
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

Performance improvements of automobile communication Performance improvements of automobile communication

protocols in electromagnetic interference environments protocols in electromagnetic interference environments

Fei Ren

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Ren, Fei, "Performance improvements of automobile communication protocols in electromagnetic
interference environments" (2007). Masters Theses. 6825.
https://scholarsmine.mst.edu/masters_theses/6825

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229272796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6825?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6825&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PERFORMANCE IMPROVEMENTS OF AUTOMOBILE COMMUNICATION

PROTOCOLS IN ELECTROMAGNETIC INTERFERENCE ENVIRONMENTS

by

FEI REN

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI–ROLLA

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2007

Approved by

Dr. Yahong Rosa Zheng, Advisor Dr. Jagannathan Sarangapani

Dr. Maggie Cheng

iii

ABSTRACT

Electromagnetic Interference (EMI) is frequently encountered in automobile communi-

cation systems due to a large number of inductive nodes used in these systems. This thesis

investigates the effects of EMI on two types of automobile communication systems, the Con-

troller Area Network (CAN) and the FlexRay. It also proposes a modified Automatic Repeat

reQuest (ARQ) scheme to improve the communication performances in EMI environments.

A CAN hardware testbed was built to study the effects of EMI. The testbed consists of a

four-node CAN network and an EMI generator. The CAN communication nodes were imple-

mented by Intel C8051 development boards and the EMI pulses were generated by a magnetic

relay commonly used in vehicles. The effects of EMI were measured in several configurations

including two and four CAN nodes network, unshielded and shielded bus cables in different

lengths, and various data rates. Measurement results were recorded using oscilloscopes and

analyzed using Matlab programs. It was found that the coupling of EMI in the bus is typically

additive with 3 – 5 µs in duration and causes burst errors. The burst errors usually result in

retransmission but occasionally cause communication halt.

The thesis further proposes a modified ARQ scheme for CAN and FlexRay to combat

EMI-induced errors. Current CAN and FlexRay use Cyclic Redundancy Check (CRC) codes

for error detection and ARQ for retransmission. The Modified ARQ scheme adds an error-

correction code to encode the data field and modifies the CRC code to only encode the header

field. Therefore, no retransmission is needed when errors only corrupt the data field. This

reduces the probability of retransmission by the ratio of the data field length and the frame

length. The proposed scheme imposes minimal change of the signaling structure over the

original CAN and FlexRay protocols.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Yahong Rosa Zheng, for her guidance and encour-

agement through out my MS program. She not only taught me the knowledge in communica-

tions, but also trained me the skills to conduct my research. I am grateful to her for giving me

the opportunity to work with her. In research meetings, she always gave me clear guidance

and helped me when I met problems. She also spent a lot of effort to help me learn English

writing skills through weekly reports, the conference paper, and the thesis. I am thankful for

what she has done for me and I am grateful that I can continue my Ph.D study under her

supervision.

I would like to thank my committee members Dr. Jagannathan Sarangapani and Dr.

Maggie Cheng for their timely support and invaluable help. I would like to thank them for

reviewing my thesis and offering me important suggestions.

I would like to convey my sincere thanks to Caterpillar Inc. for giving me the opportunity

to work on the CAN bus project through the CAT University Challenge Program. I would

like to thank Dr. Thomas P. Van Doren and Dr. Maciej Zawodniok for their guidance in CAN

testbed measurements. I would like to thank my research team member Krishna C. Emani for

his help in my research and Sarat Kumar Chitneni for helping with thesis revising. I would

like to thank the other research team members, Jian Zhang, Yuan Liu, Tiange Shao, and Xin

Liu, for their help and support.

I would like to express special thanks to my parents Mr. Gaohong Ren and Mrs. Chun-

zhuo Jin for their blessings and good wishes. They give me invaluable support in my study

and my live.

I would like to thank every person I met over the period of my graduate program and

all those who helped me in this period.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION . 1

1.1. INTRODUCTION TO THE PROBLEM 1

1.2. APPROACH AND CONTRIBUTION . 3

2. BACKGROUND . 5

2.1. THE CAN PROTOCOL . 5

2.1.1. CAN Basic Features . 5

2.1.2. CAN Frame Structure . 6

2.1.3. CAN Frame Transmission Principles 8

2.1.4. CAN Error Handling Mechanisms for EMI 9

2.2. THE FLEXRAY PROTOCOL . 10

2.2.1. FlexRay Basic Features . 10

2.2.2. FlexRay Frame Structure . 12

2.2.3. FlexRay Frame Transmission Principles 15

2.2.4. FlexRay Error Handling Mechanisms for EMI 17

2.3. THE ARQ SCHEME . 19

2.3.1. The Basic Principles of the ARQ Scheme 19

2.3.2. The Stop-and-wait ARQ Scheme in CAN 20

2.4. THE BCH CODE . 21

2.4.1. Basic Knowledge of BCH Codes . 21

vi

2.4.2. Encoding and Decoding of BCH Codes 22

2.4.3. Implementation of BCH Codes in Matlab Simulations 23

3. EMI MEASUREMENTS ON THE CAN HARDWARE TESTBED 25

3.1. HARDWARE SETUPS FOR CAN TESTBED 25

3.2. SOFTWARE SETUPS FOR CAN TESTBED 27

3.3. MEASUREMENTS AND DATA RECORDING 29

3.4. SIGNAL WAVEFORMS AND ANALYSIS 30

3.5. STATISTICS RESULTS AND ANALYSIS 34

4. EMI MITIGATION METHODS FOR CAN . 39

4.1. PROPOSED MODIFIED ARQ SCHEME 39

4.2. IMPLEMENTATION OF MODIFIED ARQ SCHEME IN CAN 40

4.3. MATLAB SIMULATIONS FOR MODIFIED ARQ CAN 42

4.4. RESULTS AND ANALYSIS FOR MODIFIED ARQ CAN 43

5. EMI MITIGATION METHODS FOR FLEXRAY 47

5.1. IMPLEMENTATION OF MODIFIED ARQ IN FLEXRAY 47

5.2. MATLAB SIMULATIONS FOR MODIFIED ARQ FLEXRAY 48

5.3. RESULTS AND ANALYSIS FOR MODIFIED ARQ FLEXRAY 50

6. CONCLUSIONS . 54

BIBLIOGRAPHY . 55

VITA . 57

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 The data rates of automobile communication networks 2

2.1 The CAN data frame structure . 7

2.2 The topologies of FlexRay . 12

2.3 The FlexRay data frame structure . 13

2.4 FlexRay frame transmission . 16

2.5 FlexRay frame transmission in two channels . 17

2.6 The FlexRay encoding process . 18

2.7 The bit stream after the FlexRay encoding process 19

2.8 The Stop-and-wait ARQ in CAN . 21

3.1 The CAN testbed photo . 25

3.2 The CAN testbed hardware blocks . 26

3.3 The relationship between set bit rates and actual bit rates 28

3.4 Probe connections setup . 29

3.5 Probe connections schematic . 30

3.6 Waveformes of CAN data frames at the bit rate of 503 kbps 31

3.7 Waveformes of CAN data frames at the bit rate of 1 Mbps 32

3.8 Waveformes of Electromagnetic Interference . 32

3.9 Waveformes of CAN data frames with EMI on unshielded cables 33

3.10 Waveformes of CAN data frames with EMI on shielded cables 34

3.11 The bit error rate of CAN at different bit rates in EMI environments 37

4.1 The CAN data frame strucure . 40

4.2 The Modified ARQ CAN data frame strucure . 40

4.3 The flowchart of implementing Modified ARQ CAN 41

4.4 The bit error rate of CAN and Modified ARQ CAN 43

viii

4.5 The frame error rate of CAN and Modified ARQ CAN 44

4.6 The number of retransmissions for successful delivering of one frame in Modified
ARQ CAN . 45

5.1 The simplified FlexRay data frame structure . 47

5.2 The Modified ARQ FlexRay frame structure . 47

5.3 The flowchart of implementing Modified ARQ FlexRay 49

5.4 The bit error rate of ARQ FlexRay and Modified ARQ FlexRay 50

5.5 The frame error rate of ARQ FlexRay and Modified ARQ FlexRay 51

5.6 The number of retransmissions for successful delivering of one frame in Modified
ARQ FlexRay . 52

ix

LIST OF TABLES

Table Page

2.1 Relationship between n, k and t in the BCH codes (n=63) 22

2.2 Relationship between n, k and t in the BCH codes (n=511) 22

3.1 Two-node network using unshielded cables . 35

3.2 Two-node network using shielded cables . 36

3.3 Four-node network using shielded cables . 36

1. INTRODUCTION

1.1. INTRODUCTION TO THE PROBLEM

The automobile communication networks studied in this thesis are wired communication

networks that interconnect components inside a vehicle. The communication networks take

charge of data exchange among sensors and controllers, which control engine operation, the

transmission chain, anti-lock brakes, and body control modules (lights, doors, horn). Cur-

rently, there are several popular automobile communication protocols including the Local

Interconnect Network (LIN), the Controller Area Network (CAN), FlexRay, and the Media

Oriented Systems Transport (MOST). The LIN is a low-cost, low-data-rate system usually

used as a cheap sub-network of CAN [1]. The CAN is a low-cost, medium data-rate sys-

tem mostly utilized as the backbone network in vehicles including cars, buses, off-high-way

trucks, and boats [2]. FlexRay is a newly developed high data-rate system with safety-critical

features [3] and it is expected to replace CAN in the near future [4]. The MOST is a very-

high data-rate networking standard intended for interconnecting multimedia components in

automobiles and other vehicles [5]. The data rate comparison is summarized in Figure 1.1.

The biggest challenges in automobile communication networks are Electromagnetic In-

terference (EMI), serviceability, and cost constraints. EMI is primarily caused by a large

number of inductive loads used in automobiles. Strong EMI pulses often couple into the

communication system through wiring and cause burst errors. EMI from other wireless appli-

cations, such as cellular phone systems, citizen band radio, weather radar, etc., also contribute

to single-bit or burst errors in automobile networks. It is the major reason of performance

degradation which often increases the number of retransmission, reduces network efficiency,

and occasionally causes total halt in communications [6]. Using shielded cables helps to re-

duce the effect of EMI significantly. However, it also reduces the serviceability and increases

the cost significantly. Cable shielding needs to be carefully grounded at both ends of the

communication link which is often vulnerable in practical systems. Replacing and repairing

shielded cables are also more costly, inconvenient, and unreliable. Therefore, shielded cable is

considered as the last solution by the automobile industry.

2

Figure 1.1 The data rates of automobile communication networks

This thesis focuses on the study of EMI effects on the CAN and FlexRay protocols and

proposes a modified Automatic Repeat reQuest (ARQ) scheme to improve the communica-

tion performances in EMI environments. Current CAN and FlexRay systems employ several

mechanisms to combat EMI for reliable communications. In both CAN and FlexRay, the dif-

ferential bus structure helps to reduce effects of EMI on signal waveforms. The error-detection

method implemented by Cyclic Redundancy Check (CRC) codes is employed to detect cor-

rupted frames caused by EMI [7]. Specially for the CAN protocol, bit-stuffing is also used to

increase the error detection capability. When an error frame is detected, the stop-and-wait

ARQ scheme is employed to retransmit corrupted frames. In FlexRay, the dynamic segment

of the communication cycle uses the structure of micro-tick time slots to reduce collision and

improve network efficiency. FlexRay also employs a dual-bus structure by using a redundant

channel for safety-critical applications.

