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Plastic optical fiber (POF) for use in automotive applications is not a new concept 

and has been used in some vehicles for infotainment media distribution within the Media 

Oriented Systems Transport protocol. However, the use of POF for the control network’s 

physical layer is a concept that has not been implemented in automotive applications. 

Many aspects of a vehicle can be improved by implementing POF as the physical 

backbone for the control network. 

Currently, the Controller Area Network (CAN) is used as the primary backbone 

control network protocol for most automobiles as it is inexpensive and reliable. However, 

CAN is limited to 500 kbps in most vehicles and is easily accessible. Ethernet may 

provide the improvements of speed and security needed in today’s feature rich and 

connected vehicles. The feasibility of implementing Ethernet over POF as the control 

network for automotive applications is the topic of this research investigation. 



 

ii 

DEDICATION 

The work provided in this thesis is dedicated to my parents, Sue and Nicky 

Nazaretian, my sister, Sarah Nazaretian, and my wife, Chelsea Nazaretian, who always 

stand beside me and believe that I can make a difference in the world.



 

iii 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Marshall Molen for enlightening me to the Mississippi 

State University Advanced Vehicle Technology Competition team, EcoCAR 2, and 

EcoCAR 3, as well as always being a great mentor by providing advice, feedback, and 

criticism to me as well as being a great friend. 

I would also like to thank the Mississippi State University’s EcoCAR 2 and 

EcoCAR 3 team for allowing me to participate as well as provide funding for graduate 

school. I want to recognize Dr. Randolph Follett, Dr. Kaylan Srinivasan, Dr. Sundar 

Krishan, Stephen Hayes, Casey McGee, Wesley Haney, Jeremy Walker, Dalton Childers, 

Matt Tidwell, and Charles Boyd, for being great friends and team members during my 

time on the team. The EcoCAR 3 team would not be great if it were not for those faculty 

advisors and team members who put in tireless work for the betterment of the team. 



 

iv 

TABLE OF CONTENTS 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

TABLE OF CONTENTS ................................................................................................... iv 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF ACRONYMS AND ABBREVIATIONS ............................................................x 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

1.1 Introduction ............................................................................................1 

1.2 Inspiration ..............................................................................................5 

1.3 Literature Review...................................................................................6 

1.4 Goal ........................................................................................................8 

II. DATA COMMUNICATION NETWORKS ...................................................10 

2.1 The Controller Area Network ..............................................................10 

2.1.1 A CAN Message ............................................................................11 

2.1.2 CAN Electrical Properties ..............................................................13 

2.1.2.1 Differential Pair .......................................................................13 

2.1.3 CAN Topology...............................................................................14 

2.1.4 Example use of CAN in a vehicle ..................................................15 

2.2 Fiber Optics ..........................................................................................17 

2.2.1 Fiber Optics in the Automotive Industry .......................................17 

2.2.1.1 Advantages ...............................................................................19 

2.2.1.1.1 Immunity from EMI .....................................................19 

2.2.1.1.2 Reduction of Weight ....................................................19 

2.2.1.1.3 Increase of Bandwidth .................................................19 

2.2.1.1.4 Reduced Packaging Space ...........................................19 

2.2.1.1.5 Improved Security ........................................................20 

2.2.1.2 Disadvantages ..........................................................................20 

2.2.1.2.1 Increased Cost ..............................................................21 



 

v 

2.2.1.2.2 Increased Complexity ..................................................21 

2.2.1.2.3 Reduced Repairability ..................................................21 

2.2.1.2.4 Environmental Constraints...........................................22 

2.2.1.2.5 Consumer Acceptability...............................................22 

2.3 Ethernet ................................................................................................22 

2.3.1 Network Communication ...............................................................23 

2.3.2 An Ethernet Message .....................................................................24 

III. ANALYSIS ......................................................................................................28 

3.1 Cost ......................................................................................................28 

3.1.1 Point-to-point Wiring Cost ............................................................28 

3.1.2 CAN Cost .......................................................................................29 

3.1.3 Ethernet over POF Cost .................................................................29 

3.2 Installation Considerations...................................................................29 

3.2.1 Point-to-point Wiring Installation Considerations .........................29 

3.2.2 CAN Installation Considerations ...................................................30 

3.2.3 Ethernet over POF Installation Considerations ..............................31 

3.3 Security ................................................................................................32 

3.3.1 Point-to-point Wiring Security ......................................................32 

3.3.2 CAN Security .................................................................................33 

3.3.3 Ethernet over POF Security ...........................................................33 

3.4 Bandwidth ............................................................................................34 

3.4.1 CAN Bandwidth.............................................................................34 

3.4.2 Ethernet over POF Throughput ......................................................34 

3.5 Weight ..................................................................................................35 

3.5.1 Point-to-point Wiring Weight ........................................................35 

3.5.2 CAN Weight ..................................................................................35 

3.5.3 Ethernet over POF Weight .............................................................36 

IV. PROTOTYPE ..................................................................................................37 

4.1 Prototype Goal .....................................................................................37 

4.2 Component Selection ...........................................................................38 

4.3 Hardware Overview .............................................................................39 

4.4 Software Overview ..............................................................................43 

V. RESULTS ........................................................................................................46 

5.1 Analysis Results ...................................................................................46 

5.1.1 Cost ................................................................................................46 

5.1.2 Installation considerations .............................................................47 

5.1.3 Security ..........................................................................................48 

5.1.4 Bandwidth ......................................................................................48 

5.1.5 Weight ............................................................................................48 

5.2 Prototype Results .................................................................................49 



 

vi 

VI. CONCLUSION ................................................................................................52 

6.1 Conclusions ..........................................................................................52 

6.2 Future Work .........................................................................................55 

6.2.1 Cost reduction ................................................................................55 

6.2.2 Security improvement by using encryption ...................................56 

REFERENCES ..................................................................................................................58 

APPENDIX 

A. POF TEMPERATURE ANALYSIS ...............................................................64 

B. HARDWARE DESIGN ...................................................................................67 

B.1 PIC32 Ethernet Starter Kit II Fiber Optic Daughter Board 
Design ..................................................................................................68 

B.2 PIC32 ESKII Fiber Optic Daughter Board Printed Circuit 
Board Layout .......................................................................................70 

B.3 Other hardware schematics ..................................................................74 

B.3.1 CAN Transceiver ...........................................................................74 

B.3.2 High-side driver .............................................................................75 

APPENDIX 

C. SOFTWARE OVERVIEW ..............................................................................77 

C.1 PC Side Software – Python ..................................................................78 

C.2 Embedded Side Software – C ..............................................................79 

 



 

vii 

LIST OF TABLES 

 2.1 Fiber Optic Cable Attenuation at Different Signal Wavelengths ....................17 

 4.1 Component Selection Table .............................................................................38 

 5.1 Analysis Summary ...........................................................................................46 

 5.2 Cost Analysis Parameter List ...........................................................................47 

 5.3 Cost Calculations .............................................................................................47 

 A.1 POF Material Acronyms ..................................................................................65 

 A.2 POF Temperature Analysis ..............................................................................66 

 

 



 

viii 

LIST OF FIGURES 

 1.1 Example of Multi-drop bus topology as may be used with CAN or I2C ...........2 

 1.2 Example of a FlexRay star topology ..................................................................3 

 1.3 Example of a MOST ring network topology used in a vehicle ..........................4 

 1.4 Ethernet over POF Implementation Goal ..........................................................9 

 2.1 CAN Physical Layer [2]...................................................................................10 

 2.2 CAN Message Data Frame [16] .......................................................................11 

 2.3 CAN messages interpreted with CANoe software ...........................................12 

 2.4 Screenshot of CAN data using an oscilloscope ...............................................14 

 2.5 Example of CAN bus topology ........................................................................15 

 2.6 Use of CAN in a vehicle using Vector CANoe ...............................................16 

 2.7 Example of a fiber control network star topology ...........................................18 

 2.8 UDP Segment Format (Transport Layer) ........................................................25 

 2.9 IPv4 Packet Format (Network Layer) ..............................................................26 

 2.10 IEEE 802.3 Frame Format (Data Link Layer) .................................................27 

 4.1 System overview ..............................................................................................40 

 4.2 Prototype descriptive photo .............................................................................42 

 4.3 Test setup overview photo ...............................................................................43 

 4.4 Python GUI connected to PIC32 ......................................................................44 

 5.1 Software interaction from Python GUI to PIC32 to CAN ...............................50 

 5.2 Low beam on, controlled from Python GUI ....................................................51 



 

ix 

 6.1 Possible nodes in a modern vehicle .................................................................53 

 6.2 POF network diagram ......................................................................................54 

 6.3 Avago AFBR-5803AZ with cover removed ....................................................56 

 6.4 wolfSSL integration option in MPLAB Harmony v1.06 Configurator 
tool ...................................................................................................................57 

 B.1 Microprocessor board-to-board interface and indicators schematic ................68 

 B.2 Ethernet PHY interface schematic ...................................................................69 

 B.3 POF Transceiver interface schematic ..............................................................70 

 B.4 Top layer (left) and bottom layer (right) of the ESKII POF Daughter 
Board ................................................................................................................72 

 B.5 Blank fiber optic daughter boards PCBs with a dime for size 
comparison. ......................................................................................................73 

 B.6 Assembled fiber optic daughter board .............................................................74 

 B.7 CAN transceiver integration schematic ...........................................................75 

 B.8 High-side driver integration .............................................................................76 

 C.1 Python GUI connected to PIC32 ......................................................................79 

 C.2 MPLAB Harmony Configurator ......................................................................80 

