121 research outputs found

    Performance improvements of automobile communication protocols in electromagnetic interference environments

    Get PDF
    Electromagnetic Interference (EMI) is frequently encountered in automobile communication systems due to a large number of inductive nodes used in these systems. This thesis investigates the effects of EMI on two types of automobile communication systems, the Controller Area Network (CAN) and the FlexRay. It also proposes a modified Automatic Repeat reQuest (ARQ) scheme to improve the communication performances in EMI environments --Abstract, page iii

    Energy Harvesting and Sensor Based Hardware Security Primitives for Cyber-Physical Systems

    Get PDF
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system\u27s vulnerabilities. Previously, existing systems could more or less be considered a closed system with few potential points of access for attackers. Security was thus not typically a core consideration when these systems were originally designed. The cumulative effect is that these systems are now vulnerable to new security risks without having native security countermeasures that can easily address these vulnerabilities. Even just adding standard security features to these systems is itself not a simple task. The devices that make up these systems tend to have strict resource constraints in the form of power consumption and processing power. In this dissertation, we explore how security devices known as Physically Unclonable Functions (PUFs) could be used to address these concerns. PUFs are a class of circuits that are unique and unclonable due to inherent variations caused by the device manufacturing process. We can take advantage of these PUF properties by using the outputs of PUFs to generate secret keys or pseudonyms that are similarly unique and unclonable. Existing PUF designs are commonly based around transistor level variations in a special purpose integrated circuit (IC). Integrating these designs within a system would still require additional hardware along with system modification to interact with the device. We address these concerns by proposing a novel PUF design methodology for the creation of PUFs whose integration within these systems would minimize the cost of redesigning the system by reducing the need to add additional hardware. This goal is achieved by creating PUF designs from components that may already exist within these systems. A PUF designed from existing components creates the possibility of adding a PUF (and thus security features) to the system without actually adding any additional hardware. This could allow PUFs to become a more attractive security option for integration with resource constrained devices. Our proposed approach specifically targets sensors and energy harvesting devices since they can provide core functions within cyber-physical systems such as power generation and sensing capabilities. These components are known to exhibit variations due to the manufacturing process and could thus be utilized to design a PUF. Our first contribution is the proposal of a novel PUF design methodology based on using components which are already commonly found within cyber-physical systems. The proposed methodology uses eight sensors or energy harvesting devices along with a microcontroller. It is unlikely that single type of sensor or energy harvester will exist in all possible cyber-physical systems. Therefore, it is important to create a range of designs in order to reach a greater portion of cyber-physical systems. The second contribution of this work is the design of a PUF based on piezo sensors. Our third contribution is the design of a PUF that utilizes thermistor temperature sensors. The fourth contribution of this work is a proposed solar cell based PUF design. Furthermore, as a fifth contribution of this dissertation we evaluate a selection of common solar cell materials to establish which type of solar cell would be best suited to the creation of a PUF based on the operating conditions. The viability of the proposed designs is evaluated through testing in terms of reliability and uniformity. In addition, Monte Carlo simulations are performed to evaluate the uniqueness property of the designs. For our final contribution we illustrate the security benefits that can be achieved through the adoption of PUFs by cyber-physical systems. For this purpose we chose to highlight vehicles since they are a very popular example of a cyber-physical system and they face unique security challenges which are not readily solvable by standard solutions. Our contribution is the proposal of a novel controller area network (CAN) security framework that is based on PUFs. The framework does not require any changes to the underlying CAN protocol and also minimizes the amount of additional message passing overhead needed for its operation. The proposed framework is a good example of how the cost associated with implementing such a framework could be further reduced through the adoption of our proposed PUF designs. The end result is a method which could introduce security to an inherently insecure system while also making its integration as seamless as possible by attempting to minimize the need for additional hardware

    Conformance Testing for the AUTOSAR Standard

    Get PDF
    International audienceThe paper presents why AUTOSAR conformance tests are required, what has been achieved, and how 3 car manufacturers will use conformance tests as part of their vehicle E/E engineering process. Important topics covered are the need for conformance testing when developing a standard, the relationship between conformance and interoperability, the need for interoperability of ECUs in a vehicle, and the need to avoid diverging implementation of a standard

    Ethernet Over Plastic Optical Fiber for Use in the Control System Network for Automotive Applications