With the increased level of automation and complexity in cars and off-road machin-

ery, the number of sensors, Electronic Control Module (ECM), and inductive loads has been

increased dramatically over the recent years. This means that EMI becomes more serious

3

and requirements for automobile communication networks become more stringent. Therefore,

there is a need to investigate the EMI effects on CAN and FlexRay protocols in a realistic

environment and research for alternative methods for error mitigation. A fellow MS student

in the research team, Mr. Krishna C. Emani, proposed a couple of Hybrid ARQ schemes for

the CAN protocol [8]. The Hybrid ARQ (HARQ) schemes employ an outer code to encode

each CAN data frame for error correction purposes. The outer code may be transmitted to-

gether with the original CAN frame (Type I HARQ) or may be detached from the original

frame (Type-II H-ARQ). The Type-II HARQ only transmit the error correction codes when

requested by the receiver. It has been shown that the HARQ schemes improve the CAN

performance by reducing the number of retransmission at the expenses of increased overhead

(for Type-I HARQ) or increased latency (for Type-II HARQ). This thesis proposes a differ-

ent approach, called the modified ARQ for both CAN and FlexRay, which employs separate

coding schemes for the data field and header fields.

1.2. APPROACH AND CONTRIBUTION

This thesis built a hardware testbed for CAN communications and investigated the

effects of EMI on CAN and FlexRay. It then proposed a modified Automatic Repeat reQuest

(ARQ) scheme to improve the communication performances in EMI environments.

A CAN hardware testbed was built consisting of a four-node CAN network and an

EMI generator. The CAN communication nodes were implemented by Intel C8051f040 Mixed

Signal ISP Flash MCU board from Silicon Laboratories. The CAN nodes were connected

by shielded or unshielded DB9 serial cables with different lengths. The cables are placed

closely coupled with the EMI generator cables to study the EMI effects. The EMI pulses

were generated by a magnetic relay connected with a 24 V battery and a manual switch.

The magnetic relay provided by Caterpillar Inc. was an inductive load used in automobiles

and off-road machinery. The effects of EMI were measured in several configurations including

two and four CAN nodes network, unshielded and shielded bus cables in different lengths,

and various data rates. Measurement results were recorded using oscilloscopes and analyzed

using Matlab programs. Measurement results showed that the coupling of EMI in the bus is

typically additive and impulsive. Their duration was 3 – 5 µs. When using unshielded cables,

4

EMI usually cause burst errors each time the switch was turned on and off. The number of

burst bits depended on the operation of the switch and the data rate. The burst errors usually

result in retransmission but occasionally cause communication halt.

The thesis further proposed a modified ARQ scheme for CAN and FlexRay to combat

EMI-induced errors. The Modified ARQ scheme adds an error-correction code to encode the

data field and modifies the CRC code to only encode the header field. The error-correction

codes used in CAN were the (63, k) BCH codes with different (k = 7, 16, 24 and 32) depending

on the length of the raw data field. For FlexRay, the payload segment is as large as 512 and

the error correction codes were chosen to be (n = 511,k), also with a varying k in the range

of 112, 184, 304 and 376 depending on the raw data length. This method is of particular

advantage in communicating real-time control signals because the raw data are often very

short and hard real-time control is required. With these powerful error correction coding

schemes, no retransmission is needed when errors only corrupt the data field. This reduces

the probability of retransmission by the ratio of the data field length and the frame length.

The modified ARQ also improves the error-detection capability over the original schemes

because the header contains less bits to be encoded by the same number of CRC bits. The

proposed scheme imposes minimal change of the signaling structure over the original CAN

and FlexRay protocols.

Matlab simulations were conducted to evaluate the performance of the modified ARQ

schemes for CAN and FlexRay. Burst errors with fixed length were generated and added

into CAN and FlexRay data frames. Then Error correction was performed in the receiver.

The bit error rate, the frame error rate, and the number of retransmissions were computed.

Simulation results show that the modified ARQ scheme reduces the retransmission of CAN

frames by 44% and reduces FlexRay retransmission by 66%.

A paper was published and presented at an IEEE reference conference: Fei Ren, Y.R.

Zheng, Maciej Zawodniok, and J. Sarangapani, “EFFECTS OF ELECTROMAGNETIC IN-

TERFERENCE ON CONTROL AREA NETWORK PERFORMANCE”, IEEE Region 5

Technical, Professional, and Student Conference (TPSC), 2007.

5

2. BACKGROUND

This section depicts backgrounds of CAN, FlexRay, the ARQ scheme and BCH codes.

It includes four subsections: the CAN protocol, the FlexRay protocol, the ARQ scheme, and

the BCH code. The CAN protocol subsection mainly introduces CAN basic features, CAN

frame structure, CAN frame transmission principles and CAN error handling mechanisms for

EMI. In this thesis, CAN protocol is employed to build hardware test bed. Matlab simulations

implement the Modified ARQ scheme on CAN. The FlexRay protocol subsection mainly intro-

duces FlexRay basic features, FlexRay frame structure, FlexRay frame transmission principles

and FlexRay error handling mechanisms for EMI. In this thesis, Matlab simulations imple-

ment the Modified ARQ scheme on FlexRay. Performances improvement of Modified ARQ

FlexRay is compared to that of Modified ARQ CAN. The ARQ scheme subsection introduces

the basic principles of the ARQ scheme and the Stop-and-wait ARQ scheme in CAN. The

ARQ scheme is employed in current CAN for increasing communication reliability. Proposed

Modified ARQ scheme employs the error-correction codes to improve the ARQ scheme. The

BCH code subsection introduces basic knowledge of BCH coeds, encoding and decoding of

BCH codes and implementation of BCH codes in Matlab simulations. The BCH code is used

as the error-correction code in the Modified ARQ scheme. Its error-correction capability can

adjust to deal with specified extent errors.

2.1. THE CAN PROTOCOL

2.1.1. CAN Basic Features. CAN is a broadcast, differential serial bus standard,

originally developed in the 1980s by Robert Bosch GmbH, for connecting electronic control

units (ECU). CAN was specifically designed to be robust in electromagnetically noisy envi-

ronments and can utilize a differential balanced line like RS-485. It can be even more robust

against noise if twisted pair wire is used. Although initially created for automotive purposes

(as a vehicle bus), nowadays it is used in many embedded control applications (e.g., industrial)

that may be subject to noise [9].

The maximum bit rate of a CAN bus, according to the standard, is 1 Mbps. The CAN

bus, with the bit rate reaching to 1 Mbps, is called high-speed CAN bus and applied in

6

vehicle automation. The CAN bus, with the bit rate not exceeding 128 kbps, is called low-

speed CAN bus and may applied in area not requiring high bit rates (i.e, temperature control

in a building).

Current CAN protocol is standardized in ISO 11898. This standard describes mainly

the data link layer - composed of the Logical Link Control (LLC) sublayer and the Media

Access Control (MAC) sublayer - and some aspects of the physical layer of the OSI Reference

Model. All the other protocol layers are left to the network designer’s choice [2].

2.1.2. CAN Frame Structure. The frame is the basic unit for CAN data exchange.

The maximum frame’s length of CAN is 128 bits. There are two CAN frame standards whose

difference is the length of the Identifier in the Arbitration Field of CAN frames. Originally,

the CAN standard defined the length of the Identifier in the Arbitration Field to 11 bits. Later

on, customer demand forced an extension of the standard. The new format is often called

Extended CAN and allows no less than 29 bits in the Identifier. To differentiate between the

two frame types, a reserved bit in the Control Field was used.

The two standards are formally called 2.0A (with 11-bit Identifiers only), 2.0B (extended

version with the full 29-bit Identifiers or the 11-bit, they can be mixed). New CAN controllers

today are usually of the 2.0B type [10]. In this thesis, both hardware experiments and Matlab

simulations use CAN 2.0B (29-bit Identifiers).

There are four different frame types on a CAN bus: the data frame, the remote frame,

the error frame, and the overload frame. The Data Frame is the most common message type.

The data frame is the most used frame in CAN applications. The frame structure of one

CAN data frame is given in Figure 2.1. It comprises four major parts (a few not important

fields and functions are omitted): the Arbitration Field, the Data Field, the CRC Field and

an Acknowledgement Slot. The Arbitration Field determines the priority of the message

when two or more nodes are contending for the bus. It contains: for CAN 2.0A, an 11-bit

Identifier and one bit, the RTR bit (Remote Transmission Request), which is dominant for

data frames; for CAN 2.0B, a 29-bit Identifier, which also contains two recessive bits: SRR

(Substitute remote request) and IDE (Identifier Extension Bit) and the RTR bit. The Data

Field contains zero to eight bytes of user data. The CRC Field contains a 15 bits CRC

7

Figure 2.1 The CAN data frame structure

calculated on the Start of Frame, the Arbitration Field, the Control Field and the Data field.

This CRC is computed using the generator polynomial below:

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1

The error-detection capability of the CRC is at most 5 bits single errors or 15 bits

burst errors. The Acknowledgement Slot is employed as the acknowledgement bit. Any CAN

receiver that has been able to correctly receive the frame sends an Acknowledgement bit at the

end of each frame. The CAN transmitter checks for the presence of the Acknowledge bit and

retransmits the frame if no acknowledge is detected. But the presence of an Acknowledgement

Bit on the bus does not mean that any of the intended addressees has received the message.

The only thing known is that one or more nodes on the bus have received it correctly.

The remote frame is just like the data frame, with only two important differences: it is

explicitly marked as a remote frame (the RTR bit in the Arbitration Field is recessive), and

there is no Data Field. The intended purpose of the remote frame is to solicit the transmission

of the corresponding data frame. For example, one node transmits a remote frame with the

Arbitration Field set to 123, then another node , if properly initialized, might respond with a

data frame with the Arbitration Field also set to 123. remote frames can be used to implement

a type of request-response type of bus traffic management. In practice, however, the remote

frame is little used. The CAN standard does not prescribe the behavior outlined here. Most

CAN controllers can be programmed either to automatically respond to a remote frame, or

to notify the local CPU instead.

The error frame is a special frame that violates the framing rules of a CAN frame. It is

transmitted when a node detects a fault and will cause all other nodes to detect a fault - so

they will send error frames, too. The transmitter will then automatically try to retransmit

the frame. There is an elaborate scheme of error counters that ensures that a node can’t

destroy the bus traffic by repeatedly transmitting error frames. The error frame consists of

8

an Error Flag, which is 6 bits of the same value (thus violating the bit-stuffing rule) and an

Error Delimiter, which is 8 recessive bits. The Error Delimiter provides some space in which

the other nodes on the bus can send their Error Flags when they detect the first Error Flag.

The overload frame is mentioned here just for completeness. It is very similar to the

error frame with regard to the format and it is transmitted by a node that becomes too busy.

The overload frame is not used very often, as today’s CAN controllers are clever enough not

to use it. In fact, the only controller that will generate overload frames is the now obsolete

82526.