 



 

x 

LIST OF ACRONYMS AND ABBREVIATIONS 

ABS Anti-lock Braking System 

ADAS Advanced Driver Assistance System 

ADC Analog to Digital Converter 

AVTC Advanced Vehicle Technology Competition 

AWG American Wire Gauge 

CAN Controller Area Network 

CAVS Center for Advanced Vehicular Systems 

CRC Cyclic Redundancy Check 

DHCP Dynamic Host Configuration Protocol 

DLC Data Length Code 

ECU Electronic Control Unit 

EMI Electromagnetic Interference 

EPA Environmental Protection Agency 

ESKII Microchip PIC32 Ethernet Starter Kit II 

FSM Finite State Machine 

GUI Graphical User Interface 

I/O Input and Output 

I2C Inter-Integrated Circuits 



 

xi 

IC Integrated Circuit 

ISO International Organization for Standardization 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

IP Internet Protocol 

LED Light Emitting Diode 

LIN Local Interconnect Network 

LLC Logical Link Control 

MAC Media Access Control 

MOST Media Oriented Systems Transport 

MSU Mississippi State University 

OBDII On Board Diagnostics II 

OSI Open Systems Interconnection 

OUI Organizationally Unique Identifier 

PHY OSI Physical Layer Interface 

POF Plastic Optical Fiber 

PVC Polyvinyl chloride (plastic) 

SAE Society of Automotive Engineers 

UART Universal Asynchronous Receiver/Transmitter 

UDP User Datagram Protocol 

V2V Vehicle to Vehicle 

 



 

1 

CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Today, the use of electronics in vehicles has increased at a rapid pace somewhat 

analogous to the growth of semiconductors as described by Moore’s law [1]. Within the 

past ten years, the integration of in-vehicle navigation systems, rearview cameras, stereo 

systems with a plethora of input options, adaptable cruise control, Advanced Driver 

Assistance Systems (ADAS), and telematics have occurred. The drive to produce 

complex hybrid vehicles has further increased the use of electronics, and therefore, the 

amount of wire required for interconnections as well as the increase of bandwidth 

requirements for the Controller Area Network (CAN). 

Current generation vehicles are more connected with vehicle-to-vehicle (V2V) 

communication, ADAS, autonomy, Internet of Things (IoT), and further hybridization. In 

fact, the main drive behind this thesis relates to EcoCAR 3, a US Department of Energy 

Advanced Vehicle Technology Competition (AVTC), where a stock 2016 Chevrolet 

Camaro is to be transformed into a production-ready performance-hybrid with a new 

infotainment center, ADAS incorporation, and other innovations where the 

overabundance of wires begs for a better solution. 



 

2 

There are several vehicle communication networks available today including 

CAN, FlexRay, Media Oriented Systems Transport (MOST), and Local Interconnect 

Network (LIN). 

 CAN – The Controller Area Network is one of the most common 

communication networks in today’s vehicles, supporting up to 1 Mbps of 

bandwidth [2]. CAN is a bus type network meaning that multiple devices 

can connect to the network at the same time using the multi-drop bus 

topology such as used for Inter-Integrated Circuits (I2C) as shown in 

Figure 1.1. CAN uses differential pairs for electrical signals to filter out 

the effect of electromagnetic interference (EMI) and common mode noise 

[3]. 

 

Figure 1.1 Example of Multi-drop bus topology as may be used with CAN or I2C 

 

 FlexRay – FlexRay is a time-deterministic communication protocol used 

for safety-critical or high-performance vehicle systems such as drive-by-

wire, active suspension, or ADAS. FlexRay has a maximum bandwidth of 

10 Mbps and uses either single or dual differential twisted pairs. The 

network topology for FlexRay is flexible, supporting the multi-drop 
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topology, star topology (shown below), or a hybrid network comprised of 

both multi-drop and star network topologies [4]. 

 

Figure 1.2 Example of a FlexRay star topology 

 

 MOST – The Media Oriented Systems Transport protocol was designed 

specifically for media distribution in automotive applications. MOST is a 

time deterministic network developed in a ring topology as shown in 

Figure 1.3. MOST is unique from the other network types listed because it 

was designed to operate over either electrical wiring or fiber optics [5]. 
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Figure 1.3 Example of a MOST ring network topology used in a vehicle 

 

 LIN – The Local Interconnect Network is implemented in many vehicles 

as an alternative to CAN to lower the cost of the electronics. LIN operates 

using a single wire and a return on the vehicle chassis in the multi-drop 

topology and often utilizes the serial universal asynchronous 

receiver/transmitter (UART) peripheral included with many 

microcontrollers. Additionally, LIN is a specialized network with a 

master/slave configuration, meaning only one device can act as the 

controller [6]. 
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1.2 Inspiration 

The work described in this thesis was developed for the Mississippi State 

University EcoCAR 3 team’s innovation topic for Year 1 of the competition. The 

inspiration of the goals for this thesis was brought about from experience in EcoCAR and 

EcoCAR 2, the previous two AVTCs before EcoCAR 3. 

In the EcoCAR competition, the team’s 2008 Chevrolet Captiva, redesigned as a 

series hybrid, had significant EMI issues due to the high voltage brushless DC electric 

motors and wiring located in the front of the vehicle. During an EMI event, which 

frequently happened when generating power, there would be a loss of engine control. 

One major advantage of using fiber optics is its immunity to EMI. 

In EcoCAR 2, the MSU team had significant installation and reliability issues 

with control system wiring connecting the front of the vehicle to the rear of the vehicle. 

The control system wiring to the engine bay consisted of 44 wires with a length of 4 m 

that weighed 3.5 kg. However, this does not take into account the three CAN cable 

assemblies that incorporate twisted pairs, aluminum shielding, and thick insulation. The 

physical size of 44 wires all located within a small area in the trunk made packaging 

difficult and the number of wires created many potential failure points in the vehicle. 

These potential failure points caused many of the control system problems for the team in 

Year 3 of the EcoCAR 2 competition. 

Ethernet over Plastic Optical Fiber (POF) has the potential to alleviate some the 

issues of EMI, packaging, and weight. The switch to Ethernet over POF would have 

removed the chance for EMI to affect the control system in EcoCAR. The switch would 

have also increased the bandwidth for the EcoCAR 2 vehicle’s controls network from 
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500 kbps to 100 Mbps, allowing more signals to be transmitted on the network while also 

reducing the need for additional wires to be installed throughout the vehicle. 

Additionally, the POF cable is one-quarter of the weight of the CAN wiring it would 

replace. 

1.3 Literature Review 

The literature review looked at various web articles and peer-reviewed papers 

regarding issues with CAN, uses of fiber optics in the automotive industry, and use of 

Ethernet in automotive applications. 

An article by Kathy Pretz discussed how vehicles have become more 

sophisticated with the advancement of technologies included in current vehicles and 

mentioned how the electrical and control system is the third heaviest and third costliest 

component in today’s vehicles, behind the chassis and engine [7]. The main idea of this 

article was to replace CAN with Ethernet. Pretz’s article described a way to accomplish 

this using IEEE standard P802.3bp to allow communication using less than three twisted 

pairs to establish gigabit link speeds. 

Peter Hank also agrees with the point that Ethernet can meet the intense data 

transmission demands of today’s vehicles [8]. He also mentions that the switch to 

Ethernet can reduce costs, an opinion also supported by Damon Lavrinc’s article [9], 

which describes how the switch to Ethernet could reduce wiring harness costs by 80% 

while also reducing wiring harness weight by 30%. Damon’s article also declared 

Ethernet as ‘instrumental’ to improving fuel economy for the new Environmental 

Protection Agency (EPA) fuel economy standards set for 2025 due to the weight savings 

a faster network interface can provide by removing signal wires [10]. A paper by 
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Alexandre Vasile discussed fiber optics and identified copper as an expensive resource 

and that there is a need for faster networks within vehicles [11]. 

Chung-Wei Lin identified security problems with CAN in which the network can 

be hacked in four different attack scenarios described in his paper [12]. The first scenario 

is “modification,” where an unauthorized node installed between two existing nodes 

splits the CAN bus into two busses and acts as a gateway between the busses. This 

method would be difficult to accomplish since it would require physical access to the 

wiring for an electronic control unit (ECU) in order to accomplish the attack. The second 

scenario is “fabrication,” where an unauthorized node could generate messages on the 

CAN bus. If these messages use the ID of another device, such as a wheel speed sensor 

for example, the anti-lock braking system (ABS) may react by disabling the brakes. Such 

an occurrence was demonstrated by hacking activists Charlie Miller and Chris Valasek 

[13, 14]. The third scenario is “interception,” where an unauthorized node gains access to 

the network and intercepts messages sent on the bus. The data acquired, such as location, 

speed, direction (compass), fuel level, or any other information that is transmitted over 

the CAN bus can be used by an attacker. For example, in the “fabrication” example, the 

attacker could wait until the vehicle is at a high speed before disabling the brakes. 

Finally, the fourth scenario is “interruption,” where an unauthorized node blocks all 

messages on the bus. With CAN, this is easy to do by shorting the CAN High and CAN 

Low signals together or by flooding the bus with high priority messages. Wei Lin also 

stated how implementing secure methods of data transfer in CAN is difficult because of 

CAN’s lack of global time used in many encryption techniques and lack of bandwidth 

needed for many authentication processes. 
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The literature review identified some deficiencies to improve upon. Such 

deficiencies include the lack of security with CAN, the need for higher bandwidth data 

communication, the need to reduce the weight of a vehicle’s wiring, and the need to 

reduce the cost of the wiring harness. 

