order to characterize the effect of compositionality on the combinatorial properties of GO, we employ finite state automata that represent sets of GO terms. This representational tool demonstrates how ontologies can grow very fast, and also shows that small conceptual changes can directly result in a large number of changes to the terminology. We argue that the curation and annotation findings we report are influenced by the combinatorial properties that present themselves in an ontology that does not have a model that properly captures the compositional structure of its terms. 1
    corecore