2.1.3. CAN Frame Transmission Principles. The frame arbitration (the process

in which two or more CAN controllers agree on who is to use the bus) is of great importance

for the really available bandwidth for data transmission. Any CAN controller may start a

transmission when it has detected an idle bus. This may result in two or more controllers

starting a frame (almost) at the same time. The conflict is resolved in the following way. The

transmitting nodes monitor the bus while they are sending. If a node detects a dominant level

when it is sending a recessive level itself, it will immediately quit the arbitration process and

become a receiver instead. The arbitration is performed over the whole Arbitration Field and

when that field has been sent, exactly one transmitter is left on the bus. This node continues

the transmission as if nothing had happened. The other potential transmitters will try to

retransmit their messages when the bus becomes available next time. No time is lost in the

arbitration process.

An important condition for this bit-wise arbitration to succeed is that no two nodes

may transmit the same Arbitration Field. There is one exception to this rule: if the message

contains no data, then any node may transmit that message. Since the bus is wired-and and a

Dominant bit is logically 0, it follows that the message with the numerically lowest Arbitration

Field will win the arbitration.

A node wins the arbitration and proceeds with the frame transmission. When the time

comes for acknowledging. If the frame is correctly received by one or more nodes (maybe

not the intended address node), nodes will send a dominant bit during the ACK slot. Then

the transmitter will sense the dominant bit, and transmission next frame if any. If no node

9

correctly receive the frame, none will send a dominant bit during the ACK slot, so the trans-

mitter will sense an ACK error, send an error flag, increase its transmit error counter by 8

and start a retransmission.

Another features of CAN frame transmission is that there is no explicit address in the

CAN frames. Each CAN controller will pick up all traffic on the bus, and using a combination

of hardware filters and software, determine if the message is “interesting” or not. In fact, there

is no notion of frame addresses in CAN. Instead, the contents of the frames are identified by

an identifier, which is present somewhere in the message. CAN messages are said to be

“contents-addressed”.

The contents of the Arbitration Field are used to determine the message’s priority on

the bus. All CAN controllers will also use the whole (some will use just a part) of the

Arbitration Field as a key in the hardware filtration process. The Standard does not say that

the Arbitration Field must be used as a message identifier. It’s nevertheless a very common

usage.

2.1.4. CAN Error Handling Mechanisms for EMI. Several error handling

mechanisms related to combat EMI is built in the CAN protocol. In the physical layer of

CAN, differential signal is employed to combat EMI. Differential signaling is a method of

transmitting information electrically by means of two complementary signals sent on two

separate wires. It can combat EMI is not actually due to differential signalling itself, but

to the common practice of transmitting differential signals on balanced lines . A balanced

line reduces the noise on a connection by rejecting common-mode interference. Its two wires

are routed in parallel so that they receive the same interference. They also have the same

impedance to ground, so the interfering fields or currents induce the same voltage in both

wires. Since the receiver responds only to the difference between the wires, it is not influenced

by the induced noise voltage [11].

Besides differential signaling, the CRC and Bit stuffing work to detect errors, including

those caused by EMI. Each frame features a 15-bit CRC (at most detect 5 bits errors), and

any node that detects a different CRC in the frame than what it has calculated itself will

detect CRC errors. Bit Stuffing works when five consecutive bits of the same level have been

transmitted by a node. It will add a sixth bit of the opposite level to the outgoing bit stream.

10

The receivers will remove this extra bit. This is done to avoid excessive DC components on

the bus, but it also gives the receivers an extra opportunity to detect errors (it may be caused

by EMI): if more than five consecutive bits of the same level occurs on the bus, a Stuff Error

is signaled [9].

Every CAN node along a bus will try to detect errors within a frame, so that the

transmitter can retransmit an erroneous frame. If an error is found, the discovering node

will transmit an Error Flag, thus destroying the bus traffic. The other nodes will detect

the error caused by the Error Flag (if they haven’t already detected the original error) and

take appropriate action, i.e. discard the current frame. The CAN node can automatically

retransmit erroneous frame when errors have occurred.

Each node maintains two error counters: the Transmit Error Counter and the Receive

Error Counter. There are several rules governing how these counters are incremented and/or

decremented. In essence, a transmitter detecting a fault increments its Transmit Error Counter

faster than the listening nodes will increment their Receive Error Counter. This is because

there is a good chance that it is the transmitter who is at fault! When any Error Counter

raises over a certain value, the node will first become “error passive”, that is, it will not

actively destroy the bus traffic when it detects an error, and then “bus off”, which means that

the node doesn’t participate in the bus traffic at all. Using the error counters, a CAN node

cannot only detect faults but also perform error confinement [10]. But CAN does not have

any mechanisms for error-correction.

2.2. THE FLEXRAY PROTOCOL

2.2.1. FlexRay Basic Features. FlexRay is a new automative network protocol

developed by an industry consortium with four founding members (BMW, Daimler-Chrysler,

Philips and Freescale) in the year 2000. It has more than 130 members covering the whole

globe by the end of 2005 [12]. FlexRay is designed to develop the faster and safer network for

transferring data between sensors and controller on an automobile and ensuring communica-

tion reliability simultaneously. The first public release of FlexRay specification is in January

2004, and the version is 2.0. Now, the latest version of FlexRay is “FlexRay Communications

System Protocol Specification Version 2.1 Revision A”, which is released in December 2005. It

11

is widely used as a basis for the implementation of semiconductor devices and tools [13]. The

first vehicle employed FlexRay is the “2006 BMW X5”, though FlexRay only was used for

the pneumatic damping system. Full use of FlexRay in other high-speed control applications

of vehicles such as advanced powertrain, anti-brake system, and by-wire system are expected

in 2008.

The three top design objectives of FlexRay standardization are: high bit rate, deter-

ministic communication, and fault-tolerant communication. FlexRay supports high bit rate

up to 10 Mbps in one channel. It also supports two channels communication. The second

optional channel can be used to increase the total bit rate up to roughly 20 Mbps, or be used

as the redundant channel to provide fault toleration. Because two channels are independent

in communication wires, additional communication wires need to be provided to support the

second one. It means that in the same time, the second channel can transmit totally different

data from that of first one.

Deterministic communication means that FlexRay uses a hybrid MAC scheme to avoid

uncertain results due to competition of nodes trying to get bus. In nodes, frame transmission

can be triggered either dynamically, in response to an event (event-driven), or statically, at

predetermined moments in time (time-driven). Therefore, on one hand, there are protocols

that schedule frame transmissions statically, based on the progression of time, such as the

TTCAN, and Time-Triggered Protocol (TTP). A drawback of such protocols is their lack of

flexibility. On the other hand, there are communication protocols where frame transmission

scheduling is performed dynamically, such as CAN or Byteflight. Their drawback is less

reliability and node transmissions may collide each other. FlexRay employed a hybrid MAC

scheme and allows the sharing of the bus among event-driven and time-driven messages [14].

It gets advantages from both and avoids uncertain due to competition of bus. The FlexRay

hybrid MAC scheme is described in detail in Section 2.2.3 in this thesis.

The fault-tolerant feature are implement by three aspects: two basic mechanisms re-

sponding to errors, bus-guardians in the physical layer and the flexibility of interconnection

architecture. Two basic mechanisms of FlexRay to deal with various errors are described in

Section 2.2.4. Bus-guardians are optional hardware equipment in each node, or the central

node in active star topology. They are used to mainly detect errors that nodes transmitting

12

untimely frames in static segment slots (refers to the charpter 5 in [15]). Bus-guardians do not

transmit any data to channels, but only receive. In FlexRay communication cycle, the static

segment slot is predefined and used for real-time critical applications, and bus-guardians check

for the frame transmission times during this period to prevent communication from errors [16].

Another important fault-tolerant feature of FlexRay is the flexibility of the interconnection

architecture. While a simple system with no fault-tolerance can use a bus architecture and

only one channel, there are various levels of more redundancy. A dual channel system repli-

cates the physical network and tolerates one faulty channel. At even higher cost, star and

multiple-star topologies can increase the usable channel capacity and provide error contain-

ment. An overview of architectures in FlexRay along with design criteria for each is given

in Figure 2.2 [15]. It should be noted that combinations of star and bus architectures are

possible in FlexRay [13].

Figure 2.2 The topologies of FlexRay

2.2.2. FlexRay Frame Structure. FlexRay has only one type of frame, the FlexRay

data frame, which is easier than four types of frames in CAN. An overview of the FlexRay

frame format is given in Figure 2.3 [9]. One FlexRay data frame consists of three segments,

a Header segment, a Payload segment and a Trailer segment. The FlexRay header segment

consists of 5 bytes. These bytes contain the reserved bit, the payload preamble indicator, the

13

null frame indicator, the sync frame indicator, the startup frame indicator, the frame ID, the

payload length, the header CRC, and the cycle count.

Figure 2.3 The FlexRay data frame structure

These are three main fields in the Header segment: the frame ID, the payload length

and the header CRC. The frame ID defines the slot (refers to the chapter 5 in [15]) in which

the frame should be transmitted. A frame ID is used no more than once on each channel

in a communication cycle. Each frame that may be transmitted in a cluster has a frame ID

assigned to it. The frame ID ranges from 1 to 2047. The frame ID 0 is an invalid frame ID42.

The payload length field is used to indicate the size of the payload segment. The payload

segment size is encoded in this field by setting it to the number of payload data bytes divided

by two (e.g., a frame that contains a payload segment consisting of 72 bytes would be sent

with the payload length set to 36). The header CRC contains a CRC that is computed over

the sync frame indicator, the startup frame indicator, the frame ID, and the payload length.

The communication controller (CC) shall not calculate the header CRC for a transmitted

frame. The header CRC of transmitted frames is computed offline and provided to the CC

by means of configuration (i.e., it is not computed by the transmitting CC). The CC shall

14

calculate the header CRC of a received frame in order to check that the CRC is correct. The

CRC is computed in the same manner for all configured channels. The CRC polynomial shall

be:

X11 + X9 + X8 + X7 + X2 + 1

This 11 bits CRC polynomial generates a (31, 20) BCH code that has a minimum

Hamming distance of 6. It is employed to detected errors up to 5 bits.

The FlexRay payload segment contains 0 to 254 bytes (0 to 127 two-byte words) of

data. Because the payload length contains the number of two-byte words, the payload segment

contains an even number of bytes. The bytes of the payload segment are identified numerically,

starting at 0 for the first byte after the header segment and increasing by one with each

subsequent byte. The individual bytes are referred to as “Data 0”, “Data 1”, “Data 2”, etc.,

with “Data 0” being the first byte of the payload segment, “Data 1” being the second byte,

etc.

The FlexRay trailer segment contains a single field, a 24 bits CRC for the frame. The

Frame CRC field contains a cyclic redundancy check code (CRC) computed over the header

segment and the payload segment of the frame. The computation includes all fields in these

segments. The CRC is computed using the same generator polynomial on both channels. The

CRC polynomial shall be:

X24 +X22 +X20 +X19 +X18 +X16 +X14 +X13 +X11 +X10 +X8 +X7 +X6 +X3 +X +1

The frame CRC has a Hamming distance of six for payload lengths up to and including

248 bytes. For payload lengths greater than 248 bytes the CRC has a Hamming distance of

four. Thus, when the length of Payload segment is no more than 248 bytes, the frame CRC

can detect 5 bits errors. When the length of Payload segment is more than 248 bytes, the

frame CRC can detect 3 bits errors [17].