1.4 Goal 

The goal for this thesis project is to explore the feasibility of using Ethernet over 

POF as an automotive control network by developing a working prototype and providing 

an analysis of the cost, installation considerations, security, bandwidth, and weight of 

such a network. The prototype is demonstrated with two objectives. The first objective is 

to control a headlight assembly that includes a low beam, high beam, running light, and 

turn signal. The 12 V bulbs are controlled by Ethernet over POF that is capable of 

providing feedback from the light driver chips such as current or short-circuit conditions. 

The second objective is to achieve backwards compatibility by implementing a CAN and 

Ethernet gateway so that CAN controlled hardware, such as the battery pack in the 

EcoCAR 3 vehicle, can be controlled using Ethernet over POF. Both of the solutions to 

these objectives are shown together in Figure 1.4. 
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Figure 1.4 Ethernet over POF Implementation Goal 
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CHAPTER II 

DATA COMMUNICATION NETWORKS 

2.1 The Controller Area Network 

A Controller Area Network (CAN) is a broadcast communication protocol 

released in 1986 by Robert Bosch GmbH [15]. CAN is a low cost network employing a 

half-duplex, serial communication protocol implemented with a physical layer utilizing 

differential twisted pair wires, as described in Figure 2.1. 

 

Figure 2.1 CAN Physical Layer [2] 
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As a broadcast network, every node on the CAN bus has access to all the data 

being transmitted. The individual messages are identified with either an 11-bit or a 29-bit 

identifier (ID). A particular node can either read or ignore a message depending on the 

message’s ID. The priority of the message in regards to gaining access to write to the 

network is specified based on this ID with priority given to the message with the lowest 

numerical ID [2]. 

2.1.1 A CAN Message 

A CAN message consists of a data frame that includes seven fields and a space 

field: Start of Frame, Arbitration Field, Control Field, Data Field, Cyclic Redundancy 

Check (CRC) Field, Acknowledgement (ACK) Field, End of Frame, and Interframe 

Space [16]. The standard 11-bit ID CAN message is shown in Figure 2.2. 

1
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Figure 2.2 CAN Message Data Frame [16] 

 

The arbitration field contains the ID as well as a Remote Transmission Request 

used to request the remote node to transmit data. The Control Field contains the data 
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length code (DLC) determining how many bytes of data follow. The Data Field is a 1 to 8 

byte field that contains the data to transmit. The CRC is used to verify that the data 

transfer was free of errors. Finally, the ACK field acknowledges that the message was 

received by transmitting a dominant bit during the second half of the ACK field. 

A CAN message is serially transmitted on the bus, sending up to 8 bytes of data. 

The recipient decodes the messages into sensible information such as voltage, speed, 

temperature, counters, or flags, for example. 

In Figure 2.3, a screenshot of a CAN display using a software product called 

CANoe and manufactured by Vector Software GmbH shows CAN messages transmitted 

on the bus. A Vector CANcaseXL analyzer, popular in the automotive industry, can both 

read and decode CAN messages as well as transmit messages on the bus using the 

CANoe software. 

 

Figure 2.3 CAN messages interpreted with CANoe software 

 

Figure 2.3 shows two messages transmitted from a microcontroller. The first 

message in the figure, identified as “CounterMessage,” has a DLC of 1, indicating that 
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only one byte of data was sent. The data in this example is converted from the 

hexadecimal representation, 0xF6, to the decimal representation, 246. 

The second message, “OutputStatus,” also has a DLC of 1. However, this 

message is broken down into six signals from the hexadecimal number 0x2B, which is 

0b101011 in binary representation, where the first ‘1’ is for the low beam and the last ‘1’ 

is for LED1. 

2.1.2 CAN Electrical Properties 

CAN operates over a differential twisted pair cable with a characteristic 

impedance of 120 Ω and is terminated at each end with 120 Ω resistors to prevent signal 

reflections on the bus. Microcontroller can communicate on the bus by utilizing CAN 

transceivers. 

The CAN transceiver implements the physical layer of the Open System 

Interconnection (OSI) model following the ISO11898-2 standard [17]. The transceiver 

provides CAN transmit and receive signals for the microcontroller’s communication 

while providing the differential CAN High and CAN Low signals to communicate on the 

CAN bus. 

2.1.2.1 Differential Pair 

CAN has the ability to achieve a high transmission bandwidth over long distances 

because of its differential pair implementation. The use of a differential pair cancels out 

the effects of EMI; thereby reducing the number of transmit errors. 

CAN interprets the differential signals as containing either dominant or recessive 

bits. To interpret as a recessive bit, both the high and low signals must be at the same 
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voltage. To interpret a dominant signal, both high and low signals must be at different 

voltages. In Figure 2.4, the signals are plotted from the same voltage reference level of 0 

V located at the bottom of the waveform. As shown in Figure 2.4, the recessive voltage 

level is approximately 2.5 V, while the dominant levels for CAN Low and CAN High are 

about 1.5 V and 3.5 V, respectively. 

 

Figure 2.4 Screenshot of CAN data using an oscilloscope 

 

2.1.3 CAN Topology 

CAN is a bus network, where all devices or nodes connect to the same two 

differential paired conductors. Typically, the CAN bus is considered a single line 

structure where each node is daisy chained from one node to another as illustrated in 

Figure 2.5. It is important to note that the limit of the number of devices on the bus is not 

five nodes as may be interpreted from the figure below, but is limited by the electrical 

current a CAN transceiver can drive. 
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Node 1

Node 2 Node 3 Node 4

Node 5120 Ω 120 Ω 

CAN_L

CAN_H
 

Figure 2.5 Example of CAN bus topology 

 

The CAN bus is analogous to a trunk line that connects two major points each 

located at an end of the line. Branches or “stubs” are located at various points on the line 

to provide access to the system. In the case of the CAN bus, the stubs must be sufficiently 

short so that they do not influence the integrity of the system. The stubs must be 

unterminated so that they do not appear to be alternate paths for the bus [2]. 

2.1.4 Example use of CAN in a vehicle 

Every vehicle sold in the United States since 1996 has included an On Board 

Diagnostics II port (OBD II) based on the Society of Automotive Engineers (SAE) 

standard J-2284/3, which incorporates several communication interfaces into a standard 

connector interface located within three feet of the driver [18]. Part of a 2008 revision of 

the SAE J-2284/3 standard requires the use of CAN based on the International 

Organization for Standardization (ISO) 15765-4 standard, which defines the high-speed 

CAN for vehicle applications to operate at 500 kbps when used with the OBD II port 

[19]. 
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Vehicle CAN busses can transmit hundreds of messages and thousands of signals 

on their networks. For example, a stock vehicle such as EcoCAR 2’s 2013 Chevrolet 

Malibu transmits over 80 separate messages on one of its CAN busses. Many vehicles 

contain multiple networks to reduce network utilization or to separate critical component 

control from non-critical component control. A sample log from the Malibu is shown in 

Figure 2.6. Specific database files are needed to decode the messages from CAN into 

signals, which have been redacted from Figure 2.6 due to confidentiality agreements with 

the manufacturer. 

 

Figure 2.6 Use of CAN in a vehicle using Vector CANoe 
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2.2 Fiber Optics 

Fiber optics is a physical media in which light is used to transmit data. Alexander 

Graham Bell, inventor of the telephone, first conceived the method of using light to 

transmit data in 1880 by using sunlight reflecting onto a diaphragm that vibrated with 

sound [20]. Reflections from the sunlight would travel through an open medium to a 

photosensitive parabolic reflector made of selenium that would vibrate, recreating the 

sound, marking the invention of the photophone [20]. Later, the invention of the light 

emitting diode (LED), laser diode, and glass optical fibers with attenuation under 20 

dB/km enabled the use of fiber optics as a network medium in which to transmit data. 

Today, fiber optics operate using a few different standard wavelengths such as 

850 nm, 1310 nm, and 1550 nm; the cable length is one of the determining factors. Each 

wavelength exhibits a different signal attenuation over the fiber optic cable as described 

in Table 2.1. The table shows that any of the three wavelengths will perform well for an 

automobile. 

Table 2.1 Fiber Optic Cable Attenuation at Different Signal Wavelengths 

Wavelength (nm) Attenuation (dB/km) 
850 3 

1310 0.5 
1550 0.2 

 

2.2.1 Fiber Optics in the Automotive Industry 

Fiber optics have been used in the automotive field before. The MOST protocol 

can work over fiber to distribute media and control devices throughout a vehicle for 

multimedia purposes. 
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The MOST network’s ring topology would not be an appropriate topology for the 

control network of an automobile. A ring topology’s resilience is poor due to its multiple 

points of potential failure. With CAN, if one node fails, the bus will likely still work; 

however, with a fiber optic ring network, if one node fails, the entire network will fail. To 

improve reliability, the fiber optic control network would need to be implemented as a 

star topology, such as shown in Figure 2.7. 

 

Figure 2.7 Example of a fiber control network star topology 

 

The star topology reduces the number of points of potential failure from n-nodes 

(total number of nodes in the network) down to one node. That single point-of-failure is 
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the network switch, which is responsible for receiving and sending the data to the 

appropriate device. 

2.2.1.1 Advantages 

Fiber optics have the potential to improve many aspects of the current control 

network such as immunity from EMI, reduction of weight, increase of link speed, 

reduced packaging space, and improved security. 

2.2.1.1.1 Immunity from EMI 

Since light is not affected by EMI, fiber optics systems are immune to EMI, 

except at the source and detector where electronics convert the light back to electrical 

signals. 