    Get PDF
    Plastic optical fiber (POF) for use in automotive applications is not a new concept and has been used in some vehicles for infotainment media distribution within the Media Oriented Systems Transport protocol. However, the use of POF for the control network’s physical layer is a concept that has not been implemented in automotive applications. Many aspects of a vehicle can be improved by implementing POF as the physical backbone for the control network. Currently, the Controller Area Network (CAN) is used as the primary backbone control network protocol for most automobiles as it is inexpensive and reliable. However, CAN is limited to 500 kbps in most vehicles and is easily accessible. Ethernet may provide the improvements of speed and security needed in today’s feature rich and connected vehicles. The feasibility of implementing Ethernet over POF as the control network for automotive applications is the topic of this research investigation

    A novel framework for vehicle functions identification by exploiting machine learning techniques

    Get PDF
    openNowadays vehicles architectures exploit various automotive network protocols that bring information between the implemented Electronic Central Units (ECUs). Exchanged data are encoded and only Original Equipment Manufacturers (OEMs) and T1 (Tier One) producers know their meaning and how decode them. A software model will be developed in order to detect vehicles functions without having database files associated to network signals. Furthermore, the model will behave like an ECU by producing output signals related to input ones. Machine Learning techniques will be exploited, in particular Clustering task will be exploited to understand not a priori known vehicle functions and a Neural Network will be implemented to emulate an ECU behavior. Signals will be grouped in five different types of vehicle functions and the model will predict the ECU’s output data with high accuracy. Applications concerning the developed project are, in primis, to fix up possible vehicles electronics faults. In addiction, vehicle predictive maintenance could be done. Another application, could be to check by OEMs if T1 manufacturers comply the required specification.Nowadays vehicles architectures exploit various automotive network protocols that bring information between the implemented Electronic Central Units (ECUs). Exchanged data are encoded and only Original Equipment Manufacturers (OEMs) and T1 (Tier One) producers know their meaning and how decode them. A software model will be developed in order to detect vehicles functions without having database files associated to network signals. Furthermore, the model will behave like an ECU by producing output signals related to input ones. Machine Learning techniques will be exploited, in particular Clustering task will be exploited to understand not a priori known vehicle functions and a Neural Network will be implemented to emulate an ECU behavior. Signals will be grouped in five different types of vehicle functions and the model will predict the ECU’s output data with high accuracy. Applications concerning the developed project are, in primis, to fix up possible vehicles electronics faults. In addiction, vehicle predictive maintenance could be done. Another application, could be to check by OEMs if T1 manufacturers comply the required specification

    Is Europe in the Driver's Seat? The Competitiveness of the European Automotive Embedded Systems Industry

    Get PDF
    This report is one of a series resulting from a project entitled ÂżCompetitiveness by Leveraging Emerging Technologies EconomicallyÂż (COMPLETE), carried out by JRC-IPTS. Each of the COMPLETE studies illustrates in its own right that European companies are active on many fronts of emerging and disruptive ICT technologies and are supplying the market with relevant products and services. Nevertheless, the studies also show that the creation and growth of high tech companies is still very complex and difficult in Europe, and too many economic opportunities seem to escape European initiatives and ownership. COMPLETE helps to illustrate some of the difficulties experienced in different segments of the ICT industry and by growing potential global players. This report reflects the findings of a study conducted by Egil Juliussen and Richard Robinson, two senior experts from iSuppli Corporation on the Competitiveness of the European Automotive Embedded Software industry. The report starts by introducing the market, its trends, the technologies, their characteristics and their potential economic impact, before moving to an analysis of the competitiveness of the corresponding European industry. It concludes by suggesting policy options. The research, initially based on internal expertise and literature reviews, was complemented with further desk research, expert interviews, expert workshops and company visits. The results were ultimately reviewed by experts and also in a dedicated workshop. The report concludes that currently ICT innovation in the automotive industry is a key competence in Europe, with very little ICT innovation from outside the EU finding its way into EU automotive companies. A major benefit of a strong automotive ICT industry is the resulting large and valuable employment base. But future maintenance of automotive ICT jobs within the EU will only be possible if the EU continues to have high levels of product innovation.JRC.DDG.J.4-Information Societ
    • …
    corecore