In contrast to the CAN data frame, the FlexRay data frame has two main features.

First, user data of the FlexRay data frame is much longer, and more flexible than that of

CAN data frame. In a CAN data frame, the length of user data is at most 64 bits, which is

the same as the length of other segments. It means that transmission efficiency is at most

50% for CAN. But in FlexRay data frame, the length of user data can be at most 2032 bits,

when the length of other segments is fixed at 64 bits. The transmission efficiency can reach

15

nearly 97%. Second, besides the Trail segment CRC checks errors which occur in the whole

FlexRay data frame, the Header CRC field checks errors which occur in the main part of the

Header segment. The CAN data frame has only one CRC.

2.2.3. FlexRay Frame Transmission Principles. FlexRay frame transmission in

a Flexray network is based on the Time Division Multiple Access (TDMA) method: all com-

munication is organized in communication cycles (FlexRay cycles), and each communication

cycle is made up of a defined number of time slots exclusively reserved for frame transmission.

Communication in a FlexRay network is characterized by a hybrid communication structure.

The overview of FlexRay frame transmission is given in Figure 2.4. Shown in Figure 2.4,

each communication cycle of FlexRay comprises a static (synchronous) and a dynamic (asyn-

chronous) segment. The static communication segment is provided for deterministic frame

transmission. Bandwidth in the dynamic communication segment, on the other hand, is

available for need-based frame transmission. Each communication cycle exhibits two other

time segments. The “symbol window” segment serves to check the operation of the bus guard.

During the “Network Idle Time - NIT” segment, the FlexRay nodes compute the correction

factors required for synchronization of their local clocks. If necessary, an offset correction is

performed at the end of the NIT (rate correction is always performed distributed over the

entire communication cycle). No data is transported during the NIT.

The static segment is provided for deterministic message transmission that is predestined

for the transport of real-time relevant data. This segment is subdivided into a configurable

number of static slots (maximum 1023). Assigned to each slot is a FlexRay data frame that

is transmitted by a specific FlexRay node. The static slot, FlexRay data frame and FlexRay

node are interrelated by the slot number and message identifier (ID) contained in the Header

segment of the FlexRay data frame, and the value of the slot counter implemented on each

FlexRay node. In each communication cycle, the slot counters are incremented synchronously

after each static slot has been executed. The FlexRay data frame associated with the values

of the slot counter, and identified by an ID, are transmitted by the relevant FlexRay node

according to the slot counter. After FlexRay data frame transmission, the static slot itself is

terminated by the CID (Channel Idle Delimiter).

16

Figure 2.4 FlexRay frame transmission

The optional dynamic communication segment, which always has the same length, is

available for transport of sporadically occurring data (e.g. diagnostic data), and it makes a

contribution toward economical utilization of bandwidth. Bus access in the dynamic commu-

nication segment is based on the mini-slotting or Flexible Division Multiple Access (FTDMA)

method. As in the dynamic segment, the slot counters found on the FlexRay nodes are incre-

mented synchronously. However, the FlexRay data frames associated with values of the slot

counter are only transmitted if there is a send request. In this case, the relevant FlexRay data

frame, marked by an ID, is transmitted by the relevant FlexRay node. The slot counters are

stopped for the duration of the frame transmission and are then synchronously incremented. If

there is no send request, the slot counters are incremented after the defined time of a minislot.

FlexRay data frames are given implicit priorities by the FTDMA method: The lower

the slot counter value, the higher the priority of the associated FlexRay data frame. As

in the static segment, FlexRay frame transmission is terminated by the CID (Channel Idle

Delimiter). Beforehand, dynamic adaptation to the mini-slotting interval is performed by

DTS (Dynamic Trailing Sequence).

The situation of two channels application is similar. Two channels can transmit same

data or totally different data simultaneously. Figure 2.5 shows the overview of two channels

17

Figure 2.5 FlexRay frame transmission in two channels

frame transmission. Shown in Figure 2.5, A, B, C, D, E and F are nodes connected to the two

channels FlexRay network. Squares represent FlexRay data frames. The name of each square

represents the node transmitting the FlexRay data frame and the number of data frame to

the node. For example, “A2” represents this data frame is the second data frame sent by the

node A. Static slots are fixed length and arranged to relevant nodes for frame transmission.

Dynamic frames have variable length and consist of several minislots.

FlexRay has a special encoding process before sending data frames into the channel.

In FlexRay encoding process, a FlexRay data frame is separated into hundreds of individual

bytes packets and added some extra bits. The flowchart of FlexRay encoding process is given

in Figure 2.6. After FlexRay encoding process, FlexRay data frames are assembled into a bit

stream, which is shown in Figure 2.7.

Compared to CAN frame transmission, FlexRay frame transmission has two main fea-

tures. Firstly, CAN frame transmission in nodes is event-triggered (dynamic). Uncertain

collisions are possible in this architecture. FlexRay frame transmission in nodes is hybrid of

time-triggered (static) and event-triggered (dynamic). It can avoid uncertain collisions and

also provides advantages of event-triggered. Secondly, there is a special encoding process

before FlexRay data frames are transmitted to the channel. In this process, FlexRay data

frames are separated into individual bytes, and some bits are added between each byte.

2.2.4. FlexRay Error Handling Mechanisms for EMI. The FlexRay contains two

basic mechanisms to errors. For significant errors, the POC (Protocol Operation Control):halt

state is immediately entered. The FlexRay also contains a three-state degradation model for

18

Break the FlexRay data frame into individual bytes.

 Add an FSS (frame start sequence, one HIGH bit) at the
end of the TSS.

Append a TSS (transmission start sequence, several
continues LOW bits) at the start of the bit stream, which
may include many data frames.

 Create extended byte sequences for each frame data byte
by adding a BSS (byte start sequence, one HIGH bits
followed by one LOW bit) before the bits of the byte.

Assemble a continuous bit stream for the frame data by
concatenating the extended byte sequences in the same
order as the frame data bytes.

Calculate the bytes of the frame CRC, create extended
byte sequences for these bytes, and concatenate them to
form a bit stream for the frame CRC.

Append an FES (frame end sequence, one LOW bits
followed by one HIGH bit) at the end of the bit stream)

Figure 2.6 The FlexRay encoding process

errors that can be endured for a limited period of time. In this case entry to the POC:halt

state is deferred, at least temporarily, to support possible recovery from a potentially transient

condition.

There are three general conditions that trigger entry to the POC:halt state immediately.

They are product-specific error conditions (Built-In Self Test errors and sanity checks), error

19

Figure 2.7 The bit stream after the FlexRay encoding process

conditions detected by the host that result in a FREEZE command being sent to the POC

via the Controller Host Interface, and fatal error conditions detected by the POC or one of

the core mechanisms (Including errors detected by the CRC).

In FlexRay, besides immediate entry to the POC:halt state, there is a three-state error

handling mechanism referred to as the degradation model. It is designed to react to certain

conditions detected by the clock synchronization mechanism that are indicative of a problem,

but that may not require immediate action due to the inherent fault tolerance of the clock

synchronization mechanism. This makes it possible to avoid immediate transitions to the

POC:halt state while assessing the nature and extent of the errors [15].

Errors caused by EMI are bit or burst errors on FlexRay data frames, which can be

detected by the Header CRC or the Frame CRC. They belong to fatal errors and will trigger

FlexRay enter to the POC:halt state immediately. In the available documentation about the

FlexRay architecture, no mention of any mechanisms similar to the CAN ARQ scheme to

retransmit corrupted frames. The problem how to deal with the POC:halt caused by the

CRC detecting errors, seems to be left to application programs.

2.3. THE ARQ SCHEME

2.3.1. The Basic Principles of the ARQ Scheme. The Automatic Repeat-

reQuest (ARQ) is an error control method for data transmission which uses acknowledgments

and timeouts to achieve reliable data transmission. An acknowledgment is a message sent

by the receiver to the transmitter to indicate that it has correctly received a data frame. A

timeout is a reasonable point in time after the sender sends the data frame; if the sender does

20

not receive an acknowledgment before the timeout, it usually retransmits the frame until it

receives an acknowledgment or exceeds a predefined number of retransmissions [18].

Types of ARQ scheme include Stop-and-wait ARQ, Go-Back-N ARQ and Selective Re-

peat ARQ. The Stop-and-wait ARQ scheme is the most basic ARQ scheme. Its communication

is done one frame at one time. After sending each frame, the transmitter waits for the ACK

(acknowledgement) signal and doesn’t send any further frames until it is received. If the

received frame is damaged or lost, the receiver discards it and does not send an ACK. If a

certain time, known as the timeout, passes without ACK, the sender sends the frame again.

In order to avoid duplicate frames caused by ACK lost or too short timeout. In common, a

1 bit sequence number is defined in the header of the frame. This sequence number alter-

nates (from 0 to 1) in subsequent frames. When the receiver sends an ACK, it includes the

sequence number of the next packet it expects. This way, the receiver can detect duplicated

frames by checking if the frame sequence numbers alternate. If two subsequent frames have

the same sequence number, they are duplicates, and the second frame is discarded. Similarly,

if two subsequent ACKs reference the same sequence number, they are acknowledging the

same frame. Go-Back-N ARQ and Selective Repeat ARQ schemes employ buffers to improve

communication efficiency. They are widely used in computer network protocols.

A variation of ARQ is Hybrid Automatic Repeat reQuest (HARQ), which has bet-

ter performance, particularly over wireless channels, at the cost of increased implementation

complexity. The HARQ scheme employs not only the error-detection code, but also the

error-correction code to control errors in transmission. Implementations and evaluations of

HARQ modified CAN are finished by my research partner, Krishna chaitanya suryavenkata

Emani [19].

2.3.2. The Stop-and-wait ARQ Scheme in CAN. The error-handling scheme

employed in CAN is based on the Stop-and-wait ARQ scheme and given in Figure 2.8. Shown

in Figure 2.8, the CAN transmitter sends a data frame (Frame 1) with specified Identifier

(11 bits for CAN 2.0A, 29 bits for CAN 2.0B). If one or more receivers correctly receive the

data frame, they send the ACK to the transmitter by setting the ACK slot in the data frame

(Frame 1) to dominant “0”. The transmitter can detect dominant “0” in the ACK slot and

send the next frame (Frame 2). If no receiver receives the data frame, no ACK is sent by

21

receivers. The transmitter cannot detect dominant “0” in the ACK slot and retransmit the

frame (Frame 1). If errors are detected by any receiver, the receiver send the error frame,

which can be received by other nodes (including transmitter) in bus. After receiving the

error frame, the transmitter retransmit the corrupted data frame. The retransmission process

repeats until the transmitter receives the ACK.

Figure 2.8 The Stop-and-wait ARQ in CAN

Basically, the Stop-and-wait ARQ scheme of CAN employs error-detection and retrans-

mission to guarantee reliability of transmission.

2.4. THE BCH CODE

2.4.1. Basic Knowledge of BCH Codes. In general, error-correction coding

is the technique used to correct the errors in the received data. It introduces systematic

redundancy in the transmitting data in order to combat the error [20]. The BCH codes are

22

among the most important block codes that are much studied in coding theory. Because they

can achieve significant coding gain, and the complexity of their decoders is such that they are

implementable even at high speeds. The BCH codes are linear cyclic codes that are always

defined by their code generator polynomial.