2.2.1.1.2 Reduction of Weight 

The weight of electrical wiring in today’s vehicles has increased with the 

inclusion of additional emissions, entertainment, and safety systems. On average, there is 

120 kg of wire in a typical modern vehicle, according to several sources [9, 21, 22, 23]. 

2.2.1.1.3 Increase of Bandwidth 

Greater bandwidth is required with the introduction of additional safety systems, 

such as surround view cameras. In fact, many of the cameras included in current vehicles 

use Ethernet because of the needed bandwidth [24]. 

2.2.1.1.4 Reduced Packaging Space 

Integrating Ethernet over POF allows many more signals to be transmitted 

because of the increased bandwidth. Wiring for sensors can be terminated locally within 
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the subsystem area rather than being routed throughout the vehicle, reducing the number 

of long wires needed to transmit the signals. 

2.2.1.1.5 Improved Security 

CAN is not a secure means to transmit data. In order to hack CAN, all that is 

needed is to tap into the CAN High and CAN Low signal wires, which is very easy to do 

using the OBD II connector. There is also no way to check if an illegitimate device 

connects to the CAN, where it can fabricate and intercept unauthorized messages in the 

vehicle. 

The interruption from unplugging a fiber optic cable can easily be detected. 

Furthermore, when using a network switch (rather than a hub), the messages only go to 

the intended recipient and are not accessible by other devices on the network. 

Encryption can also be easily and securely implemented with Ethernet over POF 

using well-known methods. There are many types of encryption methods already 

supported with Ethernet including Secure Sockets Layer (SSL) and Transport Layer 

Security (TLS) [25]. 

2.2.1.2 Disadvantages 

There will be some disadvantages with such a pronounced change in how a 

vehicle’s control system works and communicates. Such disadvantages include increased 

cost, increased complexity, reduced repairability, environmental constraints, and a 

possible reduction of consumer acceptability. 
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2.2.1.2.1 Increased Cost 

The biggest disadvantage to switching the automotive control system from copper 

wiring to fiber will be increased cost. With an average of 50 ECUs in an average mid-

priced vehicle, even a small increase in cost of the nodes will increase the cost of the 

control system about tenfold. [21]. 

2.2.1.2.2 Increased Complexity 

The use of Ethernet as well as the use of fiber optics to replace most signal wires 

will increase the complexity of the vehicle’s control system. Typically, point-to-point 

wiring is used for most remote signals within a vehicle and are then connected to an ECU 

to distribute the signals throughout the vehicle using CAN. The focus of this project is to 

modularize the vehicle’s body sections such as headlight assemblies, door assemblies, 

and engine assemblies to use individual electronic control units (ECUs) to reduce the 

number of long cables that are often used for these assemblies. The switch to 

modularized assemblies will increase the engineering effort by requiring more printed 

circuit boards (PCBs) to be fabricated as well as more network engineering to ensure the 

control messages are sent to the appropriate ECU in a minimal amount of time. 

2.2.1.2.3 Reduced Repairability 

The move to fiber optics will reduce the repairability of the vehicle’s control 

system. While copper wire can be cut and spliced with common tools, fiber optics need 

specialty cutters and crimpers. Additionally, splicing will attenuate the signal 

significantly, which may cause enough signal loss to prevent successful transmission. 

However, with widespread adoption, these specialty tools may become more common. 
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2.2.1.2.4 Environmental Constraints 

Accommodating environmental factors such as heat, dust, moisture, and oils will 

be more challenging with fiber optics than with copper wire networks. Currently 

automotive grade fiber optic connectors and cables are limited in use to the interior of the 

vehicle where they are used in MOST networks for entertainment. The environmental 

conditions in the engine bay change drastically from very cold in the winter (-40 °C) to 

very hot right after the engine is cut off on a hot summer day (125 °C) [26]. Additionally, 

the flammability of materials has to be taken into account if fiber optics are used in the 

engine bay where the extensive use of polyvinyl chloride (PVC) for jacket material 

would cause dioxins when burned [27]. 

2.2.1.2.5 Consumer Acceptability 

With the increased cost, higher complexity, and reduction of repairability, 

consumers may find the benefits of fiber optics to outweighed by the disadvantages, and 

avoid purchasing vehicles with fiber optic control systems. 

2.3 Ethernet 

The use of POF is only half the answer to redesigning the automotive control 

network since POF is the physical medium in which to transmit data. An appropriate 

protocol is required that is compatible with POF. A commercially viable solution with a 

much documentation and industry usage is Ethernet over POF. Ethernet was invented in 

1973 by Robert Metcalfe [28]. The specifics of the Ethernet protocol are defined in IEEE 

standard 802.3 [29]. 
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2.3.1 Network Communication 

Ethernet can also be described using the OSI 7-layer model [30]. The OSI model 

describes the 7-layers from high level to low level as Application, Presentation, Session, 

Transport, Network, Data Link, and Physical. The work described in this thesis uses the 

four lowest layers: the Transport, Network, Data Link, and Physical layers. All messages 

are transmitted through the control system should using either the User Datagram 

Protocol (UDP) or Transport Control Protocol (TCP) in the Transport Layer. UDP is a 

simple protocol that offers low overhead and low latency, but has no acknowledgement 

on delivery. TCP guarantees delivery and message order, but requires a three-way 

handshake requiring significant overhead, inherently taking longer to transmit the data 

[30]. Typically, UDP is a great choice for data that is streamed from the source at a pre-

determined interval that is delay-sensitive, such as what current vehicle controllers do 

when connected by CAN. Additionally, if a message needs to be broadcast throughout 

the entire network, communication through Multicast UDP is available. 

In order for communication to be possible between devices, data has to be 

encapsulated by the sending device and decapsulated by the receiving device. At the 

Application layer, the data packet is called a “message”. The message is encapsulated at 

the Transport layer by adding a TCP/UDP header to the message thus becoming a 

TCP/UDP “segment”. The segment is further encapsulated by adding a Network layer 

header containing the source and destination IP address to create a “packet”. The packet 

is then encapsulated by adding a Data Link layer header containing the source and 

destination media access control (MAC) address to create a “frame”. The MAC address is 

a globally unique 6-byte ID consisting of 3 bytes for an Organizationally Unique 
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Identifier (OUI), which identifies the manufacturer such as Apple, Broadcom, Cisco, 

Microchip, and Realtek to name a few. The MAC address is often represented as 

MM:MM:MM:DD:DD:DD in hexadecimal where the three MM bytes contain the OUI 

and the three DD bytes contain the network interface controller (NIC) ID. Three bytes 

allows up to 224-1 or about 16 million unique IDs, meaning there can be 16 million 

unique OUIs and 16 million unique NIC IDs for each OUI. Both of these combined 

allows for 248-1 or about 281 trillion unique devices. The frame is converted into a bit 

stream at the Physical Layer and then transmitted on the physical medium. 

The Physical layer consists of the physical electronics that are used to transmit the 

data through the medium; whether it be traditional Ethernet using an RJ45 connector and 

quad twisted pair copper wire, Ethernet through POF, or wireless through Wi-Fi. 

However, the Physical layer is not just hardware; the Physical layer controller has 

software registers controlled by the microcontroller or computer, meaning that the 

Physical layer has some software attributes. 

2.3.2 An Ethernet Message 

At the transport layer, a UDP segment acts as a liaison between the upper layers 

and the lower layers, enabling end-to-end communication. The header that is added to the 

data payload by the Transport layer is shown in 0. The header contains the source and 

destination port, length of the data, and the data's checksum. The gray shading represents 

the payload from the user. 
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Figure 2.8 UDP Segment Format (Transport Layer) 

 

The segment is then encapsulated using an Internet Protocol (IP) version 4 (IPv4) 

or 6 (IPv6) header in the Network Layer. Only IPv4 will be discussed, since it was used 

for this thesis. The IPv4 header, shown in 0, contains the source and destination IPv4 

addresses. An IPv4 address contains 4-bytes separated into four parts such as 

192.168.0.1, for example, allowing up to 224-1 or about 16 million unique addresses. 
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Figure 2.9 IPv4 Packet Format (Network Layer) 

 

The IPv4 packet from 0 is then encapsulated by the Data Link layer that formats 

the packet into an IEEE 802.3 frame, shown in 0, which is the last step before the 

message is physically transmitted to the destination device. 
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Figure 2.10 IEEE 802.3 Frame Format (Data Link Layer) 

 

The Data link layer passes the frame to the Physical layer where the frame is 

physically transmitted as bits to the remote device. The network switch will forward the 

frame to the appropriate recipient, and the recipient will then decapsulate the frame by 

stripping away the headers and footers as well as performing error checking to ensure the 

data was transferred successfully. With all the headers and footers removed, the receiving 

application is buffered with the transmitted data where it can process the data.
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CHAPTER III 

ANALYSIS 

In this chapter, an analysis is presented that compares point-to-point electrical 

wiring, CAN, and Ethernet over POF concerning cost, installation considerations, 

security, bandwidth, and weight. 

3.1 Cost 

The cost of materials is a big driving force in the decision of auto manufacturers 

for Ethernet over POF to be successful. The costs included in this analysis are from 

current prices published by well-known electronic distributors such as Allied Electronics 

[31], Digi-Key [32], Mouser [33], Newark [34], and Waytek [35]. 