The block length n (encoding output length) for BCH codes is always n = 2m − 1 for

m ≥ 3, and the number of errors can be corrected is bounded by t < (2m−1)/2. Specific values

for t and k (encoding input length) can be found using algebraic techniques for determining

code polynomials. Table 2.1 and Table 2.2 give values for n, k and t for BCH codes employed

in this thesis.

Table 2.1 Relationship between n, k and t in the BCH codes (n=63)
n k t
63 36 5
63 30 6
63 24 7
63 18 10
63 16 11
63 10 13
63 7 15

Table 2.2 Relationship between n, k and t in the BCH codes (n=511)
n k t
511 376 15
511 304 25
511 184 45
511 112 59

2.4.2. Encoding and Decoding of BCH Codes. The BCH codes are cyclic codes

so that encoding is simply accomplished using the general technique for cyclic codes. Given

the code generator g(D), the code words in systematic form are found using the following

steps:

23

1. multiply the message polynomial w(D) by Dn−k

2. calculate the remainder ρ(D) = Rg(D)[D
n−kw(D)]

3. generate the code polynomial x(D) = ρ(D) + Dn−kw(D)

Decoding of BCH codes is similar to that of any cyclic code. Because the foundation

for all BCH decoding algorithms is the algebraic structure of the codes, the decoders are

straightforward once the algebraic fundamentals are established. Decoding of BCH codes

consists of three steps:

1. Calculate a syndrome from the received code polynomial. There are 2t components of the

syndrome S1, S2, , S2t. The syndrome of an undistorted code polynomial is zero so that it

is a function only of the transmission errors and the code structure. Calculation of each

component of the syndrome is done by finding the remainder of division of the received

sequence by a polynomial φi(D), which was specified a t the time of the definition of the

code. The polynomial long division is accomplished to calculate syndrome components.

There are at most different division circuits required for a t error correcting code.

2. Determine the positions of the errors in the received polynomial using a two-step pro-

cedure:

(a) Determine an error location polynomial from the syndrome components found in

step 1. An interactive algorithm is available for finding this polynomial. This algorithm

is called the Berlekamp algorithm, after its inventor. The complexity of this algorithm

is proportional to 2t2.

(b) Find the roots of the polynomial found in step 2a. There roots directly determine

the location so f the errors in the received polynomial.

3. Correct the errors in the received polynomial to find the transmitted codeword and thus

the transmitted information.

BCH decoders are commercially available and are widely used today [21].

2.4.3. Implementation of BCH Codes in Matlab Simulations. In this thesis, the

BCH code is employed by proposed Modified ARQ scheme to correct errors. In simulations, the

24

encoding and decoding process of the BCH codes are finished by Matlab commands “bchenc”

and “bchdec”. In utilization, the BCH code parameters , n, k and t, are important for choosing

the proper BCH code to counter errors. When n is fixed, decreasing the length of input, k, will

increase the error-correction capability of the BCH code, but decrease transmission efficiency

due to the shorter k. The converse situation works too. Thus, in applications, the t should

be made exactly larger one bit than maximum error bits so that the BCH code can meet

error-correction requirements and maximize transmission efficiency simultaneously. The BCH

code has flexibility to meet requirements of various error extents.

25

3. EMI MEASUREMENTS ON THE CAN HARDWARE TESTBED

In order to mitigate the effects of EMI on automobile communication protocols by em-

ploying shielded cables and error-correction mechanisms, the performance of protocols in the

EMI environment must be measured based on hardware experiments. CAN, as the communi-

cation protocol most widely used in the automobile and construction machinery, was chosen

as the experimental automobile communication protocol. The CAN hardware testbed was

built in the EMI environment to measure signal waveforms and the actual bit rate. Figure.

3.1 is a photo of the CAN testbed. Based on the analysis of measurement results, shielded

cables proved to be effective to mitigate the effects of EMI.

Figure 3.1 The CAN testbed photo

3.1. HARDWARE SETUPS FOR CAN TESTBED

A CAN bus with up to four nodes were implemented by Intel 8051 microprocessors

and connection cables. A magnetic relay and a manual switch were used to generate the EMI

26

which was then coupled with the communication bus. Data waveforms were recorded using an

oscilloscope. When using the oscilloscope in the measurement, caution was taken to preserve

the balance of the differential bus structure of CAN.

The hardware setup is shown in Figure 3.2. Every CAN node was implemented by a

C8051 board (C8051f040 Mixed Signal ISP Flash MCU board from Silicon Laboratories). By

flushing different control programs into C8051 from the PC, the board can become either a

transmit node, receive node, or silence node. Nodes were connected through DB9 serial cables.

Figure 3.2 The CAN testbed hardware blocks

In order to compare the effects of EMI on different cables, two kinds of cables were

used for the bus: shielded and unshielded. The unshielded cables were the traditional CAN

bus communication cables, which were four unshielded un-twisted wires. The shielded cables

were un-twisted wires with shielded layers connected to the ground of the C8051 boards. In

four-node network measurements, Y cables were necessary to connect every node to the CAN

bus.

The EMI generator circuit consists of a magnetic relay unit, a 24 V battery, and a switch,

serially connected to each other through 18-gauge wires that were coiled to CAN cables. The

27

magnetic relay unit is a large inductive load. The switch controls the EMI generation circuit.

Turning on and off the switch make the relay to generate EMI. The EMI pulses couple to the

CAN bus and cause reduction in the CAN bus speed and errors in CAN communication.

3.2. SOFTWARE SETUPS FOR CAN TESTBED

This study used software, Silicon Laboratories IDE, to control actions of C8051f040

Mixed Signal ISP Flash MCU boards and make them communicate with each other in a CAN

bus environment. In the two-node network, one node was set to the sender node, which sends

data, while another was set to the receiver node, which receives data sent by the sender node.

In the four-node network, besides the sender and receiver nodes, two more nodes were set in

the silence mode to receive CAN bus data. As listeners, they can receive all data from the

sender node. The silence Mode can be used to analyze the traffic on the CAN bus without

affecting it by the transmission of dominant bits (Acknowledge Bits, error frames) [22].

The retransmission function of CAN was disable in all hardware experiments. Through

setting the value of Bit Timing Register (BTR), the period of one bit, Tq, was controlled. The

CAN bus bit rate was computed as 1/Tq, and it can be set at some bit rates up to 1Mbps.

When CAN bus works at a certain set bit rate, the actual bit rate, at the receive node, are

not exactly the set one. Figure 3.3 shows the curve of the actual bit rates relative to the set

bit rates.

In Figure 3.3, the actual bit rates are close to, but lower than the set bit rates. That

is because the receive node takes some time to process received data after every data frame

arriving. Processes include storing received data, reading certain registers, and recording the

number of errors. When such situation occurs, the CAN bus has to wait for processes finishing.

The difference between the set bit rate and the actual bit rate may change, and is dependent

on different custom control programs.

In physical layer, data transmission of CAN is based on transmission of CAN data frames.

Following specified structure, user data is packed into CAN data frames for transmitted in

physical layer. According to the CAN frame structure, one data frame has 64 bits of Data

Field, which include effective user data, and 44 bits of other data. When the receive node

receives one data frame, it actually receives 108 bits data, approximately three fifths of which

28

Figure 3.3 The relationship between set bit rates and actual bit rates

are user data. The bit rate of the CAN bus is defined on the basis of all received data,

including both user data and other data.

In order to observe CAN data frames waveforms more conveniently and prevent the bit-

stuffing, user data, which need to be packed into each CAN data frame, were set to be eight

bytes of 55. In the Data Field of the CAN data frame, 55 was stored as 01010101. Thus, the

Data Field of each CAN data frame was thirty-two 01 alternating bit streams. Timer 4 of

the C8051 board was programmed to time the communication between the transmitter and

receiver. The CAN bus communication was stopped automatically in 20 seconds controlled

by the timer. The receive node records the total number of received bits and the number

of errors. The total number of received bits dividing by 20 seconds is the number of bits of

successful received data per second by the receive node, which is seen as the actual bit rate.

When receives frames, if any errors occurs in this frame, the receiver node can record

the number of errors, and then request retransmission. The bit error rate can be gained by

dividing the number of errors by the total number of received bits.The actual bit rate is an

average value in a 20-second experimental time interval. In order to analyze the effect of EMI

results from every switch change, the switch were turned on and off at 40 times/20 sec and

60 times/20 sec. In order to analyze the EMI effects on the bit error rate, the bit rates were

29

set at different values when the switch were kept turning on and off at 40 times/20 sec. Every

value in results section is an average based on repeating the measurements 50 times.

3.3. MEASUREMENTS AND DATA RECORDING

Precaution is taken to preserve the circuit balance of the differential bus structure of

CAN transceivers. The waveforms of CAN data frames were measured by a digital oscilloscope

(Tektronix TDS5034B). It is necessary to connect the two probes of the scope to CAN H (Pin

7) and CAN L (Pin 2) pins of the DB9 connector of the receive node, as shown in Figure 3.4.

Figure 3.4 Probe connections setup

The cable length of the two probes should be the same so that the impedances and the

capacitances of the two probes form a balanced circuit. The equivalent schematic diagram of

the measurement circuit is shown in Figure 3.5, where R1 and R2 represent the resistor of the

two probes, respectively.

And C1 and C2 were the capacitances of the grounding wires of the two channels.

Ground 1 is the ground of the receive node, while ground 2 and ground 3 were the grounds of

Channel One and Channel Two, respectively. Using such connection, the nodes ground and

two channels grounds were connected through balanced capacitors. A third probe may be

used to measure the coupled EMI only. It may also be used as the trigger signal if only the

30

Figure 3.5 Probe connections schematic

corrupted data waveforms were to be recorded. The waveforms of data frames and EMI were

recorded by choosing the math mode of the oscilloscope, Ch1 . Ch2.

Note that a common mistake is to use the retractable hook and ground lead of one

probe connected to CAN H and CAN L. Since the electrical grounds of the oscilloscope

and the microprocessor boards were essentially connected through power outlets, imbalance

was created between the signal pins of the CAN differential bus thus causing inaccurate

measurements. Other tips gained in the hardware experiment include: keeping EMI generation

circuits away from the probes as far as possible so that the EMI was not coupled directly into

the scope; ensuring reliable connections experiment setups; and making solid contacts of the

probes with the measured pins.

3.4. SIGNAL WAVEFORMS AND ANALYSIS

Positions of the probes of the two channels are connected as shown in Figure 3.4. When

no communication occurs on the CAN bus, then the voltage between CANH and CANL is

0 V. After starting CAN bus communication, one can observe CAN data frames. Figure 3.6

shows the waveforms of data frames at the bit rate of 503 kbps.

31

Figure 3.6 Waveformes of CAN data frames at the bit rate of 503 kbps

In Figure 3.6, the amplitude of data frames is 1.8 V. One data frame lasts from 0.22 ms

to 0.44 ms, while the data field lasts from 0.26 ms to 0.39 ms. The length of the Data Field and

the data frame are 0.13 ms and 0.22 ms, respectively. At the bit rate of 503 kbps, the length of

every bit is 1/503000= 0.002 ms. The observed value is roughly equal to the theoretical value,

0.002*64 = 0.128 ms and 0.002*108 = 0.216 ms. The length of repeat portions is 0.232ms.

Thus, this is 0.232- 0.216 = 0.016 ms time interval between two data frames.

Keeping the probes positions constant, the CAN bit rate is set to 1 Mbps. Figure 3.7

shows the waveforms of one data frame at this set bit rate.

In Figure 3.7, the amplitude of data frames is the same to that in Figure 3.6. One

data frame lasts from 0.08 ms to 0.019 ms, while the Data Field lasts from 0.1 ms to 0.164

ms. When the CAN bus speed is 1 Mbps, every bit lasts approximately 0.001 ms. The Data

Field is 64 bits, and the theoretical length, which is 0.064 ms, is equal to what Figure 3.7

shows: 0.164-0.1=0.064 ms. The data frames theoretical length of 0.108 ms is close to what

is actually seen: 0.019.0.08 = 0.11 ms. The length of repeat portions is 0.120 ms. Thus, this

is 0.120-0.108 = 0.012 ms time interval between two data frames.

Because EMI lasts only a short interval of time, a trigger source is necessary to see the

waveforms of EMI. Channel One was set as the trigger source, whose trigger level is 4 V, and

32

Figure 3.7 Waveformes of CAN data frames at the bit rate of 1 Mbps

the switch was turned on and off to generate EMI. The digital oscilloscope shows and records

the waveforms of EMI. Figure 3.8shows the EMI waveform made by one switch change.

Figure 3.8 Waveformes of Electromagnetic Interference

In Figure 3.8, the voltage peak of EMI is 4 V. The length of EMI is approximately 0.65

ms. The length of EMI generated by one switch change vary in a range. Based on 50 times

33

tests, the average length of EMI is 0.49 ms. Moreover, in tests, turning off the switch in the

EMI generation system triggers the oscilloscope to record waveforms of EMI. It makes sense

to the principle of EMI occurring.

In order to record waveforms of the data frames mixed EMI. The trigger level of Channel

One is at 4 V, and the switch is turned on and off to generate EMI. First, 2-meter unshielded

cables are used as the CAN communication cable. Figure 3.9 shows the waveforms of EMI

based on an one-time switch change affecting data frames at the bit rate of 1 Mbps.

Figure 3.9 Waveformes of CAN data frames with EMI on unshielded cables

In Figure 3.9, data frames, to a large extent, are distorted by EMI on unshielded cables.

Based on 50 measurements, on average, there are approximately three EMI pulses per 0.1 ms,

whose peak values are in the range from 3 V to 4 V. Some bits in the Data Field even change

to wrong voltage levels, which affects the determination and may results in errors. Analyzed

by matlab, every data frame affected by EMI, on average, has 6 error bits. These errors can

be detected by CAN, and wrong data frames can be retransmitted. However, retransmission

causes a reduction of the bit rate.

When shielded cables are used in the system, the waveforms of EMI affecting the data

frames are shown in Figure 3.10.

34

Figure 3.10 Waveformes of CAN data frames with EMI on shielded cables

Compared with Figure 3.9, the waveforms of data frames on shielded cables are more

clear and mixed by a lower EMI. Based on 50 measurements, a rare EMI pulse is beyond 3

V on shielded cables. Analyzed by matlab, every data frameaffected by EMI, on average, has

less than 1 error bits. They are much less than those in unshielded cables situation. As shown

by the performance measurements, in different length cables and set bit rates, such an extent

of EMI affects the actual bit rate of CAN bus very little.

In tests, one fact is found that, with a small probability, EMI results in a halt of CAN

bus communication. Based on 50 tests that show halts, the average time interval of a halt is

2.3 ms. In the set bit rate of 1 Mbps CAN bus, such a halt reduces 2300 bits, or approximately

21 data frames.

Moreover, tests show that the length of the communication cable affects the shape of

the data frame waveforms. Data frames in the short cable have better edges than those in the

long cable. The reason is the attenuation of the cables. Long cables have more attenuation

than short ones do.

3.5. STATISTICS RESULTS AND ANALYSIS

Following the Figure 3.2, the CAN networks were built. After measurements, the results

of unshielded cables are shown in Table 3.1.

35

Table 3.1 Two-node network using unshielded cables
The actual bit rate
(503 kbps)

The actual bit rate (1
Mbps)

2 meters
No EMI 456539 bps (100 %) 904861 bps (100 %)
40 times/20 sec 456453 bps (99.98 %) 904222 bps (99.93 %)
60 times/20 sec 456392 bps (99.97 %) 904032 bps (99.91 %)

40 meters
No EMI 456181 bps (100 %) 902633 bps (100 %)
40 times/20 sec 456079 bps (99.98 %) 902010 bps (99.93 %)
60 times/20 sec 456040 bps (99.97 %) 901734 bps (99.90 %)

It shows that in the 2-meter and 40-meter unshielded cables situation, EMI results in

the reduction of the actual bit rate. The reduction is not large because it is affected by only

one Relay unit. There are hundreds of similar units in automobiles and off-way machines,

whose total effects are huge. The percentages in table are obtained by dividing the actual bit

rates in EMI environment by those of No EMI situation.

Longer cables results in more reduction of the actual bit rates. In the set bit rate of 503

kbps and no EMI situation, the actual bit rate of using 40-meter cables is 0.37 kbps less than

the one of using 2-meter cables. In the set bit rate of 1 Mbps, the reduction becomes 2.23

kbps.

More EMI cause more reduction of the actual bit rates. In the set bit rate of 503 kbps

and 2-meter cables situation, when switch change is 2 times/sec, the average reduction of the

actual bit rate is 0.096 kbps, which is a 0.02 percent reduction from the actual bit rate of the

No EMI situation. Accordingly, when the switch change increases to 3 times/sec, the average

reduction of the actual bit rate reduces by 0.146 kbps, which is a 0.03 percent reduction from

the actual bit rate of the No EMI situation.

In higher set bit rates, effects of EMI are more obvious. In 2-meter cables and switch

change of 2 times/s situation, when the set bit rate is 503 kbps, the actual bit rate can reach

99.98 percent of the actual bit rate in no EMI situation. However, when the set bit rate

increases to 1 Mbps, the actual bit rate can reach 99.93 percent of the actual bit rate in no

EMI situation. Thus, in unshielded cables situation, longer communication cables, faster set

bit rates of the CAN bus and greater numbers of EMI can cause more serious reduction of

the actual bit rates.

36

All unshielded cables were replaced with shielded ones, then the same measurements

were taken on both the 2-meter and 40-meter shielded cables. The experiment results are

shown in Table 3.2.

Table 3.2 Two-node network using shielded cables
The actual bit rate
(503 kbps)

The actual bit rate (1
Mbps)

2 meters
No EMI 456539 bps (100 %) 904861 bps (100 %)
40 times/20 sec 456534 bps (100 %) 904859 bps (100 %)
60 times/20 sec 456530 bps (100 %) 904857 bps (100 %)

40 meters
No EMI 456181 bps (100 %) 902633 bps (100 %)
40 times/20 sec 456180 bps (100 %) 902630 bps (100 %)
60 times/20 sec 456180 bps (100 %) 902628 bps (100 %)

When shielded cables were used, the performance of the CAN bus in an EMI environment

is obviously improved. In shielded cables situation, there is almost no reduction of the actual

bit rate at the set bit rates of 503 kbps and 1 Mbp, even in a 3 times/sec switch change.

Moreover, when the length of shielded cables reaches 40 meters, they also effectively protect

CAN communication from EMI. The reduction of the actual bit rate, which is caused by EMI,

is still zero.

In shielded cables situation, the four-node network were built. In the four-node network,

shielded cables also work well in mitigating EMI. Measurement results are shown in Table 3.3.

Table 3.3 Four-node network using shielded cables
The actual bit rate (503 kbps) The actual bit rate (1 Mbps)

No EMI 456154 bps (100 %) 902576 bps (100 %)
40 times/20 sec 456150 bps (100 %) 902575 bps (100 %)
60 times/20 sec 456149 bps (100 %) 902573 bps (100 %)

Except for a small reduction in the actual bit rate, the results of the four-node network

are similar to those of the two-node network.

37

From the statistics of shown in the tables, the most significant truth found is that

shielded cables can effectively protect CAN bus communication from EMI. At the set bit rate

of 503 kbps and 1 Mbps, the shielded cables reduce EMI effects on the actual bit rates to

zero. Moreover, an increase of the cables length and the number of nodes was found to reduce

the actual bit rates lightly. However, they are not the main factors that affect the actual bit

rate. The larger number of EMI, which is reflected by the times of changing switches, results

in a greater reduction of the actual bit rate. This rule was found when the CAN cable is

unshielded.

In two-node network including 40-meter unshielded or shielded cables, when the retrans-

mission function is disable, the bit error rate of CAN bus in EMI environment was measured

at different set bit rates. In the situation of the switch keeping turning on and off at 40

times/20 sec, the value of the bit time register were changed to set CAN bus at distinct set

bit rates. In every bit rate, both unshielded and shielded cables situation were measured. By

reading values of some registers, the number of errors in 20 seconds communication can be

known. Then the bit error rate can be computed. The results are shown in Figure 3.11.

Figure 3.11 The bit error rate of CAN at different bit rates in EMI environments

The red curve represents the situation of the unshielded cable, while the blue one repre-

sents the situation of the shielded one. In the unshielded cables situation, the bit error rate

38

increases when CAN bus is at the higher bit rate. In the set bit rate of 1.005 Mbps, the bit

error rate reaches approximately 0.00085. In the shielded cable, the bit error rate is perfect

zero in every set bit rate.

39

4. EMI MITIGATION METHODS FOR CAN

Hardware experiments prove that shielded communication cables effectively reduce burst

errors caused by EMI. However, in general, a modern car has several kilometers cables, while

the large machinery vehicle even has longer cables. Shielded cables in such length have

higher cost than traditional unshielded cables. Without replacing unshielded cables, the

error-correction code can be utilized to improve performances of CAN combating EMI. In

this section, a Modified ARQ scheme employing error-correction codes is proposed to replace

the original ARQ scheme in CAN. Matlab simulations implement a serious EMI environment

and Modified ARQ CAN communication. Performances of Modified ARQ CAN including the

bit error rate, the frame error rate and the number of retransmissions, are computed and

analyzed.

4.1. PROPOSED MODIFIED ARQ SCHEME

Referring to results of CAN testbed, CAN with the Stop-and-wait ARQ scheme gets

performance degradation in the EMI environment. A Modified ARQ scheme is proposed to

combat EMI in CAN. The Modified ARQ scheme employs not only the error-detection codes,

but also the error-correction codes to mitigate EMI. In Modified ARQ scheme, the BCH code

(the error-correction code) is employed to encode user data and generate encoded user data.

Encoded user data are loaded by the Data Field in a CAN data frame. The original 15 bit

CRC in CAN data frame is still used to check errors. However, it is computed on the Start of

Frame, the Arbitration Field and the Control Field, not on the Data Field anymore. When

the data frame is received, the same error-detection and retransmission processes of original

CAN are done. If the data frame passes the CRC check, encoded user data in the Data Frame

is decoded by the BCH code to get user data.