3.1.1 Point-to-point Wiring Cost 

Point-to-point wiring is known as primary wiring or hook-up wire in the 

automotive industry. Primary wiring has the advantage of not needing special termination 

such as the termination resistors and transceivers required by CAN. However, the 

disadvantage is that each signal requires an individual wire. This does not include the 

power and ground needed for the electronic device since each device will need power and 

ground regardless of communication type. From the analysis performed, automotive 

grade 18 AWG wire that is rated for the temperature and abrasion specifications needed 

for automotive applications has an average cost of $0.49 / m. 
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3.1.2 CAN Cost 

CAN requires the use of a twisted pair cable. While point-to-point wiring can only 

transmit one signal, CAN cables can transmit thousands of signals without increasing the 

number of wires. The analysis concluded that the average cost for CAN cable is $3.35 / 

m. However, each ECU needs a CAN transceiver that has an average cost of $0.56. 

3.1.3 Ethernet over POF Cost 

Ethernet over POF offers much lower cable cost, but the transceiver is 

considerably more expensive. There are considerably fewer suppliers for the POF 

transceivers and controllers than for CAN transceivers. Since Ethernet typically uses a 

star network topology, each end of the POF cable needs a transceiver, which again 

increases the cost. 

Cost analysis was performed for the transceiver, PHY controller, and POF cable. 

The analysis found that the average cost for the transceiver, PHY controller, and POF 

cable is $18.06 / transceiver, $1.58 / controller, and $1.04 / m, respectively. Therefore, 

the total cost per node is $19.64 with a cable length cost of $1.04 / m. 

3.2 Installation Considerations 

Installations considerations involve how the control system is installed in the 

vehicle and the guidelines that must be accommodated. Considerations include the 

installation space, bend radius constraints, and environmental constraints. 

3.2.1 Point-to-point Wiring Installation Considerations 

Point-to-point electrical wiring requires the largest installation space of the 

networks considered since each signal requires its own individual wire. If the control 
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system requires only a few wires, such as older vehicles that did not contain ECUs, then 

it is appropriate to use point-to-point wiring. Newer vehicles have ECUs to decrease the 

emissions, and improve performance, safety, and comfort. If newer vehicles only used 

point-to-point wiring, it would be impractical to manage the large number of wires. 

With point-to-point wiring, the bend radius is not a significant concern. 

Obviously, sharp bends in wires that conduct substantial current should be avoided 

because of possible damage to the insulation and an ensuing fault, but for signal wires, 

the bend radius does not affect the signal. 

As for environmental constraints, copper wire has been used for all automotive 

applications. Copper has a melting point of 1083 °C [36] making it appropriate to use in 

the engine bay of a vehicle which can have temperatures up to 1050 °C [37]. The copper 

itself is usually is not the issue with the wire; instead it is the surrounding insulation. 

Most wire insulation, otherwise known as the jacket, is made of polyvinyl chloride (PVC) 

that is rated up to 105 °C. High temperature rated wire may use a braided fiberglass 

jacket to increase the allowable operating temperature. Corrosion is a big environmental 

factor to consider. Copper is very prone to corrosion and oxidation; therefore, tinned 

copper wiring is very common. Additionally, weatherproof connector housings are found 

in the engine bay to protect terminals from moisture and debris. 

3.2.2 CAN Installation Considerations 

CAN operates over a single twisted pair cable that is much larger than a single 

wire. However, the ability to carry multiple signals over a single cable allows more 

signals to be transmitted using less physical space. Currently CAN is the most widely 

used standard used to communicate between different ECUs within the vehicle. There is a 
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no required minimal bend radius for CAN cable, but it is not recommended to be bent 

tightly, just like point-to-point wiring. 

The environmental constraints for CAN cable are very similar to point-to-point 

wiring because CAN cable utilizes copper wire. One other environmental factor to 

consider is EMI if the CAN cable is placed too close to high voltage motors or their 

power cables such as those used in hybrid vehicles. 

3.2.3 Ethernet over POF Installation Considerations 

Ethernet over POF operates over fiber optic strands that are much smaller than 

point-to-point wire or CAN cable. To protect the fibers, three layers of material are used 

around the core fiber: 1) cladding – used to reflect the bouncing light waves, 2) buffer 

material – used for strain relief and core protection, and 3) the jacket – the outside 

material that keeps the inner three components protected. 

Bend radius is a concern with fiber optics. The inner core is made of a glass or 

plastic fiber that can shatter or snap if pinched or deformed. The signal is also attenuated 

when bent because it has to make more reflections off the cladding surface. The 

recommended bend radius for POF is 25 mm in order to achieve less than 0.5 dB of 

signal loss. 

Environmental factors change regarding POF compared to the copper wire. POF 

is typically rated from -55 °C to 85 °C; however, some high-temperature POF is rated 

from -55 °C to 105 °C. These temperature ranges are representative of POFs sold by 

numerous sources and detailed in appendix A. However, POF has a huge advantage with 

regard to corrosion. Unlike copper, which is highly prone to corrosion, POF does not 

react with moisture or other common chemicals within a vehicle. Like with point-to-point 
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and CAN, keeping the connection points clean and dry is important since dust and 

moisture can significantly attenuate the signal. 

3.3 Security 

Security has become a huge news media topic lately. Access to the control system 

has been attributed to different points of attack including: 

 Telematics systems [13] – Services such as On-Star, UConnect, Starlink, HondaLink, 

Ford Telematics, BlueLink, and many others can be vulnerable. 

 OBD II Port [14] - Adapters purchased for diagnostic purposes or those provided by 

insurance companies or employers to track employee activity provide direct CAN bus 

access. 

 Media player sources – Infected MP3 songs, Bluetooth, Wi-Fi can run malicious 

programming on the vehicle’s media player. 

 Wireless Key Fobs – Unsecure key fobs can be analyzed and their signals replicated 

to gain access to a vehicle. This is less common than previously, due to the three-way 

handshaking authentication used in today’s vehicles. 

3.3.1 Point-to-point Wiring Security 

Older vehicles that used point-to-point electrical wiring for all of their signals 

were very vulnerable to being “hot-wired”. Hacking a vehicle with point-to-point wiring 

requires physical access. Today, if a system designed to include telematics with point-to-

point wiring was hacked, only the signals whose wires were compromised would be 

affected, which makes it more secure than CAN in that regard. 
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3.3.2 CAN Security 

CAN is the least secure system to use when compared to point-to-point and 

Ethernet over POF. The main security feature of CAN is “security-through-obscurity” 

such that manufacturers do not release CAN message information that is not relevant to 

OBD-II communication in order to prevent unauthorized manipulation of CAN bus 

messages. However, the capability to control almost every function of a vehicle through 

the CAN interface is present since most ECUs communicate using CAN and diagnostic 

features often have full, unbounded control of vehicle functions. Decoding CAN 

messages takes some time and skill, but is completely possible to do. The worst security 

issue with CAN is when manufacturers connect CAN directly to a cellular telematics 

system, allowing any CAN message to be generated or read remotely. A security flaw 

using this method was demonstrated using a 2014 Jeep Cherokee [13]. Another security 

flaw was recently discovered through a device called the Mobile Device dongle 

commonly used by insurance companies or by employers keeping track of their assets 

[38]. 

3.3.3 Ethernet over POF Security 

Neither Ethernet nor POF are secure unless appropriate procedures are adopted 

from the inception. Ethernet, of course, has been used to connect computers to networks 

and the internet for decades. Viruses and other malware can spread quickly through the 

internet, infecting computers worldwide. How, then, do manufactures secure Ethernet? 

One method used only opens the software ports needed for communication. Another 

method is to enforce encrypted links so that raw data is never transmitted through the 

network. One great advantage of using Ethernet is that messages are only sent to the 
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intended recipient, automatically removing many of the hacking opportunities present 

with bus systems. 

3.4 Bandwidth 

Bandwidth, the amount of data that can be transmitted over the network within a 

specific time, only involves networks; therefore, point-to-point wiring is not relevant for 

comparison in this section. 

3.4.1 CAN Bandwidth 

CAN bandwidth is generally 500 kbps because of OBD-II standards. The 

throughput can reach up to 1 Mbps using the CAN 2.0 standard. A new CAN standard, 

CAN FD, is able to support speeds up to 8 Mbps as long as the cable can support such 

speeds [39]. 

3.4.2 Ethernet over POF Throughput 

Ethernet over POF is capable of reaching speeds up to 10 Gbps, but the hardware 

and software needed to take advantage of such speeds does not exist yet in the 

automotive world. The low cost Ethernet over POF that has been examined for this thesis 

operates at 100 Mbps. Currently, automotive manufacturers are able to control vehicles 

using a variety of different protocols such as CAN, FlexRay, and LIN, without exceeding 

the bandwidth limits of any one of the network interfaces. However, faster protocols such 

as Ethernet are being used for video transmission in vehicles that implement camera 

based security systems that require higher bandwidth to operate. 
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3.5 Weight 

Weight of the control system is a main challenge that this thesis intends to address 

because the control system in modern vehicles is increasing in weight that decreases fuel 

economy. While the simple switch from CAN to POF will not considerably reduce the 

weight, the number of point-to-point wires that POF can remove can yield a significant 

weight reduction. 

3.5.1 Point-to-point Wiring Weight 

Electrical point-to-point wiring is the majority of the wiring weight in current 

vehicles, since all power wires going to devices such as the fuse panel, starter, battery, 

headlights, power windows, and many other components are point-to-point wiring of 

different wire gauges. The 18 AWG wire used for comparison in this thesis weighs 20 

g/m. However, larger power wires, for example, are used for high power devices such as 

the starter, radiator fans, blower motors, headlights, fuel pump, and the rear defroster. 