CAN data frame structure is redrawn in Figure 4.1. The CAN with a Modified ARQ

scheme is called the Modified ARQ CAN. Modified ARQ CAN data frame structure is given

in Figure 4.2. The Modified ARQ CAN data frame makes modifications in the CRC Field

and the Data Field. The CRC in CRC Field does not check the Data Field any more. Errors

occurring in the Data Field are taken care by the error-correction code. The Data Field is

40

separated into three parts: user data, BCH parity bits, and 1 bit (“0”). User data is data

needed to be delivered. Utilizing specified BCH code to encode user data can get BCH parity

bits. The BCH codes, where n=63, are chosen to encode user data. Based on Table 2.1, the

length of user data, k, is set to five different values: 7, 10, 16, 24, and 30 bits. The error-

correction capabilities of these BCH codes are 15, 13, 11, 7, and 6 bits length burst errors,

respectively. Based on the CAN protocol, the length of the Data Field needs to be an integral

number of bytes. Thus, 1 bit logical “0” is added to make the Data Field 64 bits (8 bytes).

Figure 4.1 The CAN data frame strucure

Figure 4.2 The Modified ARQ CAN data frame strucure

4.2. IMPLEMENTATION OF MODIFIED ARQ SCHEME IN CAN

The Modified ARQ CAN is implemented in Matlab simulations. The communication

flowchart is given by Figure 4.3.

As shown in Figure 4.3, the dash line represents the flow of Modified ARQ CAN, while

the solid line represents the flow of original CAN. In order to implement Modified ARQ CAN,

random data are generated and k bits (‘k’ in the BCH code) are selected as user data each

time. A BCH encoder is used to encode k bits user data and output n bits encoded user

data. Encoded user data are added one bit logic “0”, and put into the Data Field. Then the

41

Generate k
bits user data

Add the header of
the frame

Start

Encode using
BCH codes

Encode CRC coding
on the header and the
Data field

Add tail bits

Corrupt the frame
with burst errors in
the channel

Retransmit the
whole frame

Encode CRC coding
on the header

Retransmit the
 whole frame

Decode the Data
field using BCH
codes

 CRC
 check on the
 header and Data
 field

 Check
 If end of
 transmission

 CRC
 check on the
 header

 Stop

No

Yes

No

Errors detected
No

Errors detected

Figure 4.3 The flowchart of implementing Modified ARQ CAN

Start of Frame, the Arbitration Field and the Control Field are added to the Data Field. The

CRC, which is calculated on the Start of Frame, the Arbitration Field and the Control Field,

is appended. Lastly, the ACK Field and the End of frame are added to finish the Modified

ARQ CAN data frame.

In transmission channel, some bits in the data frame are corrupted by burst errors caused

by EMI. When the data frame reaches the receiver, the CRC is computed and compared to the

42

CRC received to check errors. Differences between two CRC bits indicate errors are detected

in the Start of Frame, the Arbitration Field or the Control Field. Next, the whole data frame

is retransmitted. If two CRCs are identical, the data frame is accepted and the Data Field is

input to a BCH decoder. The output of the BCH decoder is user data.

4.3. MATLAB SIMULATIONS FOR MODIFIED ARQ CAN

Hardware measurement results on CAN test bed are the basis for configuring Matlab

simulation parameters. After analyzing waveforms of CAN data frame with EMI, it is deter-

mined that with unshielded cables and the data rate of 1 Mbps, the length of burst errors in

each CAN data frame is 5 bits in average. In hardware experiments, only one magnetic relay

is utilized to generate EMI and the switch changes at most 3 times per second. In an actual

car, the number of magnetic relays can be roughly one hundred. The switch changes faster

too. Thus, the actual EMI environment is more serious than that of hardware experiments.

Simulations are designed to implement original CAN and Modified ARQ CAN in a serious

EMI environment. In simulations, EMI is added to each data frame, and causes several bits

burst errors on each data frame. Because the length of CAN data frame is 128 bits and the

duration time of each bit is 1 us (the data rate is 1 Mbps), the time interval between two

EMI is 128 us. The Signal Noise Ratio (SNR) in simulations is 10 dB. Total 10000 CAN

data frames are generated for transmission. Data are transmitted between two nodes: one

transmitter and one receiver. In each simulation process, the length of burst error is fixed.

When length of burst errors varies from 1 to 15 bits, simulation processes repeat 15 times.

When the retransmission functions of CAN and Modified ARQ CAN are disabled. The

bit error rate and the frame error rate are computed. When the retransmission function is

enabled, corrupted data frames are retransmitted until correct data frames are received. The

bit error rate and the frame error rate of CAN and Modified ARQ CAN both decrease to a low

level. But the number of retransmissions for successful delivering of one frame are different in

CAN and Modified ARQ CAN. The average number of retransmissions for successful delivering

of one frame is computed dividing the number of retransmitted frames by the number of frames

need to be delivered. Original CAN retransmits much more corrupted frames than Modified

43

ARQ CAN do. More time needs to be taken to transmit the same length data, and the actual

data rate decreases.

4.4. RESULTS AND ANALYSIS FOR MODIFIED ARQ CAN

The bit error rate of CAN and Modified ARQ CAN with different burst errors are given

in Figure 4.4, when retransmission is disabled. The bit error rate of original CAN increases

linearly. Utilizing the error-correction code, the bit error rate of the Modified ARQ CAN

decrease significantly. When the length of burst errors is 3, 4, 5, and 6 bits, bit error rates of

all the Modified ARQ CAN are roughly 50% of those of the original CAN. Moreover, when

the length of burst errors increases, bit error rates of Modified ARQ increase at a much slower

pace than those of original CAN.

As observed in Figure 4.4, when Modified ARQ CAN employs a BCH code with smaller

k, it has a lower bit error rate. The reason can be found in Table 2.1. When n is fixed, the

Figure 4.4 The bit error rate of CAN and Modified ARQ CAN

44

BCH code with smaller k has stronger error-correction capability than the BCH code with

bigger k does. Another fact is that when the length of burst errors go beyond error-correction

capability of BCH codes, bit error rates drastically change. For example, the BCH code with

k=7 has error-correction capability, 6 bits. The BCH code can correct, at most, 6 bits burst

errors. Thus, when the length of burst errors change from 6 to 7 bits, the bit error rate jumps

from 2.1% to 4%. Moreover, Figure 4.4 shows that when the length of burst errors is 15 bits,

the Modified ARQ CAN with the BCH code (n=63, k=7) reduces the bit error rate from

11.9% to 5.1%.

Figure 4.5 shows the frame error rate of CAN and Modified ARQ CAN in various burst

errors length when retransmission is disabled. CAN communication is based on frame trans-

Figure 4.5 The frame error rate of CAN and Modified ARQ CAN

mission. One bit error in a data frame can cause the retransmission of a whole data frame

(128 bits). Thus, the frame error rate can reflect CAN performance improvements too.

45

As shown in Figure 4.5, when burst errors are added to each CAN data frame, errors are

detected by all CAN data frames. Thus, original CAN maintains the frame error rate 100%.

In Modified ARQ CAN, the frame error rate decreases significantly. When the length of burst

errors are 3, 4, 5, and 6 bits, the frame error rates of all Modified ARQ CAN are roughly 52%,

half the amount of the original CAN. When Modified ARQ CAN employs a BCH code with

smaller k, it can reach a lower frame error rate. When the length of burst errors goes beyond

error-correction capability of the BCH codes, the frame error rate drastically increases. When

the length of burst errors is 15 bits, the Modified ARQ CAN with the most powerful BCH

code (n=63, k=7) can maintains the frame error rate 50%.

The number of retransmissions for successful delivering of one frame is shown in Fig-

ure 4.6.

In simulations, EMI is added to each data frame, and causes several bits burst errors on

each data frame. In a such serious EMI environment, when retransmission function of CAN

Figure 4.6 The number of retransmissions for successful delivering of one frame in Modified
ARQ CAN

46

and Modified ARQ CAN is enabled, retransmitted data frames are corrupted, CAN cannot

successfully deliver data frames. But Modified ARQ CAN can successful deliver data frames.

Shown as in Figure 4.6, the Modified ARQ CAN with the BCH code (k=7) retransmits 1 to 1.3

times to successful deliver one data frame. The number of retransmissions drastically changes

when the length of burst errors is up to error-correction capability of the BCH code. In actual

applications, the length of burst errors caused by EMI can be measured before choosing the

proper BCH code. With the proper BCH code, the number of retransmissions for successful

delivering of one data frame can be maintained at a low level.

47

5. EMI MITIGATION METHODS FOR FLEXRAY

Referred to Section 2.2.4, FlexRay employs two basic mechanisms for responding to

significant errors and errors that can be endured for a limited period of time, respectively.

For significant errors detected by a node, the “POC: halt” state is immediately entered. For

errors that can be endured for a limited period of time, FlexRay also contains a three-state

degradation model to defer entry of the “POC:halt” state, at least temporarily, and to support

possible recovery from a potentially transient condition.

Bit or burst errors caused by EMI can be detected by CRC and belong to significant

errors. After entering “halt” state, the ARQ scheme and Modified ARQ scheme can be

implement by application programs.

5.1. IMPLEMENTATION OF MODIFIED ARQ IN FLEXRAY

This section describes Matlab simulations on ARQ FlexRay based on the Stop-and-wait

ARQ scheme and Modified ARQ FlexRay based on the Modified ARQ scheme.

In order to implement Modified ARQ in FlexRay, new FlexRay data frame structure

employing error-correction methods is designed. The simplified FlexRay data frame structure

and the Modified ARQ FlexRay data frame structure is given in Figure 5.1 and Figure 5.2.

Figure 5.1 The simplified FlexRay data frame structure

Figure 5.2 The Modified ARQ FlexRay frame structure

48

The length of the Payload segment is configured to 512 bits so that the BCH codes

(n=511) can be chosen as the error-correction code. Table 2.2 shows parameters of the BCH

codes. In the Modified ARQ FlexRay data frame, modifications are similar to these of Modified

ARQ CAN. There is no any modification in the Header segment. The Payload segment is

separated and consists of three parts: user data, BCH parity bits, and 1 bit logical “0”. BCH

parity bits are generated by encoding user data with the BCH code. In FlexRay protocol, the

length of the Payload segment needs to be an integral number of bytes. Thus, 1 bit logical

“0” is added to make the Payload segment 512 bits (64 bytes).The CRC in the Trail segment

is computed on the Header segment. In the receiver, it is computed again for checking errors

occurring in the Header segment.

The flowchart of implementing Modified ARQ FlexRay is given in Figure 5.3

Shown in Figure 5.3, the solid line represents the flow of implementing ARQ FlexRay,

while the dash line represents that of implementing Modified ARQ FlexRay. Modified ARQ

FlexRay is implemented by following steps. Random k bits user data are generated for trans-

mission. The BCH code is used to encode k bits user data, and output n bits encoded user

data. Encoded user data appends one bit logic “0”, and are put into the Payload segment.

Then the Header segment is added to the Payload segment. The CRC in the Trail segment

is computed on the Header segment and is appended. The Modified ARQ data frames is

encoded by FlexRay encoding process before transmitted. In the channel, the data frame is

corrupted by burst errors caused by EMI. When the Modified ARQ FlexRay data frame reach

the receiver, it is decoded by FlexRay decoding process. The CRC is computed on the received

Header segment, and compared to the received CRC. If the two CRCs are different, errors

are detected. The data frame is retransmitted. If two CRCs are identical, the data frame is

accepted, and the Payload segment is decoded by the BCH code to get user data. The flow

of implementing ARQ FlexRay does not have BCH encoding and decoding processes, and the

CRC in the Trail segment checks both the Header segment and the Payload segment.

5.2. MATLAB SIMULATIONS FOR MODIFIED ARQ FLEXRAY

Parameter setups of Matlab simulations are based on results of CAN hardware experi-

ments. In Matlab simulations, the SNR is set to 10 dB. 10000 Modified ARQ FlexRay data

49

Generate k
bits user data

Add the Header
segment

Start

Encode using
BCH codes

Encode CRC coding
on the Header and
Payload segment

Add Trail segment

FlexRay encoding
Corrupt the frame
with burst errors in
the channel

FlexRay decoding

Retransmit the
whole frame (By
programs)

Encode CRC coding
on the Header
segment

Retransmit the
whole frame (By
programs)

Decode the
Payload segment
using BCH codes

 CRC
 check on the
 Header and Payload
 segment

 Check
 If end of
 transmission

 CRC
 check on the
 Header segment

 Stop

No

Yes

No

Errors detected

No

Errors detected

Figure 5.3 The flowchart of implementing Modified ARQ FlexRay

frames and 10000 ARQ FlexRay data frames are generated and transmitted in EMI environ-

ment. The length of Payload segment in all data frames is configured to 512 bits. In each

100 us, one burst error is added to transmission. The length of burst errors is fixed in each

simulation, and the bit error rate and the frame error rate are computed after each simulation.

The simulation is repeated when the length of burst errors increases. As mentioned in the

previous section, the bit rate of FlexRay communication is 10 Mbps, which is ten times faster

than that of CAN. The duration time of each bit (0.1 us) in FlexRay is one tenth of that of

50

each CAN bit (1 us). The same extent EMI in FlexRay is assumed to corrupt ten times more

bits than it does in CAN. Thus, the maximum length of burst errors simulated increase from

15 bits to 60 bits.

5.3. RESULTS AND ANALYSIS FOR MODIFIED ARQ FLEXRAY

When retransmission is disabled, the bit error rate in ARQ FlexRay and Modified ARQ

FlexRay is given in Figure 5.4, and the frame error rate in ARQ FlexRay and Modified ARQ

FlexRay are given in Figure 5.5.

Figure 5.4 The bit error rate of ARQ FlexRay and Modified ARQ FlexRay

Shown in Figure 5.4, the bit error rate of Modified ARQ FlexRay is lower than that of

ARQ FlexRay. The bit error rate of Modified ARQ FlexRay drastically increases when the

length of burst errors goes beyond error-correction capability of the BCH codes. Modified

51

Figure 5.5 The frame error rate of ARQ FlexRay and Modified ARQ FlexRay

ARQ FlexRay with the most powerful BCH code (n=511, k=112) maintains the bit error rate

1% even when there are 60 bits burst errors in each 100 us.

FlexRay communication is based on the frame delivery. Even if one bit in a frame

is incorrect, all bits in this frame should be seen as wrong and retransmitted. Thus, the

frame error rate in Figure 5.5 also reflects the performance improvement of Modified ARQ

FlexRay. Shown in Figure 5.5, the frame error rate of ARQ FlexRay is always more than 70%.

The frame error rate indicates that more than 70% ARQ FlexRay data frames have errors.

ARQ FlexRay can detect errors and retransmit corrupted frames, but retransmitted frames

possibly be corrupted too. It causes a large number of retransmissions for successful delivering

one data frame. In Modified ARQ FlexRay, when the length of burst errors is shorter than

error-correction capability of the BCH codes, the frame error rate maintains roughly 10%.

It indicates that only roughly 10% Modified ARQ data frames have errors and need to be

retransmitted.

52

Comparing Figure 4.5 to Figure 5.5, the Modified ARQ scheme provides more improve-

ments in performances of FlexRay than these of CAN. The main reason is that the FlexRay

data frame has longer user data than the CAN data frame has, when the overhead bits of

CAN and FlexRay are the same in length. The Modified ARQ scheme employs the BCH codes

correct errors which occur in user data, but not correct the overhead bits. Thus, actually,

the FlexRay data frame get more protection from the BCH codes. Utilizing Modified ARQ

scheme provides more benefits to communication protocols, which have long user data and

short overhead bits in frame structure.

When the retransmission is enabled, the The average number of retransmissions for

successful delivering of one frame is given in Figure 5.6.

The average number of retransmissions for successful delivering of one frame can be

computed dividing the number of retransmitted frames by the number of frames need to

Figure 5.6 The number of retransmissions for successful delivering of one frame in Modified
ARQ FlexRay

53

be delivered, and it possibly is not an integer. Shown in Figure 5.6, when the length of

burst error is 60 bits, ARQ FlexRay retransmits 4.4 times for successfully delivering one

data frame. Modified ARQ FlexRay with the BCH code (k=112) only retransmits 0.4 times

for successfully delivering one frame. With other “k” values, the number of retransmissions

drastically increases when the length of burst errors goes beyond error-correction capability of

the BCH codes. But Modified ARQ FlexRay maintains much less retransmissions than ARQ

FlexRay.

54

6. CONCLUSIONS

Replacing traditional unshielded parallel communication cables with shielded cables, to

a large extent, combat EMI on CAN communication. Shielded cables mitigate the reduction

of the data rate and the bit error rate. Measurements show that 40 meters shielded cables

reduce the reduction of the data rate from more than 800 bits/second to 5 bits/second. The

bit error rate reduces from 0.8510−3 to 0. In measurements, the length of shielded cables and

the number of nodes affect the data rate a little. Moreover, with unshielded cables, CAN

running in 1 Mbps receives more effects of EMI than CAN running in 503 Kbps does.

After employing the Modified ARQ scheme, performances of CAN and FlexRay in EMI

environments are improved. When the Modified ARQ scheme utilizing the BCH code, which

has error-correction capability beyond the maximum length of burst errors, the Modified

ARQ scheme effectively reduces the bit error rate, the frame error rate and the number of

retransmissions. In a CAN two-node network, when there are 12 bits burst errors per 100us,

the Modified ARQ scheme with the BCH code (n=63, k=7) reduces the bit error rate from

11.8% to 5%, and the frame error rate from 100% to 56%. The number of retransmissions

for successful delivering of one data frame reduces from infinite to 1. In a FlexRay two-node

network, when there are 60 bits burst errors per 100us, the Modified ARQ scheme with the

BCH code (n=511, k=112) reduces the bit error rate from 6% to 0.9%, and the frame error

rate from 82% to 27%. The number of retransmissions for successful delivering of one data

frame reduces from 4.4 to 0.4. Moreover, the FlexRay data frame has longer user data in the

data frame than the CAN data frame does. With the Modified ARQ scheme, more user data

in FlexRay are protected by error-correction codes. Thus, FlexRay gets more performance

improvements than CAN does from utilizing the Modified ARQ scheme.

55

BIBLIOGRAPHY

[1] “LIN bus description,” [Online]. Available: http://www.interfacebus.com/Design Conne-
ctor LIN Bus.html. Oct 2007.

[2] Wikipedia, “Controller area network,” [Online]. Available: http://en.wikipedia.org/
wiki/Controller Area Network. Oct 2007.

[3] C. Temple, “Flexray - past present future perfect,” [Online]. Available:
http://www.flexray.com/publications/1 FlexRay.pdf. Oct 2006.

[4] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automotive communi-
cation systems,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1204–1223, 2005.

[5] “Automotive buses,” [Online]. Available: http://www.interfacebus.com/Design Connec-
tor Automotive.html. Oct 2007.

[6] W. Xing, H. Chen, and H. Ding, “The application of controller area network on vehicle,”
in International Vacuum Electronics Conference (IVEC), pp. 455–458, 1999.

[7] H. Kopetz, “Fault containment and error detection in the time-triggered architecture,”
in Autonomous Decentralized Systems, 2003. ISADS 2003. The Sixth International Sym-
posium on, pp. 139–146, 2003.

[8] K. C. S. Emani, “Appication of Hybrid ARQ to Controller Area Networks”. MS thesis:
University of Missouri - Rolla, 2007.

[9] The Bosch IC Design Center, “CAN specification version 2.0,” [Online]. Available:
http://www.semiconductors.bosch.de/pdf/can2spec.pdf. Oct 2006.

[10] Kvaser company, “The CAN protocol tour,” [Online]. Available: http://www.kvaser.com/
can/protocol/index.htm. Oct 2007.

[11] Wikipedia, “Differential signaling,” [Online]. Available: http://en.wikipedia.org/wiki/
Differential signaling. Oct 2007.

[12] Wikipedia, “FlexRay,” [Online]. Available: http://en.wikipedia.org/wiki/Flexray. Oct
2007.

[13] R. Makowitz and C. Temple, “Flexray - a communication network for automotive control
systems,” in 2006 IEEE International Workshop on Factory Communication Systems,
pp. 207–212, 2006.

[14] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing analysis of the flexray com-
munication protocol,” in 18th Euromicro Conference on Real-Time Systems, 2006, p. 11
pp., 2006.

[15] The FlexRay Consortium, “FlexRay communications system protocol specification ver-
sion 2.1 revision a,” [Online]. Available: http://www.flexray.com/. Oct 2006.

[16] The FlexRay Consortium, “FlexRay communication system preliminary node-local bus
guardian specification version 2.0.9,” [Online]. Available: http://www.flexray.com/. Oct
2007.

56

[17] Vector company, “FlexRay,” [Online]. Available: http://www.vectorworldwide.com/vi fle-
xray kommunikationsprinzip en,,223.html. Oct 2007.

[18] Wikipedia, “Automative repeat request,” [Online]. Available: http://en.wikipedia.org/
wiki/Arq. Oct 2007.

[19] K. C. Emani, K. Kam, M. Zawodniok, Y. R. Zheng, and J. Sarangapani, “Improvement
of CAN bus performance by using error-correction codes,” in IEEE Region 5 Technical,
Professional, and Student Conference (TPSC), (Fayetteville, AK), 2007.

[20] Wikipedia, “The BCH code,” [Online]. Available: http://en.wikipedia.org/wiki/BCH code.
Oct 2007.

[21] E. R. Ziemer and L. R. Peterson, Introduction to Digital Communication. Englewood
Cliffs, New Jersey 07632: Prentice Hall, 2000.

[22] “C-CAN user’s manual revision 1.2,” The Bosch IC Design Center, Reutlingen, Ger-
many. Robert Bosch GmbH. [Online]. Available: http://www.semiconductors.bosch.de/
pdf/Users Manual C CAN.pdf. Oct 2006.

57

VITA

Fei Ren was born on May 8th, 1983, in Chongqing, China. He received his Bachelor’s

degree in Electronics Engineering from the University of Electronic Science and Technology of

China, Chengdu, China in 2005. He received his MS degree from the University of Missouri-

Rolla in December 2007, then pursued a Ph.D degree also at the University of Missouri-Rolla.

	Performance improvements of automobile communication protocols in electromagnetic interference environments
	Recommended Citation

	Performance improvements of automobile communication protocols in electromagnetic interference environments