3.5.2 CAN Weight 

CAN cable is significantly heavier than 18 AWG wire since it has twisted pair 

conductors, a shield wire, foil shielding, and thick insulation. The Waytek CAN cable 

used by the MSU AVTC team measures 48 g/m, significantly heavier than the 18 AWG 

wire used in point-to-point connections. Additional electronics such as CAN transceivers, 

microcontrollers, discrete electronics, and an enclosure that make up an ECU add to this 

weight. Identifying an average weight for a controller is difficult because of the various 

applications in which they are employed, such as controlling the engine, door locks, 

climate control system, or the stereo system. 
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3.5.3 Ethernet over POF Weight 

The POF cable is the lightest material out of the three described, at just 13.3 g/m. 

However, because Ethernet over POF it is implemented as a star network, there are more 

cables required. 

Overall, CAN and Ethernet over POF will weigh the same at the nodes because of 

the needed electronics. The advantage of the latter is that Ethernet over POF has is that it 

can transmit more signals than CAN, and therefore, can reduce the amount of wire 

needed by only supplying a node with power, ground, and Ethernet through POF.
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CHAPTER IV 

PROTOTYPE 

4.1 Prototype Goal 

The prototype’s goal is to indicate whether it is feasible to integrate Ethernet over 

POF into an inexpensive microcontroller to accomplish various tasks such as switching 

high current loads, reading sensors, or transmitting data to another device. The prototype 

must be able to have a quick boot time of less than 2 sec, which excludes any embedded 

computer solutions with a Linux operating system. 

To provide backwards compatibility, a hybrid control network is designed that 

supports both Ethernet over POF as well as CAN. CAN support is needed for devices 

such as EcoCAR 3’s battery pack, as well as OBD II connector compatibility. 
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4.2 Component Selection 

The components in Table 4.1 were selected for use in this thesis project based on 

ease of integration and risk. 

Table 4.1 Component Selection Table 

Description Manufacturer Part 
Microprocessor Board Microchip PIC32 Ethernet 

Starter Kit II (ESKII) 
POF Transceiver Avago AFBR-5803AZ 

Ethernet PHY IC Plus IP101G 
CAN Transceiver Microchip MCP2551 

Incandescent Bulb High-Side 
Driver 

STMicroelectronics VN5E010AH 

 

The Microchip PIC32 Ethernet Starter Kit II (ESKII) is unique as the PIC32 

microprocessor integrated in the ESKII supports Ethernet, CAN, and MPLAB Harmony. 

MPLAB Harmony allows for rapid development by providing pre-built drivers and 

software that can be selectively integrated into the code [40, 41]. The ESKII is also 

unique because the development board offers various off-the-shelf PHY controllers that 

can be interchanged. This allows for firmware development using a known working 

hardware and software configuration; this is a great tool to have when developing both 

custom hardware and software when issues occur. 

The IC Plus IP101G Ethernet PHY was selected for a few reasons. First, this PHY 

supports both the Reduced Media-Independent Interface for Ethernet, which is the only 

type of Transport layer to Physical layer interface supported by the PIC32 while also 

supporting 100Base-FX used for fiber optic communication [42]. The IP101G is also 

unique in that the PIC32 ESKII has a commercially available daughter board that uses 
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this PHY. Additionally, Avago actively supports the IP101G by providing application 

notes on integrating the PHY with their transceivers [43, 44]. 

The ST VN5E010AH high-side MOSFET driver is distinct among high-side 

drivers in that it features 10 mΩ of on-state resistance, dissipating only 0.21 W of heat 

when driving a 55 W load such as a headlight [45]. Currently, automobile manufactures 

commonly use mechanical relays that utilize an electromagnet to switch physical 

contactors within an enclosure. Relays are larger, more expensive, and have a higher rate 

of failure than solid-state devices because of their mechanical components. 

4.3 Hardware Overview 

The hardware used in this investigation was integrated into a prototype setup 

using the PIC32 ESKII and I/O expansion board, breadboard, high-side driver, and POF 

daughter board. Figure 4.1 shows an overview of the prototype system that was 

developed. Appendix B contains more detailed schematics and board layout designs. 
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Figure 4.1 System overview 

 



 

41 

The prototype design hardware in the figure is included within the gray “Ethernet 

over POF Prototype” box with all the programmed signals shown. The high-side driver is 

mounted off-board on a custom milled circuit board with wires attaching it to a fuse 

panel. Since the high-side driver’s board was custom milled and assembled, only one 

driver was tested. The lack of all high-side drivers should not affect the prototype results 

since the programming was still designed as if the other drivers were installed. 

The computer and prototype were connected to the same network to enable an 

Ethernet connection at a speed of 100 Mbps. In addition, the Vector CANcaseXL that 

was connected to the same computer, allowing for CAN communication between the 

computer and prototype at a rate of 500 kbps. 

Figure 4.2 shows a descriptive photo of the prototype setup. The fiber optic 

daughter board plugs directly into the microcontroller board. The microcontroller board 

then connects to the I/O expansion board that is powered from the fuse panel. The 

breadboard contains the CAN transceiver and some discrete components used for the 

high-side driver’s interface to the microcontroller. The CAN transceiver is connected 

directly to the Vector CANcaseXL. 
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Figure 4.2 Prototype descriptive photo 

 

The overall test setup overview is shown in Figure 4.3. The headlight module can 

be seen at the bottom left and the 12 V power supply can be seen at the top. At the right is 

the TP-LINK Media Converter used to convert 100Base-FX to 100Base-TX, which 

converts the fiber Ethernet from the microcontroller to the copper Ethernet cable that is 

connected to the computer. 
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Figure 4.3 Test setup overview photo 

 

4.4 Software Overview 

Two software programs were developed for the prototype. The first program 

controls the prototype through an Ethernet connection using the control computer. The 

second program is the firmware on the microcontroller that receives messages from the 

computer from Ethernet and CAN, controls the outputs of the prototype, and reads 

feedback data from the high-side drivers. 

The software communicates over Ethernet between the control computer and the 

microcontroller board. UDP segments are transmitted in both directions. The segment 

sent from the control computer contains the control information to switch the output 

drivers. The segment sent from the microcontroller contains status information including 

output states, driver current, driver diagnostics, and CAN data. The information from the 
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microcontroller is transmitted to the control computer where it is displayed on the 

program’s GUI window as shown in Figure 4.4. Appendix C contains more detailed 

information regarding the software. 

 

Figure 4.4 Python GUI connected to PIC32 

 

In the left column of the GUI is the I/O list, which names what output is being 

affected or described. The “Enable/Disable” column will switch the particular output on 

if checked and off if unchecked. The “Output Status” column reports whether the output 

should be on or off based on the microcontroller’s firmware. Finally, the 
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“Feedback/Diagnostic” column will display the output current for the high current 

outputs that use the high-side driver, or any fault that will prevent the driver from 

operating correctly. The last row of this table is the “CAN In” status, which reads a 16-bit 

integer sent by the CANcaseXL over the CAN bus. 

At the bottom is a periodic send checkbox with a prescribed transmission rate. 

The frequency with which the Python script sends data to the microcontroller is described 

by the periodicity specified. Directly below the periodic send is the round trip time that 

measures the time it takes to send a command and receive a status message.
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CHAPTER V 

RESULTS 

5.1 Analysis Results 

The results from chapter III are summarized in Table 5.1, where green indicates 

the best choice and red indicates the worst choice, based on the results from the analysis. 

Table 5.1 Analysis Summary 

 
Point to Point CAN 

Ethernet over 
POF 

Cost    
Installation Considerations    

Security    
Bandwidth    

Weight    
 

5.1.1 Cost 

The parameters in Table 5.2 were used to evaluate the relative costs of the 

different control system methods. The parameters were selected using the number of 

signals present in the EcoCAR 2 Chevrolet Malibu, the average length of a compact 

sedan and, and a representative number of electronic controllers for a modern vehicle [21, 

46]. 
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Table 5.2 Cost Analysis Parameter List 

Parameter Measurement 
Signals 500 
Vehicle Length 4.5 m 
Nodes 50 

 

The cost calculation for each network type is shown in Table 5.3. The resulting 

costs shown in this table clearly identify CAN as being significantly less expensive than 

both point-to-point and Ethernet over POF. Point-to-point is the most expensive of the 

three methods as individual wires, with an approximate length of 4.5 m, are used for each 

of the 500 signals. Ethernet over POF was only marginally less expensive because of its 

high transceiver cost. CAN was the least expensive by a large margin because of CAN’s 

low cost transceivers. With such a large difference between CAN and Ethernet over POF, 

this will severely limit the acceptability of Ethernet over POF. 

Table 5.3 Cost Calculations 

Type Equation Cost 
Point-to-point 500 × 4.5 𝑚 × $0.49  $1102.50 

CAN (50 × $0.56) + (4.5 𝑚 × $3.35) $43.08 
Ethernet over POF (50 × $19.64) + (4.5 𝑚 × $1.04) $986.68 

 

5.1.2 Installation considerations 

CAN and Ethernet over POF are very similar in regards to installation 

considerations. CAN had an advantage with regard to the temperature range, but POF is 

superior with regard to EMI immunity. Point-to-point was the worst choice due to the 

physical space requirements and weight. 
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5.1.3 Security 

Ethernet over POF has the potential to be the most secure of the networks 

considered, since data is only sent to the intended recipient, which prevents other nodes 

from reading unauthorized data. Ethernet also has available encryption methods such as 

SSL and TLS. Point-to-point wiring is also secure, because if one signal is hacked, it 

could only affect that signal; however, it is very easy to hack an individual signal. CAN 

has the worst security because nearly every ECU in the vehicle is connected to the CAN 

bus, it is easy to access the bus through the OBD II connector, and there is no way to 

authenticate a node on the bus. 

5.1.4 Bandwidth 

Ethernet over POF has the most available bandwidth since it is capable of 

transmitting 100 times the data as CAN, allowing Ethernet over POF to transmit millions 

of signals per second. Point-to-point wiring is limited to a single signal. 

5.1.5 Weight 

Ethernet over POF uses the lightest cable and its network has the least weight. 

Since both CAN and Ethernet over POF require electronics at each node in order to 

operate, the weight of each node was ignored and just the weight of the cable was taken 

into account. The increased bandwidth by implementing Ethernet over POF can remove 

the need for multiple networks, a solution that vehicle manufactures use to keep the bus 

utilization of CAN low enough to allow the lower priority messages to transmit without 

being blocked. Point-to-point wiring is the heaviest, since each signal requires its own 

signal wire. 
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5.2 Prototype Results 

The prototype was designed to communicate using Ethernet over POF, toggle a 

headlight, as well as support bidirectional CAN communication. The prototype proved 

that it is possible to integrate Ethernet over POF with an embedded microcontroller. 

Figure 5.1 shows the communication between the control computer and the 

microcontroller using Ethernet over POF, as well as the microcontroller transmitting 

messages to the CAN bus, as analyzed with the CANcaseXL. 
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Figure 5.1 Software interaction from Python GUI to PIC32 to CAN 

 

Emphasized in blue in the data log is the low beam output command sent from the 

control computer to the microcontroller. As can be seen in Figure 5.2, the low beam is 

illuminated. The current sensor on the ST driver provides a signal to the PIC32’s ADC 

that then records a current of 4.28 A for this demonstration. The output status is sent back 

to the Python GUI as well as the CANoe software. 
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Emphasized in green in Figure 5.1 is the CAN message that is sent from CANoe 

using the CANcaseXL to the microcontroller. The microcontroller retransmits the 

message’s contents back to the control computer using Ethernet over POF. 

Emphasized in red is the periodic time parameter that sets the rate at which the 

control computer transmits a message. As can be seen in the CANoe screen at the bottom 

of the figure, the period at which the message is transmitted from the microcontroller is 

0.001112 sec, or approximately 1 ms. The 1 ms period demonstrates that the 

microcontroller along with Ethernet over POF can communicate at rates fast enough for 

the vehicle control network, which send messages to the CAN bus at a rate up to 1 kHz. 

 

Figure 5.2 Low beam on, controlled from Python GUI 
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CHAPTER VI 

CONCLUSION 

6.1 Conclusions 

The thesis presented an analysis of current issues within automotive control 

systems and a potential way to fix some of those issues. The results from the analysis 

section indicated that the cost of implementing Ethernet over POF presents a significant 

disadvantage over CAN. However, in terms of installation considerations, security, 

bandwidth, and weight, fiber optics met or exceeded the criteria from point-to-point 

wiring and CAN. The results from the prototype section indicated that Ethernet over POF 

could be integrated into a low-powered microcontroller, such as the Microchip PIC32 

used in the prototype. 

The concept of using Ethernet over POF extends beyond controlling headlights. 

The intention of this project was to describe a way to create a new backbone network that 

could be used to control all electrical components of a vehicle. Presented in Figure 6.1 

are the different ECUs that would utilize the Ethernet over POF control network. 
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Figure 6.1 Possible nodes in a modern vehicle 

 

These nodes would connect using a multi-switch network to reduce the length of 

POF cable installed within the vehicle with statically assigned IP addresses for each node. 

The network would include a front fiber switch, interior fiber switch, and a rear fiber 
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switch as illustrated in Figure 6.2 to reduce the length of POF routed within the vehicle 

by splitting the star network into different locations. 

Left Front Light 
Node

Right Front Light 
Node

Left Rear Light 
Node

Right Rear Light 
Node

Left Door Node Right Door Node

Rear Multi-
Control Node

Engine 
Controller

Transmission 
Controller

Roof Multi-
Control Node

Fuel Tank Node

Gauge Cluster 
Node

Climate Control 
Node

Infotainment 
Node

Front Fiber
Switch

Rear Fiber
Switch

Interior 
Fiber

Switch

 

Figure 6.2 POF network diagram 

 

One potential disadvantage of adopting Ethernet over POF would be the changes 

that would be made to industry standard methods. Currently, OBD II is required to 

contain CAN on the diagnostic port. However, Ethernet is not a standard that is integrated 

within the OBD II standard. Either a new OBD standard would have to be adopted or 

backwards compatibility would have to be designed into the Ethernet network to support 

the required OBD II protocols through a gateway. 
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6.2 Future Work 

Two outstanding issues remain from the work in this thesis that require additional 

work before the idea of using Ethernet over POF can be integrated into vehicles. The first 

outstanding issue is cost reduction since the adoption cost is significantly higher than 

CAN due to the transceivers. The second outstanding issue is improving the security, 

which was mentioned within the thesis, but never implemented in the prototype. 

6.2.1 Cost reduction 

The cost of implementing Ethernet over POF is far too high because of the cost of 

the fiber optic transceivers. There may be a cost reduction with widespread adoption due 

to supply and demand. However, the introductory cost may prevent the widespread 

adoption of Ethernet over POF in automotive. CAN transceivers may be inexpensive 

because the demand for CAN transceivers is high. CAN transceiver manufacturers are 

able to pay for the engineering efforts that went into making the CAN transceivers. Fiber 

optics are not as widely implemented as CAN; therefore, the demand is much lower, 

leaving manufacturers to increase the cost of the fiber optic transceiver to make up for the 

engineering time that went into developing the transceivers. 

Rather than waiting for the prices of POF transceivers to decrease, possible ways 

to reduce the cost can be investigated. The materials inside the transceiver do not justify 

the cost. The transceiver consists of plastic components, a small PCB populated with an 

LED and photodiode, a photodiode quantizer, an LED driver and discrete components as 

can be seen in Figure 6.3. 
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Figure 6.3 Avago AFBR-5803AZ with cover removed 

 

One way to reduce the cost would be to change the interface between the 

transceiver and the PHY. With such a short trace length, there seems to be no advantage 

of using a differential pair between the transceiver and the PHY. An LED can be driven 

by a current source on the microcontroller and the photodiode’s input can be read using a 

high-speed digital input. 

6.2.2 Security improvement by using encryption 

While the use of encryption was mentioned within this thesis, it was never 

implemented. MPLAB Harmony has an option to integrate wolfSSL into PIC32 firmware 

as shown below [25]. wolfSSL provides embedded SSL encryption to microprocessors 

that communicate using TCP/IP. Integrating this into a vehicle network would provide 
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much higher security as message contents could not be read nor fabricated by an 

unauthorized node. 

 

Figure 6.4 wolfSSL integration option in MPLAB Harmony v1.06 Configurator tool 
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APPENDIX A 

POF TEMPERATURE ANALYSIS 
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An analysis of different plastic optical fiber operating temperatures was 

performed using specifications from various manufacturers and models of POF. A study 

of what core, cladding, and jacket materials increase or decrease specified operating 

temperature was performed that yielded lackluster results with the exception of cross-

linked polyethylene for jacket material. Cross-linked polyethylene was found in “high-

temperature” rated POF, and was rated 20 °C higher than any other POF cable. Table A.1 

shows acronyms that are used to describe the material listed in 0. Some material details 

could not be found and are omitted from 0. 

Table A.1 POF Material Acronyms 

Material Type Acronym 
Polyethylene PE 
Polyvinyl Chloride PVC 
Fluorinated Polymer FP 
Polymethyl-Methacrylate PM 
Chlorinated Polyethylene CPE 
Polycarbonate PC 
Cross-linked Polyethylene XLPE 
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Table A.2 POF Temperature Analysis 

Manufacturer Model Core 
Material 

Cladding 
Material 

Jacket 
Material 

Low 
Temperature 

(°C) 

High 
Temperature 

(°C) 
Industrial 

Fiber Optics 
GHV4002 PM FP PVC -40 85 

Industrial 
Fiber Optics 

MH4002 PM FP PE -55 85 

Industrial 
Fiber Optics 

MHV4002 PM FP PVC -55 85 

Industrial 
Fiber Optics 

GHCP4002 PM FP CPE -55 85 

Industrial 
Fiber Optics 

GH4002 PM FP PE -55 85 

Industrial 
Fiber Optics 

SHCP4002 PM FP CPE -55 70 

Industrial 
Fiber Optics 

VST4002 PM FP PE / 
PVC 

-40 70 

Industrial 
Fiber Optics 

SHV4002 PM FP PVC -40 70 

Industrial 
Fiber Optics 

SH4002 PM FP PE -55 70 

Industrial 
Fiber Optics 

SH3002 PM FP PE -55 70 

Industrial 
Fiber Optics 

FH4001-V 
1 

PC FP XLPE -55 105 

Industrial 
Fiber Optics 

BH2001 1 PM FP XLPE -55 105 

Industrial 
Fiber Optics 

BH4001 1 PM FP XLPE -55 105 

Tripp Lite N549-01K    -20 70 
Avago HFBR-

RUS500Z 
   -55 85 

TE 
Connectivity 

501232-3   PE -40 85 

[1] High temperature rated 
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APPENDIX B 

HARDWARE DESIGN 
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B.1 PIC32 Ethernet Starter Kit II Fiber Optic Daughter Board Design 

A PIC32 ESKII fiber optic daughter board was created, since an off-the-shelf 

product was not available. The interface between the PIC32 microcontroller and PHY 

operates at 50 MHz, which meant that breadboard development was not possible due to 

the EMI generated from using unshielded components, unequal wire lengths, and the 

capacitive effects of breadboard traces at this frequency. The lack of breadboard 

prototyping required the use of a printed circuit board (PCB) that would integrate the 

microcontroller, PHY, and POF transceiver into a daughter board compatible with the 

PIC32 ESKII. 

Figure B.1 shows the interface to communicate with the microcontroller using a 

dual in-line package that inserts directly into the PIC32 ESKII daughter board interface. 

 

Figure B.1 Microprocessor board-to-board interface and indicators schematic 
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The PHY circuit that enables communication between the microcontroller and the 

physical interface is shown in Figure B.2. This circuit enables the PHY’s fiber mode 

using R19 on pin 19: FX_HEN pulled to +3.3 V. The Reduced Media Independent 

Interface (RMII) is enabled using pin 4 – COL/RMII pulled to +3.3 V. The RMII mode is 

required for the Microchip PIC32 microprocessor used. To enable the 50 MHz clock 

input setting of the PHY, pin 2 – X1 is connected to ground and pin 10 – 50M_CLKI is 

connected to the 50 MHz clock generated located on the microcontroller’s main board. 

Most of the other components are discrete components used to set the LED mode and 

decoupling capacitors. 

 

Figure B.2 Ethernet PHY interface schematic 

 

The interface between the PHY and POF Transceiver can be seen in Figure B.3. 

Special considerations are necessary for this interface, since the interface uses differential 
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signals. The differential signals required proper split-load termination for data integrity. 

The split-load termination component values are from recommendations in an Avago 

application note and the Avago AFBR-5803AZ datasheet [47, 48]. Additional decoupling 

components and values were referenced from the application note and datasheet [47, 48]. 

 

Figure B.3 POF Transceiver interface schematic 

 

B.2 PIC32 ESKII Fiber Optic Daughter Board Printed Circuit Board Layout 

A circuit board design was created as shown in Figure B.4, which is a two-layer 

board with the dimensions of 2.45 cm wide by 6.04 cm long. The dual in-line package to 

the Microchip ESKII is near the top of the design, shown with the green drill holes. The 

top layer contains the IC Plus IP101G PHY controller. Special care was taken with the 
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clock trace from the ESKII to the PHY to eliminate the need for through-board vias and 

sharp curves that would cause the trace to act as an antenna and create interference from 

the 50 MHz signal in the trace. The PHY also connects to the Avago transceiver, which is 

located near the bottom with the horizontal line of green drill holes. The differential 

traces from the transceiver to the PHY are routed together and have trace meandering to 

keep the trace lengths equal to ensure that the signals in each trace reach the other end at 

the same time. Other considerations in the design include the top layer that contains the 

ground plane and the bottom layer that contains the +3.3 V power plane with an 

exception near the center of the board, which supplies the ground connection to the PHY. 

These power and ground pours provide a stable voltage source for all of the components 

on the daughter board. The polygon fills for the power and ground layers are removed 

from Figure B.4 for better clarity. 
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Figure B.4 Top layer (left) and bottom layer (right) of the ESKII POF Daughter Board 

 

The printed circuit board (PCB) layout in Figure B.4 was ordered as a blank 

board, shown in Figure B.5, which needed to be populated with components as shown in 

Figure B.6. One difference between the board described in Figure B.4 and the board 

shown in Figure B.5 exists. Figure B.4 contains a jumper (0 Ω resistor) at R23 (left side 

below large mounting hole) that disabled the N_RST signal. The original schematic 
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contained this signal; however, Microchip cut this trace from their daughter boards 

because resetting the PHY caused initialization issues. This issue was found after the 

boards were ordered, so the trace was cut in the prototype. 

 

Figure B.5 Blank fiber optic daughter boards PCBs with a dime for size comparison. 
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Figure B.6 Assembled fiber optic daughter board 

 

B.3 Other hardware schematics 

Additional circuitry not captured by the daughter board schematics included the 

CAN transceiver, the high-side driver, a fuse panel, the PIC32 ESKII schematic, and 

PIC32 I/O Expansion schematic. 

B.3.1 CAN Transceiver 

The CAN transceiver enables CAN communication from the microcontroller to a 

vehicle’s CAN bus. The CAN transceiver integration schematic is shown in Figure B.7 
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with the 120 Ω termination resistor. A 0.1 µF capacitor (C1) was added for decoupling 

purposes. 

 

Figure B.7 CAN transceiver integration schematic 

 

B.3.2 High-side driver 

The high-side driver enabled the microcontroller’s low 25 mA maximum current 

outputs to drive high current loads such as a headlight [49]. The high-side driver also 

featured current sensing and diagnostics to detect open or shorted loads. The integration 

schematic can be seen in Figure B.8. 

Consideration had to be made when interfacing the current sensor with the 

microcontroller. When a driver fault occurred, the driver would output a regulated 8 V, 

which would exceed the CMOS voltage input level limit of the microcontroller. To 

alleviate this problem, a voltage divider circuit using R4 and R5 was developed that 

reduced the 8 V down to 3.18 V. For additional protection, a 10 kΩ resistor was placed 

between the voltage divider’s output and the microcontroller. A Zener diode or transient 

voltage suppressor (TVS) diode at the microcontroller’s current sense input would 

improve the safety of the circuit if the input voltage went above the microcontroller’s 3.6 
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V voltage limit (+0.3 V above VDD) [49]. Neither of those components were on-hand 

when assembling the prototype and the risk of damaging the microcontroller was low 

enough to disregard the concern. 

 

Figure B.8 High-side driver integration 

 

To enable the diagnostic features of the high-side driver, two 22 kΩ resistors (R6 

and R7) created a 50/50 voltage divider at the output of the driver. With these two 

resistors installed and no load connected, the driver’s output pin should read around 6 V 

when powered by a 12 V supply, which allows the driver’s diagnostic feature to detect if 

there is a short circuit (reads exactly 0 V) or an open circuit (read 6 V) before engaging 

the driver. 
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APPENDIX C 

SOFTWARE OVERVIEW 
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C.1 PC Side Software – Python 

The PC side software is responsible for establishing a link between the PC and the 

microcontroller over Ethernet, continuously pinging the microcontroller to ensure the 

microcontroller is connected, measuring the round trip time from sending data to the 

microcontroller and receiving data back from the microcontroller, sending control data to 

the microcontroller and receiving feedback from the microcontroller. The PC side 

software was written in Python using WinPython 64-bit version 3.4.3.4 and the graphical 

user interface (GUI) shown in Figure C.1 was designed using Qt4 Designer included with 

the WinPython release. The software contains two execution threads. One thread controls 

the GUI and sends UDP messages to the PIC32. The second thread waits for received 

UDP messages. The separate threads keep the GUI responsive in the event that the PIC32 

stops responding, allowing for a better debugging experience. The GUI is shown in 

Figure C.1 and described in section 4.4. 
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Figure C.1 Python GUI connected to PIC32 

 

C.2 Embedded Side Software – C 

The embedded software is programmed in the C programming language for the 

PIC32 using the Microchip MPLAB X integrated development environment using the 

Microchip XC32 compiler for the 32-bit Microchip PIC microcontrollers. 

A new rapid prototyping solution from Microchip, called MPLAB Harmony, 

allows a developer to select prebuilt drivers and software libraries to integrate into the 

project [41]. The MPLAB Harmony Configurator is shown in Figure C.2. 
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Figure C.2 MPLAB Harmony Configurator 

 

MPLAB Harmony encourages the use of multiple finite-state machines (FSM), 

which allow for much more complex code to be easily developed. Microchip refers to 

these FSMs as “apps”, since each FSM can be interpreted as separate thread with 

independent states and actions. 

The project for this thesis uses two ‘apps’. The first app is used for the UDP/CAN 

communication that checks for queued CAN data and reads the latest analog to digital 

converter (ADC). ADC data is collected from the second app, the ADC app, which 
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switches the ADC’s multiplexer to one of the four different inputs connected to the 

current sense outputs of the high-side drivers and periodically reads the ADC’s voltage. 

The UDP/CAN communication thread starts by waiting for a UDP connection 

where it will then bind a socket to this section of code. Once the socket is bound, it 

receives how many bytes of data are queued to be read. If the number of bytes is greater 

than zero, the application will read this data into a character buffer. The character buffer 

is then passed to a function created called “handleMessage”. 

The “handleMessage” function takes the data received, checks the data length, 

and unpacks the data if the received length is correct. In this case, the function is 

expecting 8 bytes of data, mainly to replicate the maximum length of a CAN message. 

However, only 1 byte of data is used, which contains a mask to toggle the various 

outputs. The first operation performed is to read the high-side driver current values from 

the ADC application. The ADC’s contents contain a voltage proportional to the current 

passing through the driver or the fault status if the output of the driver is 8V (or 3.18 V 

into the microcontroller). The function then interprets the data and sets a bit in the fault 

mask for the particular output if a fault is found. Next, if there is no fault reported by the 

high-side driver, the function toggles the output. The function then creates an output 

status message that contains the output states, fault information, and current information. 

Finally, the function will read any buffered CAN data and append that to the output status 

message. At this point, the function will return to the UDP/CAN application thread. 

Back in the UDP application thread, a UDP and CAN message will be transmitted 

with the output status data. After the messages are transmitted, the application will close 

the socket and wait for the next message to be received. 
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